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Kosterlitz-Thouless and magnetic transition temperatures in layered magnets
with a weak easy-plane anisotropy
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The two-dimensional(2D) Heisenberg magnet with a weak easy-plane anisotropy is considered. A
renormalization-group analysis in this model is performed for both quantum and classical cases. A crossover
from the Heisenberg to 2XY model is discussed. The magnetic transition owing to the interlayer coupling is
considered. Analytical results for the Kosterlitz-Thouless and Qixeel) temperatures are derived by taking
into account two-loop corrections. The results are compared with experimental data, e.gGwf,kand turn
out to provide a quantitative description, unlike the standard one-loop rdSM%63-182@9)08725-1

The interest in the magnetic properties of layered systemen, we consider effects of interlayer coupling, which lead to
has been recently greatly revived. It is well known that everoccurrence of the true long-range magnetic ordering, and cal-
weak magnetic anisotropy can play an important role in sucleulate Te (Ty).
systems. In the present paper we discuss the case of the We consider the easy-plane Heisenberg model
easy-plane localized-spin system. The simplest classical two-
dimensional2D) XY model was studied in detdi? and the 1 e ez
relevance of topologicalvorteX) excitations in thermody- H=-5 > 3[S S+ 9+ 7S's], 3
namics was established. In particular, the Kosterlitz- LY
Thquless tran;ition, connected with unbinding of the VortexwhereJij —J] [3>0 in the ferromagneti¢FM) case andJ
antivortex pairs, was f_ound. The_transmon_ temperature. g in the antiferromagneti¢AF) casd for the nearest-
where power-law behawqr of the ;pm-gorrelaﬂon function ISneighbor sites,j in the same plane, anf;=aJ for i,j in
changed by an exponential one, is estimated as different planes,7<1. We suppose 4 7,a<1. Note that

- the effect of the single-site anisotropy
TKT:E‘]SZv )
_ . Hp=D2 (S)? D>0 @
where J>0 is the exchange integral. In the quantoqY i
model the situation is still more complicated, since not only
transverse, but alse components of spins should be takenis the same as that of exchange anisotropy with 71
into account. =D(1- 1/25)/4|J| provided tha1D/|J| <1.

A different situation takes place in both the quantum and The partition function of the mod¢B) can be represented
classical Heisenberg 2D model with a weak easy-plane arin terms of a path integral over coherent statsse, e.g.,
isotropy, which is a more physically real casé simple  Refs. 8,9:
expression for the Kosterlitz-Thouless temperature obtained
in Ref. 4 reads Z:J Dws(m2— 1)exp— Ly Le), ®)
T Am)S @

KT™— 2704 uT 9T

In[7</(1—n)] ﬁdyn:isf dTZ A(ﬁi)(?_rl’
(p=J%J3*Y is the anisotropy paramejeand has the same 0 '
form as the result for rtfge magnetic ordering point of the 1 o
easy-axis layered magrefs well as the latter resulisee T T o o
discussion in Refs. 597the formula(2) is insufficient for a ES‘_ZS Jo dT<iEj> Jilmame tmyimyj+ il
guantitative description of the experimental detee Ref. 4
SinceT1<JS, one can expect that thermodynamic proper-where 77 is the unit-length vector, and (=) is the vector
ties of these systems are determined by usual spin wavepgptential of the unit magnetic monopole, which satisfies the
except for a narrow region nedir. The situation is remi- equationV XA(w) - 7w=1.
niscent of the easy-axis layered maghétwhere the topo- In the classical casg.e., with L4, being neglected we
logical (domain-wal) excitations are important only in the have two types of excitations: the fietd, describes the gap-
vicinity of the Curie(Neel) temperaturél (Ty) In such a less in-plane excitations, and the fietd describes the out-
situation, similar to Ref. 7, the renormalization-groliRG) ~ of-plane excitations with a gap. Expanding E§). in 7, ,,x
analysis can be performed to calculatgr with higher ac- being a(local in the AF casespin-quantization axis, to lead-
curacy. This analysis is the aim of the present paper. Furtheng order in 15 we have
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. - H+EA H H4+EP
Est=582fo dT; [(Jo— I TyTry, —k

