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Contrasting unitary transformations for the standard bipolaron model

Th. Frank and M. Wagner
Institut für Theoretische Physik III, Universita¨t Stuttgart, D-70550 Stuttgart, Germany

~Received 13 October 1998!

The well known bipolaron prototype model@two sites, two electrons, two spins, single oscillator~‘‘222
model’’!# is considered, involving a Fro¨hlich-type electron-phonon interaction and a Hubbard term. As in the
one-electron case a Fulton-Gouterman transcription leads to a symmetry-adequate definition of the oscillatory
companion functions of the two-electron base vectors. Trial expressions for these oscillatory functions are
generated by means of three unitary operators~‘‘displacive, squeezing, and reflective’’! acting within the
vibrational subspace. Several different combinations of these operators are used as generators. Comparing the
optimized results with the results of an exact numerical diagonalization, it is found that one of these combi-
nations, involving all three basic operators is the superior one in all coupling regions. Specifically it is found
that in the intermediate and strong coupling regimes the ‘‘reflection’’ operation is essential. A combination of
squeezing and displacement alone, as frequently used in literature, cannot reproduce the two-peaked nature of
the vibrational wave functions.@S0163-1829~99!01129-7#
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I. INTRODUCTION

The investigations on the famous Landau-polar
problem1 have by now a history of more then six decades.
this long time period the intensity of investigations of th
problem had several peaks, and recently the problem
become virulent again in the context of local pairing co
cepts, e.g., in high-Tc materials.2–4 In these concepts re
newed attention is given to the Schafroth model
superconductivity,5 which preceded the BCS theory, and
the work of Alexandrov and Ranninger.6 Since the high-Tc
materials are of highly dielectric nature, it seems sugges
to consider a degenerate gas of polarons or bipolarons, w
has been done by Mott.7 A very recommendable introductio
to the physical background for a polaron theory of hig
temperature superconductors is presented in an articl
Mott.8

Already in early stages of the polaron discussion unit
transformations have been employed. In particular the v
fruitful papers of Sander and Shore9 and of Lang and
Firsov10 are noteworthy. In the paper of Sander and Sh
the two-site one-electron problem has been considered
means of the Fulton-Gouterman~FG! transformation.11,12 In
this way the problem is reduced to one of the oscillato
subspace. The great virtue of this reduction is the direct
sight into the dominant antagonistic tendencies of
coupled electron-phonon dynamics. The latter has been
lyzed in more detail in our group.13 The main outcome of the
work of Shore and Sander was an important result about
structural form of the vibrational wave function of th
ground state. It turned out that the form consisted of a d
placed dominant peak and a smaller mirror image of t
peak. It was this structural form which made it possible
analyze the transition from a non-self-trapped to a s
trapped character of the electron. In particular the outco
was that the transition is not of a jump character but displ
a smooth nature. An approach also somewhat in the spir
Sander and Shore has recently been presented by La M
and Pucci14 for an extended Holstein-chain and Fehs
PRB 600163-1829/99/60~5!/3252~12!/$15.00
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et al.15 have investigated the spectral properties of the tw
dimensional Holstein polaron.

As regards the two-electron problem the state of art is l
advanced. As a prototype model for the bipolaron probl
very often the two-site two-electron two-spin~‘‘222’’ ! model
has been handled. Worth mentioning is also a three-site t
mode model, involving both an infrared- and a Raman-act
mode. This type of model has been treated by Bishop
Salkola.16 In the present work we confine ourselves to t
‘‘222 model.’’ 17 This model is accessible to exact numeric
treatment and therefore may be exploited to evaluate
power of approximative methods. In the present work
specifically analyze the utilization of unitary transformatio
for the approximate solution of the problem.

In Sec. II the 222 model is introduced und subjected to
Fulton-Gouterman transformation~FGT!. This establishes
the exact equations for the respective oscillatory compan
functions for the electronic base vectors. In Sec. III the ex
numerical form of these companion functions and of th
characteristic properties is presented. In Sec. IV the osc
tory functions are generated by means of unitary opera
and optimized. By comparing the results with the exact o
this allows for an assessment of the utility of unitary ope
tors, which is discussed in Sec. V.

