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Ground-state dispersion and density of states from path-integral Monte Carlo:
Application to the lattice polaron

P. E. Kornilovitch
Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BZ, United Kingdom

~Received 1 March 1999!

A formula is derived that relates the ground-state dispersion of a many-body system with the end-to-end
distribution of paths with open boundary conditions in imaginary time. The formula does not involve the
energy estimator. It allows direct measurement of the ground-state dispersion by quantum Monte Carlo meth-
ods without analytical continuation or auxiliary fitting. The formula is applied to the lattice polaron problem.
The exact polaron spectrum and density of states are calculated for several models in one, two, and three
dimensions. In the adiabatic regime of the Holstein model, the polaron density of states deviates spectacularly
from the free-particle shape.@S0163-1829~99!05529-0#
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I. INTRODUCTION

Usually, quantum Monte Carlo~QMC! methods are used
to study ground-state, thermodynamic, or static propertie
quantum-mechanical systems. Some important dynam
characteristics can also be obtained through various form
fluctuation-dissipation relations. Examples of these are
superfluid fraction of Bose-liquids,1 the Drude weight of
conductors,2 the Meissner fraction of superconductors,2 and
the effective mass of defects3,4 and polarons.5,6 Beyond that
dynamical calculations are less straightforward. For instan
calculation of the excitation spectrum normally requir
measurement of the Green’s function at imaginary times
subsequent analytical continuation to real times.

However, there exists one special type of excitation sp
trum that can be measured directly by QMC. This is t
ground-state dispersion, i.e., the total energy of the sys
EP as a function of the total momentumP. In a translation-
ally invariant system,P is a constant of motion, and th
Hamiltonian does not mix subspaces with differentP. Then,
if a QMC is designed as to operate within a givenP subspace
only, it may be able to access the ground state for the gi
P, thereby providingEP . Not for any physical system isEP
of interest. For a collection of identical particles, for i
stance, one has simplyEP5P2/(2M ), M being the total
mass, which corresponds to free movement of the system
a whole. Positive examples include cases when the sys
can be divided into a tagged particle and an environm
~usually bosons!. The best known example of this kind is th
polaron, i.e., an electron strongly interacting with phono
In this caseEP is nothing but the polaron spectrum. Th
polaron spectrum will be the main subject of this paper.

There exist at least two different strategies of how to o
erate within a restrictedP subspace. The first one is to wor
in momentum space and to fix the total momentum of
system from outset. An example of this approach is the d
grammatic method of Prokof’ev and Svistunov.7 In this
method QMC is used to sum the entire diagrammatic se
for an imaginary-time Green’s functionG(P,t). Since the
total momentum is an external parameter of the series,
possible to extractEP from thet˜` limit behavior ofG, by
PRB 600163-1829/99/60~5!/3237~7!/$15.00
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fitting it to a single exponentiale2EPt. This method is exact
and universal but requires a separate simulation for e
P-point.

The second strategy is to work in real space but to
Fourier-type projection operators to project on states w
definite P. This amounts to the free boundary conditions
imaginary time. Usually, the projections are used to calcu
the second derivative of the energy with respect to mom
tum ~effective mass!.3,4 In Ref. 6 the projection was applie
for the first time to the whole polaron spectrum. In th
scheme, the ground-state dispersion is measured directly
all EP are calculated simultaneously. Unfortunately, at no
zero P the weight of the polaron path is no longer positi
definite, and one needs to deal with a sign problem. It tu
out, however, that the main idea can be reformulated i
way that does not require adivisionby the average sign, bu
only taking its logarithm. While the new formulation does
not constitute a complete elimination of the sign problem
is more statistically stable and extends the parameter dom
accessible in practical simulations. Below we derive the n
formula, discuss its properties, and apply to the physica
interesting example of the lattice polaron.

