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Formalism for the computation of the RKKY interaction in aperiodic systems
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A numerical method to investigate the Rudermann-Kittel-Kasuya-YogtkKY ) interaction between lo-
calized spins in aperiodic materials is presented. Based on an expansion of the spectral measure on orthogonal
polynomials, this approach leads to an effective framework to analyze linear response formula for the RKKY
coupling in complex systems. Particularly useful in the tight-binding scheme it is used in this paper to
understand the role of the local environment and the quasiperiodic potential on the interaction between mag-
netic spins. Interesting features are revealed and discussed within the context of anomalous localization and
transport[S0163-18209)04225-3

[. INTRODUCTION pling with the localized moment ifr;), then a hole-electron
pair is created and propagate coherently during a certain time
The purpose of this work is to present a new formalismr, with |E’ — E|<#/r, until the pair is destroyed by diffusion
based on real space recursion schewtgch enables to com- on another magnetic impurity located |iq>. Consequently
pute the so-called Rudermann-Kittel-Kasuya-Yosida interacthe longer is the propagation time the smallest will be the
tion (RKKY) (Refs. 2—5 an effective coupling between two vicinity around Fermi energy that account for RKKY. The
localized magnetic moments, mediated by conduction elecgeneric form of the effective coupling between two magnetic
trons. This long range oscillatory interaction is now well impurities mediated by itinerant electrons reads
understood in pure metals and in weakly disordered systems,
or even close to the Anderson transition. RKKY interaction Triwy (7,1, E)=3%x(ri,1 B)S-S )
has been the subjected of a great attention during the past . . . .
years for instance for understanding the spin glaséN'th J is the interaction between the localized momS,rin
transition® magnetic long range order in high- cuprates, ~ and the spin of the itinerant electrons, ap(; ,r; ,Ef) con-
or more recently because of its anomalous behavior relatei@ins the sum of all the electron-hole propagation paths from
to giant magnetoresistance effects in magnetic multilayers.[ri) to [r;). RKKY is then proportional to the electronic sus-
As conduction electrons carry this interaction, one carceptibility x(r;;) of itinerant electrons. Whed>0(J<0),
wonder what happens for systems in which electronic propathe configurations of parallel spirtantiparalle] will mini-
gation is anomalodor in cases of inhomogeneous disorder?Mize the energy promoting ferromagnetic stasatiferro-
(e_g_’ local inhomogeneitiesy correlated disorder ) These magnetic stafe The SUSCEptibi"ty as a contribution of all the
issues may be addressed in relation to unusual RKKY interscattering paths of the hole-electron pair can be written down
action in quasicrystals, where the amplitude of the coupling®S
was found to be anomalously strong and with similar values 1 .
for sgyeral manganese-based quasicryStalsth different X(riF)=—— |mf dEG, (r;,r{,E)G_(r,,r; ,E)
densities of states. Such results were found to apparently * '’ 2m - b b

contradict the classical theory stating that RKKY should be, )
proportional to the total DOS at Fermi level. introducing the retarded3_) and advanced Green’s func-

In the following, after reminding some general features oftions (G.+) which define the amplitude of propagation of the
RKKY coupling, the method will be detailed followed by a hole-electron pair. Note that there exists an exact sum rule
first part addressing the numerical convergence of the alg2etween the susceptibility and the local density of states
rithm. A second part is devoted to the study of the impact of LEPOS) Zjx(ri.rj)=pi(E)=(—2/m)Im(r;|G(2)|r;) which

local disorder or quasiperiodic potential on RKKY. This will could be used as a numerical test. _ _
exemplify the interest of the method. In metallic systems with space dimensibn the interac-

tion is given by

Il. CALCULATION OF THE NONLOCAL Triky (T, Ep)~A(r) cog 2ker + 8(r)]/rP, (1)