II. THE TWO-SITE BIPOLARON MODEL

We considered a prototype model which frequently h
been discussed in literature~i.e., Refs. 18–25!. The Hamil-
tonian is given by

Hd5Hph1He1He-e1He-ph, ~1!

Hph5
\V

2
•~P21Q2!, ~2!

He52T•\V•~sx↑1sx↓!, ~3!
3252 ©1999 The American Physical Society
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He-e5U•\V•S 1

2
n̂↑n̂↓12sz↑sz↓D , ~4!

He-ph5\V•D•Q•~sz↑1sz↓!. ~5!

The first term represents an effective harmonic oscillator
the second the electronic transfer. The third and fourth te
stand for the Coulomb-Hubbard and the electron-oscilla
interaction, respectively.

In this model it is assumed that there are two equival
atomic sites, each of which has one electronic orbital of
same nature. The system displays inversion symmetry
there is an effective oscillatory coordinateQ ~momentumP!
of odd parity nature. The electronic creators~annihilators!
are designated bycl j

1 ,cr j
1 (cl j ,cr j ), j standing for the two

spin directions (j 5↑,↓) and l, r insinuating ‘‘left’’ and
‘‘right.’’ We further have introduced the abbreviations

nl j 5cl j
1cl j , nr j 5cr j

1cr j , nj5nl j 1nr j , ~6!

sx j5
1

2
~cl j

1cr j 1cr j
1cl j !, sy j5

1

2i
~cl j

1cr j 2cr j
1cl j !,

sz j5
1

2
~cl j

1cl j 2cr j
1cr j !. ~7!

The quantities~7! display spinlike commutation relations
We further introduce reflection operators given by

R5RelRQ5RQRel ,
ay
c

he
e

:

d
s
r

t
e
nd

with

~RelRQ!15RelRQ , ~RelRQ!251. ~8!

Rel andRQ representing respectively reflections in the ele
tronic and the phononic subspaces. They have the b
properties

RQQ52QRQ ,

RQP52PRQ ,

with

RQ
15RQ , RQ

2 51 ~9!

Relcl j 5cr j Rel , Relcr j 5cl j Rel ,

Relcl j
15cr j

1Rel , Relcr j
15cl j

1Rel ,

with

Rel
15Rel , Rel

2 51 ~10!

and

@RelRQ ,H#250. ~11!

In the model it is further assumed that the number of
electrons is fixed toN52. From the considered four one
electron states we deduce a two-electron basis given by
functions
u l &5cl↑
1cl↓

1uvacuum&
ur &5cr↑

1 cr↓
1 uvacuum&

uh&5
1

&
~cl↑

1cr↓
1 2cl↓

1cr↑
1 !uvacuum&6 singlet-states

~S50, Sz50!
~12!

ut&5
1

&
~cl↑

1cr↓
1 1cl↓

1cr↑
1 !uvacuum&

ut,11&5cl↑
1cr↑

1 uvacuum&
ut,21&5cl↓

1cr↓
1 uvacuum&

6 triplet-states
~S51, Sz50,61!. ~13!
Since the Hamiltonian involves no spin-flip terms we m
handle the solutions in the triplet and the singlet subspa
separately. Specifically, we will restrict our results to t
solutions in the singlet subspace, since in the usual param
constellations the lowest states are in this subspace. The
act total eigenfunctions then must be of the Wigner form26

~14!

with
es

ter
ex-

^f l~Q!uf l~Q!&1^fh~Q!ufh~Q!&51,

RQfh~Q!5fh~Q! ~15!

and

uCu&5
1

&
~ u l &2RQur &)fu~Q!, ~16!

with

^fu~Q!ufu~Q!&51, ~17!

i.e., of a form displaying a parityp5g, u, such that

RuCp&5puCp&. ~18!
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FIG. 1. Bipolaron model without Hubbard term~‘‘Holstein
model,’’ U50!. Matrix diagonalization: ground stateE as a func-
tion of the electron-phonon coupling strengthD for the transfer
valuesT51.1( ) andT510.1(• • • •). ForT510.1 there
is a tendency to degeneration witht he first excited state for hig
D values. The limiting caseT50.0( ) is also drawn.
The vibrational functionsf l(Q) andfh(Q) satisfy coupled
eigenvalue equations~‘‘Fulton-Gouterman equations’’!,
which can be found via a variational principle11,27 or by a
unitary transformation,28,12 and read

@Hph1\V•U1\V•DQ#f l~Q!2\V•T•fh~Q!

