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Formalism for the computation of the RKKY interaction in aperiodic systems
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A numerical method to investigate the Rudermann-Kittel-Kasuya-Yosida~RKKY ! interaction between lo-
calized spins in aperiodic materials is presented. Based on an expansion of the spectral measure on orthogonal
polynomials, this approach leads to an effective framework to analyze linear response formula for the RKKY
coupling in complex systems. Particularly useful in the tight-binding scheme it is used in this paper to
understand the role of the local environment and the quasiperiodic potential on the interaction between mag-
netic spins. Interesting features are revealed and discussed within the context of anomalous localization and
transport.@S0163-1829~99!04225-3#
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I. INTRODUCTION

The purpose of this work is to present a new formali
based on real space recursion scheme1 which enables to com
pute the so-called Rudermann-Kittel-Kasuya-Yosida inter
tion ~RKKY ! ~Refs. 2–5! an effective coupling between tw
localized magnetic moments, mediated by conduction e
trons. This long range oscillatory interaction is now w
understood in pure metals and in weakly disordered syste
or even close to the Anderson transition. RKKY interacti
has been the subjected of a great attention during the
years for instance for understanding the spin gl
transition,6 magnetic long range order in high-Tc cuprates,7

or more recently because of its anomalous behavior rel
to giant magnetoresistance effects in magnetic multilaye8

As conduction electrons carry this interaction, one c
wonder what happens for systems in which electronic pro
gation is anomalous9 or in cases of inhomogeneous disorde
~e.g., local inhomogeneities, correlated disorder, . . . ). These
issues may be addressed in relation to unusual RKKY in
action in quasicrystals, where the amplitude of the coupl
was found to be anomalously strong and with similar valu
for several manganese-based quasicrystals10 with different
densities of states. Such results were found to appare
contradict the classical theory stating that RKKY should
proportional to the total DOS at Fermi level.

In the following, after reminding some general features
RKKY coupling, the method will be detailed followed by
first part addressing the numerical convergence of the a
rithm. A second part is devoted to the study of the impac
local disorder or quasiperiodic potential on RKKY. This w
exemplify the interest of the method.

II. CALCULATION OF THE NONLOCAL
SUSCEPTIBILITY

Indirect RKKY interaction stems from the coupling b
tween localized magnetic moments and propagating e
trons. If an electron in a state of energyE,EF undergoes a
transition to a state of energyE8.EF because of the cou
PRB 600163-1829/99/60~1!/322~7!/$15.00
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pling with the localized moment inur i&, then a hole-electron
pair is created and propagate coherently during a certain
t, with uE82Eu<\/t, until the pair is destroyed by diffusion
on another magnetic impurity located inur j&. Consequently
the longer is the propagation time the smallest will be
vicinity around Fermi energy that account for RKKY. Th
generic form of the effective coupling between two magne
impurities mediated by itinerant electrons reads

IRKKY~r i ,r j ,E!5J2x~r i ,r j ,E!Sr i
•Sr j

,

with J is the interaction between the localized momentSr i

and the spin of the itinerant electrons, andx(r i ,r j ,EF) con-
tains the sum of all the electron-hole propagation paths fr
ur i& to ur j&. RKKY is then proportional to the electronic sus
ceptibility x(r i j ) of itinerant electrons. WhenJ.0(J,0),
the configurations of parallel spins~antiparallel! will mini-
mize the energy promoting ferromagnetic state~antiferro-
magnetic state!. The susceptibility as a contribution of all th
scattering paths of the hole-electron pair can be written do
as

x~r i ,r j !52
1

2p
ImE

2`

1`

dEG1~r i ,r j ,E!G2~r j ,r i ,E!

introducing the retarded (G2) and advanced Green’s func
tions (G1) which define the amplitude of propagation of th
hole-electron pair. Note that there exists an exact sum
between the susceptibility and the local density of sta
~LDOS! ( jx(r i ,r j )5r i(E)5(22/p)Im^r i uG(z)ur i& which
could be used as a numerical test.

