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Critical temperature of the superfluid transition in Bose liquids

S. M. Apenko*
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~Received 14 April 1999!

A phenomenological criterion for the superfluid transition is proposed, which is similar to the Lindemann
criterion for the crystal melting. Then we derive a formula for the critical temperature, relatingTl to the mean
kinetic energy per particle above the transition. The suppression of the critical temperature in a sufficiently
dense liquid is described as a result of the quantum decoherence phenomenon. The theory can account for the
observed dependence ofTl on density in liquid helium and results in an estimateTl;1.1 K for molecular
hydrogen.@S0163-1829~99!08529-X#
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In connection with the search for new bose-condense
tems, attention was again attracted recently to the poss
superfluidity in molecular hydrogen H2,1,2 discussed earlie
in Refs. 3–5. The very possibility crucially depends on t
expected value of the critical temperatureTl , since normally
molecular hydrogen crystallizes at;14 K and some mea
sures should be taken to keep it in liquid phase at low
temperatures, which may appear harder to achieve ifTl is
too low. Hence one needs first to evaluateTl in supercooled
hydrogen. In a more general context we are faced with
problem of determiningTl in a given quantum liquid. Usu
ally, the first step is to use the well-known formula for th
Bose-Einstein condensation temperature in the ideal gas

Tl.3.31
\

m
n2/3, ~1!

wheren is the density andm is the particle mass (kB51).
Though this formula results, e.g., in a rather reasonable
mate ofTl in liquid helium (;3 K instead of the correc
value 2.17 K at the saturated vapor pressure! it still seems
unsatisfactory in case of dense liquids because it canno
count for the observable dependence ofTl on density. Ac-
cording to Eq.~1! the critical temperature increases asn2/3,
while, on the contrary,Tl in liquid 4He slightly decreases
when the system is compressed. Certainly, one can argue
it is not the bare mass that enters in Eq.~1! but rather an
effective one, depending on density,6 but there seems to b
no simple and general expression for this effective mass
calculation of Tl based on the Landau quasipartic
spectrum7 can be applied only when this spectrum is alrea
known. Qualitatively the observed behavior ofTl can be
explained also in the lattice model8 but in general it is not so
obvious how to relate the properties of a liquid to those
bosons on a lattice. For this reason some other estimate oTl

is required, simple enough to serve as a first approximat
but which can account for nonmonotonic dependence of
critical temperature of a bose system on its density. In
article we propose such a general formula, which relatesTl

to the mean kinetic energy per particle in the normal phas
the quantity which behavior is now well understood.9–12

The most general approach to superfluidity is, perhaps
start with the Feynman path-integral expression for the p
tition functionZ for a system ofN interacting bose particles:6
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1

\
SD , ~2!

S5E
0

\bFmṙ i
2

2
1(

i , j
V~r j2r j !Gdt,

whereV(r i2r j ) is the interparticle interaction potential an
b51/T. The integration in Eq.~2! is over all paths with
r i(0)5r i , r i(\b)5Pr i , whereP is some permutation ofN
particles, and the sum in Eq.~2! is over all such permuta
tions.

At high temperatures only the identity permutation is im
portant, since particles cannot move far away from their i
tial positions in ‘‘time’’ \b. As b increases, a given pat
r (t) can spread on a larger distance, until suddenly it
pears possible to end the path at the position of a neighbo
particle. Then, as discussed in detail in the recent review13

the rings of exchanges of arbitrary length are formed, wh
can be shown to lead to the superfluid behavior. Let us n
consider a system ofdistinguishableparticles, take arbitrary
particle and evaluate its mean-square displacement from
tial position^(dr …2& in imaginary time. To estimate the criti
cal temperature, when exchanges can no longer be negle
we propose a criterion

^~dr !2&[
1

\bE0

\b

^@r ~t!2r ~0!#2&dt5ja2, ~3!

where j is some numerical factor, to be determined lat
This condition merely states that the mean displacement
given particle in imaginary time is comparable to the inte
particle spacing. The condition~3! is similar in spirit to the
well known Lindemann criterion in case of crystal meltin
and is inspired by the visual representation of the paths, a
ing from numerical simulations.13