i C2
+(Jo— 1) T+ QWz,—k—Q]’ (6) quasi-2D quasi-2D
, . to3D_ Ising XY 03D
whereQ is the wave vector of magnetic structure. The dy- Ising¥ @ - -~ Yy
namical partLqy,, which is present in the quantum case, 2D Ising oD XY

results in(i) quantum renormalizations of the Hamiltonian

parametersin the AF case only which are supposed to be FIG. 1. Schematic picture of the RG trajectories in layered mag-

already performed an@i) the summations over wave vectors nets. Left-hand side: the flow from the 2D easy-axis Heisenberg

are bounded by/T/JSin the FM case off/c in the AF case (H+EA) to the 2D Ising model. Right-hand side: the flow from the

(c is the quantum-renormalized spin-wave velocitgther ~ 2D easy-plane Heisenberg (HEP) to the 2DXY model. The in-

than by the Brillouin-zone boundargee Ref. 7. flection pointsc,,c, mark the crossover regions. The dashed lines
The interaction of spin waves, which occurs in higherare for the corresponding quasi-2D models.

orders in 18, leads to temperature renormalizations of the,

Hamiltonian parameters. Due to the smallness of the anisotS the dimensionless temperatupg=S(S+ 0.079)J| being

. . l . . .
ropy, large logarithms occur in these renormalizationsin€ Spin stiffiness” The first two equations in Eq7) are

In[T/(1—7)J| in the quantum FM case, [%/(1— 7)J] in the written to two-loop order, while the last two are in one-loop

quantum AF case, and[l/(1— 7)] in the classical case. It order, which is sufficient to obtain the final results to the
is natural to sum up these logarithms within the RG ap_two-loop order accuracy. The initial scaglg for these equa-

proach. However, there exists the difficulty owing to thatUonS S

gaplessm, excitations are present too. In the absence of the . . S
interlayer coupling, they lead to infrared divergences in some V32 classical regime(T>J|$),
quantities like the in-plane magnetization. In the presence of wo=14 T/c  quantum regime(T<|J|S),AF,
interlayer coupling, another type of logarithms occur, T/3S  quantum regime(T<JS),FM

In(T/ad), In(T?ad?), or In(1/x), depending on the case. The
situation, where two types of excitations with different char-for the details see, e.g., Ref. 7.
acteristic scales are present, is typical for systems demon- The flow of RG parameters is shown schematically in Fig.
strating a crossovéf.In our model this is the crossover from 1 (for comparison, the easy-axis cage 1 is depicted top
the Heisenberg@almost isotropit behavior to theXY behav-  From Eqgs.(7a) and(7c) we obtain
ior.

To describe correctly this crossover we include anisotropy 1 1 1 77,u2ti+t2(1— n)
in all the renormalization factor§. We also introduce the 1
scaling factors of the fieldr. Because of anisotropic charac- K
ter of the model, we have two such factorsy andZ,, so  where the functiond(u)=0(t,) comes fromO terms in
that 7TxR/7Tx=7TyR/7Ty=Zx¥ and m,r/m,=Z,. We use the Egs.(7) and corresponds to the contribution of higher-order
normalization conditio"{;(0)=1— » (which fixes the gap loops. Foru>1— 7 the effective temperaturg, is small
of z excitationg instead of the standard one, (which guarantees that the spin-wave theory works wsth
dr@(q)/d(g?) =1, T)(q) being the two-point vertex that we haveb(u)<1 and
function (inverse Green’s functigrof the field7,. Then we

t
=In +In—+d(u), (8
U2 puiti+t?(l-n)

haveZ,=1. For other Hamiltonian parameters we obtain the 1 1 mt
following system of RG equations: t - ?+In t ©
' © Koty
d(1t,) For u<+1— n we obtain
p—r ==L+t (7, )+ O(L), (7a)
du g 1 t
Mo
—=——1In +2IN—+®d(u), 10
dln ny 3 t,u t 1_77 t,u. (lu’) ( )
kA =t,[1+ (7, 0)]+O(t), (7b)

and in this regime , is u dependent only through the func-
diny tion ®(u). The scale 1/1—17n i§ just a characteris'tic scale
u iz L :Ztﬂf(m,MHO(ti), (7¢)  for the crossover from the HeisenbergXd' behavior and
Eq. (10) describes , in the XY regime. On the other hand, in
this regime only vortices contribute to the temperature renor-
dina, . o2 7 malization since such a renormalization owing to spin waves
K dn ~LH O, 7d s absent(the interaction of spin waves in theY model is
due to topological effects only Thus for the temperature
where u is the scale parametef(7, ,u)=7,u°/(7,4°  renormalization we have the system of RG equatichs,

