Multiphonon tunneling conduction in vanadium-cobalt-tellurite glasses

H. Sakata and K. Sega

Department of Applied Chemistry, Tokai University, 1117, Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan

B. K. Chaudhuri

Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India (Received 20 August 1998; revised manuscript received 4 February 1999)

Ternary vanadium oxide glasses in the system V₂O₅-CoO-TeO₂ are fabricated by press quenching of glass melts, and dc conductivities (σ) are investigated at temperatures from 330 to 475 K for different glass compositions. From the study of the phase diagram, the glass formation region is found to be in the range of V₂O₅=0-85 mol %, CoO=0-35 mol %, and TeO₂=25-100 mol %. These glasses contain microcrystalline clusters dispersed in the glass matrix. In the high-temperature regime above $\Theta_D/2$ (Θ_D is the Debye temperature), the small polaron hopping model is found to be applicable. In the low temperature (below $\Theta_D/2$) regime, however, both Mott's variable-range hopping and the Greaves' intermediate range hopping models are found to be not applicable. The most probable transport for the entire range of temperature and compositions is concluded to be due to multiphonon tunneling of large polarons between the microclusters, supporting the model proposed by Shimakawa. [S0163-1829(99)03029-5]

I. INTRODUCTION

The dc conductivities of transition metal oxide (TMO) glasses has been targeted for extensive studies¹⁻⁹ because of their interesting semiconducting properties as well as for their probable technological applications. The conduction mechanism in these glasses was understood by the small polaron hopping (SPH) model^{10,11} based on strong electron-lattice interaction. The experimental results of conductivity and other transport properties of many binary^{1-3,4,6} and ternary^{5,7-9} vanadate glasses supported the SPH model.

At low temperatures (below $\Theta_D/2$, Θ_D is the Debye temperature) where polaron binding energy is less than kT (k is the Boltzmann constant and T is the absolute temperature), the three-dimensional (3D) variable-range hopping (VRH) (Ref. 12) with $T^{1/4}$ dependence of conductivity (σ) takes place. The VRH was reported for V₂O₅-TeO₂ (Ref. 3) or Bi₂O₃ (Ref. 6) glasses and V₂O₅-Bi₂O₃-BaTiO₃ (Ref. 13) and similar other vanadate glasses. We also reported VRH in V₂O₅-SnO-TeO₂ glasses.¹⁴ It should be mentioned that the above two models were based, in common, on a single phonon approach.

Recently Shimakawa,¹⁵ assuming microclusters in a glass network, revealed that the dc and ac conduction of V_2O_5 -P₂O₅ (Refs. 1,16) and V_2O_5 -TeO₂ (Ref. 17) glasses could be interpreted by multiphonon tunneling of large polarons between microclusters in the glass. The conductivity in this model is given by $\sigma \propto (T/T_0)^n$, where *n* is a constant depending on glass composition¹⁵ and *T* is temperature. This multiphonon tunneling model of Shimakawa¹⁵ considering polaron hopping between micloclusters in the glass network has not been well investigated. The multicomponent glasses that we have prepared are found to contain microcrystalline phases embedded in the glass matrix. So there is a good chance of verifying the Shimakawa's model¹⁵ with samples of our present investigation.

Here it should be pointed out that compared to the TMO

0163-1829/99/60(5)/3230(7)/\$15.00

3230

glasses with single transition metal ion (TMI), conductivities of relatively small number of oxide glasses containing two TMI's have so far been thoroughly investigated.^{7,9,18,19} The effect of the second transition metal ion on the overall conductivity is found to be different in different systems. That is, it decreases¹⁸ or increases²⁰ with the addition of the second TMI. For Fe₂O₃-V₂O₅-P₂O₅ glasses,²⁰ a SPH transport between Fe and V ions in addition to the SPH between V ions was suggested.

In the present work, we report the conductivity of a V_2O_5 -CoO-TeO₂ type glassy system prepared by adding CoO to the V_2O_5 -TeO₂ oxide mixtures. Interestingly, these glasses are found to contain microcrystalline clusters dispersed in the glass matrix. They also show some interesting features along with decreasing effect on conductivity with increase of Co content. The main objective of this work is to explain the accurately measured conductivity data of these glassy materials with two TM ions with an appropriate theoretical model.

II. EXPERIMENT

Reagent grade V_2O_5 (99.99%), CoO (99.99%), and TeO₂ (99.99%) were used as raw materials. After mixing in air a batch of 6 g with prescribed compositions, the mixed mass of each glass composition was melted in alumina crucible for 1 h at 1023 K in an electric furnace. The melt was then poured on a thick copper block and immediately quenched by pressing with another similar copper block. Following this procedure we obtained bulk glass of $2 \times 2 \text{ cm}^2$ size and about 1 mm in thickness.