II. A FORMULA FOR THE GROUND-STATE DISPERSION

To our knowledge, the projection relations required f
our purposes were derived by Basile.3 For completeness a
derivation is given below. LetR denote a many-body real
space configuration, andR1r a many-body configuration
which is a result of the parallel transport ofR by a vectorr .
~Note that the sum ofR andr is only symbolic. The dimen-
sionality of R is equal to the number of degrees of freedo
i.e., very large or infinite, while the dimensionality ofr is the
dimensionality of space, i.e., 1, 2, or 3.! StatesuR& form a
complete orthogonal basis,I5*dRuR&^Ru, and ^RuR8&
5d(R2R8). A different basis is formed by the statesun&
which are characterized by the definite total momentumP.
One is interested in theprojectedpartition functionZP which
includes only states with the givenP:

ZP[(
n

^nue2bHun&dP,Pn
5E dRdR8^R8ue2bHuR&•QP ,

~1!
3237 ©1999 The American Physical Society
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QP5(
n

^Run&^nuR8&dP,Pn
5^RuP&^PuR8&, ~2!

whereb5(kBT)21 is the inverse temperature andH is the
full Hamiltonian. The meaning of Eq.~2! is that the two
configurationsR and R8 have to be projected on the give
momentumP. This is achieved as follows~below \51 is
set!. Any arbitrary configurationR generates a set of state
uPR&5V21/2*dre2 iPruR1r &, where V is the volume. In-
versely,uR1r &5V21/2(PeiPruPR&. Upon projection, onlyP
components of both configurations survive. As a result,

QP5
1

V E dr ^R1r uP&^PuR81r &

5
1

V2 E dr (
P8P9

ei ~P82P9!r^P8RuP&^PuP9R8&

5
1

V
^PRuPR8&5

1

V2 E drdr 8^R1r uR81r 8&eiP~r2r8!

5
1

V E d~Dr !^R1Dr uR8&eiPDr

5
1

V E d~Dr !eiPDrd@~R1Dr !2R8#, ~3!

where Dr5r2r 8. Substitution in Eq.~1! and integration
over R8 yields

ZP5
1

V E d~Dr !eiPDrE dR^R1Dr ue2bHuR&

5
1

V E d~Dr !eiPDrE dRr~R,R1Dr ;b!, ~4!

where r(R,R8;b) is the full many-body density matrix
Next, we assume that for eachP the state with the lowes
energyEP is nondegenerate, and in the low-temperature li
the projected partition function is dominated by the con
bution from this state,ZP˜exp(2bEP). Now take theratio
of ZP andZP50 :

e2b~EP2E0!5 lim
b˜`

ZP

ZP50

5 lim
b˜`

*d~Dr !eiPDr*dRr~R,R1Dr ;b!

*d~Dr !*dRr~R,R1Dr ;b!
, ~5!

whereE0 is the ground-state energy. The right-hand side
nothing but the average value of cosPDr taken over the
distributionr. @We have assumed that*dRr(R,R1Dr ;b) is
an even function ofDr .# A simple formula forEP now fol-
lows:

EP2E052 lim
b˜`

1

b
ln^cosPDr &, ~6!

which is the main result of this section.
Equation~6! shows that the ground-state dispersion c

be obtained from the end-to-end distribution of many-bo
paths. It offers a direct way of evaluating the ground-st
it
-
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dispersion by QMC methods in cases whenr(R,R8;b) is
positive definite. However, the QMC process must be or
nized in a special way, as apparent from Eq.~5!. It must
generate only such paths whose end configurations at im
nary timet5b are exact images of the end configurations
t50 exceptfor a parallel transport by an arbitrary vectorDr .
It is allowed to changeDr , make simultaneous changes
both end configurations, and to make arbitrary changes
paths at internal times 0,t,b, but the end configurations
must always be kept identical up to a shift. It is importa
that this restriction affects neither the ergodicity nor the a
plicability of the Metropolis algorithm.

Formula ~6! involves only one measured quantit
^cosPDr &, instead of two in the previous formulation. More
over, it does not require division by the measured quant
but only taking its logarithm. Additionally, Eq.~6! provides
the difference between two large numbers,EP andE0 , and a
large cancellation of errors may occur. This makes Eq.~6!
much more stable statistically than explicit energy estim
tors.

On the other hand, at small temperatures, the average
sine becomes exponentially small and it cannot be meas
reliably. This reflects the fact that configurations withEP
2E0@kBT are very rare because of the Boltzmann fact
Thus the present method is limited to excitation energies
the order of severalkBT.

