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Spin-wave analysis to the spatially anisotropic Heisenberg antiferromagnet on a triangular lattice
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We study the phase diagram B0 of the antiferromagnetic Heisenberg model on the triangular lattice
with spatially anisotropic interactions. For values of the anisotropy very closgg td,=0.5, conventional
spin-wave theory predicts that quantum fluctuations melt the classical structur&ss 162. For the regime
Jg<J,, itis shown that the incommensurate spiral phases survive ol =0.27, leaving a wide region
where the ground state is disordered. The existence of such nonmagnetic states suggests the possibility of
spin-liquid behavior for intermediate values of the anisotrd®0163-182699)03529-9

For a long time frustrated quantum antiferromagnets hav@reviously the classical phase diagram. Basically, we replace
been intensively studied. In this context, the antiferromagthe spin operators by classical vectors on xhg plane and
netic Heisenberg model on a triangular lattice is a prototypeninimize the energy which is equivalent to find the magnetic
for such systems. From the proposition of Anderson andrectorQ satisfying
Fazekas that this model is a candidate to exhibit spin-liquid
behavior® a lot of work was done to understand the nature of Jos=Jk, VK,
its ground state. Although there is a general conviction that
the ground state is ordered with a magnetic vecpr Where
=(4/3,0) 2% some authors found a situation very close to a
cr_itical one or no gnagnetic ord_er at all, leaving the answer 3=3, cogky) +3 52 coz{g
still controversiaf® A systematic way to study the role of 2
frustration is to vary the strength of the exchange interaction L ) .
along the bonds. Recently Bhaunek al® explored the ex- The minimization of Eq(.2) can be carried on easily for each
istence of collinear phases on triangular and pentagonal la}.2lué of #=J,/J; and it can be shown that there are two
tices and proposed that the critical value of the anisotropy<inds of phases.

below which the ground state has collinear order, can be () Collinear: this state is characterized b@c
taken as a measure of frustration. =(0,2m/v3), and it is stable in the region®®u<0.5. The

From the experimental point of view, the unconventionalcasex =0 is topologically equivalent to a square lattice and
properties of the organic superconducteréBEDT-TTF),X  Qcol ON @ triangular lattice produces the same magnetic struc-
and their similarities with the cuprafegenewed the interest ture than(m,m) on a square one.
in the triangular topology. In particular, it was argéédhat (i) Incommensurate spiral: in this sta@y=(2Q.0),
the Hubbard model on a triangular lattice with anisotropicWhereQ=cos (—1/2u), and it is stable in the region 0.5
interactions at half filling could be a good candidate to ex-<#<%. For u=1 we have the pure frustrated case which
plain such properties. In the limit of strong coupling this corresponds to the 120° commensurate spiral order and for
model can be mapped to the Heisenberg model with anisox =2 we have infinite decoupled classical chains each one
tropic interactions),=t2/U, Jz=t2/U, wheret, andt, are ~ Neel ordered. _ _
the anisotropic hoppings. Furthermore, experiments suggest !N Fig. 2 we represent the possible values®o® in the
that the relevant values of,/J, are about 0.3—Isee for Bnlloum zone for different yalues of.. Using the invariance
details Ref. 9, so the combined effect of anisotropy and N K space under translatior@=(+2,+2m/v3) we can
frustration will take an important role in these materials.

In this paper we address the phase diagram of the Heisen-
berg model on the triangular lattice with spatially anisotropic
interactions by mean of conventional spin-wave theory. Our
approach provides the values of anisotropy where nonmag-
netic states appear signaling the possible existence of spin-
liquid behavior.

The Hamiltonian is

)

kyv3
co T .

H=Jaz Sr~5r+aa+352 Sr'Sr+6ﬂa 1)
1,6, r.op

whereJ, andJ,; are positive and correspond to interactions
along directionss, and 55, respectively(see Fig. 1 In
order to develop a linear spin-wave theory, we need to know FIG. 1. Structure of the anisotropic bonds in a triangular lattice.
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FIG. 2. Magnetic vectors: Q for different values ofu starting
from w=0 with (0,27/v3) and ending aju=c0 with (7,0), in the
Brillouin zone. The equivalence between empty and filled circles, 0'0—21:/ . 0 73
represented by dashed lines, shows the continuity of the classical k

transitions.

- ) ) FIG. 3. Relation dispersioB(k) alongk, direction for different
see that the transition between all the possible states is coggyes ofu=3,/35 andS=1/2.
tinuous. We are interested in how the transition between

these classical sates is affected by quantum fluctuations. Thg the SU?2) invariance. However, for collinear phageis
strategy to perform the spin-wave calculation is the onegquijvalent to- Q and two zero modes are recovered. Maybe
sublattice description. We apply a uniform twist of the coor-the most interesting result is that if we expaBgk) near
dinate frame in such a way thetaxis direction coincides, in these zeros the behavior &f(k) is linear for all w#1/2,
each site, with the direction of the classical structure. Thisyhile for u=1/2, aroundk=(0,0) and along the direction of
allows us to incorporate quantum fluctuations in a uniqug it pecomes quadratic showing the softening of the spin-

way for collinear and spiral phases. The next steps are wellaye modes for alS (see Fig. 3. This is manifested in the
known'® and we only describe the procedu.The angular magnetization