The glass forming region was determined by X-ray diffraction analysis (Philips, X'pert System PW 3020). The glass transition temperature (T_g) was determined by differential thermogravimetric analysis (DTA) (Rigaku, DSC8230/ TAS300) of the glass samples at a heating rate of 10 °C min⁻¹. The density (d) of glasses were determined by

FIG. 1. Transmission electron micrograph of the $60V_2O_5$ -10CoO-30TeO₂(mol %) glass (scale: 0.1 μ m).

the Gay-Lussac method using toluene as an immersion liquid.

The dc conductivity (σ) of the as-quenched glasses was measured at temperatures between 330 and 475 K using the four-point probe technique, a constant dc current of 0.1 μ A being applied between the electrodes using silver paste with a spacing of 2 mm. The Seebeck coefficient (Q) for the glasses was determined by measuring the thermoelectric power of the glass samples with a temperature difference of 10 K between the two electrodes as reported earlier.²¹ To study the presence of microclusters in the glass, a transmission electron microscopic study of the fine glass powder on carbon-grids was made using an electron microscope (Hitachi: Model H6000).

III. RESULTS

The x-ray diffraction (XRD) pattern of these glasses (with Cu $K\alpha$ radiation) indicated homogeneous glassy character without showing any crystalline peak. However, a transmission electron microscopic study indicated the presence of microcrystalline grains (20 to 40 nm in size) (Fig. 1) uniformly distributed in the glass matrix. Their concentration is very small not detected from the XRD patterns of the glasses. So the glasses of our investigation are actually glassnanocrystal composites. Similar behavior for all the V₂O₅-CoO-TeO₂ glassy system is observed. From an EPMA observation of V, Co, and Te elements in the glass, we found a homogeneous distribution of each constituent element and no phase separation was observed. Figure 2 shows the glass formation region: $0 \le V_2O_5 \le 85 \text{ mol }\%$,

FIG. 2. Glass formation region of V_2O_5 -CoO-TeO₂ glasses: \bigcirc , glass; \blacksquare , crystallized; \blacktriangle , not melted.

TABLE I. Chemical composition and physical properties of glasses.

Glass composition (mol %) ^a d^{c} T_{g}^{d} σ_{0} W^{b} R $V_{2}O_{5}$ CoO TeO ₂ (g cm ⁻³) (K) (S cm ⁻¹ K) (eV) (nm) 70 10 20 3.095 513 1.72×10^{5} 0.561 0.400 60 10 30 3.463 520 3.79×10^{4} 0.538 0.404 50 10 40 3.832 529 1.83×10^{4} 0.540 0.413 40 10 50 4.200 540 7.71×10^{2} 0.511 0.429								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Glass cor	mposition	(mol %) ^a	d ^c	T. ^d	σ_{\circ}	W ^b	R
701020 3.095 513 1.72×10^5 0.561 0.400 601030 3.463 520 3.79×10^4 0.538 0.404 501040 3.832 529 1.83×10^4 0.540 0.413 401050 4.200 540 7.71×10^2 0.511 0.429	V ₂ O ₅	CoO	TeO ₂	$(g \text{ cm}^{-3})$	(K)	$(\mathrm{S}\mathrm{cm}^{-1}\mathrm{K})$	(eV)	(nm)
60 10 30 3.463 520 3.79×10^4 0.538 0.404 50 10 40 3.832 529 1.83×10^4 0.540 0.413 40 10 50 4.200 540 7.71×10^2 0.511 0.429	70	10	20	3.095	513	1.72×10^{5}	0.561	0.400
501040 3.832 529 1.83×10^4 0.540 0.413 401050 4.200 540 7.71×10^2 0.511 0.429	60	10	30	3.463	520	3.79×10^{4}	0.538	0.404
40 10 50 4.200 540 7.71×10^2 0.511 0.429	50	10	40	3.832	529	1.83×10^4	0.540	0.413
	40	10	50	4.200	540	7.71×10^{2}	0.511	0.429

^aNominal composition.

^b475–435 K.

^cAccuracy in the density measurement, $\pm 1\%$.

^dAccuracy in the measurement of T_g , ± 2 K.

 $0 \le CoO \le 35 \mod \%$, and $25 \le TeO_2 \le 100 \mod \%$. The density (d) and T_g data are given in Table I.

The Seebeck coefficients (Q) for these glasses with different compositions were measured. As shown in Table II, the negative values indicate *n*-type semiconducting behavior of these glasses. No temperature dependence of Q was observed, which is similar to many other vanadate glasses.^{22,23} No dc polarization was observed.

