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Simple model of a temperature-dependent resistivity anisotropy of layered systems

Richard Hlubina
Department of Solid State Physics, Comenius University, Mlynska´ Dolina F2, 842 15 Bratislava, Slovakia

~Received 10 March 1999!

For electrons scattering on a bosonic mode we calculate within standard transport theory the in-plane and
out-of-plane resistivitiesrab andrc of a layered system. We show that, for dominant forward scattering on a
quasi-two-dimensional mode,rc /rab increases~and may even diverge! with decreasing temperature.
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I. INTRODUCTION

The transport properties of the cuprates remain the sub
of intensive study, since it is believed that their understa
ing shall provide a key to solving the whole high-Tc prob-
lem. Both the in-plane1 and out-of-plane2 transport is
strongly doping dependent and anomalous.

For optimally doped materials, the in-plane transport
characterized by a resistivityrab scaling linearly with tem-
peratureT down to the superconducting transition tempe
ture, and also the Hall effect and in-plane magnetoresista
exhibit simple power laws ofT. There is no consensus re
garding the origin of the anomalous in-plane transport. T
broad classes of theories attribute the anomalies eithe
singular forward3 or large-momentum4 scattering. There are
also attempts to describe the phenomenology of the cupr
by collective-mode-dominated transport,5 but this latter pos-
sibility shall not be discussed here.

The out-of-plane transport is equally mysterious.2 Over-
doped samples are characterized by a temperat
independent ratiorc /rab as in standard anisotropic metal
On the other hand, underdoped materials exhibit a diverg
out-of-plane resistivityrc as T decreases, even if their in
plane resistivityrab is metallic. When compared to the in
plane transport, thec-axis data are not as universal betwe
different cuprate families. This is not so surprising since
blocking layers between the CuO2 planes are very differen
for different families.

There exists an extensive literature on thec-axis
transport.2 Here we shall take the point of view that the d
vergence ofrc at low T in underdoped materials is due to th
opening of a pseudogap in the electron spectral function
suggested in Ref. 6. In order to study thec-axis transport of
the strange metal phase, it is crucial to concentrate on
optimally doped samples. Here the experimental situatio
not so clear. Experiments on Bi2212 suggest2 that for opti-
mally doped samplesrc}Tg with g'0.

Very recently, the poorc-axis conductivity has been dis
cussed within a particularly attractive model with an in-pla
anisotropy of the electron lifetime, namely within the col
spot model of Ioffe and Millis.7 In Ref. 7 it was shown that
if a plausible assumption is made about the dominant in
plane hopping path of an electron,8 the cold-spot model pre
dicts a divergentrc /rab as T˜0. It is the purpose of this
paper to show~within the framework of standard transpo
theory! that the hypothesis of a strong forward scattering a
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yields a divergentrc /rab and no further assumptions need
be made.

II. STANDARD TRANSPORT THEORY

Let us start with a formulation of the standard transp
theory. In the presence of an electric fieldE, the electron
distribution functionf k is shifted from its equilibrium value
f k

0 according tof k5 f k
01Fkd(«k), where the functionFk

5eE•vktk
tr describes the local displacement of the Fermi s

face. vk is the group velocity of the electron andtk
tr is the

transport lifetime to be determined from the solution of t
Boltzmann equation.

Consider electrons scattering on a bosonic mode w
spectral function Imx(q,v). Let us discuss only tetragona
materials with lattice constantsa and a' in the x,y and z
directions, respectively. Furthermore, let us discuss o
electric fields within thex,y plane or along thez direction,
for which the current is parallel toE. In that case, the resis
tivity r can be found by minimizing the functional9,10

r

r0
5min

R d2k R d2k8Ak,k8@n•~ lk82 lk!#2

F R d2klk~n•nk!2G2 , ~1!

wherer05\a' /e2 is the inverse of the elementary condu
tivity, n andnk are unit vectors in the directions ofE andvk,
respectively,lk5 l knk and l k5vktk

tr is the electron mean free
path. The integrals are taken along the Fermi surface.
minimization is to be done with respect to the functionl k .
The dimensionless functionAk,k8 which characterizes the
scattering between the pointsk andk8 on the Fermi surface
is given by

Ak,k85
gk,k8

2 a2

Tvkvk8
E

0

`

dvvn~v!@n~v!11#Imx~k82k,v!,

~2!

