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Ground-state dispersion and density of states from path-integral Monte Carlo:
Application to the lattice polaron
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A formula is derived that relates the ground-state dispersion of a many-body system with the end-to-end
distribution of paths with open boundary conditions in imaginary time. The formula does not involve the
energy estimator. It allows direct measurement of the ground-state dispersion by quantum Monte Carlo meth-
ods without analytical continuation or auxiliary fitting. The formula is applied to the lattice polaron problem.
The exact polaron spectrum and density of states are calculated for several models in one, two, and three
dimensions. In the adiabatic regime of the Holstein model, the polaron density of states deviates spectacularly
from the free-particle shapgS0163-182609)05529-0

. INTRODUCTION fitting it to a single exponentia@ ™ EP”. This method is exact
and universal but requires a separate simulation for each
Usually, guantum Monte Carl@QMC) methods are used P-point.
to study ground-state, thermodynamic, or static properties of The second strategy is to work in real space but to use
guantum-mechanical systems. Some important dynamicdjourier-type projection operators to project on states with

characteristics can also be obtained through various forms §€finite P. This amounts to the free boundary conditions in
fluctuation-dissipation relations. Examples of these are th aglnarmmeﬁys&ﬁ/ally,ft{whe przjerctlocv?tk?rre usedtt;) cr?]lcrunla:]e
superfluid fraction of Bose-liquids,the Drude weight of € Seco ervatiye ot Ine energy espect to momen-

conductorg, the Meissner fraction of superconductdrand tum (effective mass™ In Ref. 6 the projection was applied

. 3t 56 for the first time to the whole polaron spectrum. In this
the effective mass of defectsand polarons:® Beyond that  scheme, the ground-state dispersion is measured directly, and

dynamical calculations are less straightforward. For instancey| £, are calculated simultaneously. Unfortunately, at non-

calculation of the excitation spectrum normally requireSzeroP the weight of the polaron path is no longer positive

measurement of the Green’s function at imaginary times andefinite, and one needs to deal with a sign problem. It turns

subsequent analytical continuation to real times. out, however, that the main idea can be reformulated in a
However, there exists one special type of excitation specway that does not requiredivision by the average sign, but

trum that can be measured directly by QMC. This is theonly taking itslogarithm While the new formulation does

ground-state dispersion, i.e., the total energy of the systerfiot constitute a complete elimination of the sign problem, it

Ep as a function of the total momentuRh In a translation-  is more statistically stable and extends the parameter domain

ally invariant systempP is a constant of motion, and the accessible_in prac_tical simulations. Below we derive the_ new

Hamiltonian does not mix subspaces with differénfThen, ~ formula, discuss its properties, and apply to the physically

if a QMC is designed as to operate within a giiesubspace Nteresting example of the lattice polaron.

only, it may be able to access the ground state for the givef) , roryuLA FOR THE GROUND-STATE DISPERSION

P, thereby providingep. Not for any physical system B8p

of interest. For a collection of identical particles, for in-  To our knowledge, the projection relations required for

stance, one has simplgs=P?/(2M), M being the total our purposes were derived by Basli&or completeness a

mass, which corresponds to free movement of the system aferivation is given below. LeR denote a many-body real-

a whole. Positive examples include cases when the systegpace configuration, anB+r a many-body configuration

can be divided into a tagged particle and an environmenivhich is a result of the parallel transport Rfby a vector.

(usually bosons The best known example of this kind is the (Note that the sum oR andr is only symbolic. The dimen-

polaron, i.e., an electron strongly interacting with phononssionality of R is equal to the number of degrees of freedom,

In this caseEp is nothing but the polaron spectrum. The i.e., very large or infinite, while the dimensionality ofs the

polaron spectrum will be the main subject of this paper.  dimensionality of space, i.e., 1, 2, or) Btates|R) form a
There exist at least two different strategies of how to op-complete orthogonal basis,=dR/R)(R|, and (R|R’)

erate within a restricte® subspace. The first one is to work = §(R—R’). A different basis is formed by the statfs)

in momentum space and to fix the total momentum of theyhich are characterized by the definite total momenfm

system from outset. An example of this approach is the diaOne is interested in therojectedpartition functionZp which

grammatic method of Prokofev and Svistunoun this  includes only states with the givem