Figure 3 shows the Arrhenius plot of $\ln(\sigma T)$ between 475 and 395 K. Deviation from a linear curve occurs around $\Theta_D/2$ (~240–190 K, depending concentration), where Θ_D is the Debye temperature. Figure 3 indicates a temperature dependent activation energy. The experimental conductivity data in such a situation is well described with an activation energy for conduction (*W*) given by the Mott formula^{10,11}

$$\sigma = (\sigma_0 / T) \exp(-W/kT), \qquad (1)$$

where σ_0 is a temperature independent parameter as discussed below. *W* values obtained from fitting of the linear part of the curves in Fig. 3 (high-temperature regime, 475–435 K) are given in Table I together with the mean spacing (*R*) for the V-O-V chains calculated from glass density (*d*) using $R = (1/N)^{1/3}$ (where *N* is the V-ion density). At temperatures lower than 395 K the linearity between $\ln(\sigma T)$ and T^{-1} deviated appreciably as seen from Fig. 3.

Figures 4 and 5 present the effects of V_2O_5 and CoO contents on σ . At 425 K, σ was found to be 9.4 $\times 10^{-5}$ -2.3 $\times 10^{-6}$ S cm⁻¹ for CoO=0-30 mol%. The conductivity increased with increasing V_2O_5 content for a fixed CoO content (Fig. 4), while it decreased with an increase of CoO content (Fig. 5).

TABLE II. Seebeck coefficient of V₂O₅-CoO-TeO₂ glasses.

			Temperature (K)					
Glass co	mposition ((mol %) ^a	405	430	445	455		
V ₂ O ₅	CoO	TeO ₂	-Seebeck coefficient $(\mu V K^{-1})^{b}$					
60	0	40	556	547	546	547		
60	10	30	596	583	600	605		
60	20	20	635	638	611	634		

^aNominal composition.

^bAccuracy in the measurement, $\pm 10 \ \mu V K^{-1}$.

FIG. 3. Temperature dependence of dc conductivity for $xV_2O_5 10CoO (90-x)TeO_2 (mol \%)$ glasses: (a) x=40; (b) x=50; (c) x=60; (d) x=70. The scale for σT is $\log_{10} (\sigma T)$.

IV. DISCUSSION

The glass formation region of the glasses of the present investigation (Fig. 2) is similar to that of the V₂O₅-MnO-TeO₂ glasses.²¹ The area of the region generally depends on $\Delta T = T_c - T_g$ (T_c is crystallization temperature) and the values of ΔT are similar to those of the V₂O₅-MnO-TeO₂ glasses (e.g., $\Delta T = 60$ K) studied earlier.²¹

With an increase of V_2O_5 content in the glass, the conductivity increased (Fig. 4). This means a decrease in the V-O-V spacing *R* as indicated in Table I, which raises the hopping probability, providing that the activation energy (*W*) and the fraction of reduced transition metal ion (*C*) are almost unchanged for varying compositions, as seen later in the SPH model. In the V_2O_5 -CoO-TeO₂ glasses of our present investigation, the CoO addition lowered the conductivity (Fig. 5). This means, Co ion in the glass hindered the carrier transport. Because CoO is not a glass network former, the Co ions are isolated in the glass network, which causes obstruction in the hopping of electrons due to the lack of oxygen bonds. A similar lowering of conductivity was also

FIG. 4. Effect of V_2O_5 content on dc conductivity of xV_2O_5 10CoO (90-x)TeO₂ (mol %) glasses at 405 K.

FIG. 5. Effect of CoO content on dc conductivity of $60V_2O_5 \times CoO (40-x) \text{TeO}_2 \pmod{8}$ at 405 K.

observed in TiO_2 - V_2O_5 - P_2O_5 (Ref. 18) and V_2O_5 -MnO-TeO₂ (Ref. 21) glasses.

The logarithm of the conductivity (Fig. 3) shows a linear temperature dependence up to a critical temperature T_D ($\sim \Theta_D/2$) and then the slope changes with deviation from linearity, and the activation energy is temperature dependent. Such a behavior is a feature of small polaron hopping.¹ So we first discuss the thermal variation of conductivity assuming the SPH model^{10,11} based on a strong coupling of electron with the lattice by a single phonon. This model gives σ in the nonadiabatic regime for TM oxide glasses as given by Eq. (1) viz.

$$\sigma = (\sigma_0 / T) \exp(-W/kT).$$
(2)