wheregk,k8 is an appropriate coupling constant.
Recently, the following approximate solution of the vari

tional problem Eq.~1! has become quite popular in the li
erature on the in-plane transport properties of the cuprate
the nominator of Eq.~1!, there is an expression

@n•~ lk82 lk!#25~n• lk8!
21~n• lk!222~n• lk8!~n• lk!.
3068 ©1999 The American Physical Society
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If we neglect the last term on the right-hand side, then
~1! reduces to

r

r0
5

4p3

a'

min
R d2klk

2~n•nk!2/Lk

F R d2klk~n•nk!2G2 ,

where we have introduced a single-particle mean free p
Lk

1

Lk
5

a'

2p3 R d2k8Ak,k8 . ~3!

It is easy to see that in this approximation the variatio
problem is solved byl k5Lk and the conductivitys5r21

reads

s5
e2

4p3\ R d2kLk~n•nk!2. ~4!

Equation~4! is very natural and this is probably the cause
its wide use in the literature. However, especially in stron
anisotropic situations as in the hot-spot4 and cold-spot7 mod-
els, it should be obvious from the above discussion that s
an approximation provides at most qualitative answers.

III. QUASI-TWO-DIMENSIONAL METALS

Until now, our discussion was quite general. In this s
tion, we shall discuss quasi-two-dimensional metals. Our
assumption is that the scattering of electrons is dominate
an in-plane collective mode with a weak dispersion in thz
direction. Furthermore, we assume that the scattering ta
place within a given two-dimensional plane,

H85(
n

(
ki ,k8i

gki ,k8i
cnk8i

† cnki
~bnqi

1bn2qi

† !, ~5!

wheren is the layer index,qi5k8i2ki , andk5(ki,kz), etc.
bnqi

annihilates a bosonic excitation with in-plane mome

tum qi in the layern. After Fourier transformation, Eq.~5!
becomes

H85(
k,k8

gki ,k8i
ck8

† ck~bq1b2q
† !,

whereq5k82k. Thusgk,k8 does not depend onkz andkz8 .
Since alsovk and Imx(q,v) are weak functions of thez
components of the momenta,Ak,k8 depends onkz and kz8
only weakly.

This property ofAk,k8 enables us to simplify Eq.~1! con-
siderably. The in-plane resistivityrab can be calculated from

rab

r0
5min

2 R dk R dk8Ak,k8~ lk82 lk!2

F R dklkG2 ,

where the integrals are taken along the~one-dimensional!
Fermi line. It is easy to see that for thez-axis resistivityrc
the approximation leading to Eq.~4! is exact and therefore
.
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sc5
e2

2p2\a'
R dkLk^nkz

2 &,

where sc5rc
21 , Lk5p2/dk8Ak8,k , ^nkz

2 &5(a'/

2p)*dkznkz
2 , andnkz is thez component ofnk.

Now we want to discuss possible mechanisms for disp
ate behaviors ofrab andrc within standard transport theory
An interesting proposal has been made by Ioffe and Millis
the context of the cold-spot model.7 According to this model,
Lk is modulated within the plane in such a way that it
small in nearly all directions, except for regions at 45° w
respect to thex andy axes~cold spots!, for whichLk is large.
On the other hand, there are arguments based on the qua
chemistry of the cuprates that precisely in the cold spotsnkz
vanishes.8 This causes the suppression of the conductivity
the z direction with respect to its in-plane value.

However, only electron paths of a certain type are cons
ered in the discussion8 leading to the conclusion about th
vanishing ofnkz in the cold spots. Other electron paths~al-
though leading to weaker interplane hopping amplitudes
general! yield a finite contribution tonkz even in the cold
spots, and the picture of Ioffe and Millis may break dow
Therefore, it is worthwhile to look for independent mech
nisms which enhancerc with respect torab .

Forward scattering

Remarkably, there does indeed exist a simple and q
general mechanism for the enhancement of the resisti
anisotropy. Namely, we shall argue below that if in additi
to the above assumptions of in-plane scattering on a qu
two-dimensional collective mode the electrons are scatte
predominantly in the forward direction, the ratiorc /rab may
even diverge at low temperatures.