III. APPLICATION TO THE LATTICE POLARON

We now demonstrate the practical importance of Eq.~6!
on the model problem of lattice polaron, which is often co
sidered as a paradigmatic example of a particle strongly
teracting with a boson field. We consider a hypercubic latt
with the nearest-neighbor hopping, dispersionless phon
and the ‘‘density-displacement’’ electron-phonon interactio
The model Hamiltonian reads

H52t (
^nn8&

cn
†cn82(

nm
f m~n!cn

†cnjm1\v(
m

bm
† bm .

~7!

Heret is the hopping amplitude~it will be used as the energy
unit!, v is the phonon~oscillator! frequency,jm is the inter-
nal coordinate of themth oscillator, andf m(n) is the force
betweenmth oscillator and the particle at siten ( f is a func-
tion of distanceum2nu only!. The model is parametrized b
the dimensionless frequencyv̄5\v/t and by the dimension-
less coupling constantl5@(mf m

2 (0)#/(2Mv2D), whereM
is the mass of the oscillator andD is the half-bandwidth of
the bare band.~For an isotropic band with nearest-neighb
hopping,D5zt, z being the number of neighbors.!

For the polaron problem, a many-body configurationR is
specified by the position of the electronr and oscillator dis-
placementsjm. Making use of the Feynman’s idea of an
lytic integration overjm the problem is reduced to a single
particle system with retarded self-interaction.8 The latter can
be simulated exactly, using the continuous-time represe
tion of polaron paths.9 The resulting algorithm6 is very effi-
cient and allow accurate determination of the ground-s
energy and effective mass of the polaron for a wide class
models. It this paper, it will be shown that the method a
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produces accurate polaron spectra, when combined with
~6!. There are other reasons why the polaron is an ideal
tem to try formula~6!. First, due to a constant phonon fr
quency, excited states are, at anyP, separated from the re
stricted ground state by a finite energy gap\v. Therefore
instead of performing numerically the limit procedure tob
5`, one can study the system atfinite b, provided
exp(b\v)@1 and the contribution from excited states is ne
ligible. Second, by increasing the coupling constantl one
can always decreaseEP2E0 , i.e., substantially increas
^cosPDr &, and stabilize the simulations. Third, the polar
momentumP is not a parameter of simulations. This implie
that statistics can be collected for all momenta simu
neously. In other words, the whole polaron spectrum is m
sured in a single QMC run. This will enable us to calcula
for the first time exact polaron densities of states.

We begin with the simplest Holstein model which h
local electron-phonon interaction,f m(n)5kdmn . In one di-
mension, the polaron spectrum has been extensively stu
by exact diagonalization,10,11 strong-coupling perturbation,12

and variational13 techniques. Our QMC data for the on
dimensional Holstein model are shown in Fig. 1. The m
interesting feature of the spectrum is its noncosine shap
the adiabatic regimev̄<1.0 ~triangles and diamonds!. At
large momenta, the spectrum is more flat than at small
menta. The nature of this flattening was understood a l
time ago.14 In the weak-coupling limit, the free-particle sta
hybridizes with the single-phonon state and creates a m
ground state which is free-particle-like at smallP and
phonon-like at largeP, hence the weak dispersion. Wit
increasingl, the free-particle state is replaced with a polar
state with an effective massm* , which now hybridizes with
the single-phonon state, still leading to a more flat dispers
at large momenta. The flattening effect weakens with gro

FIG. 1. Polaron spectrum in the one-dimensional Holst
model, normalized to the bandwidthW5Ep2E0 . Triangles: v̄
51.0, l52.0 @for these parameters the polaron ground-state ene
E0524.38(1)~in units oft), bandwidthW50.1243(2)~in units of
t), effective massm* 510.0(1), in units of m05\2/(2ta2)#. Dia-
monds: v̄51.0, l52.5 @E0525.26(1), W50.0437(3), m*
534.5(3)#. Circles: v̄510.0, l510.0 @E05220.35(1), W
50.543(2), m* 56.06(2)#. Squares: v̄510.0, l520.0 @E0

5240.08(1), W50.0739(2), m* 547.6(1)#.
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ing l and v̄ because both processes increase the en
separation of the two hybridizing states. In recent years
flattening of the polaron spectrum was observed in numer
studies.10,12

Our quantum Monte Carlo data fully confirm the previo
analytical and numerical results, see Fig. 1. We found t
the spectrum shape is more sensitive to the phonon
quency than to the coupling constant. At a small frequen
v̄51.0, the increase of the coupling constant froml52.0 to
l52.5 results in a 3.5-times increase of the effective ma
and in a 2.8-times drop of the bandwidth, yet the spectr
shape changes only slightly, cf. triangles and diamonds
Fig. 1. At the same time, a simultaneous 10-times increas
l and v̄ results in a similar, 4.8 times, increase of effecti
mass but brings the spectrum shape very close to cosine
triangles and squares in Fig. 1. Again, a doubling ofl
strongly affectsE0 and W but not the spectrum shape, c
circles and squares in Fig. 1.