The activation energy W can be written as

$$W = W_H + W_D/2$$
 (for $T > \Theta_D/2$), (3a)

$$W = W_D \quad (\text{for } T < \Theta_D/4). \tag{3b}$$

The temperature independent conductivity in Eq. (1) is given by

$$\sigma_0 = \nu_0 N e^2 R^2 C (1 - C) \exp(-2\alpha R)/k, \qquad (4)$$

where ν_0 is the optical phonon frequency ($\sim 1 \times 10^{13}$ Hz) obtained from the Debye temperature given in Table III, R is the mean spacing between transition metal ions given by R $=N^{-1/3}$, α is the tunneling factor, W_H is the polaron hopping energy, W_D is the disorder energy, and C is the fraction of reduced transition metal ion. The values of W and σ_0 shown in Table I are estimated from Fig. 3. The values of W increases from 0.511 to 0.561 eV for different glass compositions indicating an increase in conductivity (Fig. 3). Although the exact formula of C for TMO glasses with two TMI is not yet known, we assume С =0.35, 0.315, 0.285, 0.25 for the V₂O₅=40-70 mol% (Table I), referring to the data from the $Fe_2O_3-V_2O_5-P_2O_5$ glasses.²⁰ These values of C and other parameters shown in Table III were fitted to the linear part of the conductivity data in the high temperature regime (above $\Theta_D/2$). The values of α thus estimated from the fitting are given in Table III. These values are somewhat larger than those of the binary glasses^{3,6} with single transition metal ions. This may be due to the effect of heterogeneity of the present glasses containing microclusters in the glass matrix.

3233

Glass co	mposition (mol %) ^a	N		0	11.	a c		a (omist
V ₂ O ₅	CoO	TeO ₂	$(10^{22} \mathrm{cm}^{-3})$	C^{b}	(nm^{-1})	(10^{13}Hz)	(10^{-18})	(nm^{-1})	$(\mathrm{S} \mathrm{cm}^{-1} \mathrm{K})$
70	10	20	1.650	0.250	64.1	1.70	7.7	0.25	1.21×10^{5}
60	10	30	1.516	0.285	64.8	1.65	2.9	1.6	4.24×10^{4}
50	10	40	1.419	0.315	65.0	1.67	0.78	1.9	3.37×10^{4}
40	10	50	1.266	0.350	66.5	1.68	0.028	6.0	9.62×10^{2}

TABLE III. Parameters for small polaron hopping conduction.

^aNominal composition.

^bFrom Ref. 20.

^cIn S cm⁻¹ K calculated from Eq. (4).

We examined the pre-exponential factor σ_0 in Eq. (4) with the experimental data. Estimation using Eq. (4) gives $\sigma_0 \sim 10^{-18}$ to 10^{-20} S cm⁻¹ K (Table III), a large difference between the experimental σ_0 values (Table I) extrapolated from the data in Fig. 3. Such a large difference between the experimentally and theoretically observed values of the temperature independent conductivity ratio is considered to be a consequence of the presence of microcrystalline clusters in these glasses (Fig. 1). We then assume the conduction in microcrystallites to be due to also SPH as well as in the glassy matrix, and conduction is then expressed as

$$\sigma = \sigma(\text{glass}) + \sigma(\text{cryst}), \tag{5}$$

where σ (glass) is σ in Eq. (2), σ (cryst) is the conductivity of microcrystals and is given by

$$\sigma(\text{cryst}) = [\sigma_0(\text{cryst})/T] \exp(-W'/kT), \quad (6)$$

where W' is the activation energy of conduction. $\sigma_0(cryst)$ is described as

$$\sigma_0(\text{cryst}) = \nu'_0 N' e^2 R'^2 C' (1 - C') \exp(-2\alpha' R') / k.$$
(7)

The parameters with primes are defined for microcrystals as the same as those in Eq. (4).

If composition of the microcrystals is similar to that of the glass matrix, then W' = W. Assuming $\nu'_0 = \nu_0$, C' = C, N' = N, and hence R' = R, we estimate $\sigma_0(\text{cryst})$ for different α' from Eq. (7). Estimation of gives $\sigma_0(\text{cryst}) \sim 10^2$ to 10^5 S cm^{-1} K (Table III), which is the same order of the σ_0 values (Table I) obtained from the conductivity data (Fig. 3). Thus we conclude that SPH model is valid in the high temperature regime for these glasses containing microcrystals providing SPH in both glass matrix and microcrystalline clusters.