In the ideal gas the left hand side of Eq.~3! is essentially
the square of the de Broglie thermal wavelengthlT

2

5\2/mT, but interactions will tend to reducê(dr …2& ~this
was observed, e.g., in Ref. 14!. There are two main mecha
nisms of such a reduction. The first one is related to de
herence due to interaction with environment. Neighbor
particles, in a sense, ‘‘measure’’ the position of the parti
we are looking at, thus reducing its quantum uncertainty
3052 ©1999 The American Physical Society



s
th
n
a
ize

i
e
p

ira
le
he
he

h
.

tiv

e

m
-
e

um
ion
th
he
li
e

at

a

.
ly

t a
tua-

-
ic
en-
t

an-

lly

he-
: in
ous
es-

he

ct
s
e

s
me
ne

le

e-

ic
ra-

PRB 60 3053BRIEF REPORTS
coordinate space. Such a decoherence phenomenon wa
cussed a lot for more than two decades with respect to
transition from the quantum behavior to the classical o
~see, e.g., Ref. 15!. The second mechanism is more typic
for crystals or glasses, where particles are almost local
by potential barriers.

The problem of estimating of̂(dr …2& in a system of in-
teracting particles is still a very complicated one, even
exchanges are neglected. It can be significantly simplifi
however, by treating the rest of the system as some sim
fluctuating environment. The simplest choice is the Calde
Leggett model,16 which describes interaction of a partic
with a thermal bath of harmonic oscillators. In this model t
particle motion in the imaginary time is governed by t
effective action

S5E
0

\b

dt
mṙ2

2
2

1

4E0

\b

dt

3E
0

\b

dsK~t2s!„r ~t!2r ~s!…2, ~4!

where the kernelK(t) is determined by

K~t!5~m/\b! (
n52`

1`

zneivnt,

zn5
1

mE
0

`dv

p

I ~v!

v

2vn

v21vn
2

, ~5!

wherevn52pn/\b andI (v) is the spectral density of bat
oscillators~see, e.g., Ref. 17!. In our case one can view Eq
~4! as a trial action and try to evaluateK(t) variationally, but
it is easier to directly relate the parameters of the effec
action to some observables of the system~see below!. For
quadratic action~4! in three dimensions the mean displac
ment is

^~dr !2&5
12

mb (
n51

`
1

vn
21zn

. ~6!

At small frequencies it seems natural to expect the Oh
behavior of the kernelK(t), corresponding to the linear fric
tion, when damping is proportional to the velocity of th
particle. This is modeled byI (v)5gmv, where g is the
effective damping parameter andzn5guvnu. The Caldeira-
Leggett model with such a dissipation kernel is a quant
analog of the standard Langevin equation with the frict
mg and with the white-noise random force. Thus we treat
particle motion as that of a Brownian particle to model t
decoherence effect. We expect this approach to be qua
tively adequate when̂(dr2)& is less than the square of th
interparticle spacing. Then the sum in Eq.~6! is carried out
and

^~dr !2&5
6

p

\

mg FC1cS 11
\gb

2p D G , ~7!

whereC.0.577 . . . is Euler’s constant andc(x) is the psi
function ~the logarithmic derivative of the gamma function!.
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Now we have only one parameter,g, which describes
interactions in the system. The ideal-gas limit is recovered
g˜0, when^(dr …2&˜\2b/2m. Then the criterion~3! results
in Tl5(1/2j)\2n2/3/m. Since this is the ideal-gas formul
for the critical temperature~1! we conclude that 1/2j.3.31,
i.e.,

j.0.15. ~8!