5Eg~Q!f l~Q!, ~19!

Hphfh~Q!2\V•

T

2
•~11RQ!f l~Q!5Eg~Q!fh~Q!,

~20!

@Hph1\V•U1\V•DQ#fu~Q!5Eu~Q!fu~Q!. ~21!

This transcription also is known as the Fulton-Gouterm
transformation.11,28,12We note that the two vibrational func
tions f l(Q) and fh(Q) pertaining to the even parity cas
have to be calculated by solving a coupled system of eig
value equations~19! and ~20!, and we emphasize that th
transcriptions~19!–~21! represent an exact substitute of th
original Schro¨dinger equation.

er
ate
FIG. 2. Biopolaron model without Hubbard term~‘‘Holstein model,’’ U50!. Exact numerical diagonalization: phononic ground st
wave functionf r(Q)5RQf l(Q) andfh(Q) for T050.11,T051.1, andT0510.1 in aQ-D display.
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In the limiting cases for the model a number of analytic
results are known from literature. We refrain from writin
down these properties but refer to the literature.22

III. EXACT NUMERICAL SOLUTION

In this work we intend to analyze contrasting combin
tions of unitary transformations with regard to their ability
yielding a good diagonalization of the Hamiltonian, i.e.,
generating good trial wave functions. To quantitatively es
mate this ability we make reference to the numerically ex
ground state properties.

Since the combined electron-oscillator problem of the s
glet subspace contains only three electronic base funct
(u l &,ur &,uh&) and a single oscillator which may be repr
sented by the eigenbase$wn(Q)% of Hph5(\V/2)(P2

1Q2), the considered Hamiltonian may be handled exac
by numerical diagonalization. For the considered parame
a base of the lowest 250 functionswn(Q) provides a suffi-
cient accuracy. The groundstate of the 222 model also
been treated in Ref. 24 in a numerically exact manner. I

FIG. 3. Bipolaron model without Hubbard term~‘‘Holstein
model,’’ U50!. Matrix diagonalizaiton: characteristics of th
phononic ground state wave functionf r(Q)5RQf l(Q) andfh(Q)
for different values of the electron-phonon coupling parameteD
and the transfer parameterT510.1.
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more recent work Alexandrovet al.29 have employed a full
numerical diagonalisation of the 222 model to calculate
namical properties~optical conductivity!. In our study we
will exploit only the ground state properties. These are do
mented in the following figures. A test of the analyzed u
tary transformations with regard to dynamical properties is
progress.

A. Holstein model „U50…

Figure 1 shows the behavior of the ground state, if
Hubbard term is disregarded~U50, ‘‘Holstein model’’!. It
illustrates the ‘‘polaronic’’ effects, i.e., the capture of
phononic cloud by the electron with increasing couplin
causing a lowering of the energy. The corresponding os
latory wave functions, as defined in Eq.~14!, are illustrated
in Fig. 2. Both vibrational companionsf r(Q)5RQf l(Q)
andfh(Q) of the electronic wave functions respectively di
play three outstanding characteristics.

1. Characteristics of the functionf r„Q…5RQf l„Q…

in the Holstein model

From Fig. 3 we observe the following characteristics.