method QMC is used to sum the entire diagrammatic series

for an imaginary-time Green'’s functio®(P, 7). Since the _ — BH _ 1 a—BH

total momegntumyis an external paramet(er 02 the series, it is ZP_; (nje” |n>5p'pn—f dRAR(R’[e"*[R)- Qp,

possible to extradtp from the 7— oo limit behavior of G, by (1)
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dispersion by QMC methods in cases whefR,R";3) is
Qp=2 (RINYNIR")8pp =(RIP)PIR), (2)  positive definite. However, the QMC process must be orga-
" nized in a special way, as apparent from E§). It must
where 8= (kgT) ! is the inverse temperature ahtlis the  generate only such paths whose end configurations at imagi-
full Hamiltonian. The meaning of Eq2) is that the two nary timer= B are exact images of the end configurations at
configurationsR and R’ have to be projected on the given 7=0 excepffor a parallel transport by an arbitrary vectbr.
momentumP. This is achieved as followéelow7z=1 is It is allowed to change\r, make simultaneous changes of
seb. Any arbitrary configuratiorR generates a set of states both end configurations, and to make arbitrary changes of
|Pr)=V~¥2[dre”""'|R+r), whereV is the volume. In- paths at internal times<07< g, but the end configurations
versely,|R+r)=V 125 ¢'P|Pg). Upon projection, only®  must always be kept identical up to a shift. It is important
components of both configurations survive. As a result,  that this restriction affects neither the ergodicity nor the ap-
plicability of the Metropolis algorithm.

B , Formula (6) involves only one measured quantity,
QP_VJ dr(R+r[P)PR’+r) (cosPAr), instead of two in the previous formulation. More-
. over, it does not require division by the measured quantity,
_ (P =P /o " but only taking its logarithm. Additionally, Eq6) provides
sz drg” € (P"IP)(PIP"&) the difference between two large numbds,andE,, and a

large cancellation of errors may occur. This makes 4.
much more stable statistically than explicit energy estima-
tors.
On the other hand, at small temperatures, the average co-
:Ef d(Ar)(R+Ar|R)elPA" sine becomes exponentially small and it cannot be measured
\% reliably. This reflects the fact that configurations wht
—E>kgT are very rare because of the Boltzmann factor.
ZEJ d(Ar)ePATS[(R+AT)—R'], 3) Thus the present method is limited to excitation energies of
\4 the order of severatgT.

1 1 ) ,
=v<PR|PR/>=WJ drdr’(R+r|R"+r")ePr=1")

where Ar=r—r’. Substitution in Eq.(1) and integration
overR’ yields I1l. APPLICATION TO THE LATTICE POLARON

1 _ We now demonstrate the practical importance of &.
Zp:vj d(Ar)e‘PArJ dR(R+Ar|e #1|R) on the model problem of lattice polaron, which is often con-
sidered as a paradigmatic example of a particle strongly in-
1 . teracting with a boson field. We consider a hypercubic lattice
= Vf d(Ar)e'PArJ dRp(R,R+AT; ), (4)  with the nearest-neighbor hopping, dispersionless phonons,
and the “density-displacement” electron-phonon interaction.
where p(R,R’; ) is the full many-body density matrix. The model Hamiltonian reads
Next, we assume that for eaéhthe state with the lowest

energyEp is nondegenerate, and in the low-temperature limit T T T
the projected partition function is dominated by the contri- H= "t 2 CnCn’_% fm(”)cncnng’ﬁw% ML
bution from this stateZp— exp(—BEp). Now take theratio (" @)

of Zp andZp_g:
Heret is the hopping amplitudét will be used as the energy
Zp unit), o is the phonor(oscillatop frequency,&,, is the inter-
nal coordinate of thenth oscillator, andf,,(n) is the force
_ betweermth oscillator and the patrticle at site(f is a func-
~ [d(An)ePATTdRp(R,R+AT;B) tion of distancdm—n| only). The model is parametrized by
:;'L“w fd(Ar)fdRp(R,R+AT;8) ®)  the dimengionless frequenﬁ_yzzﬁw/t and by the dimension-
less coupling constant=[=,,f#(0)]/(2M w?D), whereM
whereEj, is the ground-state energy. The right-hand side ids the mass of the oscillator aridl is the half-bandwidth of
nothing but the average value of d@&r taken over the the bare band(For an isotropic band with nearest-neighbor
distributionp. [We have assumed thfttRp(R,R+Ar;B) is hopping,D =zt, z being the number of neighboys.
an even function ofAr.] A simple formula forEp now fol- For the polaron problem, a many-body configurati®is
lows: specified by the position of the electrorand oscillator dis-
placement€m. Making use of the Feynman'’s idea of ana-
lytic integration overém the problem is reduced to a single-
particle system with retarded self-interactfbihe latter can
be simulated exactly, using the continuous-time representa-
which is the main result of this section. tion of polaron paths.The resulting algorithfhis very effi-
Equation(6) shows that the ground-state dispersion carcient and allow accurate determination of the ground-state
be obtained from the end-to-end distribution of many-bodyenergy and effective mass of the polaron for a wide class of
paths. It offers a direct way of evaluating the ground-statemodels. It this paper, it will be shown that the method also

