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Critical temperature of the superfluid transition in Bose liquids
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A phenomenological criterion for the superfluid transition is proposed, which is similar to the Lindemann
criterion for the crystal melting. Then we derive a formula for the critical temperature, relgtitgthe mean
kinetic energy per particle above the transition. The suppression of the critical temperature in a sufficiently
dense liquid is described as a result of the quantum decoherence phenomenon. The theory can account for the
observed dependence ©f on density in liquid helium and results in an estimate~1.1 K for molecular
hydrogen[S0163-18209)08529-X]

In connection with the search for new bose-condense sys- 1 1

tems, attention was again attracted recently to the possible ~ Z= > f I1 drif II Dfi(T)eXF< - %S), 2

superfluidity in molecular hydrogen t+? discussed earlier -P ' '

in Refs. 3—5. The very possibility crucially depends on the

expected value of the critical temperatdig, since normally _ f hp

molecular hydrogen crystallizes at14 K and some mea- “Jo

sures should be taken to keep it in liquid phase at lower

temperatures, which may appear harder to achievig ifs ~ whereV(r;—r;) is the interparticle interaction potential and

too low. Hence one needs first to evalu@itein supercooled B=1/T. The integration in Eq(2) is over all paths with

hydrogen. In a more general context we are faced with th&;(0)=r;, ri(78)=Pr;, whereP is some permutation df
problem of determinind’, in a given quantum liquid. Usu- particles, and the sum in E@) is over all such permuta-
ally, the first step is to use the well-known formula for the tions.

Bose-Einstein condensation temperature in the ideal gas, At high temperatures only the identity permutation is im-
portant, since particles cannot move far away from their ini-
tial positions in “time” 2B. As B increases, a given path

Tx:3-315n2/31 (1) r(7) can spread on a larger distance, until suddenly it ap-
pears possible to end the path at the position of a neighboring
wheren is the density andn is the particle mass«g=1).  particle. Then, as discussed in detail in the recent revfew,

Though this formula results, e.g., in a rather reasonable estihe rings of exchanges of arbitrary length are formed, which

mate of T, in liquid helium (~3 K instead of the correct can be shown to lead to the superfluid behavior. Let us now

value 2.17 K at the saturated vapor pressitrestill seems  consider a system dafistinguishableparticles, take arbitrary
unsatisfactory in case of dense liquids because it cannot aparticle and evaluate its mean-square displacement from ini-
count for the observable dependenceTgfon density. Ac- tial position((4r)?) in imaginary time. To estimate the criti-
cording to Eq.(1) the critical temperature increasesr#,  cal temperature, when exchanges can no longer be neglected,
while, on the contraryT, in liquid *He slightly decreases We propose a criterion

when the system is compressed. Certainly, one can argue that L

it is not the bare mass that enters in Kty but rather an . B B

effective one, depending on densitput there seems to be <(5r)2>=ﬁfo ([r(n)=r(0)]")dr=éa’, )

no simple and general expression for this effective mass. A

calculation of T, based on the Landau quasiparticle where ¢ is some numerical factor, to be determined later.

spectrum can be applied only when this spectrum is alreadyThis condition merely states that the mean displacement of a

known. Qualitatively the observed behavior ® can be given particle in imaginary time is comparable to the inter-

explained also in the lattice modddut in general it is not so particle spacing. The conditiof8) is similar in spirit to the
obvious how to relate the properties of a liquid to those ofwell known Lindemann criterion in case of crystal melting
bosons on a lattice. For this reason some other estimatg of and is inspired by the visual representation of the paths, aris-
is required, simple enough to serve as a first approximatioring from numerical simulations’

but which can account for nonmonotonic dependence of the In the ideal gas the left hand side of E§) is essentially

critical temperature of a bose system on its density. In thishe square of the de Broglie thermal wavelengtﬁ

article we propose such a general formula, which rel@ites =#2/mT, but interactions will tend to reducg 8r)?) (this

to the mean kinetic energy per particle in the normal phase—was observed, e.g., in Ref. 14There are two main mecha-

the quantity which behavior is now well understdbd? nisms of such a reduction. The first one is related to deco-

