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Simple model of a temperature-dependent resistivity anisotropy of layered systems
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For electrons scattering on a bosonic mode we calculate within standard transport theory the in-plane and
out-of-plane resistivitiep,, and p, of a layered system. We show that, for dominant forward scattering on a
quasi-two-dimensional modep./p,, increases(and may even divergewith decreasing temperature.
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[. INTRODUCTION yields a divergenp./p,p, and no further assumptions need to
be made.
The transport properties of the cuprates remain the subject
of intensive study, since it is believed that their understand- Il. STANDARD TRANSPORT THEORY
ing shall provide a key to solving the whole hidh-prob- ) i
lem. Both the in-planje and out—of-plan% transport is Let us start with a formulation of .the.standard transport
strongly doping dependent and anomalous. theory. In the presence of an electric fieid the electron

For optimally doped materials, the in-plane transport isdistribution functionf, is shifted from its equilibrium value
. s e . . . 0 R _¢0 :

characterized by a resistivity,, scaling linearly with tem-  fx according tof,=f, +®,5(¢,), where the functiond,
peratureT down to the superconducting transition tempera-=€E- vy 7y describes the local displacement of the Fermi sur-
ture, and also the Hall effect and in-plane magnetoresistandace. vy is the group velocity of the electron and{ is the
exhibit simple power laws of. There is no consensus re- transport lifetime to be determined from the solution of the
garding the origin of the anomalous in-plane transport. TwdBoltzmann equation.
broad classes of theories attribute the anomalies either to Consider electrons scattering on a bosonic mode with
singular forward or large-momentufhscattering. There are spectral function Iny(q,®). Let us discuss only tetragonal
also attempts to describe the phenomenology of the cupratesaterials with lattice constants anda, in the x,y and z
by collective-mode-dominated transpdtbut this latter pos-  directions, respectively. Furthermore, let us discuss only
sibility shall not be discussed here. electric fields within thex,y plane or along the direction,

The out-of-plane transport is equally mysteriu®ver-  for which the current is parallel t&. In that case, the resis-
doped samples are characterized by a temperaturgivity p can be found by minimizing the functiorfaf
independent rati@./p,, as in standard anisotropic metals.

On the other hand, underdoped materials exhibit a divergent 42K fﬁ 42K’ A o[- (I — 1) 2
out-of-plane resistivityp. as T decreases, even if their in- . kLUK Tk

plane resistivityp,, is metallic. When compared to the in- b min 2 @
plane transport, the-axis data are not as universal between [ % d?kly(n-n)?

different cuprate families. This is not so surprising since the
blocking layers between the Cy@lanes are very different wherep,=#a, /€? is the inverse of the elementary conduc-
for different families. tivity, n andn, are unit vectors in the directions Bfandv,,
There exists an extensive literature on tleaxis  respectively),=I,n, andl, =v, 7} is the electron mean free
transporf Here we shall take the point of view that the di- path. The integrals are taken along the Fermi surface. The
vergence op, at low T in underdoped materials is due to the minimization is to be done with respect to the functign
opening of a pseudogap in the electron spectral function, afhe dimensionless functiod, . which characterizes the

suggested in Ref. 6. In order to study thvaxis transport of  scattering between the poiriksandk’ on the Fermi surface
the strange metal phase, it is crucial to concentrate on thig given by
optimally doped samples. Here the experimental situation is

not so clear. Experiments on Bi2212 sugdehkat for opti- gik,az o
mally doped sampleg,«T? with y~0. Agp=— J down(w)[n(w)+1]Imy(k’' -k, o),
Very recently, the pooc-axis conductivity has been dis- TvgvirJo
cussed within a particularly attractive model with an in-plane 2)
anisotropy of the electron lifetime, namely within the cold- whereg, ., is an appropriate coupling constant.
spot model of loffe and Millig. In Ref. 7 it was shown that, Recehﬂy’ the f0||owing approximate solution of the varia-

if a plausib[e assumption is made about the dominant intertional problem Eq(1) has become quite popular in the lit-
plane hopping path of an electrBithe cold-spot model pre-  erature on the in-plane transport properties of the cuprates. In