In Fig. 3 we notice that the temperature dependence of conductivity deviated from the linearity for temperatures less than 435 K (above which the SPH law is valid). We then attempted to apply variable-range hopping (VRH) (Refs. 10 and 12) as reported for binary or ternary vanadate glasses.^{3,6,14} However, the validity of such a high temperature range is not beyond question. But it has been pointed out²⁴ that depending on the strength of Coulomb interaction the expression for the density of states at the Fermi level is modified and the VRH (Refs. 10 and 12) may be applied even at high temperatures ~300 K and above, though the VRH should actually be applicable in the low temperature regime (below $\Theta_D/4$) which is below 100 K. For these

glasses we, therefore, attempted to apply both the VRH models proposed by Mott^{10,12} and Greaves²⁵ which is valid for the intermediate range of temperature. The expression for the conduction by the VRH model^{10,12} is based on a single optical phonon approach. In this model σ is given by^{10,12}

$$\sigma = B \exp(-A/T^{1/4}), \tag{8}$$

where

$$A = 4 [2\alpha^3 / 9\pi k N(E_F)]^{1/4}, \qquad (9)$$

$$B = \left[e^{2/2} (8\pi)^{1/2} \right] \nu_0 \left[N(E_F) / \alpha kT \right]^{1/2}, \tag{10}$$

 $N(E_F)$ is the density of states at the Fermi level. *A* and *B* are obtained from the slopes of the ln σ vs $T^{-1/4}$ (Fig. 6). Then the mean hopping distance in VRH R_{VRH} and the hopping site energy ($W_0 = W_D$) are evaluated from Eqs. (9) and (10) (Ref. 12),

$$R_{\rm VRH} = 9^{1/4} / \{8 \,\pi N(E_F) \,\alpha kT\}^{1/4}, \tag{11}$$

$$W_0 = 3/\{4\pi R_{\rm VRH}^3 N(E_F)\}.$$
 (12)

The values of *A* and *B* are given in Table IV, which is of the order of $10^{24} \text{ eV}^{-1} \text{ cm}^{-3}$. This value of $N(E_F)$ is found to be large compared with those of the TMO glasses with single

FIG. 6. σ vs $T^{-1/4}$ for $xV_2O_5 10CoO (90-x)TeO_2 (mol \%)$ glasses: (a) x=40; (b) x=50; (c) x=60; (d) x=70. The scale for conductivity is $\log_{10}\sigma$.

TABLE IV. Mott parameters for variable-range hopping conduction.

Glass composition (mol %) ^a								
			Α	В	$N(E_F)^{\rm b}$	$R_{\rm VRH}^{\ b}$	W_D^{b}	
V_2O_5	CoO	TeO ₂	$(K^{1/4})$	$(\mathrm{S}\mathrm{cm}^{-1})$	$(eV^{-1} cm^{-3})$	(nm)	(meV)	
70	10	20	38.5	5.43×10 ¹⁶	7.6×10^{23}	0.17	65	
60	10	30	42.5	3.11×10^{18}	5.1×10^{23}	0.19	72	
50	10	40	41.2	7.90×10^{17}	5.8×10^{23}	0.18	69	
40	10	50	32.2	9.83×10^{13}	1.5×10^{24}	0.14	54	

^aNominal composition.

^bValues calculated assuming $\alpha = 20 \text{ nm}^{-1}$.

TMI for which $N(E_F)$ is of the order of $10^{19}-10^{21} \text{ eV}^{-1} \text{ cm}^{-3}$ (Refs. 3, 6, and 14).

We shall now apply the Greaves law²⁵ of VRH which is valid for the intermediate range of temperature (below $\Theta_D/2$). According to this model,²⁵ the expression for the conductivity can be written as

$$\sigma T^{1/2} = A \exp(-B/T^{1/4}), \qquad (13)$$

where A and B are constants. The slope B of $\ln(\sigma T^{1/2})$ vs $T^{-1/4}$ (Fig. 7) is given by

$$B = 2.1 [\alpha^3 / k N(E_F)]^{1/4}.$$
 (14)

Figure 7 shows the relationship of $\ln(\sigma T^{1/2})$ against $T^{-1/4}$ drawn by rearranging the data from Fig. 3. The linear relationship confirms the Greaves VRH (Ref. 25) in the intermediate temperature range. The values of the parameters *A* and *B* obtained from these curves are given in Table V. The $N(E_F)$ values were estimated from Eq. (14) assuming $\alpha = 20 \text{ nm}^{-1}$. The values of the density of states at the Fermi level calculated from the parameter *B* of the Greaves model²⁵ given in Table V ($\sim 10^{23} \text{ eV}^{-1} \text{ cm}^{-3}$) are also found to be very large, compared to the usual semiconducting oxide glasses. So none of these two VRH models is found suitable to explain the low temperature (below $\Theta_D/2$) conductivity data of these multicomponent glass nanocomposites. Thus

FIG. 7. Plots of $\sigma T^{1/2}$ vs $T^{-1/4}$ for $xV_2O_5 10CoO (90-x)TeO_2 (mol \%)$ glasses: (a) x=40; (b) x=50; (c) x=60; (d) x=70. The scale for $\sigma T^{1/2}$ is $\log_{10}(\sigma T^{1/2})$.