e PEr~Bo = |im
L—x P=0

1
Ep—Eg=— lim —In{cosPAr), (6)
ﬁ-;ocﬂ
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1.0 T

ing A and w because both processes increase the energy
separation of the two hybridizing states. In recent years the
flattening of the polaron spectrum was observed in numerical
studies 912

Our quantum Monte Carlo data fully confirm the previous
analytical and numerical results, see Fig. 1. We found that
the spectrum shape is more sensitive to the phonon fre-
quency than to the coupling constant. At a small frequency
w=1.0, the increase of the coupling constant frem2.0 to
N=2.5 results in a 3.5-times increase of the effective mass,
YV o-10, 4220 and in a 2.8-times drop of the bandwidth, yet the spectrum
—O a=1.0,A=2.5 shape changes only slightly, cf. triangles and diamonds in
*—00=100,A=100 1 Fig. 1. At the same time, a simultaneous 10-times increase of
D:_Do‘”:sligg’ A=200 \ andw results in a similar, 4.8 times, increase of effective

mass but brings the spectrum shape very close to cosine, cf.
o6 0.2 0.4 0.6 0.8 10 triangles and squares in Fig. 1. Again, a doubling Mof
P/ strongly affectsE, and W but not the spectrum shape, cf.

circles and squares in Fig. 1.

It is instructive to compare the exact QMC results with
the Lang-Firsov(LF) approximatio® which is believed to
be the correct description of the polaron in the antiadiabatic
regime (high phonon frequengy The LF formula for the
spectrum reads

08 [

02

0.0

FIG. 1. Polaron spectrum in the one-dimensional Holstein
model, normalized to the bandwidW=E_—E,. Triangles: w
=1.0, \=2.0[for these parameters the polaron ground-state energ
Eo=—4.38(1)(in units oft), bandwidthw=0.1243(2)(in units of
t), effective massn* =10.Q(1), in units of my=7%2/(2ta?)]. Dia-
monds: w=1.0, A\=2.5 [Ey,=-5.261), W=0.043(3), m*
=34.5(3)]. Circles: ©=10.0, A=10.0 [E,=-20.351), W T
=0.5432), m*=6.06(2) Squares: =10.0, A=20.0 [E, Ep—Eo=2te (1 cosP), ©®)
=—40.081), W=0.07392), m* =47.6(1)]. which also implies the relation between the renormalized

) ) mass and bandwidth
produces accurate polaron spectra, when combined with Eq.