It is instructive to compare the exact QMC results w
the Lang-Firsov~LF! approximation15 which is believed to
be the correct description of the polaron in the antiadiab
regime ~high phonon frequency!. The LF formula for the
spectrum reads

EP2E052te2zl/v̄~12cosP!, ~8!

which also implies the relation between the renormaliz
mass and bandwidth

m*

m0
5

W0

W
5ezl/v̄, ~9!

whereW052zt is the bare bandwidth andm05\2/(2ta2) is
the bare mass,a being the lattice constant. Forv̄510.0 and
l510.0 QMC results are W50.543(2)t and m*
56.06(2)m0 while LF yields WLF50.541t and mLF*
57.39m0 . For v̄510.0 and l520.0 one has W
50.0739(2)t and m* 547.6(1)m0 from QMC and WLF

50.0733t andmLF* 554.6m0 from LF. One can see that LF
predicts very accurate values of the polaron bandwidth. T
fact was established in the previous studies of the Hols
model.16,10 On the other hand, LF slightly overestimates t
polaron mass. This is due to small deviations from the cos
shape, still present in the true spectrum at these model
rameters. Still, the LF masses are reasonably close to
exact ones, and the agreement improves with the further
crease ofv̄ andl.

Consider now the two-dimensional Holstein model. T
only exact polaron spectra published so far were calcula
by Wellein, Fehske, and Loos with the exact diagonalizat
method.11 These authors found a flattening of the spectrum
the outer part of the Brillouin zone, even stronger than in
one-dimensional case. We checked that for the model par
eters used in Ref. 11, formula~6! yields precisely the same
values ofEP2E0 as the exact diagonalization method.
definite advantage of the present method is that it allo
simultaneous calculations at any desired number ofP points,
while exact diagonalization studies are limited to a sm
number ofP points due to the finite size of the clusters. O
the other hand, the QMC method is limited to the conditi
W!\v, which prevents us from studying the weak-coupli
regime and such an interesting phenomenon as the l
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3240 PRB 60P. E. KORNILOVITCH
point of the polaron spectrum.14 ~The latter is possible with
the diagrammatic QMC.7! Figure 2 shows our QMC data fo
a new set of parameters in the adiabatic regime,v̄51.0, l
51.4, where 30P points have been used to represent
spectrum. One can see that the dispersion is indeed wea
uPu.p/2, i.e., in thelarger part of the Brillouin zone. Note
that at these parameters the polaron bandwidth is reduce
8t/0.12t567 times, and the mass enhancement is 8.7, so
are already in the small polaron regime. Yet, the spectr
shape is profoundly noncosine. With increasingl, it will be
approaching the cosine shape, but this is expected to ha
only at such largel where the polaron is very heavy and
easily localized.

In two dimensions, the volume of the outer part of t
Brillouin zone is larger than that of the inner one. Therefo
the linear representation of the spectrum, like in Fig. 2, d
not fully convey the changes in the band structure, cause
the flattening of the spectrum. The proper physical quan
which takes into account all the states of the Brillouin zone
the density of states~DOS!. The QMC method, coupled with
formula ~6!, provides the unique opportunity to calculate p
laron DOS exactly, since it allows a simultaneous measu
ment of the whole spectrum. In this work, the tw
dimensional Brillouin zone was divided in 2002 points at
which the spectrum was measured. In the end, the tota
40 000 polaron energies were distributed over 50 energy
tervals between 0 andW. The resulting DOS forv̄51.0,
l51.4 ~the same parameters as in Fig. 2! is shown in Fig. 3.
One can see that the effect of the spectrum flattening is
deed quite dramatic. The upper half band is jammed int
narrow, 0.015t width, energy interval, thereby increasin
DOS at the top of the band to'50 times the DOS at the
bottom of the band. The van Hove singularity is shifted fro
the middle to the top of the band. The lower half of the ba
contains only 13% of all states. Overall, DOS looks quali
tively different from the free-particle one.

