Role of size mismatch of A-site cations on the first-order transition in manganates

R. Mahesh and M. Itoh*

Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan

(Received 14 October 1998)

The effect of A-site ionic size mismatch σ^2 on perovskite manganates exhibiting a first-order phase transition at the ferromagnetic Curie temperature T_c as well as charge ordering temperature T_{co} is investigated. For a given average ionic radius $\langle r_A \rangle$ manganates with relatively small σ^2 seem to show first-order behavior. The occurrence of first-order paramagnetic insulator to ferromagnetic metal transition enhances magnetoresistance in the vicinity of T_c . Manganates with larger σ^2 are generally insulating and the nature of electronic conduction changes gradually from activated to variable range hopping with increasing σ^2 . [S0163-1829(99)11829-0]

Perovskite manganates belong to a unique class of materials because of the large abundance of fascinating properties they contain. Among them are the wide variety of distinct phase transitions these oxides undergo as a function of temperature, pressure, magnetic and electric fields, and when subjected to radiation has drawn much attention.^{1–7} In this study, we focus on two different kinds of first-order phase transitions induced by temperature variation which are characterized by thermal hysteresis in resistivity and magnetization at (1) the ferromagnetic Curie temperature T_c associated with the paramagnetic insulator (PMI) to ferromagnetic metal (FMM) transition and (2) the charge ordering temperature T_{co} corresponding to the transition from the paramagnetic insulator or ferromagnetic metal to the antiferromagnetic charge ordered insulator (AFMCOI).

It has been shown by Hwang et al.⁸ for a series of $La_{1-x-y}Pr_xCa_yMnO_3$ with fixed $y \approx 0.3$ (fixed carrier concentration) that the ferromagnetic Curie temperature decreased and the PMI to FMM transition became increasingly first order with decreasing $\langle r_A \rangle$, the average radius of the A-site cations. Decreasing $\langle r_A \rangle$ reduces the Mn-O-Mn bond angle and hence the e_g electron transfer integral which in turn controls the T_c . The origin of the first-order transition at T_c remains a matter of speculation. Archibald *et al.*⁹ have inferred from the thermopower measurements under varying pressures on $(La_{1-x}Nd_x)_{0.7}Ca_{0.3}MnO_3$ that a double well potential for the equilibrium Mn-O bond length exists as the system passes through the localized polaronic regime to the itinerant double exchange regime. This would suggest a structural origin with discontinuous changes in unit cell volume at T_c . The thermal expansion studies by Ibarra *et al.*¹⁰ have shown the occurrence of a transition from the high volume (insulating) to low volume (metallic) state in the vicinity of T_c . $(La_{1-x}L_x)_{2/3}Ca_{1/3}MnO_3$ with L = Gd or Dy (Refs. 11 and 12) which also shows appreciable hysteresis in the temperature dependence of resistivity and magnetization displays distinct features of a magnetically driven first-order transition. The low-temperature metallic phase in these systems appears to be canted ferromagnetic (CFM) and undergoes a metamagnetic transition to the colinear phase in presence of low applied fields with unusually large magnetoresistance.

Strong first-order effects near T_{co} have been observed in $L_{1-x}D_x$ MnO₃ (*L*=rare earth or Y; *D*=divalent ion) with

certain commensurate values of x and hence a Mn^{4+}/Mn^{3+} ratio. For example, $Nd_{1-x}Sr_xMnO_3$ with x=0.5 orders ferromagnetically at 255 K and undergoes a first-order transition to an antiferromagnetic charge ordered state at 158 K.¹³ Tokura *et al.*¹⁴ have found that the thermal hysteresis associated with the first-order transition at T_{co} increases with decreasing $\langle r_A \rangle$ as Sm is progressively substituted for Nd in Nd_{0.5}Sr_{0.5}MnO₃.