SUSCEPTIBILITY . . I '
which manifests a long range oscillating behavidfor a

Indirect RKKY interaction stems from the coupling be- free electron gas, th&, § are independent af, whereas for
tween localized magnetic moments and propagating eleawveak disorder limit,A(r) becomes a random but smooth
trons. If an electron in a state of enerBy<Er undergoes a function ofr and &(r) is the phase shift associated with the
transition to a state of enerdy’ >Er because of the cou- scattering of electrons on impuritied(r) becomes random
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for r>1,, (mean free path It has been shown however that tems, quasicrystals or disordered fractal structures, the aver-
the mean free path is not a good measure of the typicaige displacement in time of an electron is driven by
length scale of this interaction. Indeed, the disorder averaganomalous diffusion. One can wonders how electronic sus-
of even moments§x29(|ri—r1|)) will contribute roughly as ceptibility is affected by such localization effects.
(1/P)¥? whereas odd moments of the susceptibility will —Besides, if the LDOS is inhomogeneous, i.e., if it presents
vanish exponentially over the mean free path length as exstrong local fluctuations, an effect of local environment may
pressed by the following averaged resdilts: be deduced from E¢2) and lead to specific features for
) ) RKKY coupling. Actually, since the LDO$r) can be ex-
(PP(r—ri) =0 ( p“(Ef) ) panded in the eigenstates basis 6f as I,8(E
AT Pl r—r; % —e,)|(r|n)|?, a substantial increasing of the LDOS around
the magnetic sites, enhancing the corresponding amplitudes

2
~LO(ri=ri)IP, (r|n), should also qualitatively lead to an increase of the
_ nonlocal susceptibility. This has been discussed in relation
<)(Zp+1(|ri—rj|)>:eXr1( — Ir r,—|> with peculiar prop_erties o_f AIPdMn quasicrystalline phases
lpm where the RKKY interaction was found to be anomalously

taking p(E) the DOS at Fermi level,, the mean free path, large laoljgz identical for several phases with different
and (1, a constant independent of the parameter of thel POS-
Hamiltonian. Consequently, the average over disorder of
electronic susceptibility is not sufficient for describing the !ll. REAL-SPACE APPROACH OF RKKY INTERACTION
correct range, amplitude and phase of the interaction, which
fluctuates very much from one random configuration to
another*®

Let us now consider a simple argument for the RKKY
coupling. If one considers a cube of lendtiwith periodic
boundary conditionswhich is larger than the typical dis-
tance magnetic impurities, then the expansion of the suscep- 2RefE>E,: dEdE

To perform real space calculations of the non-local sus-
ceptibility, considering the Green operatoG(z)=(z
—H) 1= [**[5(E—H)/z—E]dE, one starts from the gen-
eral form of x(r;,r;)

(ril SCE=H)|r;)(ri|8(E"' =H)|r})

tibility in a basis of eigenstatel§n)}, reads E'<Eg E-F '
(rilnyn|r)(r i my(mir;) The aim of the method is to determine the coefficients
x(ri,rj)=2Re>, E_E (2 (ri|8(E-H)|r;) without exact diagonalization, usually lim-
n,m n m

ited to simple models and small finite size systems. The key-

with E,>E>E,, and<n|rj)~1/\/f'5 given that states are pqint of the method is to use a basis of orthogon'al polyno-
normalized. Given that the average spacing between enerdgials{Pn(E)},n associated to a normalized functip(E),
levels for a given length is roughlyE=[p(E¢)LP]~ L, with referred as a model density of states. If the spectral subset of
p(E) the LDOS, one can assume that the energies of the(E) contains the one of the real Hamiltonian, it can be
electron and hole are, respective,=Eq+nAE andE, ~ shown that*'!

=E—mAE(n,m>0). Consequently, the susceptibility can

be expressed as S(E—H)=p(E)>, Pa(E)Pa(H)

X(ri,rj):z(LfD)z Rez ®(n)d*(m)

2 (n+m)AE and the{P,(E)},n satisfy to the orthogonality condition

+oo
:ZP(EF)ne @ (n)P*(m) fxp(E)Pn(E)Pm(E)dE=5nm-

LD n,m (n+ m)

These relations enable to write(ri|8(E—H)|r;)
where the functionsP(n)~LP(r|n)(n|r’')~1. From this, =p(E)2nnPa(E) &) with af} =(r;| Py(H)]|r}). From these
one can extract the generic behavior in power 1aWs’,  expressions, the susceptibility can be written down
which only depends on the space dimension in which the
system is embedded. The other part accounts for phase inter-

ferences and for instance in the case of almost free electrons x(riry)= Re;n Imnainj “;?