In metallic systems with space dimensionD, the interac-
tion is given by

IRKKY~r ,EF!;A~r ! cos@2kFr 1d~r !#/r D, ~1!

which manifests a long range oscillating behavior.2 For a
free electron gas, theA,d are independent ofr , whereas for
weak disorder limit,A(r ) becomes a random but smoo
function of r andd(r ) is the phase shift associated with th
scattering of electrons on impurities.d(r ) becomes random
322 ©1999 The American Physical Society
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PRB 60 323FORMALISM FOR THE COMPUTATION OF THE RKKY . . .
for r . l pm ~mean free path!. It has been shown however th
the mean free path is not a good measure of the typ
length scale of this interaction. Indeed, the disorder aver
of even momentŝx2p(ur i2r j u)& will contribute roughly as
(1/r D)1/2p, whereas odd moments of the susceptibility w
vanish exponentially over the mean free path length as
pressed by the following averaged results:5

^x2p~ ur i2r j u!& .VpS r2~EF!

ur i2r j u2dD p

;@^x2~ ur i2r j u!&#p,

^x2p11~ ur i2r j u!&.expS 2
ur i2r j u

l pm
D

takingr(EF) the DOS at Fermi level,l m the mean free path
and Vp a constant independent of the parameter of
Hamiltonian. Consequently, the average over disorder
electronic susceptibility is not sufficient for describing t
correct range, amplitude and phase of the interaction, wh
fluctuates very much from one random configuration
another.4,5

Let us now consider a simple argument for the RKK
coupling. If one considers a cube of lengthL ~with periodic
boundary conditions! which is larger than the typical dis
tance magnetic impurities, then the expansion of the sus
tibility in a basis of eigenstates$un&%, reads

x~r i ,r j !52Re(
n,m

^r i un&^nur j&^r j um&^mur i&
En2Em

~2!

with En.EF.Em and ^nur j&;1/ALD given that states are
normalized. Given that the average spacing between en
levels for a given length is roughlyDE5@r(EF)LD#21, with
r(E) the LDOS, one can assume that the energies of
electron and hole are, respectively,En5EF1nDE and Em
5EF2mDE(n,m.0). Consequently, the susceptibility ca
be expressed as

x~r i ,r j !52~L2D!2 Re(
n,m

F~n!F* ~m!

~n1m!DE

5
2r~EF!

LD
Re(

n,m

F~n!F* ~m!

~n1m!

where the functionsF(n);LD^r un&^nur 8&;1. From this,
one can extract the generic behavior in power lawsL2D,
which only depends on the space dimension in which
system is embedded. The other part accounts for phase i
ferences and for instance in the case of almost free elect
~weak disorder limit!, F(n)5exp@ik(r i2r j )# so that
ReF (n)F* (m) ; e2 ikF (r i2r j )e1 ikF(r i2r j ) ; cos(2kF uri 2 r j u)
given that only states (m,n) very close to the Fermi surfac
will contribute to the electronic response. Possible limi
tions of this treatment due to strong correlations betw
electronic levels will be discussed later on~see Sec. V C!.

From our argument, two different effects influencing t
physical properties may be discuss. On the one hand, clo
metal-insulator transition peculiar electronic localizati
~such as the multifractality of eigenstates! may lead to cor-
rection of the law 1/ur i2r j uD. Indeed, in quasiperiodic sys
al
ge

x-

e
f

h

p-

gy

e

e
er-
ns

-
n

to

tems, quasicrystals or disordered fractal structures, the a
age displacement in time of an electron is driven
anomalous diffusion. One can wonders how electronic s
ceptibility is affected by such localization effects.