Though the criterion~3! is useful only ifj is some universal
constant we cannot exclude some weak dependence ofj on
density. We expect thatj may be slightly smaller than Eq
~8! in a system with short-range order since it is more like
for a particle in a liquid to find a neighbor for exchange a
suitable distance than in the ideal gas, where density fluc
tions are more important.20

In the opposite case, when\gb/2p@1, the mean
displacement diverges logarithmically, i.e.,̂ (dr …2&
; ln(\gb/2p). Hence^(dr )2& is much less than the de Bro
glie thermal wavelength of a free particle. This logarithm
behavior is related to the Ohmic spectrum at small frequ
cies~cf. Refs. 18 and 19!. Then for the critical temperature a
g˜` we have a very simple formula:

Tl5a
\g

2p
expS 2j

p

6

\g

T0
D , T05

\2

m
n2/3, ~9!

wherea5exp(C).
We see now, that the temperature of the superfluid tr

sition crucially depends on the ratio\g/T0. At \g!T0 the
estimate~1! is valid and the critical temperature is essentia
T0;n2/3, while at \g@T0 the critical temperature of thel
transition is exponentially small due to the decoherence p
nomenon. Qualitatively this can be understood as follows
the process of exchange particles move through the visc
media and lose the coherence needed for superfluidity to
tablish. Sinceg should increase with increasing density, t
formula obtained do describe the suppression ofTl in suffi-
ciently dense systems.

The approximation of a constant friction would be corre
if we dealt with a heavy Brownian particle, which move
more slowly than particles in a liquid. In real liquids th
Ohmic spectrumI (v);v is physical only at frequencie
lower than the collision rate and must have a cutoff at so
frequencyvc , which now should be taken into account. O
can take, e.g., the Drude model for the damping:17

zn5gvcuvnu/~vc1uvnu!. ~10!

Apart from the dispersion of the friction coefficient~memory
effects! this implies that the random force acting on a partic
is correlated for times less than 1/vc .

Qualitatively, however, the picture outlined above r
mains unchanged. If we, e.g., putvc5g then again the for-
mula ~9! is recovered but now witha5exp(C1A3p/9).

At low temperaturesg can be related to the mean kinet
energy per particle. The kinetic energy in the Caldei
Leggett model may be written as

K~T!5
3

2
T1

3

b (
n51

`
zn

vn
21zn

. ~11!

The sum is easily evaluated for a model~10! and, e.g., at
vc˜` ~purely Ohmic limit! we obtain
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K~T!5
3

2
T1

3\g

2p F ln
\vcb

2p
2cS 11

\gb

2p D G . ~12!

This very expression was derived earlier10 for liquid 4He
above thel point by taking the velocity autocorrelatio
function to be of a simple exponential form with dampingg
~denoted in Ref. 10 byv0), just as for the Brownian particle
At T@\g the kinetic energy tends to32 T, while at low tem-
peraturesK(T) has a finite limit, denoted hereafter byK̇.
This is quite a general behavior, valid in the Debye mode
well.22 Strictly speaking,K is the kinetic energy just abov
Tl , since exchanges are not taken into account, but, e.g
helium the difference betweenK;16 K and the real zero
point energy is;1.5 K and will be neglected here. For th
particular model~12! we haveK5(3\g/2p)ln(vc /g), i.e.,
as was already mentioned in Ref. 10~see also Ref. 21!, \g
up to a logarithmic factor coincides withK. Thus we con-
clude that in general case atT!K ~but above the transition!

\g;K. ~13!

For differentI (v) the proportionality coefficient is actuall
cutoff dependent and, e.g., for the model~10! with vc5g
one has\g5A3K. Since in the formula~9! the factora also
depends on a high-frequency behavior ofI (v) we can finally
write

Tl5A KexpS 2B
K

T0
D ~14!

for K@T0, whereA and B are some model dependent co
stants. For the Caldeira-Leggett model with damping ker
~10! at vc5g we have

A5~A3/2p!exp~C1A3p/9!.0.899,

B5~A3p/6! j.0.907j. ~15!

The physical meaning of Eq.~14! is clear: if K, which atT
!K may be viewed as an effective ‘‘internal’’ temperatu
of the system,10 is much larger than the transition temper
ture in the ideal gas, the superfluidity is suppressed.