As in the one-dimensional case, the band structure
proaches the free-particle-like as the phonon frequency
creases. As an example, we considered a frequency equ
the bare bandwidth,v̄58.0, andl58.0. ~This value of the
coupling constant was chosen to have the polaron bandw
W close to the previously considered adiabatic case.! The

FIG. 2. Spectrum of the two-dimensional Holstein model in t
adiabatic regime.v̄51.0, l51.4. @E0526.12(3), m* 58.7(1).#
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polaron spectrum and DOS are shown in Figs. 4 and 5,
spectively. Deviations from the free-particle behavior a
still visible, but they are small and not qualitative. DOS
the top of the band is just'1.5 times larger than at the
bottom, and the singularity appears close to the middle of
band. The ‘‘normalization’’ of the spectrum at largev̄ is
quite understandable. With increasing phonon frequency,
retardation effects become less important, the lattice de
mation more readily follows the particle movement, and t
whole complex behaves more like a free particle with
renormalized hopping integral. The Lang-Firsov formula~9!
predicts WLF50.1465t and mLF* 554.6m0 which is to be
compared with the QMC resultsW50.1510(3)t and m*
538.4(1)m0 . Again, the LF approximation yields the co
rect bandwidth but overestimates the effective mass by s
40%.

The most spectacular transformation of DOS occurs in
three-dimensional Holstein model. In three dimensions,
volume of the outer part of the Brillouin zone ismuchlarger
than that of the inner part, and it should completely domin
the total DOS. We do not show the polaron spectrum wh

FIG. 3. Density of states of the two-dimensional Holstein mo
in the adiabatic regime.v̄51.0, l51.4. @E0526.12(3), m*
58.7(1).#

FIG. 4. Spectrum of the two-dimensional Holstein model in t
antiadiabatic regime.v̄58.0, l58.0. @E05232.16(1), m*
538.4(1).#
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is not very informative. Density of states was calculated
measuring the polaron spectrum at 603 points of the full
Brillouin zone, and then distributing them among 50 ene
intervals between 0 andW. DOS in the adiabatic regime
v̄51.0 andl51.2, is shown in Fig. 6. The states of the fl
part of the spectrum form a massive peak at the top of
band. The width of the peak is about 10% of the total ba
width. DOS at the bottom of the band is negligible, the c
pacity of the lower half band is less than 1% of the to
number of states. The two van Hove singularities are
visible, at least on the chosen level of energy resolution, t
are absorbed into the peak. Overall, DOS iscompletelydif-
ferent from the free-particle one. Should the thre
dimensional Holstein model with such parameters exis
nature, an extreme care would be necessary in interpre
experimental data. In any real material, the lowest sta
would likely be localized, and any response to an exter
perturbation would be dominated by the peak. Then, for
stance, fitting to a free-particle-like form of DOS would lea
to wrong estimates of the coupling constant and other err

FIG. 5. Density of states of the two-dimensional Holstein mo
in the antiadiabatic regime.v̄58.0, l58.0. @E05232.16(1),
m* 538.4(1).# Small fluctuations of DOS are artifacts of a finite
mesh integration over the Brillouin zone and not statistical erro

FIG. 6. Density of states of the three-dimensional Holst
model in the adiabatic regime.v̄51.0, l51.2. @E0527.75(4),
m* 56.2(2).#
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As before, the band structure returns to the free-part
shape in the antiadiabatic regime. We considered the cas
the phonon frequency being equal to the bare bandwidthv̄
512.0, and coupling constantl510.0, when the polaron
bandwidth is close to the just considered adiabatic case,
Fig. 7. Although still distorted, the DOS shape is close to
free-particle one, with the square-root behavior at the top
the bottom of the band, and with two van Hove singularit
fully developed at the ‘‘right’’ places. The polaron band
width is W50.0827(2)t, which is in good agreement with
the Lang-Firsov valueWLF50.0809t, while the polaron
massm* 5112(1)m0 is 24% lighter than the LF massmLF*
5148m0 .

