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Contrasting unitary transformations for the standard bipolaron model
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The well known bipolaron prototype modgwo sites, two electrons, two spins, single oscillatt222
model”)] is considered, involving a Fhiich-type electron-phonon interaction and a Hubbard term. As in the
one-electron case a Fulton-Gouterman transcription leads to a symmetry-adequate definition of the oscillatory
companion functions of the two-electron base vectors. Trial expressions for these oscillatory functions are
generated by means of three unitary operatSdisplacive, squeezing, and reflective'acting within the
vibrational subspace. Several different combinations of these operators are used as generators. Comparing the
optimized results with the results of an exact numerical diagonalization, it is found that one of these combi-
nations, involving all three basic operators is the superior one in all coupling regions. Specifically it is found
that in the intermediate and strong coupling regimes the “reflection” operation is essential. A combination of
squeezing and displacement alone, as frequently used in literature, cannot reproduce the two-peaked nature of
the vibrational wave function$S0163-1829)01129-7

[. INTRODUCTION et all® have investigated the spectral properties of the two-
dimensional Holstein polaron.

The investigations on the famous Landau-polaron As regards the two-electron problem the state of art is less
problent have by now a history of more then six decades. Inadvanced. As a prototype model for the bipolaron problem
this long time period the intensity of investigations of this very often the two-site two-electron two-siff222" ) model
problem had several peaks, and recently the problem hd@s been handled. Worth mentioning is also a three-site two-
become virulent again in the context of local pairing con-mode model, involving both an infrared- and a Raman-active

CeptS, e.g., in h|gﬁ'.C materia|32__4 In these Concepts re- mode. This type of model has been treated by BlShOp and
newed attention is given to the Schafroth model ofSalkolal® In the present work we confine ourselves to the
superconductivity, which preceded the BCS theory, and to 222 model.” *’ This model is accessible to exact numerical
the work of Alexandrov and Ranning®Since the highf,  treatment and therefore may be exploited to evaluate the
materials are of highly dielectric nature, it seems suggestiveower of approximative methods. In the present work we
to consider a degenerate gas of p0|ar0ns or bipo|aronS, Wh|C$peC|f|C3”y analyze the utilization of Unitary transformations
has been done by MoftA very recommendable introduction for the approximate solution of the problem.
to the physica| background for a po]aron theory of h|gh_ In Sec. Il the 222 model is introduced und SUbjeCted to the
temperature superconductors is presented in an article gfulton-Gouterman transformatioFGT). This establishes
Mott.8 the exact equations for the respective oscillatory companion
Already in early stages of the polaron discussion unitaryfunctions for the electronic base vectors. In Sec. Il the exact
transformations have been employed. In particular the verjiumerical form of these companion functions and of their
fruitful papers of Sander and Shdrend of Lang and characteristic properties is presented. In Sec. IV the oscilla-
Firsov'® are noteworthy. In the paper of Sander and Shordory functions are generated by means of unitary operators
the two-site one-electron problem has been considered b§nd optimized. By comparing the results with the exact ones
means of the Fulton-GoutermdRG) transformatior*?In this allows for an assessment of the utility of unitary opera-
this way the problem is reduced to one of the oscillatorytors, which is discussed in Sec. V.
subspace. The great virtue of this reduction is the direct in-
sight into the dominant antagonistic tendencies of the
coupled electron-phonon dynamics. The latter has been ana-
lyzed in more detail in our group® The main outcome of the We considered a prototype model which frequently has
work of Shore and Sander was an important result about theeen discussed in literatufee., Refs. 18—26 The Hamil-
structural form of the vibrational wave function of the tonian is given by
ground state. It turned out that the form consisted of a dis-
placed dominant peak and a smaller mirror image of this
peak. It was this structural form which made it possible to
analyze the transition from a non-self-trapped to a self-
trapped character of the electron. In particular the outcome
was that the transition is not of a jump character but displays Hoh=—>- (P?+Q?), 2
a smooth nature. An approach also somewhat in the spirit of
Sander and Shore has recently been presented by La Magna
and Pucci* for an extended Holstein-chain and Fehske He=—T-4Q (oy+0y)), ©)