Besides, if the LDOS is inhomogeneous, i.e., if it prese
strong local fluctuations, an effect of local environment m
be deduced from Eq.~2! and lead to specific features fo
RKKY coupling. Actually, since the LDOSur & can be ex-
panded in the eigenstates basis ofH as (nd(E
2«n)u^r un&u2, a substantial increasing of the LDOS arou
the magnetic sites, enhancing the corresponding amplitu
^r un&, should also qualitatively lead to an increase of t
nonlocal susceptibility. This has been discussed in rela
with peculiar properties of AlPdMn quasicrystalline phas
where the RKKY interaction was found to be anomalou
large and identical for several phases with differe
TDOS.10–12

III. REAL-SPACE APPROACH OF RKKY INTERACTION

To perform real space calculations of the non-local s
ceptibility, considering the Green operatorG(z)5(z
2H)215*2`

1`@d(E2H)/z2E#dE, one starts from the gen
eral form ofx(r i ,r j )

2ReEE.EF

E8,EF

dEdE8
^r i ud~E2H!ur j&^r j ud~E82H!ur i&

E2E8
.

The aim of the method is to determine the coefficie
^r i ud(E2H)ur j& without exact diagonalization, usually lim
ited to simple models and small finite size systems. The k
point of the method is to use a basis of orthogonal poly
mials$Pn(E)%nPN associated to a normalized functionr(E),
referred as a model density of states. If the spectral subs
r(E) contains the one of the real Hamiltonian, it can
shown that13,11

d~E2H!5r~E!(
n
Pn~E!Pn~H!

and the$Pn(E)%nPN satisfy to the orthogonality condition

E
2`

1`

r~E!Pn~E!Pm~E!dE5dnm .

These relations enable to write^r i ud(E2H)ur j&
5r(E)(nPNPn(E)a i j

n with a i j
n 5^r i uPn(H)ur j&. From these

expressions, the susceptibility can be written down

x~r i ,r j !5Re(
nm
Imna i j

n a j i
m ,

Imn5EE.EF

E8,EF

r~E!r~E8!
Pm~E!Pn~E8!

E2E8
dEdE8.

Accordingly, the calculation ofx(r i ,r j ) is divided into
two independent parts. Depending on the choice of poly
mials, theImn will display particular analytical form. The
other part of the susceptibility will involve a recursive eval
ation of coefficientsa i j

n by means of the three term relation
defining the orthogonal polynomials, as detailed below.
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A. Recursion evaluation ofa i j
n

One has to choose a convenient basis of orthogonal p
nomials to evaluate step by step the coefficientsa i j

n . Given
that any basis of such polynomials is uniquely define b
three-term recurrence relation, generically readingEPn(E)
5anPn(E)1bnPn11(E)1bn21Pn21(E) with b2150,n>0,
and an ,bn the associated recursion coefficients,1 the main
vectors to be evaluated recursively will follow from

uw i
n&5Pn~H!ur i&5(

j
a j i

n ur i&.

Pratically, we will consider the Chebyshev polynomials
second order that have been already used in others cont
Such polynomials are defined by

Pn~H!5
1

b
~H2a!Pn~H!1Pn21~H!

with P21(H)50 and P0(H)51 and the corresponding
weight is given by

rab~E!5
1

2pb2
A4b22~E2a!2

which isÞ0 only for EP@a22b,a12b#. The coefficients a
and b are given by the calculated limitsan→` ,bn→` for the
real density of states. From the abovementioned relati
the uw i

n& will be given by uw i
n&5 1/b (H2a)uw i

n&1uw i
n21&

and uw i
21&50,uw i

0&5ur i&. In the tight-binding schemeH
5(pqgpqur p&^r qu, one shows that thea i j

n coefficients have to
be evaluated recursively through (ap j

2150,ap j
0 5dp j ,;p)

a i j
n115

1

b S (
p

a ip
n gp j2aa i j

n D 2a i j
n21 .

B. Calculation of Imn for the Chebyshev polynomials

Let us now proceed to the calculation ofImn for the
Chebyshev polynomials of second order. First we rearra
the general form

Imn5EE.EF

E8,EF

r~E!r~E8!
Pm~E!Pn~E8!

E2E8
dEdE8

by noticing that the factor 1/(E2E8) can be written as

R
G

dz

~z2E!~z2E8!
5

2ip

E2E8
@Q~E82EF!Q~EF2E!