TABLE V. Parameters for Greaves' variable-range hopping conduction.

Glass co	mposition ((mol %) ^a	B	Δ	$N(E_{\rm o})^{\rm b}$		
V ₂ O ₅	CoO	TeO ₂	$(K^{1/4})$	$(S \text{ cm}^{-1} \text{ K}^{1/2})$	$(eV^{-1}cm^{-3})$		
70	10	20	45.6	2.62×10^{20}	4.1×10^{23}		
60	10	30	47.6	1.11×10^{21}	3.5×10^{23}		
50	10	40	45.3	3.46×10^{19}	4.2×10^{23}		
40	10	50	42.0	6.82×10 ¹⁶	5.8×10 ²³		

^aNominal composition.

^bValues calculated assuming $\alpha = 20 \text{ nm}^{-1}$.

we conclude that appearance of the VRH at T = 330-475 K is rather unreasonable for the present glasses. So an alternative approach has been made to explain the experimental conductivity data for the entire range of temperature of our investigation.

Shimakawa,¹⁵ assuming microclusters of the order of 8 nm in the glass network, explained dc and ac conductivities of V_2O_5 - P_2O_5 (Refs. 1 and 16) and V_2O_5 - TeO_2 (Ref. 17) glasses by a multiphonon tunneling model of large polarons (weak-coupled electron)^{26–28} between microclusters. The conductivity of the present glasses presented $T^{1/4}$ dependence (Fig. 6), and the structure may be similar to that for V_2O_5 -TeO₂ glasses. Hence we discuss the conductivity data (Fig. 3) using the multiphonon tunneling approach.¹⁵

The dc hopping conductivity is generally given by²⁶

$$\sigma = N_c (eR)^2 \Gamma / 6kT, \tag{15}$$

where N_c is the number of localized electron, R the hopping distance, and Γ is the hopping rate. The hopping rate in multiphonon tunneling of localized electrons with weak electron-phonon interaction is described by^{26–28}

$$\Gamma = [C \exp(-\gamma p)] [1 - \exp(-h\nu_0/kT)]^{-p}, \quad (16)$$

where $C = \nu_0$, $p = \Delta/h\nu_0$, ν_0 the acoustical phonon frequency, Δ the difference of site energy (W_D in VRH), and γ is a constant and a measure of electron-phonon coupling. The electron overlapping term $\exp(-2\alpha R)$ is implicitly incorporated in *C* (Ref. 15). For $h\nu_0 < kT$, Eq. (16) is approximated by

$$\Gamma = [C \exp(-\gamma p)] (T/T_0)^p, \qquad (17)$$

with $T_0 = h \nu_0 / k$. Since N_c must be $N(E_F)kT$,²⁹ we have from Eqs. (15) and (17)

$$\sigma^{\alpha}(T/T_0)^p,\tag{18}$$

where p is integral number but becomes nonintegral number, providing distribution of hopping site distance is taken into consideration.²⁹

Figures 8 and 9 represent the relationship between $\ln \sigma$ and $\ln T$ for different glass compositions. The linear relationship between these two quantities is clearly seen. According to the Shimakawa model¹⁵ the experimental relationship between σ and T is expressed as $\sigma = \sigma'_0 T^n$ using a constant σ'_0 depending on glass composition and n, being nonintegral number. The best fit of the data gave n values for the glasses viz. n = 11.7 - 13.6 (CoO=10 mol%) and n = 12.2 - 14.5

FIG. 8. Relationship between σ and T for $xV_2O_5 10CoO (90-x)TeO_2 (mol \%)$ glasses: (a) x = 40; (b) x = 50; (c) x = 60; (d) x = 70. The scales for conductivity and temperature are $\log_{10}\sigma$ and $\log_{10}T$.

(CoO=20 mol %) as shown in Table VI. These values of *n* are comparable with those obtained by Shimakawa for V₂O₅-TeO₂ and V₂O₅-P₂O₅ glasses.¹⁵

If we assume percolating microclusters in the glasses with mean size l_c (say, ~4 nm), and α^{-1} (the Bohr radius) which is larger than the mean V-O-V spacing (a = 0.4 nm = R), Table I), electron transfer occurs easily in the cluster. Assuming a mean separation of each cluster $(R_c = l_c)$ and a difference of site energy Δ , hopping of weakly coupled electron (large polaron) by tunneling is possible to occur between microclusters. Since ν_0 is given by $(a/\alpha^{-1})\nu_D$ (Ref. 30) where ν_D is the maximum phonon frequency (Debye frequency) and $\nu_D = k\Theta_D/h$, ν_0 becomes smaller than normal $\nu_D = 1.2 \times 10^{13}$ Hz.