dicts a divergenp./pan as T—0. It is the purpose of this  the nominator of Eq(1), there is an expression
paper to show(within the framework of standard transport

theory) that the hypothesis of a strong forward scattering also ~ [n- (I, —1,)1?=(n- 1) 2+ (n-1)2=2(n-L)(n-1y).
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If we neglect the last term on the right-hand side, then Eq. e? 5
(1) reduces to Te= T atha, fﬁ dkLi(Nnic,),
21,12 2
47 d*kli(n-n /Ly where  o.=p;*', Li=m2dK A i, (n2)y=(a,/
min ,
pPo A ° 2m) [dk,nZ,, andny, is thez component of.

% dzklk(n‘ nk)z

Now we want to discuss possible mechanisms for dispar-
te behaviors of,;, andp. within standard transport theory.

where we have introduced a single-particle mean free pat n interesting proposal has been made by loffe and Millis in

Lk the context of the cold-spot modeRccording to this model,
1  a L, is modulated within the plane in such a way that it is
L—k= ﬁ fﬁ dzk’Akyk,. €©)] small in nearly all directions, except for regions at 45° with

respect to thet andy axes(cold spot$, for whichL, is large.

It is easy to see that in this approximation the variationalOn the other hand, there are arguments based on the quantum

problem is solved byt,=L, and the conductivityy=p~  chemistry of the cuprates that precisely in the cold spgjs
reads vanishes. This causes the suppression of the conductivity in

the z direction with respect to its in-plane value.
e? ) ) However, only electron paths of a certain type are consid-
o= 137 % d7kLy(n-ny)*. (4 ered in the discussiérieading to the conclusion about the
vanishing ofn,, in the cold spots. Other electron patfad-
Equation(4) is very natural and this is probably the cause ofthough leading to weaker interplane hopping amplitudes, in
its wide use in the literature. However, especially in stronglygeneral yield a finite contribution ton,, even in the cold
anisotropic situations as in the hot-shand cold-spdtmod-  spots, and the picture of loffe and Millis may break down.
els, it should be obvious from the above discussion that sucfiherefore, it is worthwhile to look for independent mecha-

an approximation provides at most qualitative answers.  nisms which enhancg, with respect topp,.

IIl. QUASI-TWO-DIMENSIONAL METALS Forward scattering

Until now, our discussion was quite general. In this sec- Remarkably, there does indeed exist a simple and quite
tion, we shall discuss quasi-two-dimensional metals. Our keyeneral mechanism for the enhancement of the resistivity
assumption is that the scattering of electrons is dominated bynisotropy. Namely, we shall argue below that if in addition
an in-plane collective mode with a weak dispersion inzhe to the above assumptions of in-plane scattering on a quasi-
direction. Furthermore, we assume that the scattering takago-dimensional collective mode the electrons are scattered

place within a given two-dimensional plane, predominantly in the forward direction, the ragg/p,, may
even diverge at low temperatures.
H' = el e (b +bT ) 5 In fact, con§|der dominant forward scattering of elt_actrons.
; kn%’u Gk k) Crk [ ”kll( na N qH) © Furthermore, in order to keep the discussion as simple as

possible, let us discuss only systems which are isotropic
wheren is the layer indexg=k’;— k|, andk=(k},k;), etc.  within the x-y plane. In particularA  is assumed to de-
bnq” annihilates a bosonic excitation with in-plane momen-pend only on the angl® between the point&’, k on the
tum g in the layern. After Fourier transformation, Eq5)  circular Fermi line. In this case it is reasonable to take

becomes =const for the in-plane conductivity and, therefore,
H/_Z T b bT Pab 2 (2w
= 24 9k CioCiBg TDg), == —f dOA(O)(1—cos0),
k,k’ Po TJo
whereq=k’—k. Thusgy s does not depend ok, andk, . 5
Since alsovy and Imy(q,w) are weak functions of the Pc _ V_F) E 2WdA(®) ©6)
components of the momenté, . depends ork, and k; po \W/ 7)o '
only weakly.