2Q~E2EF!Q~EF2E8!#

with the Heaviside function@Q(x)50,x,0 andQ(x)51,x
.0# and the contourG is shown in the complex plane o
Fig. 1 for h→0,RG→`. One then rewrites

Re~Imn1Inm!52
i

2p R
G
dzS E

2`

`

dE
r~E!Pn~E!

z2E D
3S E

2`

`

dE8
r~E8!Pm~E8!

z2E8
D .
y-

a

f
xts.

s,

e

By application of Jordan Lemme, the integral on the co
tour G tends to zero when the radius goes to infinity, and
only remains four integrals on the real axis, respectively,
@2 `,a2 2b#, @a2 2b,EF#, @EF ,a12b#, @a12b,1`#.
Using the relation between first and second order Chebys
polynomials defined on@21,11# and associated with
r(E)5A12E2

lim
h→06

E
21

11A12E2Pn~a12bE!

v1 ih2E
dE

5p$Qn11~v!7 ipA12v2Pn~v!%

it is easy to show that foruvu<1, with v5cosf then

Qn~v!5cosnf, Pn~v!5
sin~n11!f

sinf
,

and finally

lim
h→06

E
21

11A12E2Pn~a12bE!

v1 ih2E
dE5p exp@7 i ~n11!f# .

In conclusion, given that the integration outside@21,1#
leads to pure imaginary terms, the calculation ofImn reduces
to

Re~Imn1Inm!5
1

2pbE(EF2a)/2b

1

dv sin@~m1n12!f#

2
1

2pbE21

(EF2a)/2b

dvsin@~m1n12!f#

5
1

2pb S sin~m1n13!AF

m1n13

2
sin~m1n11!AF

m1n11
,

whereAF5Arcos@(EF2a)/2b#. The final form of the elec-
tronic susceptibility for a general tight-binding Hamiltonia
will be defined by

1

2pb (
nm

a i j
n a j i

mS sin~m1n13!AF

m1n13
2

sin~m1n11!AF

m1n11 D
which is the final form of the algorithm.

FIG. 1. Integral contour for the calculation of the coefficientImn

and semielliptic density of statesrab(v) used in the case of Cheby
shev polynomials.
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PRB 60 325FORMALISM FOR THE COMPUTATION OF THE RKKY . . .
IV. DISCUSSION ON THE NUMERICAL CONVERGENCE
AND TESTS

To achieve the convergence of the calculation, one m
ensure first of all, that the total length of the system is mu
larger that the distance between magnetic sites if one w
to consider an infinite medium. To close the system, we t
periodic boundary conditions. Second, the numerical ac
racy must be checked. We found that single precision w
sufficient and gave the same results as double precision

It remains to figure out how many recursion steps
needed~summation onn andm in the above formula!. This
can be done by noticing thatn-recursion steps givesn/W (W
the total bandwith! as a resolution in energy, and that th
states that will mainly contribute to RKKY, are enclosed
an interval of widthDE<\/tL around Fermi energy. Here
we definetL as the time needed for electrons to travel b
tween two magnetic impurities distant ofL. For a sufficient
resolution of our spectrum, the number of recursion step
be considered isn@WtL /\.

This result may also be recovered by looking at the pro
gation of recursion states in real space. In fact, the propa
tion of thenth recursion state turns out to be representa
of the real wave function at a timet;n\/W, uw i

n&;uC(tn

;n\/W)&, initially located at the same siteur i&. Then, one
has to check that the diffusion length ofuw i

n&, which we
define asj(n), is sufficiently larger than the distance b
tween magnetic sites. Therefore as soon asj(n)@L, the co-
efficientsa i j

k.n will not contribute significantly.
The criterion n@WtL /\ will depend on the nature o

propagation through the scattering time. For ballistic regim
~crystals!, tL;v F

21L with vF the Fermi energy, andn
@(W/\vF)L, whereas diffusive regimes will be associat
to L25DtL , with D the diffusion constant andn
@(W/\D)L2. Anomalous diffusion described byL;Atb

(A,0<b,0.5, or 0.5,b,1 depending on the model! will
lead ton@(W/\A).L1/b to be controled empirically.