Assuming $R_c = lc = \alpha^{-1} = 4$ nm and a = 0.4 nm, we have $\nu_0 = 1.2 \times 10^{12}$ Hz with $\Theta_D = 600$ K and $T_0 = h \nu_0 / k$

FIG. 9. Relationship between σ and T for $xV_2O_5 20CoO(80-x)TeO_2 (mol \%)$ glasses: (a) x=40; (b) x=50; (c) x=60; (d) x=70. The scales for conductivity and temperature are $\log_{10}\sigma$ and $\log_{10}T$.

TABLE VI. Physical parameters for multiphonon tunneling conduction. ($\nu_0 = 1.2 \times 10^{12}$ Hz and $T_0 = 57.6$ K are used for calculation).

Glass composition (mol %)								
V ₂ O ₅	CoO	TeO ₂	n	$-\log_{10}\sigma_0'$	γ	G	(meV)	
70	10	20	13.00	38.2	2.76	1.5	64	
60	10	30	13.65	40.3	2.79	1.5	68	
50	10	40	12.97	38.9	2.89	1.3	64	
40	10	50	11.72	36.6	3.19	0.9	58	
70	20	10	12.29	36.9	2.92	1.2	61	
60	20	20	14.53	43.1	2.81	1.6	72	
50	20	30	13.69	41.6	2.99	1.3	68	
40	20	40	12.98	40.4	3.16	1.0	64	

= 57.6 K. A single-phonon process such as VRH cannot take place under the small ν_0 , provided the site energy Δ is comparable or larger than $h\nu_0$, and this is possible because $\Delta/h\nu_0 = n = 11 - 14$ from the data in Table VI. Using the experimental p values combined with Eqs. (15) and (17), we estimated γ and Δ for the present glasses [assuming $N(E_F) = 2.9 \times 10^{20} \,\mathrm{eV^{-1} \ cm^{-3}}$ (Ref. 14)]. For а $50V_2O_5-10CoO-40TeO_2(mol \%)$ glass, for example, we obtained $\gamma = 2.87$, $\Delta = 64$ meV, and $\Gamma = 7.706$ $\times 10^{-5} (T/57.6)^{12.97}$ (Hz).

The condition of occuring multiphonon tunneling process is $\gamma = 2-3$ (Ref. 26). In the weak electron-lattice interaction, $\gamma = \ln(\Delta/E_M) - 1$, where E_M is the measure of the electronlattice coupling strength.¹⁵ The weak-coupling condition is that $G = (E_M/h\nu_0)(kT/h\nu_0)$, nearly less than 1 (Ref. 31). From γ , we have $\Delta/E_M = ph\nu_0/E_M$, which gives $E_M/h\nu_0$ with p(=n) values. The values for Δ , γ , and G thus estimated are presented in Table VI. These γ and G values satisfy the condition $\gamma = 2-3$ (Ref. 26) or G < 1 (Ref. 31). Accordingly, we conclude that the multiphonon tunneling conduction of weakly coupled electrons is the most probable carrier transport in the present glasses.

V. CONCLUSION

Semiconducting V₂O₅-CoO-TeO₂ glasses were prepared by the press-quenching technique from the melts and the dc conduction mechanism was investigated in terms of different physical models. The glass formation region was found $0 \leq V_2 O_5 \leq 85 \mod \%$, $0 \leq CoO \leq 35 \mod \%$ to be and $25 \leq \text{TeO}_2 \leq 100 \text{ mol } \%$. The x-ray diffraction patterns of the glasses exhibited amorphous character, but transmission electron microscopic study of the glass together with electron diffraction revealed microcrystallites in the glass matrix. Glasses were found to be *n*-type semiconducting. The inverse temperature dependence of $\ln(\sigma T)$ in the range 330– 475 K gave linearity but deviated from linearity for temperatures less than about 435 K.

The high temperature (above $\Theta_D/2$) dependence of conductivity could be qualitatively explained by the small polaron hopping model. Moreover, the low temperature (below $\Theta_D/2$) conductivity data could not be explained either by Mott's or Greaves' variable-range hopping model giving rise to unusually large values of the density of states at the Fermi level compared to those of transition metal oxide glasses. These are special features observed in the multicomponent semiconducting glasses with two transition metal ions and containing microcrystalline clusters. Presence of such a microcrystalline or nanocrystalline phase in the glass matrix also effects the frequency dependent conductivity and dielectric constant as in the case of V_2O_5 -Bi₂O₃ (Ref. 32) and V_2O_5 -PbO (Ref. 33) glasses containing a BaTiO₃ phase. These glasses show very high dielectric permittivity. Recently we have also observed (unpublished) a very large dielectric constant in V_2O_5 -P₂O₅ glasses containing a nano-