+1-7), which in our notations can be written as
T/(27)S?) FM, d(1t )
| T12mp  AF P dp 22V (113
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dyM:

M “Yu (11b
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and has the same form as for tk& model (A is a constant
Under the condition, opposite from E¢L7), we have the
standard Heisenberg behavibr

It should be noted that the coupling constant for the vortex

system is nott (as for spin waves but y=exp(—Ey/T)
whereE, is the energy of a vortex core. Therefore, Eq4)
are applicable for small enough. Let u,<\1— 7 be the
scale where we pass to scalifiyl). Then the solution of
Egs.(11) for t>txr reads

! 4+2Cqt I'(C | M-I—C)
— = al n— ,
t 1 1 w1 2

yn

12

where

C1=(8my ty)?— (4t;—1)%/(2ty)

1-4t,
V(8myty)?= (4t - 1)%
andt;=t, ,y,=y, are determined by

tanC,= (13

11 Mo

—==—In
Vl=n

t, t
1 [pdb(u)
y1_477 2 du

t
+2In+ D (pg) (14)
1

1/2

W=

£=(Cg/po)t exp(Lh).

In the presence of interlayer coupling, the magnetic order-
ing at low enough temperatures occurs. Due to topological
effects, the transition temperature grows up frop, and
not from zero. Note that in this cagy plays the role of a
crossover temperature from 2D to 3RY behavior rather
than a critical temperature, and the only true phase transition
is connected with the magnetic orderingTaf(Ty).

In the casea<1— 7 we chooseu; such thata*?<u,
<(1—-n)Y2 In terms of RG transformatiofsee Fig. 1, at
pm= w1 We have not 2D, but a quasi-2BY effective model
with the lattice constanty/u, and the interlayer coupling
(mo/ 1)y where, as follows from Eq7d),

(19

(20

= a’ul=at/t1.

With further flow of the RG transformation we should arrive
at the 3DXY model. However, this part of the RG transfor-
mation meets with difficulties owing to a complicated geom-
etry of vortex loops(see Ref. 12, and references theyein
Instead of a direct calculation of RG trajectories, we use the
same scaling arguments as in Ref. 4. The transition tempera-
ture can be estimated from the requirement that the correla-
tion length of the model without interlayer coupling (

It should be stressed that even if the original model is &=0) coincides with the characteristic scale of the crossover

guantum one, the resultingY model is classical sincg,
<J1-p<L;! (L,=J9T for FM case and.,=c/T for
AF case is a characteristic length for quantum effeetsd at

from the 2D to 3DXY model, 1k}? (in the units of the
lattice constant of original lattige Then we have for the
critical temperaturé,=Tc/(27JS) [or Ty/(27pg)] in the

scales much larger thaln, quantum and classical systems casea<1— 7

becomes indistinguishable. Thus all the quantum effects are

already taken into account at the scates \/1— », where
the behavior of RG trajectories is a Heisenberg one.

The Kosterlitz-Thouless temperatufig; is determined
by the equation of the separatrix line for Eq%1)

87Ty1:1/t1_4, t:tKT' (15)

This line separates the low- and high-temperature phase

For small enoughu we have ®(u)—const, d®(w)/du
—0 and we have fotyr= Ty /(2mIS) (of T /(27ps) in
the AF casg

tkr=[In(ko/V1=7)+2In(2htxr)+CI71  (16)

whereC=4-6 In2—®d(u—0) is a universal constant. This

result is identical with that for the CurigNeel) temperature
of an easy-axis magnétexcept for the constar€, which
need not be the same as for the easy-axis case.