(weak disorder limix, ®(n)=exdik(ri—r;)] so that

Red (n)®* (m) ~ e Ke(ri—rp) g tike(ri=rj) cos(&g|ri — r| N P (E)P(E)

given that only statesnf,n) very close to the Fermi surface Ton= fE>EF p(E)p(E’)%dEdE/.
will contribute to the electronic response. Possible limita- E'<Ep

tions of this treatment due to strong correlations between

electronic levels will be discussed later (see Sec. V € Accordingly, the calculation ofy(r;,r;) is divided into
From our argument, two different effects influencing thetwo independent parts. Depending on the choice of polyno-

physical properties may be discuss. On the one hand, close foials, theZ, will display particular analytical form. The

metal-insulator transition peculiar electronic localizationother part of the susceptibility will involve a recursive evalu-

(such as the multifractality of eigenstatesay lead to cor- ation of coefficientsy]] by means of the three term relations

rection of the law ]llri—rj|D. Indeed, in quasiperiodic sys- defining the orthogonal polynomials, as detailed below.
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A. Recursion evaluation ofa{} Im(z)

One has to choose a convenient basis of orthogonal poly-
nomials to evaluate step by step the coefficierﬁs Given T
that any basis of such polynomials is uniquely define by a

three-term recurrence relation, generically readi,(E) R{®)

—a,Po(E) +b,Pps 1(E) + by 1Po_1(E) with b_,=0n=>0, /

and a,,,b,, the associated recursion coefficiehtdie main n

vectors to be evaluated recursively will follow from [ a-2b a+2b Re(2)
E

My =Po(H)|r)= E afifri).

FIG. 1. Integral contour for the calculation of the coeffici&pt,

Pratically, we will consider the Chebyshev polynomials of and semielliptic density of stateg,(w) used in the case of Cheby-
second order that have been already used in others contexthev polynomials.
Such polynomials are defined by

By application of Jordan Lemme, the integral on the con-
tour I" tends to zero when the radius goes to infinity, and it
only remains four integrals on the real axis, respectively, for
[—«<,a—2b], [a—2b,E¢], [Eg,a+2b], [a+2b,+co].
Using the relation between first and second order Chebyshev
polynomials defined on[—1,+1] and associated with

1
Po(H) = 5 (H=a)Pn(H) + Pn-1(H)

with P_;(H)=0 and Py(H)=1 and the corresponding
weight is given by

p(E)=1—E?
E)= 4b’—(E—a)?
pan(E) 2 (E-a) i J'+1\/ﬁZP (a+ 2bE)
im
which is#0 only forE e[a—2b,a+ 2b]. The coefficients a 0= o+in—E
and b are given by the calculated limés_. .. ,b,_... for the . >
real density of states. From the abovementioned relations, =m{Qn+1(@) Fi7V1= 0 Pp(w)}

the |¢") will be glven by |e[)=1/b(H—a)|e{)+|ef ") itis easy to show that fow|<1, with w=cosp then
and |¢; 1)=0,¢)=]r;). In the tight-binding scheme+

=3 pqYpdl 1 p){I ¢l ONE Shows that the] coefﬁments have to Qu(w)=cosnd, Po(w)= S'“(”.J“ 1)¢'
be evaluated recursively through;(] =6,j,Vp) sing
and finally
n+1l_ n L nj_ _n-1
i (% @pYpi T A% [Ty #1/LE?Py(a+2bE) .
f wtin—E dE=mexd xi(n+1)¢].
77%0i

B. Calculation of Z,, for the Chebyshev polynomials
In conclusion, given that the integration outsifle 1,1]

Let us now proceed to the calculation Bf,, for the leads to pure imaginary terms, the calculatiorzgf, reduces

Chebyshev polynomials of second order. First we rearrangg,
the general form

1 (1
Imn:fE>EFP(E)P(E')%dEdE’ At Tom) = 5778 ) gy - ey STLMT T 2) &)
B 1 [(Eg-a)2b .
by noticing that the factor 1§—E’) can be written as ~2mb) . dwsin(m+n+2)¢]
dz 2w .
ﬁ; ; -[0(E'~EF)O(EF—E) _ 1 (sin(m+n+3)Ae
F(Z—E)(Z—E) E-E 27h m+n-+3

—O(E-Ep)O(E—-E")]

sin(m+n+1)Ag
with the Heaviside functiof® (x)=0x<0 and®(x)=1x T a1

m+n+1 '
>0] and the contoul” is shown in the complex plane on
Fig. 1 for »—0,Rr—. One then rewrites where A= Arcog (Ex—a)/2b]. The final form of the elec-
tronic susceptibility for a general tight-binding Hamiltonian
p(E)P,(E) will be defined by
Rdz-mn-FInm)_ A dZ dET
E 5|n(m+n+3)AF sin(m+n+1)Ag
(f p(E") m(EI)) 2’7Tb ajjay] m+n+3 m+n+1
X dE'————].
- z—E’ which is the final form of the algorithm.
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IV. DISCUSSION ON THE NUMERICAL CONVERGENCE
AND TESTS

To achieve the convergence of the calculation, one must
ensure first of all, that the total length of the system is much
larger that the distance between magnetic sites if one wants
to consider an infinite medium. To close the system, we take
periodic boundary conditions. Second, the numerical accu-
racy must be checked. We found that single precision was
sufficient and gave the same results as double precision.