To test the efficiency of the method, we have checked
the susceptibility for tight-binding electrons with Fermi e
ergy close to the band edges was equivalent to that of
electrons, i.e., well described by the lawx(r )
;@2kFrsin(2kFr)2cos(2kFr)#/(kFr)3 ~in two-dimensions!.
Random systems have also been simulated, by conside
site energies distributed at random within@2W,W#. For dis-
tance larger than the mean free path, the decrease o
averaged susceptibility was found to be proportional
(1/r 2)exp(2r/lpm), and the numerical value of the mean fr
path was in good agreement with the expected one. Calc
tions were performed for several values ofW with average
over 150 configurations.

V. APPLICATIONS

A. Two-dimensional tight-binding simulation of a Hume
Rothery band alloy

Hereafter the role of local environment on RKKY inte
action in a two-dimensional~2D! system is studied. Startin
from a perfect crystal, we consider how perturbation of lo
order in the vicinity of the magnetic site may affect RKK
coupling on larger~mesoscopic! scales. The local disorde
will be designed by a proper modification of local tigh
st
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binding parameters of the corresponding Hamiltonian.
doing so, we ensure that the LDOS around the initial st
uc0& is strengthened in regards to TDOS at the same ene

H5(
u i j &

u i j &« i j ^ i j u1g(
u i j &

u i j &(^ i j 11u1^ i j 21u

1^ i 11 j u1^ i 21 j u!1t(
u i j &

u i j &~^$ i 61 j 61%u!.

Our model~Fig. 2! features two different hopping integra
between first (g) and second (t) nearest neighbors as well a
an alternate distribution of site energies

e i j 5
eA

2
@11~21! i 1 j #1

eB

2
@12~21! i 1 j #

in the t50 case, this leads to a two-band DOS with a re
gap whose bandwithD5eB2eA(eA,eB).

The orthonormal recursion basisucn& and coefficient can
be evaluated iteratively. Nonetheless, even for simple tig
binding models, the complexity rapidly increases.11 Taking
«A50.1,«B50.3,g50.1,t50.09 has TB parameters one ge
a TDOS and a RKKY interaction as shown in the inset
Fig. 3, and one notices in particular that the RKKY coupli

FIG. 2. Schematic representation of the lattice with differe
tight-binding parameters.

FIG. 3. Total density of states for the Hamiltonian in the perfe
Hume-Rothery alloy and corresponding RKKY coupling~inset!.
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326 PRB 60STEPHAN ROCHE AND DIDIER MAYOU
shows a structure that manifests the two underlying peri
of the lattice.

B. Effect of local environment on RKKY

Let us now elaborate on the nature of the local pertur
tion around a given magnetic sites. The idea is to particu
ize the local density of states LDOS around one given
and to measure the effect on the susceptibility on mesosc
scale.

Concretely, we modify the fourth first shells around t
initial site uc0& in the following wayg850.65g,t851.26t
and the site energies respectively«A,B8 5«A,B1l i ,i
5$1,2,3,4% with l150.15,l250.12,l350.09, l450.06.
The initial site energy is«A5^c0uHuc0&. Thereby, the cor-
responding LDOS @r i(E)522/pIm^r i uG(z)ur i&# is in-
creased if Fermi energy isEF50.176 eV @r i(E)
>rBulk(E)# as shown on Fig. 4. The number of sites cons
ered for the computation of the susceptibility in the nume
cal was about 250 000, and the number of recursion s
around;200.