Il. THE TWO-SITE BIPOLARON MODEL

Hd:th+He+ He_e+ He_ph, (1)
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1 with
He.e=U'ﬁQ'(§ﬁ¢ﬁ¢+2azmzi), 4 . ,
(ReIRQ) =ReRg, (ReIRQ) =1 (8)
Hepn=7Q-D-Q- (0, +0,). (5)  Re andRq representing respectively reflections in the elec-
The first term represents an effective harmonic oscillator an(TJronIC "?‘”d the phononic subspaces. They have the basic
the second the electronic transfer. The third and fourth termgropertles
stand for the Coulomb-Hubbard and the electron-oscillator RoQ=—QRy
interaction, respectively. Q ’
In this model it is assumed that there are two equivalent RoP=—PR,

atomic sites, each of which has one electronic orbital of the Q '
same nature. The system displays inversion symmetry andith
there is an effective oscillatory coordina@e(momentumP)
of odd parity nature. The electronic creatdesnihilators RG=Ro, R5=1 9
are designated by,; ,c,; (cjj,Cy), | standing for the two
spin directions (=1,|) and |, r insinuating “left” and RelCij=CrjRei,  ReCrj=CijRaer,

“right.” We further have introduced the abbreviations

N . R(_:.|C|Jjr = CI.JE Re|, Re|CrJE = C|JJ-r Re|,
n|j:C|j C|j s nrj:erer , nj:n” +n,j s (6) with
L - Lt - Rg=Re, Ri=1 10
ijzi(cu Crj T CriCij), ijZE(C” Crj —C/iCyj), el ™ Rely el™ (10)
and
-—E(c+c-—c+c-) 7
02j= 5 (C1j Clj = Crj Crj).- [ReRq,H]-=0. 11
The quantities(7) display spinlike commutation relations. " the model it is further assumed that the number of the
We further introduce reflection operators given by electrons is fixed tdN=2. From the considered four one-
electron states we deduce a two-electron basis given by six
R=R¢Ro=RgRel; functions

1) =cc/| [vacuun)

|r>:Cr+TCr+¢|VaCUU”) singlet-states 12
1 (S=0, S,=0)
|h)y= E(cﬁcﬁ—cﬂcﬁ}ﬂvacuunj
R e + A+
)= V3 (Cr7¢7)+ 61\ Cry)|vacuun) triplet-states 13
|t,+1)=c/c;;|vacuum) (S=1, S,=0,*1).
t,—1)=c|c,||vacuum
|
Since the Hamiltonian involves no spin-flip terms we may (1(Q)]1(Q))+{n(Q)]| n(Q)) =1,
handle the solutions in the triplet and the singlet subspaces
separately. Specifically, we will restrict our results to the Ro®n(Q)= ¢n(Q) (15
solutions in the singlet subspace, since in the usual parameterd
constellations the lowest states are in this subspace. The e
act total eigenfunctions then must be of the Wigner f&fm: 1
1 W)= —(|1)=Rol") $u(Q), (16)
¥5) =| = (1D 61(Q) + 1) Bogu(Q) ) + 1h) n(Q) v2
\/E A X
=4:(Q) with
(6u(Q)[#u(Q))=1, 17
(14

i.e., of a form displaying a paritp=g, u, such that

with R[W,)=p|¥,). (18
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[ 1. excited state
i (T = 10.1)

FIG. 1. Bipolaron model without Hubbard terrffHolstein
model,” U=0). Matrix diagonalization: ground staté as a func-
tion of the electron-phonon coupling strendthfor the transfer
valuesT=1.1(— — —) andT=10.1(- - - -). ForT=10.1there
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The vibrational functionsp;(Q) and ¢,(Q) satisfy coupled
eigenvalue equations(“Fulton-Gouterman equations’
which can be found via a variational principté’ or by a
unitary transformatior®?and read

[Hpnt Q- U+AQ-DQJ¢(Q)—7Q-T- ¢n(Q)
=E4(Q)(Q), (19

-
Hondn(Q) =% Q- 5 - (1+Rq) ¢1(Q) =E4(Q) ¢n(Q),

(20

[Hpnt72Q-U+2Q0-DQJ$,(Q)=Ey(Q)¢y(Q). (21)