This property ofA . enables us to simplify Eq1) con- ~ wherevg is the in-plane Fermi velocity and the out-of-plane
siderably. The in-plane resistivigy,;, can be calculated from velocity is taken to bey,,=w sin(k.a, ). Equation(6) shows
that p./pa, is enhanced with respect to the simple band-
, 2 structure estimatg./p,p= (v /W)? because of the different
Pab ) 2 jg dk % dk A (o=l efficiency of the scattering in relaxing the current in the two

= ) ; directions.
fﬁ dkly Equation(6) can be interpreted gs,,> 7, - andpx 72,
where 7, and 7 are the transport lifetime and the single-
where the integrals are taken along tfume-dimensional particle lifetime, respectively. Remarkably, an analogous re-
Fermi line. It is easy to see that for tlzeaxis resistivityp, ~ sult has been found by completely different methods by Ku-
the approximation leading to E¢4) is exact and therefore mar and Jayannavdr in the limit wr<a, , which is

Po
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complementary to the region of validity of our calculation Processes with®’ ~ 6 relax the current in approximately
based on standard transport theory. the same way irrespective of the direction of the current

In order to proceed we have to choose a specific form oflow. However, processes with’~m7— 6 are much more
the scattering functioA(®). Let us consider first a diffusive effective in relaxing a current in theaxis direction than in
mode Iny(q, ) = w/(w?+ wé) with a dispersionw,. The thex-y plane. Therefore, &-dependent anisotropy gt /pap
frequency integral in Eq(2) for such Imy(q,w) has been is to be expected even in this case.

done in Ref. 10. Using that result we can write Let us proceed with an explicit calculation. Assuming for-
ward scattering we can writd'=0+a or '=7— 0+«
7% [gqa)? T? and ¢’ = ¢+ B, where a,8<1. Equation(8) simplifies in
T3\ ve | wfogt2a3)T] this case to
The transferred momentumin the scattering process can be 02~ a?cog 0+ B sir? =03+ 03,

written q=2kg sin(®/2), wherekg is the (in-plane Fermi
momentum. If we assume that fer—0 w,=00“ andg;
=G20%, we find for the resistivities af <()

where® = q; /ke . The Fermi-surface integrals can be written
as$d’k= kﬁfdQ wheredQ=d¢d6 sin 6. For forward scat-
tering fromk to k’ we can write

pan_(GaY° I>(ﬁ+3)/a for 1<—’8+3<2 - 2m N

Po Ve 1 Q a f dQ ~sm9§ daf dﬁzmg . doeo,

pe [Ga\?/ T\B+De B+1 where =, means that botld’' =6+« and §'=7— 0+«
p_ON w/\a for 1<_a <2. (7)  should be considered. The single-particle mean free path

can be found from Eq(3). It is evident thatL is only a
If the resistivity exponents are 2, then the resistivities are function of 4. For 8 not too close tor/2 we find

not dominated by forward scattering. For exponents, the 5

integrals diverge a®—0. The former requirement obvi- ™ |cosd| )

ously depends on the large-behavior of Iny(qg,w). For Lo 2kia [~ ’
instance, for Iny(q, w) = d(w — wg) — 6(w+ w,) the scatter- Jo dOOA(O)
ing function
where we have se4, =a and we have assumed that the
1/gqa 2 wgl2T integral over® converges sufficiently rapidly at the upper
quz — — limit. Note that the scalind-,<|cosé| reflects the simple
Ve | sinff(wq/2T) geometrical fact that the area of a Fermi-surface segment

whose projection in the direction has a given area, scales
like |cos#| L. For #— /2 a lower bound o , can be found
by applying the quasi-two dimensional result

One finds readily that in this case Ed3) are valid forg
+3>a and B8+ 1> a, respectively, and there are no upper
bounds on the resistivity exponents.