The most general approach to superfluidity is, perhaps, therence due to interaction with environment. Neighboring
start with the Feynman path-integral expression for the parparticles, in a sense, “measure” the position of the particle
tition functionZ for a system of interacting bose particlés: we are looking at, thus reducing its quantum uncertainty in

22
mr;
Tl'f'z V(rj—rj)

i<j

dr,
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coordinate space. Such a decoherence phenomenon was dis-Now we have only one parametey, which describes
cussed a lot for more than two decades with respect to thimteractions in the system. The ideal-gas limit is recovered at
transition from the quantum behavior to the classical oney—0, when((8r)?)—#42p/2m. Then the criterior{3) results
(see, e.g., Ref. 35The second mechanism is more typicalin T,=(1/2¢)%2n?3m. Since this is the ideal-gas formula
for crystals or glasses, where particles are almost localizetbr the critical temperaturél) we conclude that 1£2=3.31,

by potential barriers. ie.,

The problem of estimating af(6r)?) in a system of in-
teracting particles is still a very complicated one, even if £¢=0.15. (8)
exchanges are neglected. It can be significantly simplifiedThough the criterior{3) is useful only if¢ is some universal
however, by treating the rest of the system as some simpleonstant we cannot exclude some weak dependenéeonf
fluctuating environment. The simplest choice is the Caldeiradensity. We expect thaf may be slightly smaller than Eq.
Leggett modet® which describes interaction of a particle (8) in a system with short-range order since it is more likely
with a thermal bath of harmonic oscillators. In this model thefor a particle in a liquid to find a neighbor for exchange at a
particle motion in the imaginary time is governed by thesuitable distance than in the ideal gas, where density fluctua-
effective action tions are more importarf.

In the opposite case, wheyB/27>1, the mean
displacement  diverges logarithmically, i.e.{(5r)?)
~In(hyBl2m). Hence((dr)?) is much less than the de Bro-
glie thermal wavelength of a free particle. This logarithmic

hp ) behavior is related to the Ohmic spectrum at small frequen-
X o doK(r=0a)(r(r)=r(0))%, (4 cies(cf. Refs. 18 and 19 Then for the critical temperature at
vy—oo we have a very simple formula:
where the kerneK(7) is determined by 2
T, = ﬂex _§ZQ T :_n2/3 (9)
> Yo 6Ty O m
— w7
K(n) (m/ﬁ,@)n;m Ene where a=exp(C).
We see now, that the temperature of the superfluid tran-
1 (=dw l(0) 2o, siti(_)n cruciz_illy d_epends on thg ratioy/ Tqy. At ﬁy<T0 the_
| 5 (5)  estimateg(l) is valid and the critical temperature is essentially
Mo ™ @ o'+o; To~n?3 while at#y>T, the critical temperature of the

transition is exponentially small due to the decoherence phe-
nomenon. Qualitatively this can be understood as follows: in
the process of exchange particles move through the viscous
media and lose the coherence needed for superfluidity to es-
Sablish. Sincey should increase with increasing density, the
formula obtained do describe the suppressioit,ofn suffi-
ciently dense systems.
The approximation of a constant friction would be correct
if we dealt with a heavy Brownian particle, which moves
more slowly than particles in a liquid. In real liquids the
Ohmic spectruml (w)~w is physical only at frequencies
lower than the collision rate and must have a cutoff at some
At small frequencies it seems natural to expect the Ohmidrequencyw,., which now should be taken into account. One
behavior of the kernek (), corresponding to the linear fric- can take, e.g., the Drude model for the dampihg:
tion, when damping is proportional to the velocity of the
particle. This is modeled by(w)=ymw, where y is the {n=yodlonl/(oct o). (10
effective damping parameter adf= y|w,|. The Caldeira- Apart from the dispersion of the friction coefficiefhemory
Leggett model with such a dissipation kernel is a quantureffects this implies that the random force acting on a particle
analog of the standard Langevin equation with the frictionis correlated for times less thanal/.
mvy and with the white-noise random force. Thus we treat the Quialitatively, however, the picture outlined above re-
particle motion as that of a Brownian particle to model themains unchanged. If we, e.g., put=y then again the for-
decoherence effect. We expect this approach to be qualitgnula (9) is recovered but now witlx=expC+ \/577/9).