FIG. 5. Hubbard bipolaron model (U512.6). Matrix diagonal-
ization: characteristics of the phononic ground state wave func
f r(Q)5RQf l(Q) andfh(Q) for different values of the electron
phonon coupling parameterD and the transfer parameterT510.1.
FIG. 4. Hubbard bipolaron model (UÞ0). Matrix diagonalization: phononic ground state wave functionf r(Q)5RQf l(Q) andfh(Q)
for U54.2 andU512.6 withT510.1 depending on the electron-phonon couplingD.
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3256 PRB 60TH. FRANK AND M. WAGNER
FIG. 6. Bipolaron model Matrix diagonalization. Expectatio
value of the squared displacementQ for the ground state wave
functionsuCg& for T510.1 andU50.0( ),U54.2(- - -), and
U512.6( ). The sharpening of the transition to ‘‘localiza
tion’’ with growing U may be noted.

FIG. 7. Bipolaron model. Matrix diagonalization. Squared d
placementQ for the oscillatory ground state companion wave fun
tions @see Eq.~14!#: f l(Q) ~upper figure! andfh(Q) ~lower figure!
~ground state! for T510.1 andU50.0( ),U54.2(- - -), and
U512.6( ).
Displacement~‘‘localization’’ !. As seen from the figure
the maximum off r(Q) shifts to the right with growing
electron-phonon couplingD. This shift physically amounts
to a tendency of the total wave function versus localizatio

Antisqueezing~‘‘broadening’’!. As also seen from the fig-
ure the shape off r(Q) covers a spatial region which is
broadening with growing electron-phonon couplingD. In a
rough approximationthis broadening may be viewed as a
‘‘antisqueezing’’ of the undisturbed functional form, an
trial functions may generated by means of a ‘‘squeezi
transformation’’ in combination with a displacement tran
formation. This has been done in literature.13,30

Separation in two parts~‘‘shoulder’’!. Finally, as also
noted from Fig. 3, we observe a splitting of the functio
f r(Q) into a dominant peak on the right side and a min
mirror image peak on the left side. This separation is gett
more and more pronounced for growing coupling valuesD,
whereas for smaller coupling valuesD the dominant peak
only displays a ‘‘shoulder’’ on its left side.

2. Characteristics of the functionfh„Q… in the Holstein model

We find the following characteristics~see Fig. 3!.
Symmetric structure inQ space@see Eq.~15!#.

-
-

FIG. 8. Holstein-bipolaron model~U50!. Ground state energy
~upper figure! and relative deviation from the exact value~lower
figure! in dependency of the electron-phonon couplingD for T
510.1: displacive ansatz~- - -!, squeezing-displacive ansat
~ !, nonunitary reflective ansatz~

• • •
!, and exact value

( ).
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FIG. 9. Holstein-bipolaron model (U50). Displacement param
eters d1 and d2 in dependency of the electron-phonon coupli
parameterD for T0510.1: displacive ansatz ( ), squeezing-
displacive ansatz (- - -), nonunitary reflective ansatz ( ),
unitary reflective-displacive ansatz (• • • •).

FIG. 10. Holstein-bipolaron model (U50). Squeezing param
etersg1 and g2 in dependency of the electron-phonon coupli
parameterD for T0510.1:squeezing-displacive ansatzg1( )
and g2(

• • •
), and nonunitary reflective ansatzg1( )

andg2(
• • •

).
Antisqueezing~‘‘broadening’’!. For growing values ofD
the regional extension offh(Q) increases and the remark
referring tof r(Q) apply also here. In arough approximation
the broadening again can be generated by means o
‘‘squeezing transformation.’’

Separation in two parts~‘‘two peaks’’!. From Fig. 3 we
observe an indentation in the center and a separation in
peaks displaced in opposite directions. For growing values
D we note the generation of a small minimum, which eve
tually leads to a separation offh(Q) into two equal func-
tional forms and amounts to localization.

B. Role of the Hubbard term

Figure 4 shows the oscillatory wave functionsf r(Q) and
fh(Q) in a three-dimensional display if the Hubbard param
eterU is nonzero. The main features of the functions of t
‘‘Holstein’’ model are still present. However, there is on
interesting effect, which is the sharpening of the transiti
from the nonlocalized behavior to the localized behavio
This is manifest in the sudden shift of the dominant peak
f r(Q) ~see lower left figure! or in the sharp upcome of the
two peaks inf l(Q) ~see lower right figure!, if we compare
them with the corresponding figures in the ‘‘Holstein
model ~see Fig. 2!.