This transcription also is known as the Fulton-Gouterman
transformatiort*?812We note that the two vibrational func-
tions ¢,(Q) and ¢,,(Q) pertaining to the even parity case
have to be calculated by solving a coupled system of eigen-
value equationg19) and (20), and we emphasize that the

is a tendency to degeneration witht he first excited state for highefranscriptions(19)—(21) represent an exact substitute of the

D values. The limiting cas&=0.0(—) is also drawn.
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FIG. 2. Biopolaron model without Hubbard tertfHolstein model,” U=0). Exact numerical diagonalization: phononic ground state
wave functioneg,(Q) =Rq¢(Q) and ¢,(Q) for To,=0.11T,=1.1, andT,=10.1 in aQ-D display.
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FIG. 3. Bipolaron model without Hubbard terrffHolstein . '.:lG_' 5 Hubba_rd_blpolaron modeU(=12.6). Matrix diagonal- .
nop— o A o ization: characteristics of the phononic ground state wave function
model,” U=0). Matrix diagonalizaiton: characteristics of the

. . - ¢ (Q)=Rq¢(Q) and ¢,,(Q) for different values of the electron-
phononic ground state wave functign(Q) = Ry ¢(Q) and¢,(Q) \
for different values of the electron-phonon coupling paramter phonon coupling parametér and the transfer paramet@r=10.1.

and the transfer parametgr=10.1. more recent work Alexandroet al?° have employed a full

o .~ numerical diagonalisation of the 222 model to calculate dy-

In the limiting cases for the model a number of analyticalyamical propertiegoptical conductivity. In our study we
results are known from literature. We refrain from writing \yjj exploit only the ground state properties. These are docu-
down these properties but refer to the literattfre. mented in the following figures. A test of the analyzed uni-

tary transformations with regard to dynamical properties is in
IIl. EXACT NUMERICAL SOLUTION progress.

In this work we intend to analyze contrasting combina-
tions of unitary transformations with regard to their ability of
yielding a good diagonalization of the Hamiltonian, i.e., of Figure 1 shows the behavior of the ground state, if the
generating good trial wave functions. To quantitatively esti-Hubbard term is disregarded) =0, “Holstein model”). It
mate this ability we make reference to the numerically exactllustrates the “polaronic” effects, i.e., the capture of a
ground state properties. phononic cloud by the electron with increasing coupling,

Since the combined electron-oscillator problem of the sincausing a lowering of the energy. The corresponding oscil-
glet subspace contains only three electronic base functiorigtory wave functions, as defined in Ed4), are illustrated
(I1),]ry,|h)) and a single oscillator which may be repre-in Fig. 2. Both vibrational companiong,(Q)=Rq¢(Q)
sented by the eigenbasfp,(Q)} of Hyu=(%Q/2)(P?  and¢n(Q) of the electronic wave functions respectively dis-
+Q?2), the considered Hamiltonian may be handled exactlyplay three outstanding characteristics.
by numerical diagonalization. For the considered parameters - _

a base of the lowest 250 functiogs,(Q) provides a suffi- 1. Characteristics of the function,(Q)=Rq¢(Q)
cient accuracy. The groundstate of the 222 model also has in the Holstein model

been treated in Ref. 24 in a numerically exact manner. In a From Fig. 3 we observe the following characteristics.