In fact, consider dominant forward scattering of electro
Furthermore, in order to keep the discussion as simple
possible, let us discuss only systems which are isotro
within the x-y plane. In particular,Ak8,k is assumed to de
pend only on the angleQ between the pointsk8, k on the
circular Fermi line. In this case it is reasonable to takel k
5const for the in-plane conductivity and, therefore,

rab

r0
5

2

pE0

2p

dQA~Q!~12cosQ!,

rc

r0
5S vF

w D 2 2

pE0

2p

dQA~Q!, ~6!

wherevF is the in-plane Fermi velocity and the out-of-plan
velocity is taken to bevkz5w sin(kza'). Equation~6! shows
that rc /rab is enhanced with respect to the simple ban
structure estimaterc /rab5(vF /w)2 because of the differen
efficiency of the scattering in relaxing the current in the tw
directions.

Equation~6! can be interpreted asrab}t tr
21 andrc}t21,

where t tr and t are the transport lifetime and the singl
particle lifetime, respectively. Remarkably, an analogous
sult has been found by completely different methods by K
mar and Jayannavar11 in the limit wt!a' , which is
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complementary to the region of validity of our calculatio
based on standard transport theory.

In order to proceed we have to choose a specific form
the scattering functionA(Q). Let us consider first a diffusive
mode Imx(q,v)5v/(v21vq

2) with a dispersionvq . The
frequency integral in Eq.~2! for such Imx(q,v) has been
done in Ref. 10. Using that result we can write

Aq5
p2

3 S gqa

vF
D 2 T2

vq@vq1~2p/3!T#
.

The transferred momentumq in the scattering process can b
written q52kF sin(Q/2), wherekF is the ~in-plane! Fermi
momentum. If we assume that forQ˜0 vq5VQa andgq

2

5G2Qb, we find for the resistivities atT!V

rab

r0
;S Ga

vF
D 2S T

V D (b13)/a

for 1,
b13

a
,2,

rc

r0
;S Ga

w D 2S T

V D (b11)/a

for 1,
b11

a
,2. ~7!

If the resistivity exponents are.2, then the resistivities are
not dominated by forward scattering. For exponents,1, the
integrals diverge atQ˜0. The former requirement obvi
ously depends on the large-v behavior of Imx(q,v). For
instance, for Imx(q,v)5d(v2vq)2d(v1vq) the scatter-
ing function

Aq5
1

2 S gqa

vF
D 2 vq/2T

sinh2~vq/2T!
.

One finds readily that in this case Eqs.~7! are valid forb
13.a and b11.a, respectively, and there are no upp
bounds on the resistivity exponents.

Equations~7! demonstrate explicitly that for forward sca
tering on an in-plane collective mode, the resistivity anis
ropy of a quasi-two-dimensional systemrc /rab
;(vF /w)2(V/T)(2/a) diverges asT˜0. E.g., scattering on
the deformation potential of 2D phonons (a5b51) yields
rc}T2 andrab}T4.

IV. THREE-DIMENSIONAL METALS

In this section we consider a three-dimensional meta
which the electrons scatter on a two-dimensional boso
mode.12 Furthermore, we assume dominant forward scat
ing. The resistivity is given by Eq.~1! with Ak,k8 which
depends only on the in-plane componentqi5k8i2ki .

For simplicity, let us consider a spherical Fermi surfa
Then a vectork on the Fermi surface can be parametrized
two anglesu andw and the transferred momentum in a sc
tering betweenk andk8 reads

S qi

kF
D 2

5~sinu82sinu!212 sinu sinu8@12cos~w82w!#.

~8!

There are two types of processes withqi!kF : either u8
'u or u8'p2u. Moreover,w8'w has to hold, unlessu
'0,p whenqi!kF is satisfied irrespective ofw8,w.
f

-

n
ic
r-

.
y
-

Processes withu8'u relax the current in approximatel
the same way irrespective of the direction of the curr
flow. However, processes withu8'p2u are much more
effective in relaxing a current in thec-axis direction than in
thex-y plane. Therefore, aT-dependent anisotropy ofrc /rab
is to be expected even in this case.