(6). There are other reasons why the polaron is an ideal sys- m* W, —
. . _ Y _Ne
tem to try formula(6). First, due to a constant phonon fre- my W = ©)
guency, excited states are, at adyseparated from the re-
stricted ground state by a finite energy gap. Therefore ~WhereWy=2ztis the bare bandwidth andy=1%/(2ta®) is
instead of performing numerically the limit procedure@o the bare mass being the lattice constant. Far=10.0 and
=, one can study the system dinite B, provided A=10.0 QMC results are W=0.543(23y and m*
exp(Bhw)>1 and the contribution from excited states is neg-=6.06(2)m, while LF yields W, =0.54% and m{
ligible. Second, by increasing the coupling constanbtne  =7.39m,. For «»=10.0 and A=20.0 one hasW
can always decreasEp—E,, i.e., substantially increase =0.0739(2} and m*=47.6(1)n, from QMC and W ¢
(cosPAr), and stabilize the simulations. Third, the polaron =0.0733 and m;'r=54.6m, from LF. One can see that LF
momentumP is not a parameter of simulations. This implies predicts very accurate values of the polaron bandwidth. This
that statistics can be collected for all momenta simultafact was established in the previous studies of the Holstein
neously. In other words, the whole polaron spectrum is meamodel®° On the other hand, LF slightly overestimates the
sured in a single QMC run. This will enable us to calculatepolaron mass. This is due to small deviations from the cosine
for the first time exact polaron densities of states. shape, still present in the true spectrum at these model pa-
We begin with the simplest Holstein model which hasrameters. Still, the LF masses are reasonably close to the
local electron-phonon interactiof,,(n) =k, . IN One di-  exact ones, and the agreement improves with the further in-
mension, the polaron spectrum has been extensively studiedlease ofw and\.
by exact diagonalizatiot;** strong-coupling perturbatiotf, Consider now the two-dimensional Holstein model. The
and variationdf techniques. Our QMC data for the one- only exact polaron spectra published so far were calculated
dimensional Holstein model are shown in Fig. 1. The mosty Wellein, Fehske, and Loos with the exact diagonalization
interesting feature of the spectrum is its noncosine shape imethod!! These authors found a flattening of the spectrum in
the adiabatic regimev<1.0 (triangles and diamonglsAt  the outer part of the Brillouin zone, even stronger than in the
large momenta, the spectrum is more flat than at small mosne-dimensional case. We checked that for the model param-
menta. The nature of this flattening was understood a longters used in Ref. 11, formul®) yields precisely the same
time ago™ In the weak-coupling limit, the free-particle state values of Ep—E, as the exact diagonalization method. A
hybridizes with the single-phonon state and creates a mixedefinite advantage of the present method is that it allows
ground state which is free-particle-like at smdl and  simultaneous calculations at any desired numbé? pbints,
phonon-like at largeP, hence the weak dispersion. With while exact diagonalization studies are limited to a small
increasing\, the free-particle state is replaced with a polaronnumber ofP points due to the finite size of the clusters. On
state with an effective mase*, which now hybridizes with  the other hand, the QMC method is limited to the condition
the single-phonon state, still leading to a more flat dispersioMV<# w, which prevents us from studying the weak-coupling
at large momenta. The flattening effect weakens with growregime and such an interesting phenomenon as the limit
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FIG. 2. Spectrum of the two-dimensional Holstein model in the ~ FIG. 3. Density of states of the two-dimensional Holstein model
adiabatic regimew=1.0, \=1.4. [E,=—6.123), m*=8.7(1) ] inSﬂ;?l;’i?iabatic regimew=1.0, N=1.4. [E;=—-6.1A3), m*
point of the polaron spectrutf.(The latter is possible with -
the diagrammatic QM@) Figure 2 shows our QMC data for Polaron spectrum and DOS are shown in Figs. 4 and 5, re-
a new set of parameters in the adiabatic regime;1.0, spect_w_ely. Deviations from the free—partlclg pehawor are
=1.4, where 30P points have been used to represent thestill visible, but they are small and not qualitative. DOS at
spectrum. One can see that the dispersion is indeed weak € top of the band is just1.5 times larger than at the
|P|> /2, i.e., in thelarger part of the Brillouin zone. Note, Pottom, and the singularity appears close to the middle of the
that at these parameters the polaron bandwidth is reduced gnd. The “normalization” of the spectrum at large is
8t/0.12=67 times, and the mass enhancement is 8.7, so w@uite understandable. With increasing phonon frequency, the
are already in the small polaron regime. Yet, the Spectrunlgeta_rdation effects_ become less imp_ortant, the lattice defor-
shape is profoundly noncosine. With increasigt will be mation more readily follows the p_artlcle movement, anq the
approaching the cosine shape, but this is expected to happéfhole complex behaves more like a free particle with a
only at such large. where the polaron is very heavy and is "enormalized hopping integral. The Lang-Firsov form(8a
easily localized. predicts W =0.1463 and m;'-=54.6m, which is to be

In two dimensions, the volume of the outer part of thecompared with the QMC resultg/=0.1510(3} and m*
Brillouin zone is larger than that of the inner one. Therefore=38.4(1)m,. Again, the LF approximation yields the cor-
the linear representation of the spectrum, like in Fig. 2, doegect bandwidth but overestimates the effective mass by some
not fully convey the changes in the band structure, caused §0%.
the flattening of the spectrum. The proper physical quantity The most spectacular transformation of DOS occurs in the
which takes into account all the states of the Brillouin zone ighree-dimensional Holstein model. In three dimensions, the
the density of stated0S). The QMC method, coupled with volume of the outer part of the Brillouin zonerisuchlarger
formula (6), provides the unique opportunity to calculate po-than that of the inner part, and it should completely dominate
laron DOS exactly, since it allows a simultaneous measurethe total DOS. We do not show the polaron spectrum which
ment of the whole spectrum. In this work, the two-
dimensional Brillouin zone was divided in 20®oints at
which the spectrum was measured. In the end, the total of
40000 polaron energies were distributed over 50 energy in-
tervals between 0 anW/. The resulting DOS folw= 1.0, 0.15
A =1.4(the same parameters as in Figi2shown in Fig. 3.

