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Kosterlitz-Thouless and magnetic transition temperatures in layered magnets
with a weak easy-plane anisotropy

V. Yu. Irkhin* and A. A. Katanin
Institute of Metal Physics, Ekaterinburg 620219, Russia

~Received 2 November 1998!

The two-dimensional~2D! Heisenberg magnet with a weak easy-plane anisotropy is considered. A
renormalization-group analysis in this model is performed for both quantum and classical cases. A crossover
from the Heisenberg to 2DXY model is discussed. The magnetic transition owing to the interlayer coupling is
considered. Analytical results for the Kosterlitz-Thouless and Curie~Néel! temperatures are derived by taking
into account two-loop corrections. The results are compared with experimental data, e.g., on K2CuF4, and turn
out to provide a quantitative description, unlike the standard one-loop results.@S0163-1829~99!08725-1#
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The interest in the magnetic properties of layered syste
has been recently greatly revived. It is well known that ev
weak magnetic anisotropy can play an important role in s
systems. In the present paper we discuss the case o
easy-plane localized-spin system. The simplest classical
dimensional~2D! XY model was studied in detail,1,2 and the
relevance of topological~vortex! excitations in thermody-
namics was established. In particular, the Kosterl
Thouless transition, connected with unbinding of the vort
antivortex pairs, was found. The transition temperatu
where power-law behavior of the spin-correlation function
changed by an exponential one, is estimated as

TKT5
p

2
JS2, ~1!

where J.0 is the exchange integral. In the quantumXY
model the situation is still more complicated, since not o
transverse, but alsoz components of spins should be tak
into account.

A different situation takes place in both the quantum a
classical Heisenberg 2D model with a weak easy-plane
isotropy, which is a more physically real case.3 A simple
expression for the Kosterlitz-Thouless temperature obtai
in Ref. 4 reads

TKT5
4pJS2

ln@p2/~12h!#
~2!

(h5Jz/Jx,y is the anisotropy parameter! and has the sam
form as the result for the magnetic ordering point of t
easy-axis layered magnet.3 As well as the latter result~see
discussion in Refs. 5–7!, the formula~2! is insufficient for a
quantitative description of the experimental data~see Ref. 4!.
SinceTKT!JS2, one can expect that thermodynamic prop
ties of these systems are determined by usual spin wa
except for a narrow region nearTKT . The situation is remi-
niscent of the easy-axis layered magnet,5–7 where the topo-
logical ~domain-wall! excitations are important only in th
vicinity of the Curie~Néel! temperatureTC (TN) In such a
situation, similar to Ref. 7, the renormalization-group~RG!
analysis can be performed to calculateTKT with higher ac-
curacy. This analysis is the aim of the present paper. Fur
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on, we consider effects of interlayer coupling, which lead
occurrence of the true long-range magnetic ordering, and
culateTC (TN).

We consider the easy-plane Heisenberg model

H52
1

2 (̂
i j &

Ji j @Si
xSj

x1Si
ySj

y1hSi
zSj

z#, ~3!

whereJi j 5J] @J.0 in the ferromagnetic~FM! case andJ
,0 in the antiferromagnetic~AF! case# for the nearest-
neighbor sitesi , j in the same plane, andJi j 5aJ for i , j in
different planes,h,1. We suppose 12h,a!1. Note that
the effect of the single-site anisotropy

HD5D(
i

~Si
z!2, D.0 ~4!

is the same as that of exchange anisotropy with 12h
5D(121/2S)/4uJu provided thatD/uJu!1.

The partition function of the model~3! can be represente
in terms of a path integral over coherent states~see, e.g.,
Refs. 8,9!:

Z5E Dpd~p221!exp~2Ldyn2Lst!, ~5!

Ldyn5 iSE
0

1/T

dt(
i

A~pi !
]pi

]t
,

Lst5
1

2
S2E

0

1/T

dt(̂
i j &

Ji j @pxipx j1pyipy j1hpzipz j#,

where p is the unit-length vector, andA(p) is the vector
potential of the unit magnetic monopole, which satisfies
equation“3A(p)•p51.