- ¹M. Sayer and A. Mansingh, Phys. Rev. B 6, 4629 (1972).
- ²L. Murawski, C. H. Chung, and J. D. Mackenzie, J. Non-Cryst. Solids **32**, 91 (1979).
- ³V. K. Dhawan, A. Mansingh, and M. Sayer, J. Non-Cryst. Solids **51**, 87 (1982).
- ⁴M. Sayer and A. Mansingh, J. Non-Cryst. Solids 58, 91 (1983).
- ⁵H. Hirashima, D. Arai, and T. Yoshida, J. Am. Ceram. Soc. 68, 486 (1985).
- ⁶A. Ghosh and B. K. Chaudhuri, J. Non-Cryst. Solids **83**, 151 (1986).
- ⁷N. Lebrun, M. Lévy, and J. L. Souquet, Solid State Ionics **40/41**, 718 (1990).
- ⁸H. Mori, T. Kitami, and H. Sakata, J. Non-Cryst. Solids **168**, 157 (1994).
- ⁹H. H. Qiu, M. Kudo, and H. Sakata, Mater. Chem. Phys. **51**, 233 (1997).
- ¹⁰N. F. Mott, J. Non-Cryst. Solids 1, 1 (1968).
- ¹¹I. G. Austin and N. F. Mott, Adv. Phys. 18, 41 (1969).
- ¹²N. F. Mott, Philos. Mag. **19**, 835 (1969).
- ¹³S. Chakraborty, M. Sadhukahn, D. K. Modak, and B. K. Chaudhuri, J. Mater. Sci. **30**, 5139 (1995).
- ¹⁴ H. Mori, K. Gotoh, and H. Sakata, J. Non-Cryst. Solids **183**, 1228 (1995).
- ¹⁵K. Shimakawa, Philos. Mag. B 60, 377 (1989).
- ¹⁶M. Sayer, A. Mansingh, J. M. Reyes, and G. Rosenblatt, J. Appl. Phys. **42**, 2857 (1971).

crystalline TiO_2 phase. The ac conductivity is also similarly effected since ac conductivity and the imaginary part of the dielectric constant are related to each other.

Finally, considering microclusters present in these glasses, the multiphonon tunneling conduction between microclusters by large polarons (weekly coupled electron) was found to be the possible mechanism of conduction in the V_2O_5 -CoO-TeO₂ glasses with two transition metal ions. Similar approach could be extended to many other multicomponent TMO glasses containing microcrystalline or nanocrystalline clusters.

- ¹⁷V. K. Dhawan and M. Mansingh, J. Non-Cryst. Solids **51**, 87 (1982).
- ¹⁸H. Hirashima, K. Nishii, and T. Yoshida, J. Am. Ceram. Soc. 66, 704 (1983).
- ¹⁹R. Singh and K. Sethupati, J. Phys. D 22, L709 (1989).
- ²⁰H. Hirashima, M. Mitsuhashi, and T. Yoshida, J. Ceram. Soc. Jpn. **90**, 411 (1982).
- ²¹K. Sega, Y. Kuroda, and H. Sakata, J. Mater. Sci. **33**, 1303 (1998).
- ²²A. Ghosh, J. Appl. Phys. 65, 227 (1989).
- ²³H. Mori and H. Sakata, J. Mater. Sci. **31**, 1621 (1996).
- ²⁴M. Mostefa, S. Boutiche, and M. Khodja, Solid State Commun. 82, 697 (1992).
- ²⁵G. N. Greaves, J. Non-Cryst. Solids 11, 427 (1973).
- ²⁶N. F. Mott and E. A. Davis, *Electronic Processes in Non-Crystalline Materials*, 2nd ed. (Clarendon, Oxford, 1979), p. 65.
- ²⁷D. Emin, Adv. Phys. 24, 305 (1975).
- ²⁸N. Robertson and L. Friedman, Philos. Mag. 33, 753 (1976); *ibid.* 36, 1013 (1977).
- ²⁹ K. Shimakawa and K. Miyake, Phys. Rev. Lett. **61**, 994 (1988).
- ³⁰D. Emin, Phys. Rev. Lett. **32**, 303 (1974).
- ³¹R. Englman and J. Jortner, Mol. Phys. **18**, 145 (1970).
- ³²S. Chakraborty, A. K. Bera, S. Mollah, and B. K. Chaudhuri, J. Mater. Res. 9, 1932 (1994).
- ³³ M. Sadhukhan, D. K. Modak, and B. K. Chaudhuri, J. Appl. Phys. 85, 3477 (1999).