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Spin-wave analysis to the spatially anisotropic Heisenberg antiferromagnet on a triangular lattice
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We study the phase diagram atT50 of the antiferromagnetic Heisenberg model on the triangular lattice
with spatially anisotropic interactions. For values of the anisotropy very close toJa /Jb50.5, conventional
spin-wave theory predicts that quantum fluctuations melt the classical structures, forS51/2. For the regime
Jb,Ja , it is shown that the incommensurate spiral phases survive untilJb /Ja50.27, leaving a wide region
where the ground state is disordered. The existence of such nonmagnetic states suggests the possibility of
spin-liquid behavior for intermediate values of the anisotropy.@S0163-1829~99!03529-8#
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For a long time frustrated quantum antiferromagnets h
been intensively studied. In this context, the antiferrom
netic Heisenberg model on a triangular lattice is a protot
for such systems. From the proposition of Anderson a
Fazekas that this model is a candidate to exhibit spin-liq
behavior,1 a lot of work was done to understand the nature
its ground state. Although there is a general conviction t
the ground state is ordered with a magnetic vectorQ
5(4p/3,0),2,3 some authors found a situation very close to
critical one or no magnetic order at all, leaving the answ
still controversial.4,5 A systematic way to study the role o
frustration is to vary the strength of the exchange interac
along the bonds. Recently Bhaumiket al.6 explored the ex-
istence of collinear phases on triangular and pentagonal
tices and proposed that the critical value of the anisotro
below which the ground state has collinear order, can
taken as a measure of frustration.

From the experimental point of view, the unconvention
properties of the organic superconductorsk-(BEDT-TTF)2X
and their similarities with the cuprates8 renewed the interes
in the triangular topology. In particular, it was argued7,9 that
the Hubbard model on a triangular lattice with anisotro
interactions at half filling could be a good candidate to e
plain such properties. In the limit of strong coupling th
model can be mapped to the Heisenberg model with an
tropic interactionsJa5ta

2/U, Jb5tb
2/U, whereta andtb are

the anisotropic hoppings. Furthermore, experiments sug
that the relevant values ofJa /Jb are about 0.3–1~see for
details Ref. 9!, so the combined effect of anisotropy an
frustration will take an important role in these materials.

In this paper we address the phase diagram of the Hei
berg model on the triangular lattice with spatially anisotro
interactions by mean of conventional spin-wave theory. O
approach provides the values of anisotropy where nonm
netic states appear signaling the possible existence of s
liquid behavior.

The Hamiltonian is

H5Ja(
r ,da

Sr•Sr1da
1Jb(

r ,db

Sr•Sr1db
, ~1!

whereJa andJb are positive and correspond to interactio
along directionsda and db , respectively~see Fig. 1!. In
order to develop a linear spin-wave theory, we need to kn
PRB 600163-1829/99/60~5!/2987~3!/$15.00
e
-
e
d
d
f
t

r

n

t-
y,
e

l

-

o-

st

n-

r
g-
in-

w

previously the classical phase diagram. Basically, we rep
the spin operators by classical vectors on thex-y plane and
minimize the energy which is equivalent to find the magne
vectorQ satisfying

JQ<Jk ,;k,

where

Jk5Ja cos~kx!1Jb2 cosS kx

2 D cosS ky)

2 D . ~2!

The minimization of Eq.~2! can be carried on easily for eac
value of m5Ja /Jb and it can be shown that there are tw
kinds of phases.

~i! Collinear: this state is characterized byQcol
5(0,2p/)), and it is stable in the region 0<m<0.5. The
casem50 is topologically equivalent to a square lattice a
Qcol on a triangular lattice produces the same magnetic st
ture than~p,p! on a square one.

~ii ! Incommensurate spiral: in this stateQspi5(2Q,0),
whereQ5cos21(21/2m), and it is stable in the region 0.
,m,`. For m51 we have the pure frustrated case whi
corresponds to the 120° commensurate spiral order and
m5` we have infinite decoupled classical chains each
Néel ordered.

In Fig. 2 we represent the possible values of6Q in the
Brillouin zone for different values ofm. Using the invariance
in k space under translationsG5(62p,72p/)) we can

FIG. 1. Structure of the anisotropic bonds in a triangular latti
2987 ©1999 The American Physical Society
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see that the transition between all the possible states is
tinuous. We are interested in how the transition betwe
these classical sates is affected by quantum fluctuations.
strategy to perform the spin-wave calculation is the o
sublattice description. We apply a uniform twist of the coo
dinate frame in such a way thatx-axis direction coincides, in
each site, with the direction of the classical structure. T
allows us to incorporate quantum fluctuations in a uniq
way for collinear and spiral phases. The next steps are
known10 and we only describe the procedure.~i! The angular
momentum operators are expressed by mean of the Hols
Primakov transformation,~ii ! the Hamiltonian is expanded t
order 1/S ~quadratic order in bosons!, ~iii ! after Fourier trans-
forming, the Hamiltonian can be diagonalized by a Bogol
bov transformation resulting in

H5Ec1
1

2 (
k

@E~k!2gA~k!#

1
1

2 (
k

E~k!~ak
†ak1a2k

† a2k!,

where

Ec5NS2@Jb cos~Q•db!1Ja cos~Q•da!1Jb cos~Q•db!#

and

E~k!5@gA
2~k!2gB

2~k!#21/2 ~3!

with

gA~k!5
S

2 (
d5da ,db

Jd cos~k•d!@11cos~Q•d!#

22 cos~Q•d!,

gB~k!5S (
d5da ,db

Jd cos~k•d!@cos~Q•d!21#.