A. Holstein model (U=0)
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FIG. 4. Hubbard bipolaron model(0). Matrix diagonalization: phononic ground state wave funciig(Q) =Rq¢(Q) and ¢,(Q)
forU=4.2 andU=12.6 withT=10.1 depending on the electron-phonon couplbg
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FIG. 6. Bipolaron model Matrix diagonalization. Expectation
value of the squared displaceme@tfor the ground state wave
functions| ¥ g) for T=10.1 andJ=0.0(—),U=4.2(- - -), and
U=12.6(— — —). The sharpening of the transition to “localiza-
tion” with growing U may be noted.
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FIG. 7. Bipolaron model. Matrix diagonalization. Squared dis-
placemen® for the oscillatory ground state companion wave func-
tions[see Eq(14)]: ¢,(Q) (upper figurg and ¢,(Q) (lower figure
(ground statgfor T=10.1 andU=0.0(—),U=4.2(- - -), and
U=12.6 — -).
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FIG. 8. Holstein-bipolaron modélU=0). Ground state energy
(upper figure and relative deviation from the exact valdewer
figure) in dependency of the electron-phonon couplidgfor T
=10.1: displacive ansatz(---), squeezing-displacive ansatz
(— — ), nonunitary reflective ansatz . —. —. —), and exact value

).

Displacement(“localization™). As seen from the figure
the maximum of¢,(Q) shifts to the right with growing
electron-phonon couplin@. This shift physically amounts
to a tendency of the total wave function versus localization.

Antisqueezing“‘broadening”). As also seen from the fig-
ure the shape of),(Q) covers a spatial region which is
broadening with growing electron-phonon couplibg In a
rough approximatiorthis broadening may be viewed as an
“antisqueezing” of the undisturbed functional form, and
trial functions may generated by means of a ‘“squeezing
transformation” in combination with a displacement trans-
formation. This has been done in literatd?e?

Separation in two partg“‘shoulder”). Finally, as also
noted from Fig. 3, we observe a splitting of the function
¢,(Q) into a dominant peak on the right side and a minor
mirror image peak on the left side. This separation is getting
more and more pronounced for growing coupling valDes
whereas for smaller coupling valu€s the dominant peak
only displays a “shoulder” on its left side.

2. Characteristics of the functiong,(Q) in the Holstein model

We find the following characteristidsee Fig. 3.
Symmetric structure i) spacesee Eq(15)].



PRB 60 CONTRASTING UNITARY TRANSFORMATIONS FOR TIE . .. 3257

014 0 ]
012 \ ]

010 \ ]

o1l

0.08 \ 4
0.06 \ 4

0.04 b el N )

0.02 | e

|82

002 . 1

FIG. 9. Holstein-bipolaron modelf=0). Displacement param- FIG. 11. Holstein-bipolaron model=0). Parametersy and 7

eters §; and 6, in dependency of the electron-phonon coupling [see Egs.(43) and (44)] in dependency of the electron-phonon
parameterD for Ty=10.1: displacive ansatz—{—), squeezing- coupling parameteD for To=0.11),To=1.1(- - -), andT,
displacive ansatz (- - -), nonunitary reflective ansatz— —), =10.1 — ).

unitary reflective-displacive ansatz ( - -).

Antisqueezing“broadening”). For growing values oD

the regional extension op,(Q) increases and the remarks

referring to¢,(Q) apply also here. In eough approximation

the broadening again can be generated by means of a

—_ ' L mmmmm T “squeezing transformation.”

L . e 1 Separation in two parté‘two peaks”). From Fig. 3 we
) observe an indentation in the center and a separation in two
peaks displaced in opposite directions. For growing values of
1 D we note the generation of a small minimum, which even-
i tually leads to a separation @,(Q) into two equal func-

nonunitary tional forms and amounts to localization.
reflective Ansatz -

-02 t )

-03 squeezing ] B. Role of the Hubbard term

y displacive A . . :
isplacive Ansatz, Figure 4 shows the oscillatory wave functiops(Q) and

o4 L | #n(Q) in a three-dimensional display if the Hubbard param-
eterU is nonzero. The main features of the functions of the
0 PR 3 . s 6 7 “Holstein” model are still present. However, there is one
D interesting effect, which is the sharpening of the transition
from the nonlocalized behavior to the localized behavior.
FIG. 10. Holstein-bipolaron modeld=0). Squeezing param- This is manifest in the sudden shift of the dominant peak of
etersy; and y, in dependency of the electron-phonon coupling ¢:(Q) (see lower left figureor in the sharp upcome of the
parameteD for T,=10.1:squeezing-displacive ansagz(— — —) two peaks ing;(Q) (see lower right figurg if we compare
and y,(—. —. —. =), and nonunitary reflective ansatz(— — —) them with the corresponding figures in the ‘“Holstein”
and yy(—. —. —. -). model (see Fig. 2
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small coupling values shows up on the left hand side and
then turns to the right hand side. This behavior just illustrates
the sharp transition to “localization” as described above.