It remains to figure out how many recursion steps are
needed'summation om andm in the above formula This
can be done by noticing thatrecursion steps giveyW (W FIG. 2. Schematic representation of the lattice with different
the total bandwith as a resolution in energy, and that the tight-binding parameters.
states that will mainly contribute to RKKY, are enclosed in
an interval of widthAE<#/r_around Fermi energy. Here, binding parameters of the corresponding Hamiltonian. By
we definer_ as the time needed for electrons to travel be-doing so, we ensure that the LDOS around the initial state
tween two magnetic impurities distant bf For a sufficient | 4,) is strengthened in regards to TDOS at the same energy.
resolution of our spectrum, the number of recursion steps to
be considered ia>Wr_/#.

This result may also be recovered by looking at the propa- H=; lij)ei(ij|+ 7; [y (i + 1]+ (j—1]
gation of recursion states in real space. In fact, the propaga- I I
tion of thenth recursion state turns out to be representative
of the real wave function at a time-n#/W, |eM~|¥(t, +H(i+1j[+(-1j)+ T; i (({i=1j=1}).
~nfi/W)), initially located at the same sife;). Then, one '

has to check that the diffusion length pff’), which we  oyr model(Fig. 2) features two different hopping integrals
define as{(n), is sufficiently larger than the distance be- petween first §) and second4) nearest neighbors as well as
tween magnetic sites. Therefore as soog@g>L, the co-  gzn alternate distribution of site energies
efficientSaikj>r1 will not contribute significantly.

The criterionn>Wr_/f will depend on the nature of €n e o
propagation through the scattering time. For ballistic regimes € =7[1+(— '+ ?[1—(— 1)1
(crystaly, 7.~v FL with ve the Fermi energy, and
z(vl\_llzzvg)Tl‘L” w\r;virhea[s)d|II]uesw§iffrsgil(;rrl]esc\(l)vllh:Istt;?]tas;r?grllatedin the 7=0 case, this leads to a two-band DOS with a real

5 i X gap whose bandwith = eg— ea(ep<€p).

(>>A(\(/)\ZZD<)I6 5 g?%msilzlfldgfeu;%ir?gesocr:l?ﬁg r?}(l);e\plr\vﬁf The orthonprma! recursion badig,) and coeffic!ent can
Iea{d ton>(\/\f/ﬁA) .Ll’ﬁ to be controled empirically b? eyaluated iteratively. Nongthele;s, even fogésmp[e tight-

To test the efficiency of the method, we have checked thagmijlg% mo:dg Ig, tz% (ic;rzp())legét)rl] ggrlgly g:grrﬁ:t egi';lg % ots
the susceptibility for tight-binding electrons with Fermi en- aATDb;an .aOE{KK.Y’interlaction as s[;]own in the inset of
glrggtgg:e t? éhe ?/?Ql(lj egg;s:rivt\)’g‘j e(?;;/lvaltir;t tola:[\tx]zzr?f freEig. 3, and one notices in particular that the RKKY coupling
~[2kgrsin(Zer)—cos(Zen)J/(ker)®  (in - two-dimensions
Random systems have also been simulated, by considering
site energies distributed at random within W,W]. For dis- TDoS
tance larger than the mean free path, the decrease of the
averaged susceptibility was found to be proportional to
(1/r2)exp(—rllpm), and the numerical value of the mean free
path was in good agreement with the expected one. Calcula-
tions were performed for several values\Wfwith average
over 150 configurations.

(a)

V. APPLICATIONS

A. Two-dimensional tight-binding simulation of a Hume
Rothery band alloy

Hereafter the role of local environment on RKKY inter-
action in a two-dimensiongPD) system is studied. Starting 0
from a perfect crystal, we consider how perturbation of local
order in the vicinity of the magnetic site may affect RKKY
coupling on largefmesoscopitc scales. The local disorder FIG. 3. Total density of states for the Hamiltonian in the perfect
will be designed by a proper modification of local tight- Hume-Rothery alloy and corresponding RKKY couplifigse?.

-0.1 0.3 0.7 1.1
Energy
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Energy FIG. 5. Comparison of the electronic susceptibility a units,a

lattice parameterfor the homogeneoudold line) and the inhomo-

FIG. 4. Local density of states around the modified local eNVi-geneous cases.

ronment of one magnetic site.