The compact equation~3! gives the dispersion relation for a
the different phases labeled byQ. In particular, form50 we
recover the spin wave spectrum of the square lattice w
for m51 we obtain the triangular one~spatially isotropic!.
Independently of the value ofQ it can be checked tha
E(k)50 for k50,6Q, and these zero modes are the thr
Goldstone modes related to the complete symmetry-brea

FIG. 2. Magnetic vectors6Q for different values ofm starting
from m50 with (0,2p/)) and ending atm5` with ~p,0!, in the
Brillouin zone. The equivalence between empty and filled circ
represented by dashed lines, shows the continuity of the clas
transitions.
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of the SU~2! invariance. However, for collinear phaseQ is
equivalent to2Q and two zero modes are recovered. May
the most interesting result is that if we expandE(k) near
these zeros the behavior ofE(k) is linear for all mÞ1/2,
while for m51/2, aroundk5(0,0) and along the direction o
kx it becomes quadratic showing the softening of the sp
wave modes for allS ~see Fig. 3!. This is manifested in the
magnetization

m05S S1
1

2D2
)

2 E
BZ

dkxdky

~2p!2

gA~k!

2E~k!
, ~4!

where the integration is over the Brillouin zone of the tria
gular lattice. In the second term of Eq.~4! the integrand
diverge fork50,6Q but the integral remains finite in two
dimensional~2D! for all mÞ1/2, while form51/2 quantum
fluctuations are amplified, because of the quadratic beha
of E(k) neark5(0,0), and it can be proved19 that the inte-
gral contribute with a finite but large enhancement of qu
tum correction to the magnetization. In order to estimate
region where the system is disordered forS51/2, we calcu-
lated the quantum corrected magnetization for each class
structure. In what follows we rescalem˜h5m/(11m).
This allows us to capture all the possible values ofm in a
finite range 0<h<1. Figure 4 shows that spin-wave theo
predicts a collinear phase ath50 with m050.303 and as we
increase the frustration it is weaken continuously getting d
ordered just before the classical valueh51/3. Immediately
after this value, an incommensurate order is stabilized st
ing from m050 and it becomes more robust as we approa
the spatially isotropic caseh50.5 where the structure is
commensurate,Q5(4p/3,0), andm050.239. If we con-
tinue increasingh incommensurate structures appear ag
with decreasingm0 until the critical valueh50.79 where
magnetization vanishes. Beyond this value, the ground s
is disordered. We note that the singular behavior obtai
near h51/3 does not appear in previous studies of t
model. In fact, Gazzaet al.11 performed a Schwinger boso
mean field theory and found a continuous transition fro
collinear to spiral phases ath50.375 but with a nonvanish
ing magnetizationm0;0.175. However, inclusion of Gauss
ian fluctuations in this theory would tend to decrease
order, as it is known to occur in highly frustrated cases,12,3

,
al

FIG. 3. Relation dispersionE(k) alongkx direction for different
values ofm5Ja /Jb andS51/2.
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reaching probably more accord with our spin wave resu
The same happens with both theories in theJ1-J2 model on
a square lattice.13,14,12One should take into account that o
system can be thought as a Heisenberg model on a sq
lattice with interactions to first and second neighbors,
only along one of the diagonals.18

On the other hand, for the regimeJb,Ja , the critical
value h50.79 means that the system disorders atJb /Ja
50.27. This should be compared with the spin wave va
for the square case,16 J' /Ji;0.03, where the difference in
one order of magnitude shows that the way in which fluct
tions overcome the ordering is different. However, in t
regime aroundh51 the spin wave calculation is not reliab
any more since quantum fluctuations are divergent in the
limit. In particular, numerical techniques15 predict that in the
square case an infinitesimal coupling is required to take
chains away from criticality and get ordered. A similar ca

FIG. 4. Quantum corrected magnetization vsh for spin S
51/2. The dot-dashed line indicates the location of commensu
spiral Néel order.
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culation should be done for our model in the regime
weakly coupled chains and it is left for a future work.

In conclusion, we have studied the Heisenberg model o
triangular lattice with spatially anisotropic interactions b
mean of a spin-wave analysis. We calculated the class
and quantum corrected phase diagram atT50 for the whole
range of parametersh5Ja /(Ja1Jb) obtaining different re-
gimes: collinear, incommensurate spirals, and disord
phases. The nonmagnetic region found very near the sing
valueh51/3 for S51/2 suggests the possible existence o
spin-liquid phase. A similar scenario occurs in theJ1-J2 and
J1-J3 model on a square lattice.13,17 It is clear from our ap-
proximation that it should be more probable to find a spi
liquid behavior nearh51/3 than in other region of the dia-
gram between collinear and spiral phases. Though this reg
is small, it is just located in the range where the experimen
values of Ja /Jb are relevant for organic superconducto
k-(BEDT-TTF)2X. Moreover, in the regime ofJb,Ja we
found that quantum fluctuations destroy the order atJb /Ja
50.27 leaving a wide region where the ground state
disordered.

Finally, we would like to stress that by applying a simp
approximation such as spin-wave theory we have obtaine
very rich phase diagram. Of course, we have not dem
strated the existence of spin-liquid phases but the appeara
of nonmagnetic regions indicates the possible location
them. Another quantities like spin gap or correlation fun
tions are needed to explore more deeply the nature of th
phases, and it requires more powerful techniques.

We recently became aware of two works performed
this model. The first one by Zhenget al.18 using series ex-
pansion technique where their prediction are, in gene
similar to the phase diagram obtained in this work. The s
ond one, Merinoet al.19 using the same technique of th
present work.

The author acknowledges the useful discussions with
Ceccatto, S. Sorella, and E. Jagla. This work was suppo
by Consejo Nacional de Investigaciones Cientı´ficas y Técni-
cas of Argentina.
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