The calculated electronic susceptibility for the homog
neous and inhomogeneous cases are plotted on Fig. 5
the results, one clearly sees that such enhancement of L
leads to an increase of the susceptibility. This effect may
at the origin of peculiar magnetic properties10 in quasicrys-
tals where atomic order is known to be complex on mes
copic scales. Assuming that local environments of magn
sites are associated with strong local densities of st
~when compared to the average total density of states!, then
the RKKY coupling could be anomalously strong when co
pared with other metallic disordered phases.12 One notes that
such strong fluctuations of LDOS at a given energy from s
to site are also thought to be important at the proximity o
metal-insulator transition.5

C. Anomalous diffusion and RKKY in quasiperiodic systems

General properties of electronic susceptibility in quas
eriodic systems are difficult to describe when compared w
periodic ones. Indeed, the simple law obtained for free i

FIG. 4. Local density of states around the modified local en
ronment of one magnetic site.
s
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erant electrons may be questionable due to intrinsic inco
mensurability. We show in this section, that the use of rec
sion method gives here some unique informations ab
RKKY in quasiperiodic structures, and further provide
framework for investigating mesoscopic interaction in ape
odic systems. Hereafter we consider a 2D-Fibonacci qu
lattice for which we will analyze the susceptibility in relatio
with the spectral properties on larger systems, by varying
length of our systems~25 000 sites!, number of recursion
steps~up to 500!, and the intensity of quasiperiodic poten
tials. The corresponding spectral structure may be fou
elsewhere.17 The Hamiltonian is defined for a Fibonacci-2
quasilattice and written in tight-binding basis as

H5(
i

« i ur i&^r i u1g(̂
i j &

ur i&^r j u

for which site energies are given by« i5« ix1« iy , with
« ix ,« iy56Vqp ~potential strength! according to a Fibonacc
sequence. Hopping integrals are set constant for simpli
(^ i j & denotes first neighbors!. In Fig. 6, the TDOS for a 2D
quasiperiodic Fibonacci quasilattice, as well as typical sig
ture of incommensurate long range order are reported.
strength of the quasiperiodic potential isVqp50.7(g) and the
susceptibility is given as a funtion of the distance betwe
interacting magnetic site~in a units, with a the lattice spac-
ing!. From an analysis as a function of the potential streng
we found that no Fermi wavelength can be properly defin
and oscillations exhibit resurgences that are absent from
periodic potential. This is a surprising pattern absent for
riodic potentials for which unique wave vector~at Fermi
level! and continuous decreasing of the coupling is foun
Such patterns may, however, remember the local fluctuat
found in random systems for a given configuration of dis
der. This may thus appear as a common feature between
RKKY in quasiperiodic and disordered systems on mes
copic scales.

Incommensurability effects on the period can be revea
by analysis of the fluctuations of lnux(ri2r j)u as a function of
ln(ri2r j). Indeed, if theVqp50.0 case manifests the oscilla
ing behavior cos(2kFuru) with unique wave vector, quasiper
odic potential breaks this pattern even for small values s

-

FIG. 5. Comparison of the electronic susceptibility~in a units,a
lattice parameter! for the homogeneous~bold line! and the inhomo-
geneous cases.
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PRB 60 327FORMALISM FOR THE COMPUTATION OF THE RKKY . . .
asVqp50.05(g). In Fig. 7, we compare three results obta
at EF521.9g and Vqp50.0, 0.05, 0.1. The appearance
site-dependent incommensurate phase shift is thus illustr
and unveils the action of quasiperiodic potential on el
tronic coherence (lnuxu has been rescaled for more clarity!

We now consider the long range properties of RKKY
these systems. To that end, let us return to the rela
between electronic localization and diffusion modes at
origin of interchange coupling. In the classical case~Brown-
ian motion!, assumingp(r ,t) the probability density of find-
ing a random walker~or a classical electron! at r after timet,
the anomalous diffusion regime~found in a disordered frac
tal! is expressed by ^r2(t)&dis5*r2p(r ,t)dDr;t2n.14

Anomalous regime can also be found in quantum diffusi
especially in quasiperiodic systems9 and at the metal-
insulator transition~quantum Hall systems!.15 This has been
connected with multifractal properties of eigenstates. Ind
if we consider the spreading of wave packet construc
from multifractal eigenstates, one finds numerically th

^ r̂2&5^C(t)u r̂2uC(t)&5*r2uC(r ,t)u2dDr;t2n with n an ex-
ponent characterizing the strength of the potential,

FIG. 6. RKKY coupling for a quasiperiodic system (Vqp50.7)
and different Fermi energies. The inset shows the correspon
total density of states.