_ _ ~erant electrons may be questionable due to intrinsic incom-
shows a structure that manifests the two underlying periodgensurability. We show in this section, that the use of recur-

of the lattice. sion method gives here some unique informations about
RKKY in quasiperiodic structures, and further provide a
B. Effect of local environment on RKKY framework for investigating mesoscopic interaction in aperi-

odic systems. Hereafter we consider a 2D-Fibonacci quasi-
Let us now elaborate on the nature of the local perturbagagice for which we will analyze the susceptibility in relation

tion around a given magnetic sites. The idea is to particulargii, the spectral properties on larger systems, by varying the

ize the local density of states LDOS arqu_n_d one given Sit?ength of our systems25000 sites number of recursion
and to measure the effect on the susceptibility on mesoscopgqeps(up to 500, and the intensity of quasiperiodic poten-

scale. _ _ tials. The corresponding spectral structure may be found
__ Concretely, we modify the fourth first shells around the g se\yherd? The Hamiltonian is defined for a Fibonacci-2D
initial site |¢0_> in the following way y'=0.65y,7'=1.26r g asilattice and written in tight-binding basis as
and the site energies respectivelgyg=gapg+\i,i
={1,2,34 with A\;=0.15\,=0.12)5=0.09, A,=0.06.
The initial site energy is = (| H| o). Thereby, the cor- H:Z gifri)(ril+ 7’% [ri)ril
responding LDOS[p;(E)=—2/=Im{r;|G(2)|r;)] is in-
creased if Fermi energy isEf=0.176 eV [p;(E) for which site energies are given by,=¢;+¢j,, with
= peuk(E)] as shown on Fig. 4. The number of sites consid-gix »€iy= * Vqp (potential strengthaccording to a Fibonacci
ered for the computation of the susceptibility in the numeri-s€quence. Hopping integrals are set constant for simplicity
cal was about 250000, and the number of recursion stepdij) denotes first neighborsin Fig. 6, the TDOS for a 2D
around~ 200. guasiperiodic Fibonacci quasilattice, as well as typical signa-
The calculated electronic susceptibility for the homoge-ture of incommensurate long range order are reported. The
neous and inhomogeneous cases are plotted on Fig. 5 frofrength of the quasiperiodic potentiaMg,=0.7(y) and the
the results, one clearly sees that such enhancement of LDC®Isceptibility is given as a funtion of the distance between
leads to an increase of the susceptibility. This effect may bénteracting magnetic sitéin a units, with a the lattice spac-
at the Origin of pecu”ar magnetic properﬁ%jﬂ quasicrys_ |ng) From an analysis as a function of the potential Strength,
tals where atomic order is known to be complex on mesoswe found that no Fermi wavelength can be properly defined
copic scales. Assuming that local environments of magneti@nd oscillations exhibit resurgences that are absent from the
sites are associated with strong local densities of statg@eriodic potential. This is a surprising pattern absent for pe-
(when compared to the average total density of stateen  riodic potentials for which unique wave vectéat Fermi
the RKKY coupling could be anomalously strong when com-leve) and continuous decreasing of the coupling is found.
pared with other metallic disordered phase®ne notes that Such patterns may, however, remember the local fluctuations
such strong fluctuations of LDOS at a given energy from sitfound in random systems for a given configuration of disor-
to site are also thought to be important at the proximity of ader. This may thus appear as a common feature between the
metal-insulator transition. RKKY in quasiperiodic and disordered systems on mesos-
copic scales.
Incommensurability effects on the period can be revealed
by analysis of the fluctuations of |jg(r;—r;)| as a function of
General properties of electronic susceptibility in quasip-In(r;—r;). Indeed, if theV,,=0.0 case manifests the oscillat-
eriodic systems are difficult to describe when compared withing behavior cos(&|r|) with unique wave vector, quasiperi-
periodic ones. Indeed, the simple law obtained for free itin-odic potential breaks this pattern even for small values such