It is now well established by the reports mentioned above that $\langle r_A \rangle$ has a critical role in controlling the first-order nature of the phase transitions at T_c as well as T_{co} . Rodriguez-Martinez *et al.*¹⁵ recently demonstrated that for a given $\langle r_A \rangle$ the PMI to FMM transition temperature of $L_{0.7}D_{0.3}$ MnO₃ could vary significantly depending on the size differences between the A-site cations of the perovskite structure. The size mismatch of the A-site cations leads to local lattice distortions via random displacements of oxygen ions coordinated to them. This microscopic effect has been parametrized as $\sigma^2 = \sum x_i r_i^2 - \langle r_A \rangle^2$, where x_i denotes the fractional occupancy of the A-site ions with radius r_i . In this paper, we report the dramatic effects of the A-site ionic mismatch on the phase transition and related transport properties of manganates exhibiting a first-order transition at T_c as well as $T_{\rm co}$.

Two sets of samples with Mn⁴⁺~30% and $\langle r_A \rangle$ \sim 1.19 Å (hereafter referred to as S30) and Mn⁴⁺ \sim 50% and $\langle r_A \rangle \sim 1.236 \text{ Å}$ (S50) were prepared by the ceramic method by heating the component metal oxides and carbonates at 1273, 1473, and 1673 K for 24 h each with intermediate grindings. The samples were finally sintered at 1773 K for 12 h and slowly cooled to room temperature over 10 h. The nominal compositions of the two sets of samples are given in Table I along with the orthorhombic lattice parameters. The lattice parameters of the samples were determined using high purity silicon powder (99.999%) as an internal standard. The samples within each set S30 or S50 differ only in the A-site ionic size mismatch σ^2 . The ionic radii used to determine the various compositions are La (1.216 Å) Nd (1.163 Å), Y (1.075 Å), Ca (1.18 Å), Sr (1.31 Å), and Ba (1.47 Å). The resistivity measurements were carried out on all the samples using the standard four-probe technique in the temperature range 10-300 K. Magnetoresistance measurements were carried out on S30 samples up to a maximum field of 5 T.

2994

Sample	Composition	$\langle r_A \rangle$ (Å)	Mn ⁴⁺ (%)	σ^2 (Å ²)	Lattice parameters		
					a (Å)	<i>b</i> (Å)	c (Å)
S30 A	(La, Nd) _{0.7} (Ca, Sr) _{0.3} MnO ₃			0.00196	5.443(3)	5.454(5)	7.693(5)
S30 B	$(La, Y)_{0.7}(Ca, Ba)_{0.3}MnO_3$	1.190	30	0.00652	5.442(3)	5.431(3)	7.720(9)
S50 A	La _{0.5} (Ca, Sr) _{0.5} MnO ₃			0.00245	5.416(5)	5.405(7)	7.719(9)
S50 B	Nd _{0.5} Sr _{0.5} MnO ₃			0.00540	5.427(4)	5.432(8)	7.686(5)
S50 C	La _{0.5} (Ca, Ba) _{0.5} MnO ₃	1.236	50	0.00773	5.433(1)	5.409(3)	7.708(8)
S50 D	$(La, Y)_{0.5}Sr_{0.5}MnO_3$			0.00853	5.426(5)	5.423(9)	7.709(8)
S50 E	$Nd_{0.5}(Ca, Ba)_{0.5}MnO_3$			0.01580	5.434(1)	5.416(7)	7.709(1)

TABLE I. Composition and structure details of the various manganates investigated.

In Fig. 1(a) we show the temperature dependence of resistivities of samples S30 A and B. At 0 T, both samples undergo insulator-metal (*I-M*) transitions with transition temperatures 150 K (S30 A) and 132 K (S30 B), respectively. The lower T_{I-M} and higher peak resistivity of S30 B could be attributed to the larger σ^2 (see Table I).¹⁵ The sample S30 B with smaller σ^2 exhibits marked thermal hysteresis in resistivity near $T_{I-M}(\sim T_c)$ which is a characteristic

FIG. 1. Temperature variation of (a) resistivities of samples S30 A and B at 0 and 5 T. The direction of arrows on the curves distinguish the cooling and warming curves. (b) Magnetoresistance (MR) at an applied field of 5 T for samples S30 A and B. The magnetoresistance is calculated from the data collected on warming.