A further illustration of the upcoming sharp transition in
the Hubbard case is shown in Fig. 6, where the expectation
value of the squared displaceme@tfor the ground state
wave functions is given. In the two subfigures of Fig. 7 the
partial expectation valuéQ?) with regard to the vibrational
functions ¢,(Q) and ¢,(Q) are shown.

IV. TRIAL WAVE FUNCTIONS
IN THE FULTON-GOUTERMAN PICTURE

A. Variational principle in the Fulton-Gouterman picture

As mentioned in Sec. Il the Fulton-Gouterman equations
D (19—(21) may be viewed as the manifestation of a varia-
tional principle. Using the ansatz4) the energy expectation
FIG. 12. Holstein-bipolaron modeld=0). Parameten, [for ~ Value for the even parity solutiofyround statereads
definition, see Eqgs(27)—(29)] in dependency of the electron-

phonon-coupling parameted for T,=10.1: displacive ansatz Eg—<¢>||VLQ(P2+Q2)+ﬁQ-D~Q+ﬁQ'U |¢|>
(—), squeezing-displacive ansatz (- —), nonunitary reflective 2
ansatz (- - -), and unitary refective-displacive ansatz (- -). 50
- , : . +<¢h|[2(P2+QZ)}|¢h>
Figure 5 is the “Hubbard” analogue of Fig. 3. Comparing
the behavior ofg,(Q) in both cases, we notice a qualitative T
difference. Whereas in the “Holstein” caséFig. 3) the —2-hQ)- §~(Ag+ Bg), (22

higher maximum remains on the right hand side, there is a
switch in the “Hubbard” case, such that the higher peak atwith

D=35
0.5 r T T T T 0.5

04}

S o3t

&n(

0.2

0.1

FIG. 13. Holstein-bipolaron modelf=0). Phononic partner ground state wave functigh6Q) and ¢,(Q)[see Eq.(14)] for the
electron-phonon coupling parametBr=3.5 andD=4.2 for T=10.1: displacive ansatz—{—), squeezing-displacive ansatz (- - -),
nonunitary reflective ansaiz- — —), and unitary reflective-displacive ansatz { - -). The exact result from matrix diagonalization is
shown by dots ¢ /+).
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) | Bg=(1|Rol én)=(¢n|Ra| ). (24)

' et sy | Instead of treating the exact eigenvalue equatidr® and
Balli ‘4\‘\3;\\ (20) we may consider(Q) and ¢,(Q) as trial wave func-
-56 1 tions and consider the variational principle
—-58 ‘}‘,\\f\ B

= o0 N\ _ SEq=5Eq(¢1(Q), 6n(Q))=0, (25
| \\ | with the conditions
:\,\\
Bad \ﬁ\ ] (1(Q)]1(Q))+(Pn(Q)|Pn(Q)) =1,
—6.6 WA
65 | W Roén(Q) = én(Q). (26)
6.8 W\
. AN The Fulton-Gouterman equation for the odd stafg$Q)
50 52 54 56 58 60 simply represent displaced oscillatory equations and may be
D solved directly.
0.05
\ B. Generation of trial wave functions
004 f 1 The most convenient and elegant way of generating trial
g L wave functions is by the use of unitary operattts:
Mo, | ;
3 ~ H(Q)=A-Ujeo(Q), (27)
« PN _
I 00T , SN én(Q)=An-Uneo(Q), (28)
= /"-.\"‘\ \\\ | wheregy(Q) is the ground state of the undisturbed oscillator
oot r TN Mol Hamiltonian[vid. Eq. (2)]. If this is done the normalization
________ e e /- .~.___ 7| condition(15) reads
I =iy i T T
. . 1 . AZ+AZ=1 (29
4.0 4.5 50 55 6.0 6.5 o . o .
D and the variational option(*“variational parameters) is

completely incorporated in the choice of the unitary opera-
torsU; andU,. Most of our trial functions will be chosen in

this manner. However we will include also some trial func-
tions not generated in this manner. In particular we will em-
ploy also additive combinations of the three unitary transfor-