wherew,,=2mn/% B andl (w) is the spectral density of bath
oscillators(see, e.g., Ref. 37In our case one can view Eq.
(4) as a trial action and try to evalugi 7) variationally, but

it is easier to directly relate the parameters of the effectiv
action to some observables of the systéme below. For
guadratic actior(4) in three dimensions the mean displace-
ment is

oo

1

n=1 wﬁ-i— {n.

((or)%)= =2 (6)
ma

tively adequate whei(5r?)) is less than the square of the
interparticle spacing. Then the sum in E) is carried out

)

whereC=0.577 . .. isEuler's constant ang/(x) is the psi
function (the logarithmic derivative of the gamma functjon

hyB
1+ —5—

6 %
(%)= | C+v @

At low temperaturesy can be related to the mean kinetic
energy per particle. The kinetic energy in the Caldeira-
Leggett model may be written as

o &

2
n

The sum is easily evaluated for a mod&D) and, e.g., at
we— (purely Ohmic limi) we obtain

S
=T+

K(T) (11

n=1 w
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ﬁwcﬁ hyB 3 T T T |//,, T T
In - l//( 1+ ﬁ) } . (12) i //

3 3hy
K(T): §T+ ﬁ

2

This very expression was derived earifefor liquid “He
above theh point by taking the velocity autocorrelation ol .
function to be of a simple exponential form with damping

(denoted in Ref. 10 bw,), just as for the Brownian particle.
At T>7y the kinetic energy tends $T, while at low tem-

peraturesK(T) has a finite limit, denoted hereafter b§/
This is quite a general behavior, valid in the Debye model as
well.?2 Strictly speakingK is the kinetic energy just above I 1
T, , since exchanges are not taken into account, but, e.g., in
helium the difference betweeki~16 K and the real zero- 0 . 1 . 1 . 1 .
point energy is~1.5 K and will be neglected here. For the 0.1 0.2 0.3 0.4 0.5
particular model(12) we haveK = (3% y/27)In(w./y), i.€., Density (nr,®)

as was already mentioned in Ref. (€ke also Ref. 914y

up to a logarithmic factor coincides witk. Thus we con- FIG. 1. Temperature of the superfluid transition vs the reduced

; . ; _ 3 _ S
clude that in general case Bt<K (but above the transition density n*=nrg (ro=2.556 A. Solid line is the theory ag
=0.12, crosses denotes experimental data for helium, dashed line

hy~K. (13 corresponds to the ideal gas.

Temperature (K)

For differentl (w) the proportionality coefficien.t is actually than the experimental value of 2.17 K. We may recall, how-
cutoff dependent and, e.g., for the mode0) with wc=v  gyer, thate may be smaller in a dense system than in the
one hasi y= \/§K Since in the formul9) the factora also  jgea| gas, and try to fit Eq14) to experimental data treating
depends on a high-frequency behaviot @b) we can finally ¢ 55 an adjustible parameter. The result of such a fit is shown
write in Fig. 1. Here the critical temperature is shown as a function
K of the reduced density* =nr3, wherer,=2.556 A is the
T,=A Kex;{ — B—) (14) length parameter of the Lennard-Jones interatomic potential
To for helium. Experimental values of, for liquid helium,
for K>T,, whereA andB are some model dependent con- t_akezr]1 from the very accurate empirical expression forxhe
stants. For the Caldeira-Leggett model with damping kerne_\'”ev are shown by crosses. The dashed curve represents the