FIG. 7. Electronic susceptibility as a function of lnuxu for differ-
ent small quasiperiodic potentials (Vqp50,0.05,0.1).
ed
-

n
e

,

d
d
t

e

intrinsic correlations, etc. According to an argument
Akkermans16 the power-law decreasing of the averaged s
ond moment of electronic susceptibility should not be
fected by anomalous diffusion and remains of type^x(u(r i
2r j u);ur i2r j u2D for D-dimensional disordered systems.

For the quasiperiodic strengthes considered in our ca
lation @from Vqp50.05(g) up to Vqp51.1(g)], the long-
range power law is not affected qualitatively and one rec
ers the 1/ur u2D with D52. This is exemplified on Fig. 8 for
two different intensitiesVqp50.1 and Vqp51.1 compared
with the long ranged oscillations for no quasiperiodic pote
tial which mimic the periodic potential. Note that the slig
departure from power-law in the caseVqp51.1 ~and for large
distance! is due to finite-size effects and can be smoothed
by increasing recursion steps. One remarks that results on
octagonal quasiperiodic tiling have been obtain
previously,18 and also seem to indicate a significant site d
pendence of the electronic susceptibility apparently with
alteration of the general power-law as a function of distan
between magnetic sites.

These results are in agreement with the argument we g
in Sec. II for the general dependence ofx(r i ,r j )
5@2r(EF)#/LDRee(n,mF(n)F* (m)/(n1m) which gives a
correct interpretation of the universal shape ofL2D for a
metallic system. But our assumption made on the level d
tribution does not include any subtle correlations in the sp
trum, as those found at the metal-insulator transition a
associated to a specific level spacing distribution.19 If quasi-
periodic potentials induces multifractal states, their gene
level spacing distribution has been, however, found to
described by the Gaussian orthogonal ensemble~GOE! of
the random matrix theory.20 This involves a metallic state o
the conduction system and our calculations are conseque
in agreement with other recent results obtained on quasip
odic systems. Manifestations of multifractality of eigensta
may be rather revealed by strong fluctuations of local de
ties of states.5

ng FIG. 8. ~a! Electronic susceptibility as a function of lnuxu for
small and strong quasiperiodic potentials (Vqp50.1,1.1) compared
to periodic potential.~b! shows the local susceptibility forVqp

50.1, the same Fermi energy and for several different environm
between magnetic sites in the quasiperiodic potential.
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To finish with, one notes that unexpected feature has b
also revealed from careful analysis of site dependent sus
tibility ~to be published elsewhere!. For a potentialVqp
50.1 and Fermi energies EF520.65(g) @EF
520.575(g)# situation where the electronic coupling
purely ferromagnetic~antiferromagnetic! were found.11 Such
kind of pattern unveil unprecedented signature of com
cated localization effects unique to quasiperiodic structu
Related phenomena such as Kondo effect in quasiperi
systems has been discuss in regards to the same localiz
effects.21

VI. CONCLUSION

A formalism to investigate RKKY interaction in periodi
or aperiodic systems has been presented. Using real-s
schemes, this approach enables us in particular to analyz
effect of local inhomogeneities, quasiperiodic potential, a
,

ate

B

.

en
p-

i-
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ic
ion

ace
the
d

by extension in all situations where usual diagonalizat
methods may be limited. Some conclusive check of
method have been given in comparison to expected beha
and specific models have been studied in order to exemp
the interest of our method. In particular we have shown t
even strong regimes of localization induced by a quasip
odic potential do not lead to a qualitative departure fro
general power-law dependence, and LDOS fluctuati
could affect the intensity of the interaction.