FIG. 14. Hubbard-bipolaron modelU@0). Ground state en-
ergy (upper figure and relative deviation from the exact value
(lower figure in dependency of the electron-phonon couplihdpr
T=10.1 and U=12.6: displacive ansatz (- - -), squeezing-

displacive ansatz (- — —), nonunitary reflective ansatz (- -), mations. . . . .
unitary reflective-displacive ansatz-(—.—.—) and exact value oy iﬁE'SplaC'Ve transformation (Ref. 12, p. 241

(—). Ug=¢€'""" (& rea)
UsQUg=Q+35, (30)

Ag= (1| dn)={nl ), (23) N
Ul PU4=P, (31)
U3 po(Q)

| (32)

Ud eo(Q)=e"""Ppy(Q)=¢o(Q— &)=

(2) Squeezing transformatiofRef. 12, p. 24F. U, =¢'Y(PQ*QP) (y: rea)
— a2
U;QU,/—e 1Q, (33
—_ a2
U PU,=e”"P,

UJ oo(Q)=e PR QP (Q)=e"Ygo(e 7Q) =

(39

(39
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(3) Reflective transformatiofRef. 31, and Ref. 12, p. 334U .= exp(rQRy)=cos(Q) +sin(rQ)R, (7: real)
U;QU,=cog27Q)-Q+sin(27Q)- QRy, (36)

U/ PU,=c0g27Q)-P+sin(27Q)- PRy+ir-sin2rQ) —ircog27Q) - Ry, (37)

Uz eo(Q)

U, @o(Q)=exp— 7QRg) ¢o(Q) =

(38)
1. Displacive ansatz
The displacive ansatz is as follows:
#1(Q)=e"Ppy(Q)=
(39
1 _ _ $r(Q)
én(Q)= (e +e7"%P) po(Q) K
V2(1+exp(— &7))
(40)
2. Squeezing-displacive ansatz
The squeezing-displacive ansatz is as follows:
$1(Q)=e"7PeMPRTCPIp(Q) =
(41)
! i 5P i 5hP o h(P P
$n(Q)= - (€l P +e~1nP) el m(PRr AP py(Q) =
V2(1+exp(— 82-e47))
(42)

In passing we mention that the ansét4), generated by the product operaghfiPe! PR+ QP yields, after minimization, the
same ground state energy as an ansatz respectively generated by the product eperftoRP el 2P or by the single
exponential operatog' %P1 7(PQ*QP) "For previty we refrain from showing this in detail.
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FIG. 15. Hubbard-bipolaron modelU 0). Phononic partner ground state wave functigh6Q) and ¢,(Q) [see Eq.(14)] for the
electron-phonon coupling paramet&s-3.5 andD=4.2 forU=12.6 andT=10.1:displacive ansatz{t—), squeezing-displacive ansatz

(- - -), nonunitary reflective ansatz-(— —), and unitary reflective-displacive ansatz { - -). The exact result from matrix diagonaliza-
tion is show by dots ¢ /+).

3. Nonunitary reflective ansatz

The nonunitary reflective ansatz is as follows:

(9P + . 191P) "’“(?)

= in(PQ+QP) =
#(Q) J1+7;2+277oexr(—5ﬁ~647')e : ©o(Q)

(43

I

Q

¢n(Q): as in Eq.(42).
4. Unitary reflective-displacive ansatz
The unitary reflective-displacive ansatz is as follows:
$1(Q)=e" e Py(Q) =

(44

¢n(Q): as in Eq.(42)
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C. Results shifted to the left side, taking no account of the small mirror-
é'mage peak on the right side, which is manifest in the exact
numerical solution, and which is reproduced fairly adequate
rllz)y the nonunitary reflective ansa43).