FIG. 11. Holstein-bipolaron model (U50). Parametersh andt
@see Eqs.~43! and ~44!# in dependency of the electron-phono
coupling parameterD for T050.11( ),T051.1(- - -), andT0

510.1( ).
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3258 PRB 60TH. FRANK AND M. WAGNER
Figure 5 is the ‘‘Hubbard’’ analogue of Fig. 3. Comparin
the behavior off r(Q) in both cases, we notice a qualitativ
difference. Whereas in the ‘‘Holstein’’ cases~Fig. 3! the
higher maximum remains on the right hand side, there
switch in the ‘‘Hubbard’’ case, such that the higher peak

FIG. 12. Holstein-bipolaron model (U50). ParameterAl @for
definition, see Eqs.~27!–~29!# in dependency of the electron
phonon-coupling parameterD for T0510.1: displacive ansatz
( ), squeezing-displacive ansatz ( ), nonunitary reflective
ansatz (- - -), and unitary refective-displacive ansatz (• • • •).
a
t

small coupling values shows up on the left hand side a
then turns to the right hand side. This behavior just illustra
the sharp transition to ‘‘localization’’ as described above.

A further illustration of the upcoming sharp transition
the Hubbard case is shown in Fig. 6, where the expecta
value of the squared displacementQ for the ground state
wave functions is given. In the two subfigures of Fig. 7 t
partial expectation valuêQ2& with regard to the vibrationa
functionsf l(Q) andfh(Q) are shown.

IV. TRIAL WAVE FUNCTIONS
IN THE FULTON-GOUTERMAN PICTURE

A. Variational principle in the Fulton-Gouterman picture

As mentioned in Sec. II the Fulton-Gouterman equatio
~19!–~21! may be viewed as the manifestation of a var
tional principle. Using the ansatz~14! the energy expectation
value for the even parity solution~ground state! reads

Eg5^f l uF\V

2
~P21Q2!1\V•D•Q1\V•UG uf l&

1^fhuF\V

2
~P21Q2!G ufh&

22•\V•

T

2
•~Ag1Bg!, ~22!

with
),
is
FIG. 13. Holstein-bipolaron model (U50). Phononic partner ground state wave functionsf l(Q) and fh(Q)@see Eq.~14!# for the
electron-phonon coupling parameterD53.5 andD54.2 for T510.1: displacive ansatz ( ), squeezing-displacive ansatz (- - -
nonunitary reflective ansatz~ !, and unitary reflective-displacive ansatz (• • • •). The exact result from matrix diagonalization
shown by dots (L/1).
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Ag5^f l ufh&5^fhuf l&, ~23!

FIG. 14. Hubbard-bipolaron model (UÞ0). Ground state en-
ergy ~upper figure! and relative deviation from the exact value
~lower figure! in dependency of the electron-phonon couplingD for
T510.1 and U512.6: displacive ansatz (- - -), squeezing
displacive ansatz ( – – – ), nonunitary reflective ansatz (• • • •),
unitary reflective-displacive ansatz (

• • •
) and exact value

( ).
Bg5^f l uRQufh&5^fhuRQuf l&. ~24!

Instead of treating the exact eigenvalue equations~19! and
~20! we may considerf l(Q) andfh(Q) as trial wave func-
tions and consider the variational principle

dEg5dEg„f l~Q!,fh~Q!…50, ~25!

with the conditions

^f l~Q!uf l~Q!&1^fh~Q!ufh~Q!&51,

RQfh~Q!5fh~Q!. ~26!

The Fulton-Gouterman equation for the odd statesfu(Q)
simply represent displaced oscillatory equations and may
solved directly.