C. Anomalous diffusion and RKKY in quasiperiodic systems
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FIG. 6. RKKY coupling for a quasiperiodic syster {,=0.7)

and different Fermi energies. The inset shows the corresponding FI!G- 8. (@) Electronic susceptibility as a function of i for
total density of states. small and strong quasiperiodic potentials,(=0.1,1.1) compared

to periodic potential.(b) shows the local susceptibility fo¥/q,
. . =0.1, the same Fermi energy and for several different environment
asVgp=0.05(y). In Fig. 7, we compare three results obtain petween magnetic sites in the quasiperiodic potential.
at Ep=—-1.9y andV4,=0.0, 0.05, 0.1. The appearance of

site-dependent incommensurate phase shift is thus illustratgfinsic correlations. etc. According to an argument by

and unveils the action of quasiperiodic potential on elec-pykermand® the power-law decreasing of the averaged sec-

tronic coherence ([n| has been rescaled for more clajity g moment of electronic susceptibility should not be af-
We now consider the long range properties of RKKY N fected by anomalous diffusion and remains of typé|(r;
these systems. To that end, let us return to the relat'orlrj|)~|ri—rj|*D for D-dimensional disordered systems.

between electronic localization and diffusion modes at the o, the quasiperiodic strengthes considered in our calcu-
prigin of interchange coupling. In the c]z?\ssical anﬂ)V\{n- lation [from Vg,=0.05(y) up to Vgo=1.1(y)], the long-
ian motion), assuming(r,t) the probability density of find- 556 hower law is not affected qualitatively and one recov-
ing a random walkefor a classical electroratr after timet,  sthe 1f| ~° with D=2. This is exemplified on Fig. 8 for
the anomalous diffusion regim@und in a disordered frac- ; ; Ay — _ i
tal) is expressed by (r2(t))ge= fr2p(r,1)dOr ~ 2714 two different intensitiesVq,=0.1 andVg,=1.1 compared

; dis A ... . with the long ranged oscillations for no quasiperiodic poten-
Anomalous regime can also be fo%:d in quantum diffusiony;a| \hich mimic the periodic potential. Note that the slight
especially in quasiperiodic systemand at the metal-  yonarre from power-law in the cavg,=1.1(and for large

. e 5 .
insulator (tjran.srl]nor(clxugfanturr Hall sy_sterr)f§ _Th|s has beeg istance is due to finite-size effects and can be smoothed out
connected with multifractal properties of eigenstates. Indeeg), i, -reasing recursion steps. One remarks that results on the

if we congider the'spreading of wave packet cpnstructe ctagonal quasiperiodic tiling have been obtained
ferm multlfrzi\ctal eigenstates, one finds numerically thatpreviously,lg and also seem to indicate a significant site de-
(r?)=(W()[r?®(t))=[r?¥(r,)[?d°r~t>" with v an ex-  pendence of the electronic susceptibility apparently without
ponent characterizing the strength of the potential, theiteration of the general power-law as a function of distance
between magnetic sites.
20 ' ' ' 1 These results are in agreement with the argument we gave
sl ] in Sec. Il for the general dependence of(ri,r;)
=[2p(EF)]/LDReeEn'm<I>(n)(I)*(m)/(n+ m) which gives a
correct interpretation of the universal shapelof® for a
metallic system. But our assumption made on the level dis-
tribution does not include any subtle correlations in the spec-
trum, as those found at the metal-insulator transition and
associated to a specific level spacing distributidi.quasi-
periodic potentials induces multifractal states, their general
level spacing distribution has been, however, found to be
described by the Gaussian orthogonal enseniGI®E) of
the random matrix theorsf. This involves a metallic state of
5 the conduction system and our calculations are consequently
Log(lr;-1,1) in agreement with other recent results obtained on quasiperi-
odic systems. Manifestations of multifractality of eigenstates
FIG. 7. Electronic susceptibility as a function ofhfor differ- may be rather revealed by strong fluctuations of local densi-
ent small quasiperiodic potentialy/ {,=0,0.05,0.1). ties of states.

Log(1%))
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To finish with, one notes that unexpected feature has beeny extension in all situations where usual diagonalization
also revealed from careful analysis of site dependent suscepiethods may be limited. Some conclusive check of the
tibility (to be published elsewhereFor a potentialVy,  method have been given in comparison to expected behavior
=0.1 and Fermi energies Ep=—0.65(y) [Erf and specific models have been studied in order to exemplify
=—0.575(y)] situation where the electronic coupling is the interest of our method. In particular we have shown that
purely ferromagneti¢antiferromagneticwere foundt! Such ~ even strong regimes of localization induced by a quasiperi-
kind of pattern unveil unprecedented signature of compli-odic potential do not lead to a qualitative departure from
cated localization effects unique to quasiperiodic structureggeneral power-law dependence, and LDOS fluctuations
Related phenomena such as Kondo effect in quasiperiodicould affect the intensity of the interaction.
systems has been discuss in regards to the same localization
effects?!
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