(10) at w.=y we have ideal-gas formuldl), while the solid one is the best fit df,
from Eqgs.(14) and(15) to experiment, which corresponds to
A= (\3/2m)exp(C+ \/37/9)=0.899, £=0.12. This value is only slightly smaller than the ideal-gas
limit £=0.15. Given the simplicity of the assumptions, the
B=(/37/6) £=0.907¢. (15) agreement of the theory with experiment seems quite satis-

factory. SinceBK/Ty~1 atn*~0.2, we cannot expect Eq.
The physical meaning of Eq14) is clear: ifK, which atT  (14) to be quantitatively valid at such a low density, but still
<K may be viewed as an effective “internal” temperature it is clear that the theory really can describe the crossover
of the systent? is much larger than the transition tempera- from the ideal-gas behavior to the observed dependence of
ture in the ideal gas, the superfluidity is suppressed. T, on the density.

Let us now compare the formuld4) with experimental Now, as far as the molecular hydrogen is concerned, we
data for liquid helium. We need then some explicit expresmay take the London’s formulél6) with d=2.7 A as esti-
sion for K(n). There are different estimates of zero-point mated in Ref. 25, which corresponds to a stronger interpar-
energy in heliun(see, e.g., Refs. 23 and)1@ll of them are ticle potential. Assuming the numerical coefficietsind B
in general consistent both with the experimental tazad  to be the same as in heliutwith £=0.12) we obtain from
with results of path integral Monte CarlodPIMC) Eq. (14) T,=1.1 K for densityn=26 nm 3. Even if we
calculations”*? The kinetic energy increases with density reduced the density to that of helium, i.a=22 nm 2 the
due to the repulsion core in interatomic potential. Here wegritical temperature would be only 2.1 K. This is much less

shall use the London’s formula optimistic than the original estimate 6—83%based on the
) ideal-gas formuld1), though consistent with later estimates
2mhd and with the PIMC analysis of finite hydrogen clustéts.

(16) In conclusion, we have obtained a general estimate for the

critical temperature of the superfluid transition in a bose lig-
where a=n"18 d=2.4 A This formula is simple and uid. Starting from the phenomenological Lindemann-like cri-
transparent being an interpolation between low-density limiterion (3) for the transition and modeling the decoherence
K~#2dn/m of the energy of a gas of hard spheres of radiuseffect, which suppresse¥, in liquid, by the Caldeira-
d, and a quantum-mechanical estimate-#%/m(a—dy)?>  Leggett model, we arrive at a simple expressibd), relat-
with dg~d in the high-density limit. ing T, to the kinetic energK (which is essentially the zero-
With this expression foK the formula(14) with coeffi-  point energy per particje The fast increase df with density
cients(15) at £=0.15 results inT,=1.35 K, which is lower due to the repulsion core in interatomic potential accounts

K: I
m(a—0.891d)%(a+0.7131)
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then for the reduction of, in dense systems, whd&>T,
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due to stronger interactipnwhere our formula gives much

~#2n?3m, as observed, e.g., in liquid helium. Using the smaller value ofT, .

London’s interpolation formula foK(n) and one fitting pa-

An important question, which remains open within the

rameter the model can even quantitatively describe experphenomenological approach, concerns the universality of the

mental behavior off, .

numerical constants in Eq14). Though the parametef

weakly nonideal gasT, may not correspond to any charac- IS to some extent fixed by the ideal-gas lin8} further work
teristic temperature. The temperature where quantum effectS Needed to clarify its possible dependence on system pa-

become important is of the order &f, and is much larger
thanT,,° while T, at high densities is smaller thafy, and

rameters.

| am very grateful to V. L. Ginzburg for attracting my

the difference increases with density. The error of using thettention to the problem, and to S. P. Malyshenko, V. S.
ideal-gas formuldl) is not so much for helium, but may be Vorob’ev, D. S. Golubev, P. I. Arseyev, and V. V. Losyakov

of importance in molecular hydrogdwhich is more dense,

for fruitful discussions.
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