B. Generation of trial wave functions

The most convenient and elegant way of generating t
wave functions is by the use of unitary operators:12

f l~Q!5Al•Ulw0~Q!, ~27!

fh~Q!5Ah•Uhw0~Q!, ~28!

wherew0(Q) is the ground state of the undisturbed oscilla
Hamiltonian@vid. Eq. ~2!#. If this is done the normalization
condition ~15! reads

Al
21Ah

251 ~29!

and the variational option~‘‘variational parameters’’! is
completely incorporated in the choice of the unitary ope
torsUt andUe . Most of our trial functions will be chosen in
this manner. However we will include also some trial fun
tions not generated in this manner. In particular we will e
ploy also additive combinations of the three unitary transf
mations.

~1! Displacive transformation ~Ref. 12, p. 241!:
Ud5eidP ~d: real!

Ud
1QUd5Q1d, ~30!

Ud
1PUd5P, ~31!
Ud
1w0~Q!5e2 idPw0~Q!5w0~Q2d!5

~32!

~2! Squeezing transformation~Ref. 12, p. 247!: Ug5eig(PQ1QP) ~g : real!

Ug
1QUg5e22gQ, ~33!

Ug
1PUg5e2gP, ~34!

Ug
1w0~Q!5e2 ig~PQ1QP!w0~Q!5e2gw0~e22gQ!5

~35!
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~3! Reflective transformation~Ref. 31, and Ref. 12, p. 334!: Ut5exp(tQRQ)5cos(tQ)1sin(tQ)RQ ~t : real!

Ut
1QUt5cos~2tQ!•Q1sin~2tQ!•QRQ , ~36!

Ut
1PUt5cos~2tQ!•P1sin~2tQ!•PRQ1 i t•sin~2tQ!2 i t cos~2tQ!•RQ , ~37!

Utw0~Q!5exp~2tQRQ!w0~Q!5

~38!

1. Displacive ansatz

The displacive ansatz is as follows:

f l~Q!5eid l Pw0~Q!5

~39!

fh~Q!5
1

A2~11exp~2dh
2!!

~eidhP1e2 idhP!w0~Q!5

~40!

2. Squeezing-displacive ansatz

The squeezing-displacive ansatz is as follows:

f l~Q!5eid l Peig l ~PQ1QP!w0~Q!5

~41!

fh~Q!5
1

A2~11exp~2dh
2
•e4gh!!

~eidhP1e2 idhP!eigh~PQ1QP!w0~Q!5

~42!

In passing we mention that the ansatz~41!, generated by the product operatoreid l Peig l (PQ1QP) yields, after minimization, the
same ground state energy as an ansatz respectively generated by the product operatoreig l (PQ1QP)eid l P or by the single
exponential operatoreid l P1 ig l (PQ1QP). For brevity we refrain from showing this in detail.
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3. Nonunitary reflective ansatz

The nonunitary reflective ansatz is as follows:

f l~Q!5
~eid l P1h•e2 id l P!

A11h212h•exp~2dh
2
•e4g l !

eig l ~PQ1QP!w0~Q!5

~43!

fh(Q): as in Eq.~42!.

4. Unitary reflective-displacive ansatz

The unitary reflective-displacive ansatz is as follows:

f l~Q!5etQRQeid l Pw0~Q!5

~44!

fh(Q): as in Eq.~42!

FIG. 15. Hubbard-bipolaron model (UÞ0). Phononic partner ground state wave functionsf l(Q) and fh(Q) @see Eq.~14!# for the
electron-phonon coupling parametersD53.5 andD54.2 forU512.6 andT510.1:displacive ansatz ( ), squeezing-displacive ansat
(- - -), nonunitary reflective ansatz ( ), and unitary reflective-displacive ansatz (• • • •). The exact result from matrix diagonaliza
tion is show by dots (L/1).
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3262 PRB 60TH. FRANK AND M. WAGNER
C. Results

Figures 8 and 14 show the energetic behavior of
ground state for the Holstein (U50) and Hubbard (UÞ0)
model, respectively. We observe that in both cases the n
unitary reflective ansatz~43! turns out to be the most favor
able one and reproduces the exact numerical results in a
satisfactory manner over the whole coupling range. By c
trast, the squeezing-displacive ansatz~41!, which frequently
has been used in literature, is less good, and particularl
the high coupling regime it produces energy values wh
quite strongly derivate from the numerically exact on
Comparing Fig. 8 and 14 we also note the more abrupt tu
over to localization in the Hubbard case.