of a first-order transition. The physical origin of this transition is beyond the scope of this report. Application of magnetic field of 5 T has decreased the peak resistivity appreciably in both samples giving rise to a magnetoresistance as high as ~95% [Fig. 1(b)]. The magnetic field has completely suppressed the first-order transition in S30 A. The suppression of hysteresis in resistivity under high magnetic fields in similar manganates can be found in the literature.⁸

The above observation brings out many interesting features of manganates with regard to σ^2 which are previously unnoticed. A smaller σ^2 and hence low A-site ionic size disorder favors the occurrence of a first-order transition at T_c . The increase in the width of hysteresis in resistivity and hence first-order behavior as Pr is substituted for La in La_{0.7}Ca_{0.3}MnO₃ by Hwang *et al.*⁸ thus could arise from the combined effect of decreasing $\langle r_A \rangle$ and σ^2 . The decrease in $\langle r_A \rangle$ produces the counter effect of decreasing T_c . Since the effect of $\langle r_A \rangle$ and σ^2 on T_c are opposite to each other, the maximum hysteretic effect is found in Pr-rich samples. A further decrease of $\langle r_A \rangle$ by the substitution of Y by these authors, however, did not yield first-order behavior probably due to the enhanced σ^2 . The combined effect of decrease in $\langle r_A \rangle$ and increase in σ^2 causes the disappearance of T_c in their Y-substituted samples. The present investigation also unambiguously reveals the role of the first-order transition at

FIG. 2. Temperature variation of resistivities of S50 samples (A–E) at 0 T. Only S50 A and B samples with relatively smaller σ^2 show thermal hysteresis corresponding to the first-order transition at $T_{\rm co}$.

FIG. 3. Temperature variation of resistivities of samples S50 C, D, and E and their fits to the various models for electronic conduction (see text).

 T_c on the magnetoresistance. A lower T_c and higher peak resistivity has been found indispensable for high magnetoresistance in manganates.¹⁶ Hence S30 A with a relatively higher T_c and lower peak resistivity is expected to show a lower value of magnetoresistance compared to S30 B. The equally high magnetoresistance of S30 A derives the additional contributions from those factors responsible for the first-order hysteretic behavior.

The effect of σ^2 on the first-order transition at the charge ordering temperature $T_{\rm co}$ in manganese perovskites is illustrated in Fig. 2. As σ^2 increases, the hysteresis in the temperature variation of resistivity decreases and eventually vanishes at S50 C with $\sigma^2 = 0.00773 \,\text{Å}^2$. The sample S50 C shows weak charge ordering with a resistivity anomaly near 160 K. The application of a low magnetic field <0.5 T melts the charge ordered state¹⁷ in S50 C unlike S50 B with a slightly lower $\sigma^2 = 0.0054 \,\text{Å}^2$ which requires a magnetic field as high as 12 T.¹³ S50 D and E samples with larger σ^2 did not show a first-order transition. Thus, the present study leads to the conclusion that a lower σ^2 favors first-order transitions at T_c as well as $T_{\rm co}$ in manganetes with fixed $\langle r_A \rangle$.

We have also noticed that the nature of electronic conduc-

tion in the insulating S50 C, D, and E samples are remarkably affected by A-site ionic size mismatch. In Figs. 3(a)-3(d) we plot the temperature variation of resistivities of these samples so as to fit with the various known conduction mechanisms. The S50 C and D samples show a good fit with the $\ln \rho \alpha T^{-1}$ law corresponding to the nearest-neighbor hopping of charge carriers or activation beyond mobility edge into extended states above 160 K. Below 160 K, these samples seem to follow the $\ln \rho / T \alpha T^{-1}$ law proposed by Emin and Holstein¹⁸ for adiabatic small polaron hopping. The resistivity data of S50 E with the largest σ^2 did not fit well with the above power laws. However, it shows an extremely good fit in the entire temperature range with the variable range hopping law $(\ln \rho \alpha T^{-0.5})$ with a soft gap due to the modification of the density of states by the Coulomb interaction near the Fermi level. None of the samples in this study gave a satisfactory fit with the $\ln \rho \alpha T^{-0.25}$ law for variable range hopping proposed by Mott¹⁹ for uncorrelated carriers.