One can see that the effect of the spectrum flattening is in- <
deed quite dramatic. The upper half band is jammed into a Eo
narrow, 0.015 width, energy interval, thereby increasing I,
DOS at the top of the band te50 times the DOS at the W
bottom of the band. The van Hove singularity is shifted from

the middle to the top of the band. The lower half of the band 0.05
contains only 13% of all states. Overall, DOS looks qualita-

0.20 T T

0.10

*—eQOMC

tively different from the free-particle one. cosine
As in the one-dimensional case, the band structure ap- 4 ° s
proaches the free-particle-like as the phonon frequency in- (mm) (0.0) P (m0) (mm)
creases. As an example, we considered a frequency equal to
the bare bandwidthy=8.0, and\ =8.0. (This value of the FIG. 4. Spectrum of the two-dimensional Holstein model in the

coupling constant was chosen to have the polaron bandwidtlntiadiabatic regime.w=8.0, A=8.0. [E,=—32.11), m*
W close to the previously considered adiabatic ga¥ee  =38.41).]
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FIG. 5. Density of states of the two-dimensional Holstein model FIG. 7. Density of states of the three-dimensional Holstein
in the antiadiabatic regimew=28.0, A=8.0. [Ey=—32.1§1), model in the antiadiabatic regimew=12.0, A=10.0. [Ey=
m* =38.41).] Small fluctuations of DOS are artifacts of a finite- —60.142), m*=112(1).] Small fluctuations of DOS are artifacts
mesh integration over the Brillouin zone and not statistical errors. of a finite-mesh integration over the Brillouin zone and not statisti-
cal errors.

is not very informative. Density of states was calculated by )
measuring the polaron spectrum at®@oints of the full As before, the band structure returns to the free-particle

Brillouin zone, and then distributing them among 50 energyshape in the antiadiabatic_ regime. We considered the case of
intervals between 0 anW. DOS in the adiabatic regime, "€ Phonon frequency being equal to the bare bandwidth,

@=1.0 and\=1.2, is shown in Fig. 6. The states of the flat =12:0, and coupling constant=10.0, when the polaron
part of the spectrum form a massive peak at the top of thgandwdth is closg to_the just considered adla_batlc case, see
band. The width of the peak is about 10% of the total bandFig. 7. AI_though stll_l distorted, the DOS shap_e is close to the
width. DOS at the bottom of the band is negligible, the ca-free-particle one, with the squgre—root behavior at_the top _and
pacity of the lower half band is less than 1% of the totalth® bottom of the band, and with two van Hove singularities
number of states. The two van Hove singularities are nofully developed at the “right” places. The polaron band-
visible, at least on the chosen level of energy resolution, the}W'dth is W=0.0827(2}, which is in good agreement with
are absorbed into the peak. Overall, DO @npletelydif- he Lang-Firsov valueW, g=0.0809, while the polaron
ferent from the free-particle one. Should the three-massm*=112(1)m, is 24% lighter than the LF mass]¢
dimensional Holstein model with such parameters exist in=148Mg.
nature, an extreme care would be necessary in interpreting The polaron QMC algorithm of Ref. 6 is not limited to the
experimental data. In any real material, the lowest stateblolstein model. In fact, it allows studies afbitrary forms
would likely be localized, and any response to an externabf the electron-phonon interactiongof the density-
perturbation would be dominated by the peak. Then, for indisplacement typeand arbitrary forms of the particle kinetic
stance, fitting to a free-particle-like form of DOS would lead energy. Combined with Ed8), it provides an efficient and
to wrong estimates of the coupling constant and other errorexact way of calculating the band structure of a whole class
of polaron models. As possibilities are numerous, we have
150.0 : : : : : chosen to illustrate the point on two particular examples.
The first example is thanisotropictwo-dimensional Hol-
stein model withw=1.0, A=1.4 (these parameters are the
same as in Figs. 2 and),3and the bare anisotropy ratio
t,/t,=0.2. For a free particle with such an anisotropy, the
saddle points at{ 7r,0) and (0;= ) have different energies,
which results in two singularities in DOS, positioned sym-
metrically with respect to the center and edges of the band.
Polaron DOS, calculated by QMC, is shown in Fig. 8. The
50.0 1 flattening effect creates a strong peak at the top of the band
which absorbs the higher-energy singulafiy (= 7,0)]. At
the same time, the second singularity is still clearly visible.
Now it appears in the vicinity of the middle of the band.
0.0 , The second example is the two-dimensional polaron
000 002 004 006 008 010 012 model withlong-rangeelectron-phonon interactideombine