The polaron QMC algorithm of Ref. 6 is not limited to th
Holstein model. In fact, it allows studies ofarbitrary forms
of the electron-phonon interactions~of the density-
displacement type!, and arbitrary forms of the particle kineti
energy. Combined with Eq.~6!, it provides an efficient and
exact way of calculating the band structure of a whole cl
of polaron models. As possibilities are numerous, we h
chosen to illustrate the point on two particular examples.

The first example is theanisotropictwo-dimensional Hol-
stein model withv̄51.0, l51.4 ~these parameters are th
same as in Figs. 2 and 3!, and the bare anisotropy rati
ty /tx50.2. For a free particle with such an anisotropy, t
saddle points at (6p,0) and (0,6p) have different energies
which results in two singularities in DOS, positioned sym
metrically with respect to the center and edges of the ba
Polaron DOS, calculated by QMC, is shown in Fig. 8. T
flattening effect creates a strong peak at the top of the b
which absorbs the higher-energy singularity@at (6p,0)#. At
the same time, the second singularity is still clearly visib
Now it appears in the vicinity of the middle of the band.

The second example is the two-dimensional pola
model withlong-rangeelectron-phonon interaction@combine
with the Hamiltonian~7!#:

f m~n!5
k

~ um2nu211!3/2, ~10!

l

.

FIG. 7. Density of states of the three-dimensional Holst
model in the antiadiabatic regime.v̄512.0, l510.0. @E05
260.12(2), m* 5112(1).# Small fluctuations of DOS are artifact
of a finite-mesh integration over the Brillouin zone and not stati
cal errors.
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3242 PRB 60P. E. KORNILOVITCH
where the distanceum2nu is measured in lattice constant
For this form of the force,l51.742k2/(2Mv2D). The
model describes a two-dimensional particle interacting w
a parallel plane of ions vibrating perpendicular to the plan
It was proposed in Ref. 17, where it was used to model
interaction of holes doped in copper-oxygen planes, with a
cal oxygens in the layered cuprates. It was found that
long-range~Fröhlich! polaron is much lighter than the shor
range Holstein polaron. Here we present the density of st
for v̄51.0 andl52.75, see Fig. 9. DOS shape is close
the free-particle one, with a single, well-developed singu
ity in the middle of the band. Note that we are in the ad
batic regime, at the same frequencyv̄51.0 where the two-
dimensional Holstein polaron has a very distorted DOS,
Fig. 3. The comparison of Figs. 9 and 5 shows that a lo
range electron-phonon interaction plays the same role a
creasing phonon frequency, as far as the flattening effe
concerned.

FIG. 8. Density of states of the two-dimensional anisotro
Holstein model. v̄51.0, l51.4, ty /tx50.2. @E0523.987(3),
mx* 53.44(1)m0x , my* 517.54(3)m0x .#

FIG. 9. Density of states of the two-dimensional model w
long-range electron-phonon interaction.v̄51.0, l52.75. @E05
211.83(1), m* 520.1(1).# Small fluctuations of DOS are artifact
of a finite-mesh integration over the Brillouin zone and not stati
cal errors.
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IV. DISCUSSION AND CONCLUSIONS

The main message of this paper is that a path-inte
imaginary-time quantum Monte Carlo is quite capable of
rect measuring ofreal-timespectra. By relaxing the bound
ary conditions in imaginary time, one allows many-bo
paths to have arbitrary real-space shiftDr . Then the Fourier
transform projects out configurations with a certain total m
mentumP. The result, expressed by the formula~6!, is the
ground-state energy as a function of the total momentu
The physical system, where such a ground-state dispersio
of interest, should be carefully chosen.

The role of temperature in this process is twofold. On o
hand, temperature should be made as low as possible to
clude the contribution from the excited states with the sa
P. On the other hand, only states withEP2E0;kBT are
excited in the system. This means that the correspond
configurations will be generated by the QMC process
amounts sufficient for a good statistics. For higher-ene
states, configurations will be exponentially rare. This is
reason for the average cosine in Eq.~6! to become exponen
tially small in the low-temperature limit. In this case, th
measurement process will be statistically unstable. Thus
temperature should be of the order of the energy interval
is interested in. The two conditions on the temperature
be reconciled if the energy scale of the ground-state dis
sion is much smaller than the energy gap between the gro
state and the excited states within the sameP sector. This is
realized in the polaron system where one hasW!\v for a
wide range of parameters. If this condition is not satisfi
Eq. ~6! will be measuring the difference of projected fre
energies rather than that of ground-state energies.