The size mismatch of A-site cations in manganese perovskites gives rise to local spin- and position-dependent potential fluctuations. The value of σ^2 is a measure of this mismatch and hence the degree of spin and Coulomb potential fluctuations. We assume that the origin of the first-order transition at T_c as well as T_{co} has its contributions from both crystallographic as well as magnetic phase changes. The sample with larger σ^2 has a higher degree of local deformation and could not sustain a first-order transformation. The large variations in the local spin and Coulomb potentials

- *Author to whom correspondence should be addressed. Electronic address: m.itoh@rlem.titech.ac.jp
- ¹K. Knizek, Z. Jirak, E. Pollert, F. Zounova, and S. Vratislav, J. Solid State Chem. **100**, 292 (1992).
- ²A. P. Ramirez, P. Schiffer, S.-W. Cheong, C. H. Chen, W. Bao, T. T. M. Palstra, B. Zegarski, P. L. Gammel, and D. J. Bishop, Phys. Rev. Lett. **76**, 3188 (1996).
- ³G. Xiao, G. Q. Gong, C. L. Canedy, E. J. McNiff, Jr, and A. Gupta, J. Appl. Phys. 81, 5324 (1997).
- ⁴J. Barrat, M. R. Lees, G. Balakrishnan, and D. Mac Paul, Appl. Phys. Lett. **68**, 424 (1996).
- ⁵J. M. De Teresa, M. R. Ibarra, C. Marquina, P. A. Algarabel, and S. Oseroff, Phys. Rev. B **54**, R12 689 (1996).
- ⁶H. Yoshisawa, R. Kajimoto, H. Kawano, Y. Tomioka, and Y. Tokura, Phys. Rev. B 55, 2729 (1997).
- ⁷V. Kiryukhin, D. Casa, J. P. Hill, B. Keimer, A. Vigliante, Y. Tomioka, and Y. Tokura, Nature (London) **386**, 813 (1997).
- ⁸H. Y. Hwang, S-W. Cheong, P. G. Radaelli, M. Marezio, and B. Batlogg, Phys. Rev. Lett. **75**, 914 (1995).
- ⁹W. Archibald, J. S. Zhou, and J. B. Goodenough, Phys. Rev. B 53, 14 445 (1996).

with increasing σ^2 also affect the electron motion in the lattice significantly.

Part of this work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Culture and Sports and JSPS Research for the Future Program, Atomic-Scale Surface and Interface Dynamics. R.M. would like to thank JSPS for financial support.

- ¹⁰M. R. Ibarra, P. A. Algarabel, C. Marquina, J. Blasco, and J. Garcia, Phys. Rev. Lett. **75**, 3541 (1995).
- ¹¹Z. B. Guo, H. Huang, W. P. Ding, and Y. W. Du, Phys. Rev. B 56, 10789 (1997).
- ¹²W. Zhong, W. P. Ding, Y. M. Zhou, W. Chen, Z. B. Guo, Y. W. Du, and Q. J. Yan, Solid State Commun. **107**, 55 (1998).
- ¹³H. Kuwahara, Y. Tomioka, A. Asamitsu, Y. Morotomo, and Y. Tokura, Science **270**, 961 (1995).
- ¹⁴Y. Tokura, H. Kuwahara, Y. Moritomo, Y. Tomoka, and A. Asamitsu, Phys. Rev. Lett. **76**, 3184 (1996).
- ¹⁵L. M. Rodriguez-Martinez and J. P. Attfield, Phys. Rev. B 54, R15 622 (1996).
- ¹⁶R. Mahendiran, S. K. Tiwary, A. K. Raichaudhuri, T. V. Ramakrishnan, R. Mahesh, N. Rangavittal, and C. N. R. Rao, Phys. Rev. B **53**, 3348 (1996).
- ¹⁷R. Mahesh and M. Itoh (unpublished).
- ¹⁸D. Emin and T. Holstein, Ann. Phys. (N.Y.) **53**, 439 (1969).
- ¹⁹N. F. Mott and E. A. Davis, *Electronic Processes in Non-crystalline Materials* (Clarendon Press, Oxford, 1971).