100.0 - A

N(E) (t cell)™

EA with the Hamiltonian(7)1:
FIG. 6. Density of states of the three-dimensional Holstein
model in the adiabatic regimeo=1.0, A=1.2. [E;=—7.754), f ()= K (10)
m

m*=6.2(2) ] (|m—n|2+1)3 )
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20.0 . . T IV. DISCUSSION AND CONCLUSIONS

The main message of this paper is that a path-integral
imaginary-time quantum Monte Carlo is quite capable of di-
rect measuring ofeal-time spectra. By relaxing the bound-
ary conditions in imaginary time, one allows many-body
paths to have arbitrary real-space shift Then the Fourier
% 100 ¢ ] transform projects out configurations with a certain total mo-
mentumP. The result, expressed by the formy, is the
ground-state energy as a function of the total momentum.
50 - The physical system, where such a ground-state dispersion is
of interest, should be carefully chosen.

The role of temperature in this process is twofold. On one
00 , , , hand, temperature should be made as low as possible to ex-
0.00 0.10 I%/zto 0.30 0.40 clude the contribution from the excited states with the same

X P. On the other hand, only states wifb—Ey~kgT are

FIG. 8. Density of states of the two-dimensional anisotropic€XCitéd in the system. This means that the corresponding
Holstein model. w=1.0, A=1.4, t,/t,=0.2. [Eo=—3.9873), configurations will be generated by the QMC process in
m} =3.44(1)mg, , M} =17.54(3)Mgy.] amounts sufficient for a good statistics. For higher-energy

states, configurations will be exponentially rare. This is the

where the distancim—n| is measured in lattice constants. '€8Son for the average cosine in &6). to become exponen-
For this form of the force\=1.7422/(2M w?D). The tially small in the Iow-te_mperaturg I_|m|t. In this case, the
model describes a two-dimensional particle interacting witHmeasurement process will be statistically unstabl_e. Thus the
a parallel plane of ions vibrating perpendicular to the plane. l€MPerature should be of the order of the energy interval one
It was proposed in Ref. 17, where it was used to model th mterestgd in. The two conditions on the temperature can
interaction of holes doped in copper-oxygen planes, with api®€ reconciled if the energy scale of the ground-state disper-
cal oxygens in the layered cuprates. It was found that thiSIOn is much smaller than the energy gap between the ground
long-range(Frohlich) polaron is much lighter than the short- state and the excited states within the sdfreector. This is

range Holstein polaron. Here we present the density of statd&@/ized in the polaron system where one Ws7 w for a
for @=1.0 and\=2.75, see Fig. 9. DOS shape is close toWwide range of parameters. If this condition is not satisfied,

the free-particle one, with a single, well-developed singularEd- (6) will be measuring the difference of projected free

ity in the middle of the band. Note that we are in the adia-€N€rgies rather than that of ground-state energies.
batic regime, at the same frequen@y= 1.0 where the two- Equation(6) shows that in a many-body system there ex-

dimensional Holstein polaron has a very distorted DOS, Cf.is’tS a general and simple relation between the ground-state