Figure 11 contains further information about the optimi-
17,‘§1tion of expression@3) and(44) and Fig. 12 demonstrates

: : again the superiority of the nonunitary reflective ansatz,
satisfactory manner over the whole coupling range. By con-2"" . . ; .
y © © pung range. By co yielding a smooth behavior in the turnover region. Figure 15

trast, the squeezing-displacive ans@tz), which frequently ; . .
has been used in literature, is less good, and particularly it the Hubbard-modell{+0) equivalent of Fig. 13 and dis-

the high coupling regime it produces energy values whictP1ays the same qualitative features as the latter.

Figures 8 and 14 show the energetic behavior of th
ground state for the HolsteinJ=0) and Hubbard | #0)
model, respectively. We observe that in both cases the no
unitary reflective ansat#3) turns out to be the most favor-
able one and reproduces the exact numerical results in a qui

quite strongly derivate from the numerically exact ones. V. SUMMARY AND PERSPECTIVES
Comparing Fig. 8 and 14 we also note the more abrupt turn- '
over to localization in the Hubbard case. In the presented work the 222 model, which is the most

From Fig. 9 we note that only for the optimized nonuni- prominent of the bipolaronic prototype models, has been in-
tary reflective ansatz and the squeezing displacive ansatz tivestigated. This model has been treated by several authors in
displacement parameters display a somewhat smooth transiarious approximations. The aim of our work has been to
tion behavior in the turnover regime, as suggested by thestablish and discuss analytical methods of approximations,
(Q?) ascent in Fig. 6. which on the one hand improve the approximative situation

From Figs. 10 and 13 we realize the decisive shortcomingnd on the other hand display an option for generalizations to
of the squeezing-displacive ansa#l) in the strong cou- more complicated models. To this end we have exploited a
pling regime, which is the abrupt return &i(Q) to a non- symmetry adaptedwigner form for the wave function (§

squeezed functional fornisee lower left part of Fig. 13 ==*1):
|
1 1
) = [—2(10@@ +p-Ir)-Badu(Q)) +5(1+9)- 1) 1(@)
Nt
=¢T(Q)

(45

where{|1),|r),|h)} is the two-electronic singlet base. This (or antisqueezingand displacing*“squeezing-displacive an-
amounts to a unitary transformatiofFulton-Gouterman satz”), which frequently has been employed in literature, is
transformation and allows for a generalization to more ex- not suitable for strong couplingsee Fig. 8 and 14 The
tended systen®®. The Fulton-Gouterman transformation di- oscillatory companion functionagl(g)(Q) and ¢§19)(Q) are
agonalizes the Hamiltonian with respect to the electroniqygynd to display a two-peaked nature at least a shoulder
subsystem and establis.hes. equaticﬁYEultOh-GOUterm?n on one or both sides of the peaRhis is a clear outcome of
equations’) for the vibrational companion functions ihe exact numerical calculatigsee Fig. 3 and )5 This find-
{¢(P(Q),#P(Q)}. These equations are approximately ing has been reported already in the paper of Sander and
solved by means of optimized trial functions. The latter areghoré in the one-electron model and discussed in detail in

generated by means of unitary operatdfslisplacive,”  papers of ud®32 As regards squeezing, for the one-electron
squeezing,” “reflective,” and combinations therepfThe  model it has been shown to be relevant only for highly ex-
considered functional forms fap{”(Q) and ${P(Q) quali-  cited stateg“exotic states,” see Refs. 33—35

tatively differ in their spatial behavior and, respectively, are  The main virtue of employing and studying unitary trans-
compared with those of the exact solution given in Sec. Il. formation for the generation of bipolaronic wave functions is

The most noticeable result is that by far the best ansatz faihe perspective that they lend themselves to generalization
the ground state wave functior&®(Q) and ¢{?(Q) is a  for more extended models which numerically cannot be
reflective superposition of a deformed oscillatory function,handled. For example, the Fulton-Gouterman transformation
which is generated by the application of a product of acan be generalized to systems with translational symmetry,
squeezing and a displacive operator onto the undisturbed oas shown by one of 8. Also, the unitary operators used as
cillatory function (“nonunitary reflective ansatz! In par- generators for the phononic wave functions offer themselves
ticular it is to be emphasized that a combination of squeezingp generalization.
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