Equationg7) demonstrate explicitly that for forward scat- 2 1
tering on an in-plane collective mode, the resistivity anisot- L”’zzk_ - (10)
ropy of a quasi-two-dimensional systemp./pap F f dOA(®)
~ (Ve /w)?(Q/T) @ diverges asT—0. E.g., scattering on 0

the deformation potential of 2D phonona+£ 8=1) yields

poocT? and e T4, Note the more singular behavior at sm@llin Eq. (10) as

compared with Eq(9).
The resistivity is given by Eq(l). If we make use oh
IV. THREE-DIMENSIONAL METALS (I =) =In- (g —ny), the variational problem is solved

In this section we consider a three-dimensional metal irfaS"y' We find ,esin 6lcosé for the in-plane transport and

which the electrons scatter on a two-dimensional bosoni s>|cosd| for the c-axis transport. The corresponding resis-

mode!? Furthermore, we assume dominant forward scattertViti€s are

ing. The resistivity is given by Eq(l) with Ay, which

depends only on the in-plane componeptk’|—kK; . —=
For simplicity, let us consider a spherical Fermi surface. Po

Then a vectok on the Fermi surface can be parametrized by

two anglesf and ¢ and the transferred momentum in a scat- Pc :sfmd@) OA(O) (11)

tering betweerk andk’ reads Po 0 '

Pab 12f dOO3A(0),
0

q) 2 Note that Egs.11) are analogs of Eq96) for a layered
(k_) =(sin#’ —sin@)?+2 sindsind’[1—cog ¢’ — ¢)]. material. A comparison to E@9) reveals that again, as in the
F ®) quasi-two-dimensional casgy,> 7, - and po 7 2.
Let the bosonic mode be described by a spectral function
There are two types of processes wilh<kg: either 6’  Imx(q,0)=d(w—wg)~ 6w+ wy). If we assume that for
~@ or §'~m— 0. Moreover,¢'~¢ has to hold, unles§ O0—0 w=Q0O" andg§= G?0~, we find for the resistivities

~0,7 whenq <k is satisfied irrespective a’, ¢. atT<Q
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pap [ T|BHHa ~0 ascribing the divergence of, at low T to the spin-gap

Em(ﬁ) for a<p+4, effect, then Eqs(6) require that the functio®\(®) is sub-
stantial only for® smaller than a characteristic anghy,

pe [ T\B2a «/T and there its value i&(®)~A, with Ayx1/\T. For

IJ—O“(— for a<p+2. (12 such a singular scattering, our use of standard transport

theory is doubtful, since the very concept of an electronlike
Thus the resistivity anisotropy./p.,>(Q/T)?* scales in  quasiparticle is dubious in that case. When applied to the
the same way witlr as for a quasi-two-dimensional system. cuprates, our calculation should be understood as a perturba-
tive argument which demonstrates explicitly that singular
V. CONCLUSIONS forward scattering might lead to a confinemept of electrons
in the limit T—0, as suggested by Anderson in Ref. 3.

The temperature-dependent resistivity anisotropy found in - Thus an interesting question about the nature of the scat-
this paper results from a scattering functiép,, which has  tering in the cuprates is, whether the dominant contribution
a peak at small in-plane momentum transfers and is indepezomes from small or large momentum transfers. In the latter
dent ofk,,k, . Our results for the resistivities,,,p. remain  case, anisotropic in-plane charge transport is expected and
valid also if thec-axis dispersion of the bosonic mofk, is  direct experimental tests of such anisotropy have been pro-
finite but smaller than the thermal smearing. In the opposit@osed recently>!* On the other hand, dominant forward
limit T<(Q,, we expect a conventional isotropic lifetime. If scattering impliesr,> 7. It has been argued that sineeis
the bosonic mode is a collective mode of the electrons of @&xpected to be comparable to the electron dephasing#jme
layered system, then the assumption of snédjlis quite  and since experimentally,~ 7, the assumptiorn> 7 is
natural and the region of anomalous resistivity anisotropyhardly consistent with measuremefté/hile such an argu-
0,<T<() may become large. ment is definitely plausible, we believe that the question

A consistent description of the phenomenology of theabout the raticr, /7 still lacks a convincing answer. A direct
cuprates requires a very singular scattering. If we entirelynmeasurement of th& dependence of, e.g., from photo-
phenomenologically require thal,<T and p.<T” with y  emission measurements, would be therefore of great value.
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