Equation~6! shows that in a many-body system there e
ists a general and simple relation between the ground-s
dispersion and the end-to-end distribution of imaginary-ti
paths. It does not involve the energy estimator, although
latter is required for the separate calculation ofE0 andEP .
This might be useful in cases when the evaluation of
energy estimator is computationally costly. There are ot
computational advantages. First, Eq.~6! involves only the
logarithm of one measured quantity, the average cosine.
ond, Eq.~6! calculates the difference of two energies both
which may be large. In the polaron problem, typical energ
are of the order of a fewt but the bandwidth isW;0.1t.
Both E0 andEP can be calculated with typical accuracy 0
20.5%. This may result in a sizable error in their differen
if the two energies are calculated separately and then
tracted. Equation~6! produces much more stable energy d
ferences because of the large cancellation of errors betw
EP andE0 . In all the spectra presented in this paper, Figs
2, and 4, the statistical errors are smaller that symbols
resenting the data. Finally, the whole dispersion~as well as
E0 , and derivatives at anyP point! can be calculated during
a singleQMC run. This property of Eq.~6! also allows fast
computation of the density of states.

To demonstrate the practical usefulness of Eq.~6!, we
have combined it with an exact continuous-time algorith
for the lattice polaron,6 and calculated first detailed polaro
spectra and densities of states in two and three dimensi
Although our method of calculating the spectrum is limit
to the conditionW!\v, i.e., to the intermediate and stron
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coupling, this is the most physically interesting regime. T
gether with the weak- and strong-coupling perturbation
pansions, the exact diagonalization, density-ma
renormalization-group,18 variational, and diagrammati
QMC techniques, the present method covers thewhole pa-
rameter range of the polaron problems. One can say, tha
problem of calculating the exact polaron spectrum has fo
its solution.

Apart from being a test for Eq.~6!, the lattice polaron still
has a considerable interest on its own. We have seen in
paper that the polaron spectrum in the adiabatic limit of
Holstein model is generically noncosine, as was predic
theoretically and recently observed numerically. The flatt
ing has been found to continue well into the strong-coupl
regime, where the polaron mass is a few dozens and
proaches a hundred. The same conclusion was reached
viously in Ref. 11. For physical applications the most int
esting regime is when polarons are not very heavy and
be mobile. We conclude thatthe noncosine spectrum is typ
cal for the Holstein model in the physically relevant para
eter region, i.e., small phonon frequencies and intermedi
couplings.

A surprise finding has been the great extent at which
flattening changes the band structure in high dimensio
Density of states is completely changed, van Hove singul
ties are shifted, low-lying states are almost irrelevant, re
tions between the effective mass and the bandwidth is
ken. We have seen that the combination of dimensiona
phonon frequency, coupling strength, and anisotropy m
produce densities of states of various shapes. In such a
ation, one should be careful about the interpretation of
experimental data, like the estimation ofl or polaron mass
,
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from the bandwidth or from the location of singularities. Th
use of a ‘‘naive’’ model band structure would lead to wron
conclusions.

We have also found that in all dimensions the polar
band structure becomes free-particle-like with increas
phonon frequency. In particular, the spectrum approaches
cosine shape and the effective mass approaches the in
of the bandwidth. Moreover, numerical values ofW are well
described by the Lang-Firsov approximation. Thus our QM
data support the LF approximation as the right description
the polaron in the antiadiabatic regime. At the same time,
have found that LF could still overestimate the polaron m
by a few dozen percent in cases where the bandwidth
predicted correctly.

Finally, we considered a long-range electron-phonon
teraction and found a free-particle-like band structure eve
the adiabatic regime. In Ref. 17 it was found that in t
adiabatic regime polaron masses are well described by
LF approximation. Two conclusions follow from these fac
First, all the unusual properties of the Holstein model cau
by the flattening, may be specific to the local electro
phonon interaction and may not be generic polaron prop
ties. Second, the long-range electron-phonon interaction
lattice seems to have the same effect on the band structu
the increasing phonon frequency. Although it is clear in
itively that a long-range interaction leads to higher mobil
of the lattice deformation, details of this mechanism are
to be fully understood.
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