Let us now compare the formula~14! with experimental
data for liquid helium. We need then some explicit expr
sion for K(n). There are different estimates of zero-po
energy in helium~see, e.g., Refs. 23 and 10!. All of them are
in general consistent both with the experimental data11 and
with results of path integral Monte Carlo~PIMC!
calculations.9,12 The kinetic energy increases with dens
due to the repulsion core in interatomic potential. Here
shall use the London’s formula

K5
2p\2d

m~a20.891d!2~a10.713d!
, ~16!

where a5n21/3, d.2.4 Å.23 This formula is simple and
transparent being an interpolation between low-density li
K;\2dn/m of the energy of a gas of hard spheres of rad
d, and a quantum-mechanical estimateK;\2/m(a2d0)2

with d0;d in the high-density limit.
With this expression forK the formula~14! with coeffi-

cients~15! at j50.15 results inTl.1.35 K, which is lower
s

in

el

-
t

e

it
s

than the experimental value of 2.17 K. We may recall, ho
ever, thatj may be smaller in a dense system than in
ideal gas, and try to fit Eq.~14! to experimental data treatin
j as an adjustible parameter. The result of such a fit is sho
in Fig. 1. Here the critical temperature is shown as a funct
of the reduced densityn* 5nr0

3, wherer 052.556 Å is the
length parameter of the Lennard-Jones interatomic poten
for helium. Experimental values ofTl for liquid helium,
taken from the very accurate empirical expression for thel
line,24 are shown by crosses. The dashed curve represent
ideal-gas formula~1!, while the solid one is the best fit ofTl

from Eqs.~14! and~15! to experiment, which corresponds t
j.0.12. This value is only slightly smaller than the ideal-g
limit j50.15. Given the simplicity of the assumptions, th
agreement of the theory with experiment seems quite sa
factory. SinceBK/T0;1 at n* ;0.2, we cannot expect Eq
~14! to be quantitatively valid at such a low density, but st
it is clear that the theory really can describe the crosso
from the ideal-gas behavior to the observed dependenc
Tl on the density.

Now, as far as the molecular hydrogen is concerned,
may take the London’s formula~16! with d.2.7 Å as esti-
mated in Ref. 25, which corresponds to a stronger interp
ticle potential. Assuming the numerical coefficientsA andB
to be the same as in helium~with j.0.12) we obtain from
Eq. ~14! Tl.1.1 K for densityn.26 nm23. Even if we
reduced the density to that of helium, i.e.,n.22 nm23 the
critical temperature would be only;2.1 K. This is much less
optimistic than the original estimate 6–8 K,3 based on the
ideal-gas formula~1!, though consistent with later estimate5

and with the PIMC analysis of finite hydrogen clusters.26

In conclusion, we have obtained a general estimate for
critical temperature of the superfluid transition in a bose l
uid. Starting from the phenomenological Lindemann-like c
terion ~3! for the transition and modeling the decoheren
effect, which suppressesTl in liquid, by the Caldeira-
Leggett model, we arrive at a simple expression~14!, relat-
ing Tl to the kinetic energyK ~which is essentially the zero
point energy per particle!. The fast increase ofK with density
due to the repulsion core in interatomic potential accou

FIG. 1. Temperature of the superfluid transition vs the redu
density n* 5nr0

3 (r 052.556 Å!. Solid line is the theory atj
50.12, crosses denotes experimental data for helium, dashed
corresponds to the ideal gas.
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then for the reduction ofTl in dense systems, whenK@T0
;\2n2/3/m, as observed, e.g., in liquid helium. Using th
London’s interpolation formula forK(n) and one fitting pa-
rameter the model can even quantitatively describe exp
mental behavior ofTl .

Our approach suggests that, in a liquid, contrary
weakly nonideal gas,T0 may not correspond to any chara
teristic temperature. The temperature where quantum eff
become important is of the order ofK, and is much larger
thanT0,10 while Tl at high densities is smaller thanT0, and
the difference increases with density. The error of using
ideal-gas formula~1! is not so much for helium, but may b
of importance in molecular hydrogen~which is more dense
-

s.

C

e

ri-

o

ts

e

due to stronger interaction!, where our formula gives much
smaller value ofTl .

An important question, which remains open within th
phenomenological approach, concerns the universality of
numerical constants in Eq.~14!. Though the parameterj
~analogous to the Lindemann ratio in case of crystal meltin!
is to some extent fixed by the ideal-gas limit~8! further work
is needed to clarify its possible dependence on system
rameters.
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