From Fig. 9 we note that only for the optimized nonun
tary reflective ansatz and the squeezing displacive ansat
displacement parameters display a somewhat smooth tr
tion behavior in the turnover regime, as suggested by
^Q2& ascent in Fig. 6.

From Figs. 10 and 13 we realize the decisive shortcom
of the squeezing-displacive ansatz~41! in the strong cou-
pling regime, which is the abrupt return off l(Q) to a non-
squeezed functional form~see lower left part of Fig. 13!,
is
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shifted to the left side, taking no account of the small mirro
image peak on the right side, which is manifest in the ex
numerical solution, and which is reproduced fairly adequ
by the nonunitary reflective ansatz~43!.

Figure 11 contains further information about the optim
zation of expressions~43! and~44! and Fig. 12 demonstrate
again the superiority of the nonunitary reflective ansa
yielding a smooth behavior in the turnover region. Figure
is the Hubbard-model (UÞ0) equivalent of Fig. 13 and dis
plays the same qualitative features as the latter.

V. SUMMARY AND PERSPECTIVES

In the presented work the 222 model, which is the m
prominent of the bipolaronic prototype models, has been
vestigated. This model has been treated by several autho
various approximations. The aim of our work has been
establish and discuss analytical methods of approximatio
which on the one hand improve the approximative situat
and on the other hand display an option for generalization
more complicated models. To this end we have exploite
symmetry adapted~Wigner! form for the wave function (p
561):
~45!
is

r
f

and
l in
on
x-

s-
is
tion
be
tion
try,
s
ves
where $u l &,ur &,uh&% is the two-electronic singlet base. Th
amounts to a unitary transformation~Fulton-Gouterman
transformation! and allows for a generalization to more e
tended systems.28 The Fulton-Gouterman transformation d
agonalizes the Hamiltonian with respect to the electro
subsystem and establishes equations~‘‘Fulton-Gouterman
equations’’! for the vibrational companion function
$f l

(p)(Q),fh
(p)(Q)%. These equations are approximate

solved by means of optimized trial functions. The latter a
generated by means of unitary operators~‘‘displacive,’’
‘‘squeezing,’’ ‘‘reflective,’’ and combinations thereof!. The
considered functional forms forf l

(p)(Q) andfh
(p)(Q) quali-

tatively differ in their spatial behavior and, respectively, a
compared with those of the exact solution given in Sec.

The most noticeable result is that by far the best ansatz
the ground state wave functionsf l

(g)(Q) and fh
(g)(Q) is a

reflective superposition of a deformed oscillatory functio
which is generated by the application of a product of
squeezing and a displacive operator onto the undisturbed
cillatory function ~‘‘nonunitary reflective ansatz’’!. In par-
ticular it is to be emphasized that a combination of squeez
c

e

or

,

s-

g

~or antisqueezing! and displacing~‘‘squeezing-displacive an-
satz’’!, which frequently has been employed in literature,
not suitable for strong coupling~see Fig. 8 and 14!. The
oscillatory companion functionsf l

(g)(Q) and fh
(g)(Q) are

bound to display a two-peaked nature~or at least a shoulde
on one or both sides of the peak!. This is a clear outcome o
the exact numerical calculation~see Fig. 3 and 5!. This find-
ing has been reported already in the paper of Sander
Shore9 in the one-electron model and discussed in detai
papers of us.13,32 As regards squeezing, for the one-electr
model it has been shown to be relevant only for highly e
cited states~‘‘exotic states,’’ see Refs. 33–35!.

The main virtue of employing and studying unitary tran
formation for the generation of bipolaronic wave functions
the perspective that they lend themselves to generaliza
for more extended models which numerically cannot
handled. For example, the Fulton-Gouterman transforma
can be generalized to systems with translational symme
as shown by one of us.28 Also, the unitary operators used a
generators for the phononic wave functions offer themsel
to generalization.
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