In the critical region abovéxr,

1 . -1
g(tKT_t )<1, (17)

the expression for the correlation length obtained from Eq

(12) reads

g 1 —CyICq . A (18)
=—=€ = ex ,
©1 Vi—7 \2ytd—t1t

-1

N I P A
¢ Ji—7 tir N[ (1— n)/a]

21)

The last term in the denominator determines the difference
betweert, andtyr. Since this term cannot be too small, we
go not expand Eq21) in it.

" The result(21) is qualitatively valid up toa of order of
1— 7 (in this case, the last term in the denominator leads to
renormalization ofC only). Consider now briefly the case
a>1—7. Then the corrections to the RG result for the
quasi-2D magnet§owing to the easy-plane anisotropy, are
given by

-1
. (22

2 1— 11y

te= In'u—\/%+2 InE+C’+O(%)
where = v3(2—,) is the crossover exponentg is the
corresponding critical exponent for the 3D Heisenberg
model, andy,, is the anomalous dimensionality of the anisot-
ropy parameter near the 3D Heisenberg fixed point, see, e.g.,
Ref. 10. The & expansion in the anisotropic
4— g-dimensional¢* model fore=1 (which has the same
symmetry as the model under considerationields
=0.83, see Ref. 10. For an antiferromagnet, the constant
C’=—0.066 was calculated within theNl/expansior?. Un-
like Eq.(21), the last term in the denominator of E§2) has
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not an inverse-logarithmic form. This is a consequence of thgvith the experimental value antly=24.3 K, again in ex-
fact that the correlation length in the 3D Heisenberg modetejlent agreement witfi§P=24.5+1 K. Note that in spite
does not demonstrate the exponential behavigri¢ finite). ¢ T |3|S for this compound, the true criterion of the
For this reason the correction in the denominator of (£28) quantum regime isT/JS)?<32 (see Ref. ¥, and this case

is small and can be neglected. also should be considered a quantum one.

Finally, we conS|der_the e>§per|mental situation for Iay<_ared To conclude, we have investigated the Heisenberg model
magnets. The mostly investigated easy-plane system is the.

compound KCUF,. This is aS=1/2 ferromagnet withT with a weak easy-plane anisotropy. We have performed the
“55 K Teeb 35 K and the parametets—20 K 1_KT two-loop RG transformation with unknown functioh(u)
=0.04a,= 6§< 10'_4 (see, e.g., Ref.)3Substituting thése \7al- (which takes into account the contribution of higher loops
ues. into Eqs(16) and(zi) we obtéinC:—O 5 andA~35  and non-spin-wave excitationand joined the results with
Note that the formula2) yields the valuéT =11.4.K. well-known behavior of the RG trajectories in the 2D¢
which is much larger than the experimental g]e model. In such a way we have obtained simple analytical
Another example of a quasi-2D FMY-like system is the expressions for the Kosterlitz-Thouless and Culideel)

o N g vl _~ temperatures. These expressions contain two consfgts
iﬁg?ﬂz lt\g%gfragh‘ljti ;n()te:(layiicorgiulnoq;/v Ifn dlc.yi% which are still indeterminate within the RG approach. The
% 10,59 Usin t.he,same vaiues (;7( andC as ,for K,CUF, calculation of these constants, as well as of the correspond-
we caléulategr —174 K andT~-=18.7 K. which is 4|n ing parameters for the isotropic quasi-2D and easy-axis 2D

KT— 4L/ cTi0. ) i i i i
sgeement wth expermental i valuey ana T FERILSIS OGRS bossbisy uneriate g, by e
l(IZe)mietrdi ;?glgngé%_io \?\(/h'?ér:r:se ;a;?r? t%vniqcee, Ililsrmegr ?Srrggli_ sults already enable one to estimate the Kosterlitz-Thouless
par)e(d o th}ge_xpérime’ntal value 9 9 temperature [and also to determine the difference

We have also applied our results to the compoundTC(TN)_TKT] with an accuracy which is sufficient to fit

BaNiy(PQ,), which is a S=1 antiferromagnet with| J | ggfégfﬂg data on layered magnets, unlike the simplest
=22.0 K and easy-plane anisotropy—%=0.05a4=1 '

X 1074, see Ref. 3. We obtaificr=23.0 K which coincides We are grateful to B.N. Shalaev for useful discussions.
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