In the classical case~i.e., withLdyn being neglected!, we
have two types of excitations: the fieldpy describes the gap
less in-plane excitations, and the fieldpz describes the out-
of-plane excitations with a gap. Expanding Eq.~5! in py,z ,x
being a~local in the AF case! spin-quantization axis, to lead
ing order in 1/S we have
2990 ©1999 The American Physical Society
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Lst5
1

2
S2E

0

1/T

dt(
k

@~J02Jk!pykpy,2k

1~J02hJk!pzk1Qpz,2k2Q#, ~6!

whereQ is the wave vector of magnetic structure. The d
namical partLdyn, which is present in the quantum cas
results in~i! quantum renormalizations of the Hamiltonia
parameters~in the AF case only!, which are supposed to b
already performed and~ii ! the summations over wave vecto
are bounded byAT/JS in the FM case orT/c in the AF case
(c is the quantum-renormalized spin-wave velocity! rather
than by the Brillouin-zone boundary~see Ref. 7!.

The interaction of spin waves, which occurs in high
orders in 1/S, leads to temperature renormalizations of t
Hamiltonian parameters. Due to the smallness of the ani
ropy, large logarithms occur in these renormalizatio
lnuT/(12h)Ju in the quantum FM case, ln@T2/(12h)J2# in the
quantum AF case, and ln@1/(12h)# in the classical case. I
is natural to sum up these logarithms within the RG a
proach. However, there exists the difficulty owing to th
gaplesspy excitations are present too. In the absence of
interlayer coupling, they lead to infrared divergences in so
quantities like the in-plane magnetization. In the presenc
interlayer coupling, another type of logarithms occ
ln(T/aJ), ln(T2/aJ2), or ln(1/a), depending on the case. Th
situation, where two types of excitations with different cha
acteristic scales are present, is typical for systems dem
strating a crossover.10 In our model this is the crossover from
the Heisenberg~almost isotropic! behavior to theXY behav-
ior.

To describe correctly this crossover we include anisotro
in all the renormalization factors.10 We also introduce the
scaling factors of the fieldp. Because of anisotropic chara
ter of the model, we have two such factors:Zxy andZz , so
that pxR /px5pyR /py5Zxy and pzR/pz5Zz . We use the
normalization conditionGzz

(2)(0)512h ~which fixes the gap
of z excitations! instead of the standard one
dGzz

(2)(q)/d(q2)51, Gzz
(2)(q) being the two-point vertex

function ~inverse Green’s function! of the fieldpz . Then we
haveZz[1. For other Hamiltonian parameters we obtain t
following system of RG equations:

m
d~1/tm!

dm
5~11tm! f ~hm ,m!1O~ tm

2 !, ~7a!

m
d ln Zxy

dm
5tm@11 f ~hm ,m!#1O~ tm

3 !, ~7b!

m
d ln hm

dm
52tm f ~hm ,m!1O~ tm

2 !, ~7c!

m
d ln am

dm
52tm1O~ tm

2 !, ~7d!

where m is the scale parameter,f (hm ,m)5hmm2/(hmm2

112h),

t5H T/~2pJS2! FM,

T/~2prs! AF
-
,

r

t-
:

-
t
e
e
of
,

-
n-

y

e

is the dimensionless temperature,rs.S(S10.079)uJu being
the spin stiffness.11 The first two equations in Eq.~7! are
written to two-loop order, while the last two are in one-loo
order, which is sufficient to obtain the final results to t
two-loop order accuracy. The initial scalem0 for these equa-
tions is

m05H A32 classical regime~T@uJuS!,

T/c quantum regime~T!uJuS!,AF,

AT/JS quantum regime~T!JS!,FM

for the details see, e.g., Ref. 7.
The flow of RG parameters is shown schematically in F

1 ~for comparison, the easy-axis caseh.1 is depicted too!.
From Eqs.~7a! and ~7c! we obtain

1

tm
5

1

t
1

1

2
ln

hm2tm
2 1t2~12h!

hm0
2tm

2 1t2~12h!
1 ln

t

tm
1F~m!, ~8!

where the functionF(m)5O(tm) comes fromO terms in
Eqs.~7! and corresponds to the contribution of higher-ord
loops. Form@A12h the effective temperaturetm is small
~which guarantees that the spin-wave theory works well!, so
that we haveF(m)!1 and

1

tm
5

1

t
1 ln

mt

m0tm
. ~9!