ACKNOWLEDGMENTS

S.R is indebted to Professor T. Fujiwara from Departm
of Applied Physics of Tokyo University for his kind
hospitality and continuous support. This work was conduc
within the GERMA project~Groupe d’Etudes et de Reche
ches sur les Materiaux Avances!.
si-
eri

l
t

ys.

s.
1R. Haydock,Solid State Physics, edited by F. Seitz, D. Turnbull
and H. Ehrenreich~Academic, New York, 1980!, p. 216; A.
Magnus,The Recursion Method and its Applications, edited by
D.G. Petitfor and D.L. Weaire, Springer Series in Solid St
Sciences Vol. 58~Springer, Berlin, 1984!.

2M.A. Ruderman and C. Kittel, Phys. Rev.96, 99 ~1954!; T. Ka-
suya,ibid. 106, 893 ~1957!; K. Yosida, Prog. Theor. Phys.16,
45 ~1956!.

3P.G. De Gennes, J. Phys. Radium23, 630 ~1962!; G. Bergmann,
Phys. Rev. B36, 2469 ~1987!; L.N. Bulaevskii and S.V.
Panyukov, JETP Lett.43, 240 ~1986!.

4A. Jagannathan, E. Abrahams, and M.J Stephen, Phys. Rev.37,
436 ~1988!.

5I.V. Lerner, Europhys. Lett.16, 479 ~1991!.
6F. Matsubara and M. Iguchi, Phys. Rev. Lett.68, 3781~1992!; C.

Berger and J.J. Pre´jean, Phys. Rev. Lett.64, 1769~1990!.
7J.J. Rodriguez-Nun˜ez, H. Beck, J. Konior, A.M. Oles, and B

Coqblin, Phys. Lett. A197, 173 ~1995!.
8P. Bruno and C. Chappert, Phys. Rev. Lett.67, 1602~1991!; B.A.

Jones and C.B. Hanna,ibid. 71, 4253 ~1993!; P. Bruno, J.
Kudrnovsky, V. Drchal, and I. Turek,ibid. 76, 4254~1996!.

9S. Roche and D. Mayou, Phys. Rev. Lett.79, 2518~1997!.
10A. Gozlanet al., Phys. Rev. B44, 575~1991!; J.J. Pre´jeanet al..,
in Proceedings of the 5th International Conference on Qua
crystals, Avignon, 1995, edited by C. Janot and R. Moss
~World Scientific, Singapore, 1995!, p. 510.

11S. Roche, Ph.D. thesis, Universite´ Joseph Fourier, 1996.
12S. Roche and D. Mayou, inProceedings of the 5th Internationa

Conference on Quasicrystals, Avignon, 1995, edited by C. Jano
and R. Mosseri~World Scientific, Singapore, 1995!, p. 413.

13G. Szego¨, Orthogonal Polynomials, 4th ed., Colloquium Publica-
tions Vol. 23~Am. Math. Soc., Providence, R.I., 1975!.

14S. Havlin and D. Ben Avraham, Adv. Phys.36, 695 ~1987!; J.P.
Bouchaud and A. Georges, Phys. Rep.195, 131 ~1990!.

15B. Huckestein and L. Schweitzer, Physica A191, 406 ~1991!;
Takamichi Terao, Tsuneyoshi Nakayama, and H. Aoki, Ph
Rev. B54, 10 350~1996!.

16E. Akkermans~unpublished!.
17X. Fu, Y. Liu, B. Cheng, and D. Zheng, Phys. Rev. B43, 10 808

~1991!.
18A. Jagannathan, J. Phys. I4, 133 ~1994!.
19I.K. Zharekeshev and B. Kramer, Phys. Rev. Lett.79, 717~1997!.
20J.X. Zhong, U. Grimm, R.A. Romer, and M. Schreiber, Phy

Rev. Lett.80, 3996~1998!.
21V.G. Benza and E. Montaldi, J. Phys. A27, 2299~1994!.