Fig. 3. The comparison of Figs. 9 and 5 shows that a |onggispersion and the end-to-end distribution of imaginary-time

range electron-phonon interaction plays the same role as iipaths. It does not involve the energy estimator, although the

creasing phonon frequency, as far as the flattening effect {&Hter is required for the separate calculatiorEgfand Ep.
concerned. This might be useful in cases when the evaluation of the

energy estimator is computationally costly. There are other
computational advantages. First, E§) involves only the
logarithm of one measured quantity, the average cosine. Sec-
ond, Eq.(6) calculates the difference of two energies both of
which may be large. In the polaron problem, typical energies
. are of the order of a few but the bandwidth iaV~0.1t.
Both E; andEp can be calculated with typical accuracy 0.3
—0.5%. This may result in a sizable error in their difference
if the two energies are calculated separately and then sub-
tracted. Equatiori6) produces much more stable energy dif-
ferences because of the large cancellation of errors between
Ep andE,. In all the spectra presented in this paper, Figs. 1,
1 2, and 4, the statistical errors are smaller that symbols rep-
resenting the data. Finally, the whole dispersfaa well as
Ey, and derivatives at ani point) can be calculated during
00 , , 4 a single QMC run. This property of Eq(6) also allows fast
0.00 0.10 0.20 0.30 0.40 computation of the density of states.
EA To demonstrate the practical usefulness of Ej, we

FIG. 9. Density of states of the two-dimensional model with have combined it with an exact continuous-time algorithm
long-range electron-phonon interaction=1.0, A\=2.75. [E,= for the lattice polarofi,and calculated first detailed polaron
—11.831), m*=20.1(1).] Small fluctuations of DOS are artifacts Spectra and densities of states in two and three dimensions.
of a finite-mesh integration over the Brillouin zone and not statisti-Although our method of calculating the spectrum is limited
cal errors. to the conditionW<# w, i.e., to the intermediate and strong
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coupling, this is the most physically interesting regime. To-from the bandwidth or from the location of singularities. The
gether with the weak- and strong-coupling perturbation exuse of a “naive” model band structure would lead to wrong
pansions, the exact diagonalization, density-matrixconclusions.

renormalization-group? variational, and diagrammatic =~ We have also found that in all dimensions the polaron
QMC techniques, the present method coversvifele pa-  band structure becomes_ free-particle-like with increasing
rameter range of the polaron problems. One can say, that tHonon frequency. In particular, the spectrum approaches the

problem of calculating the exact polaron spectrum has foun§0sine shape and the effective mass approaches the inverse
its solution. of the bandwidth. Moreover, numerical values\iifare well

Apart from being a test for Ed6), the lattice polaron still ~ described by the Lang-Firsov approximation. Thus our QMC
has a considerable interest on its own. We have seen in thf2@ Support the LF approximation as the right description of

paper that the polaron spectrum in the adiabatic limit of th e polaron in the ant|ad|abgt|c regime. At the same time, we
Holstein model is generically noncosine, as was predicte ave ffoun%that LF could S.t'” overestlrrr:ate tr;]e pbolaré)n_(r?ﬁs.s
theoretically and recently observed numerically. The flatten- y a few dozen percent in cases where the bandwidth is

. : . - "predicted correctly.
ing has been found to continue well into the strong—coupllnd3 Finally, we considered a long-range electron-phonon in-

regime, where the polaron mass is a few dozens and apa action and found a free-particle-like band structure even in
proaches a hundred. The same conclusion was reached pffg adiabatic regime. In Ref. 17 it was found that in the
viously in Ref. 11. For physical applications the most inter-5gjahatic regime polaron masses are well described by the
esting regime is when polarons are not very heavy and capg gpproximation. Two conclusions follow from these facts.
be mobile. We conclude thétte noncosine spectrum is typi- First, all the unusual properties of the Holstein model caused
cal for the Holstein model in the physically relevant param-py the flattening, may be specific to the local electron-
eter r_egion i.e., small phonon frequencies and intermediatephonon interaction and may not be generic polaron proper-
couplings. ) ties. Second, the long-range electron-phonon interaction on a
A surprise finding has been the great extent at which theyyice seems to have the same effect on the band structure as
flattening changes the band structure in high dimensiongne increasing phonon frequency. Although it is clear intu-
Density of states is completely changed, van Hove singularijyely that a long-range interaction leads to higher mobility

ties are shifted, low-lying states are almost irrelevant, relay the |attice deformation, details of this mechanism are yet
tions between the effective mass and the bandwidth is bro[-0 be fully understood.

ken. We have seen that the combination of dimensionality,

phonon frequency, coupling strength, and anisotropy may The author is grateful to A. S. Alexandrov, D. M. Ceper-
produce densities of states of various shapes. In such a sitley, V. Elser, W. M. C. Foulkes, and V. V. Kabanov for
ation, one should be careful about the interpretation of anyiseful discussions and communications. This work was sup-
experimental data, like the estimation dfor polaron mass ported by EPSRC under Grant No. GR/L40113.
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