For m!A12h we obtain

1

tm
5

1

t
2 ln

m0

A12h
12 ln

t

tm
1F~m!, ~10!

and in this regimetm is m dependent only through the func
tion F(m). The scale 1/A12h is just a characteristic scal
for the crossover from the Heisenberg toXY behavior and
Eq. ~10! describestm in theXY regime. On the other hand, i
this regime only vortices contribute to the temperature ren
malization since such a renormalization owing to spin wa
is absent~the interaction of spin waves in theXY model is
due to topological effects only!. Thus for the temperature
renormalization we have the system of RG equations1,2

which in our notations can be written as

m
d~1/tm!

dm
532p2ym

2 , ~11a!

FIG. 1. Schematic picture of the RG trajectories in layered m
nets. Left-hand side: the flow from the 2D easy-axis Heisenb
(H1EA) to the 2D Ising model. Right-hand side: the flow from th
2D easy-plane Heisenberg (H1EP) to the 2DXY model. The in-
flection pointsc1 ,c2 mark the crossover regions. The dashed lin
are for the corresponding quasi-2D models.
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m
dym

dm
52ymS 22

1

2tm
D . ~11b!

It should be noted that the coupling constant for the vor
system is nott ~as for spin waves!, but y5exp(2E0 /T)
whereE0 is the energy of a vortex core. Therefore, Eqs.~11!
are applicable for small enoughm. Let m1!A12h be the
scale where we pass to scaling~11!. Then the solution of
Eqs.~11! for t.tKT reads

1

tm
5412C1 tanS C1 ln

m

m1
1C2D , ~12!

where

C15A~8py1t1!22~4t121!2/~2t1!

tanC25
124t1

A~8py1t1!22~4t121!2
, ~13!

and t1[tm1
,y1[ym1

are determined by

1

t1
5

1

t
2 ln

m0

A12h
12 ln

t

t1
1F~m1! ~14!

y15
1

4p Fm2 dF~m!

dm G
m5m1

1/2

.

It should be stressed that even if the original model is
quantum one, the resultingXY model is classical sincem1

!A12h!Lt
21 (Lt5JS/T for FM case andLt5c/T for

AF case is a characteristic length for quantum effects!, and at
scales much larger thanLt quantum and classical system
becomes indistinguishable. Thus all the quantum effects
already taken into account at the scalesm@A12h, where
the behavior of RG trajectories is a Heisenberg one.

The Kosterlitz-Thouless temperatureTKT is determined
by the equation of the separatrix line for Eqs.~11!

8py151/t124, t5tKT . ~15!

This line separates the low- and high-temperature pha
For small enoughm we haveF(m)˜const, dF(m)/dm
˜0 and we have fortKT5TKT /(2pJS2) ~or TKT /(2prs) in
the AF case!

tKT5@ ln~m0 /A12h!12 ln~2/tKT!1C#21 ~16!

whereC5426 ln 22F(m˜0) is a universal constant. Thi
result is identical with that for the Curie~Néel! temperature
of an easy-axis magnet,7 except for the constantC, which
need not be the same as for the easy-axis case.

In the critical region abovetKT ,

1

8p
~ tKT

212t21!!1, ~17!

the expression for the correlation length obtained from
~12! reads

j5
1

m1
e2C2 /C1.

1

A12h
expS A

2AtKT
212t21D , ~18!
x

a

re

s.

.

and has the same form as for theXY model (A is a constant!.
Under the condition, opposite from Eq.~17!, we have the
standard Heisenberg behavior11

j5~Cj /m0!t exp~1/t !. ~19!

In the presence of interlayer coupling, the magnetic ord
ing at low enough temperatures occurs. Due to topolog
effects, the transition temperature grows up fromTKT , and
not from zero. Note that in this caseTKT plays the role of a
crossover temperature from 2D to 3DXY behavior rather
than a critical temperature, and the only true phase transi
is connected with the magnetic ordering atTC(TN).

In the casea!12h we choosem1 such thata1/2!m1
!(12h)1/2. In terms of RG transformation~see Fig. 1!, at
m5m1 we have not 2D, but a quasi-2DXY effective model
with the lattice constantm0 /m1 and the interlayer coupling
(m0 /m1)2a1 where, as follows from Eq.~7d!,

a1[am1
5at/t1 . ~20!