momentum operators are expressed by mean of the Holstein-

Primakov transformatioriji) the Hamiltonian is expanded to 1\ V3 dkdk, ya(k)
order 15 (quadratic order in bosohgiii ) after Fourier trans- mMe=|S+35| -5 jBZW 2E(R) (4)
forming, the Hamiltonian can be diagonalized by a Bogoliu-
bov transformation resulting in where the integration is over the Brillouin zone of the trian-
1 gular lattice. In the second term of E¢) the integrand
_ = _ diverge fork=0,=Q but the integral remains finite in two
H=Ect 2 ; [E(K) = 7alk)] dimensional2D) for all u# 1/2, while for u=1/2 quantum

fluctuations are amplified, because of the quadratic behavior
+ EE E(k)(alan+al o)) of E(k) neark=(0,0), and it can be provédthat the inte-
2% KT Tk gral contribute with a finite but large enhancement of quan-
tum correction to the magnetization. In order to estimate the
region where the system is disordered &+ 1/2, we calcu-
_ ) ) ) lated the quantum corrected magnetization for each classical
Ec=NSTJ5c04Q- )+, C08Q- 5,)+35C04Q- 5y)] structure. In what follows we rescale— 7= u/(1+ w).
and This allows us to capture all the possible valuesuoin a
o ) 1 finite range G= »=<1. Figure 4 shows that spin-wave theory
E(k)=[va(k)—yg(k)] (3 predicts a collinear phase at=0 with my=0.303 and as we
with increase the frustration it is weaken continuously getting dis-
ordered just before the classical valye- 1/3. Immediately
S after this value, an incommensurate order is stabilized start-
ya(k)=5 > Jscogk- §[1+cogQ- §)] ing frommy=0 and it becomes more robust as we approach
0= %% the spatially isotropic case=0.5 where the structure is
—2cogQ- d), commensurateQ=(47/3,0), andmy=0.239. If we con-
tinue increasingy incommensurate structures appear again
with decreasingmg until the critical valuen=0.79 where
VB(k)ZS(s_aE , Jacodk-9)[codQ-4)—1]. magnetization vanishes. Beyond this value, the ground state
S TetR is disordered. We note that the singular behavior obtained
The compact equatiof8) gives the dispersion relation for all near »=1/3 does not appear in previous studies of this
the different phases labeled Ky In particular, foru=0 we  model. In fact, Gazzat al!* performed a Schwinger boson
recover the spin wave spectrum of the square lattice whilenean field theory and found a continuous transition from
for u=1 we obtain the triangular ongspatially isotropi¢.  collinear to spiral phases at=0.375 but with a nonvanish-
Independently of the value of) it can be checked that ing magnetizatioimy~0.175. However, inclusion of Gauss-
E(k)=0 for k=0,+Q, and these zero modes are the threeian fluctuations in this theory would tend to decrease the
Goldstone modes related to the complete symmetry-breakingrder, as it is known to occur in highly frustrated ca%e$,

where
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0.40 1 culation should be done for our model in the regime of

: weakly coupled chains and it is left for a future work.

E In conclusion, we have studied the Heisenberg model on a
triangular lattice with spatially anisotropic interactions by
mean of a spin-wave analysis. We calculated the classical
and quantum corrected phase diagrarm at0 for the whole
range of parameterg=J,/(J,+Jz) obtaining different re-
gimes: collinear, incommensurate spirals, and disorder
phases. The nonmagnetic region found very near the singular
value »=1/3 for S=1/2 suggests the possible existence of a
spin-liquid phase. A similar scenario occurs in theJ, and
J;-J3 model on a square lattic&’ It is clear from our ap-
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collinear | spiral ' disorder pro>_<imati0n .that it should be more probablg to find a s_pin-
3 liquid behavior neam=1/3 than in other region of the dia-
| gram between collinear and spiral phases. Though this region
0.00 L is small, it is just located in the range where the experimental
K 1142 08 ! values ofJ,/J; are relevant for organic superconductors

x-(BEDT-TTF),X. Moreover, in the regime od;<J, we

FIG. 4. Quantum corrected magnetization wsfor spin S  found that quantum fluctuations destroy the orded atJ,
=1/2. The dot-dashed line indicates the location of commensurate 0-27 leaving a wide region where the ground state is
spiral Neel order. dlso_rdered. . _ '

Finally, we would like to stress that by applying a simple

reaching probably more accord with our spin wave resultsapproximation such as spin-wave theory we have obtained a
The same happens with both theories in dpel, model on  very rich phase diagram. Of course, we have not demon-
a square latticé>'*120ne should take into account that our Strated the existence of spin-liquid phases but the appearance
system can be thought as a Heisenberg model on a squa@é nonmagnetic regions indicates the possible location of
lattice with interactions to first and second neighbors, buthem. Another quantities like spin gap or correlation func-
only along one of the diagonalg. tions are needed to explore more deeply the nature of these

On the other hand, for the regimi;<J,, the critical phases, and it requires more powerful techniques.
valle ;=079 means tht the system disordersiatd, W Tecenty became avare of i yorks performed on
=0.27. This should be compared with the spin wave valud ' :

for the square cas’,J, /3,~0.03, where the difference in pansion technique where their prediction are, in general,

one order of magnitude shows that the way in which quctua—Slmllar o the phase diagram obtained in this work. The sec-

. OYES Hes : ond one, Merinoet al!® using the same technique of the
tions overcome the ordering is different. However, in thepresent work.

regime aroundy= 1 the spin wave calculation is not reliable

any more since quantum fluctuations are divergent in the 1D The author acknowledges the useful discussions with A.
limit. In particular, numerical techniquEspredict that in the  Ceccatto, S. Sorella, and E. Jagla. This work was supported
square case an infinitesimal coupling is required to take thby Consejo Nacional de Investigaciones Citicds y Teni-
chains away from criticality and get ordered. A similar cal- cas of Argentina.
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