Let us proceed with an explicit calculation. Assuming fo
ward scattering we can writeu85u1a or u85p2u1a
and w85w1b, where a,b!1. Equation~8! simplifies in
this case to

Q2'a2 cos2 u1b2 sin2 u[Q1
21Q2

2 ,

whereQ5qi /kF . The Fermi-surface integrals can be writte
asrd2k5kF

2*dV wheredV5dwdu sinu. For forward scat-
tering fromk to k8 we can write

E dV8'sinu(
u8

E daE db5
2p

ucosuu (
u8

E
0

`

dQQ,

where (u8 means that bothu85u1a and u85p2u1a
should be considered. The single-particle mean free paL
can be found from Eq.~3!. It is evident thatL is only a
function of u. For u not too close top/2 we find

Lu5
p2

2kF
2a

ucosuu

E
0

`

dQQA~Q!

, ~9!

where we have seta'5a and we have assumed that th
integral overQ converges sufficiently rapidly at the uppe
limit. Note that the scalingLu}ucosuu reflects the simple
geometrical fact that the area of a Fermi-surface segm
whose projection in thez direction has a given area, scale
like ucosuu21. Foru˜p/2 a lower bound onLu can be found
by applying the quasi-two dimensional result

Lp/25
p2

kF

1

E
0

`

dQA~Q!

. ~10!

Note the more singular behavior at smallQ in Eq. ~10! as
compared with Eq.~9!.

The resistivity is given by Eq.~1!. If we make use ofn
•( lk82 lk)' l kn•(nk82nk), the variational problem is solved
easily. We findl u}sin2 uucosuu for the in-plane transport and
l u}ucosuu for the c-axis transport. The corresponding res
tivities are

rab

r0
512E

0

`

dQQ3A~Q!,

rc

r0
58E

0

`

dQQA~Q!. ~11!

Note that Eqs.~11! are analogs of Eqs.~6! for a layered
material. A comparison to Eq.~9! reveals that again, as in th
quasi-two-dimensional case,rab}t tr

21 andrc}t21.
Let the bosonic mode be described by a spectral func

Imx(q,v)5d(v2vq)2d(v1vq). If we assume that for
Q˜0 vq5VQa andgq

25G2Qb, we find for the resistivities
at T!V
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rab

r0
}S T

V D (b14)/a

for a,b14,

rc

r0
}S T

V D (b12)/a

for a,b12. ~12!

Thus the resistivity anisotropyrc /rab}(V/T)2/a scales in
the same way withT as for a quasi-two-dimensional system

V. CONCLUSIONS

The temperature-dependent resistivity anisotropy foun
this paper results from a scattering functionAk,k8 which has
a peak at small in-plane momentum transfers and is inde
dent ofkz ,kz8 . Our results for the resistivitiesrab ,rc remain
valid also if thec-axis dispersion of the bosonic modeVz is
finite but smaller than the thermal smearing. In the oppo
limit T!Vz , we expect a conventional isotropic lifetime.
the bosonic mode is a collective mode of the electrons o
layered system, then the assumption of smallVz is quite
natural and the region of anomalous resistivity anisotro
Vz!T!V may become large.

A consistent description of the phenomenology of t
cuprates requires a very singular scattering. If we entir
phenomenologically require thatrab}T and rc}Tg with g
I

.

in

n-

te

a

y

ly

'0 ascribing the divergence ofrc at low T to the spin-gap
effect, then Eqs.~6! require that the functionA(Q) is sub-
stantial only forQ smaller than a characteristic angleQ0
}AT and there its value isA(Q);A0 with A0}1/AT. For
such a singular scattering, our use of standard trans
theory is doubtful, since the very concept of an electronl
quasiparticle is dubious in that case. When applied to
cuprates, our calculation should be understood as a pertu
tive argument which demonstrates explicitly that singu
forward scattering might lead to a confinement of electro
in the limit T˜0, as suggested by Anderson in Ref. 3.

Thus an interesting question about the nature of the s
tering in the cuprates is, whether the dominant contribut
comes from small or large momentum transfers. In the la
case, anisotropic in-plane charge transport is expected
direct experimental tests of such anisotropy have been
posed recently.13,14 On the other hand, dominant forwar
scattering impliest tr@t. It has been argued that sincet is
expected to be comparable to the electron dephasing timtf
and since experimentallyt tr'tf , the assumptiont tr@t is
hardly consistent with measurements.6 While such an argu-
ment is definitely plausible, we believe that the quest
about the ratiot tr /t still lacks a convincing answer. A direc
measurement of theT dependence oft, e.g., from photo-
emission measurements, would be therefore of great val
1For a review, see, J. R. Cooper and J. W. Loram, J. Phys.6,
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