With further flow of the RG transformation we should arriv
at the 3DXY model. However, this part of the RG transfo
mation meets with difficulties owing to a complicated geo
etry of vortex loops~see Ref. 12, and references therei!.
Instead of a direct calculation of RG trajectories, we use
same scaling arguments as in Ref. 4. The transition temp
ture can be estimated from the requirement that the corr
tion length of the model without interlayer coupling (a
50) coincides with the characteristic scale of the crosso
from the 2D to 3DXY model, 1/a1

1/2 ~in the units of the
lattice constant of original lattice!. Then we have for the
critical temperaturetc5TC /(2pJS2) @or TN /(2prs)# in the
casea!12h

tc5H ln
m0

A12h
12 ln

2

tKT
1C2

A2

ln2@~12h!/a#
J 21

.

~21!

The last term in the denominator determines the differe
betweentc andtKT . Since this term cannot be too small, w
do not expand Eq.~21! in it.

The result~21! is qualitatively valid up toa of order of
12h ~in this case, the last term in the denominator leads
renormalization ofC only!. Consider now briefly the cas
a@12h. Then the corrections to the RG result for th
quasi-2D magnets,7 owing to the easy-plane anisotropy, a
given by

tc5F ln
m0

Aa
12 ln

2

tc
1C81OS ~12h!1/c

a1/c D G21

, ~22!

where c5n3(22gh) is the crossover exponent,n3 is the
corresponding critical exponent for the 3D Heisenbe
model, andgh is the anomalous dimensionality of the aniso
ropy parameter near the 3D Heisenberg fixed point, see,
Ref. 10. The « expansion in the anisotropi
42«-dimensionalf4 model for «51 ~which has the same
symmetry as the model under consideration! yields c
.0.83, see Ref. 10. For an antiferromagnet, the cons
C8.20.066 was calculated within the 1/N expansion.5 Un-
like Eq. ~21!, the last term in the denominator of Eq.~22! has
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not an inverse-logarithmic form. This is a consequence of
fact that the correlation length in the 3D Heisenberg mo
does not demonstrate the exponential behavior (n3 is finite!.
For this reason the correction in the denominator of Eq.~22!
is small and can be neglected.

Finally, we consider the experimental situation for layer
magnets. The mostly investigated easy-plane system is
compound K2CuF4. This is aS51/2 ferromagnet withTKT
55.5 K, TC56.25 K and the parametersJ520 K,12h
50.04,a5631024 ~see, e.g., Ref. 3!. Substituting these val
ues into Eqs.~16! and~21! we obtainC.20.5 andA.3.5.
Note that the formula~2! yields the valueTKT511.4 K
which is much larger than the experimental one.

Another example of a quasi-2D FMXY-like system is the
stage-2 NiCl2 graphite interlayer compound withS51. Ac-
cording to Ref. 3, J520 K, 12h5831023, and a55
31025. Using the same values ofA and C as for K2CuF4,
we calculateTKT517.4 K and TC518.7 K, which is in
agreement with experimental data~both valuesTKT and TC
lie in the region 18–20 K!. At the same time, using formul
~2! yieldsTKT535.3 K, which is again twice larger as com
pared to the experimental value.

We have also applied our results to the compou
BaNi2(PO4)2 which is a S51 antiferromagnet withu J u
522.0 K and easy-plane anisotropy 12h50.05,a51
31024, see Ref. 3. We obtainTKT523.0 K which coincides
s

s

e
l

d
he

d

with the experimental value andTN524.3 K, again in ex-
cellent agreement withTN

exp524.561 K. Note that in spite
of TKT;uJuS for this compound, the true criterion of th
quantum regime is (T/JS)2!32 ~see Ref. 7!, and this case
also should be considered a quantum one.

To conclude, we have investigated the Heisenberg mo
with a weak easy-plane anisotropy. We have performed
two-loop RG transformation with unknown functionF(m)
~which takes into account the contribution of higher loo
and non-spin-wave excitations! and joined the results with
well-known behavior of the RG trajectories in the 2DXY
model. In such a way we have obtained simple analyti
expressions for the Kosterlitz-Thouless and Curie~Néel!
temperatures. These expressions contain two constantsA,C
which are still indeterminate within the RG approach. T
calculation of these constants, as well as of the correspo
ing parameters for the isotropic quasi-2D and easy-axis
Heisenberg model,7 is possible by numerical~e.g., by the
quantum Monte-Carlo! methods.13 At the same time, our re-
sults already enable one to estimate the Kosterlitz-Thou
temperature @and also to determine the differenc
TC(TN)2TKT# with an accuracy which is sufficient to fi
experimental data on layered magnets, unlike the simp
expression~2!.
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