PHYSICAL REVIEW B VOLUME 60, NUMBER 1 1 JULY 1999-1

Lattice dynamical Debye-Waller factor for silicon
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The mean-square amplitude of vibration of silicon at 293 K has been determined by a lattice-dynamical
procedure. A Born—von Kean model has been used to fit phonon dispersion data from inelastic neutron-
scattering measurements. The force-constant model included the first six nearest neighbors in the diamond-type
lattice. The least-squares results from the fitting of the force constants were used to carry out variance analyses
of properties dependent on the harmonic model. The density of phonon states was determined by sampling an
even mesh of 5.7 billion points in the unique part of the Brillouin zone. Moments of the frequency distribution
up to eighth order are tabulated. The frequency distribution function was used to calc(ﬂléga for silicon.

The result is 0.005 94%0.000 021 &. An Einstein-type potential of Dawson and Willis was used to extract an
anharmonic force constant from the temperature dependence of neutron-diffraction measurements of silicon
carried out by Batterman and co-workers. These measurements were restricted to the weak reflections from the
(222), (442, and (622 diffracting planes. With the use of the lattice-dynamical value for the vibrational
amplitude of silicon the result for thgp,, anharmonic constant is 18.5®.27 Nm A1,

[S0163-182699)03518-3

I. INTRODUCTION by the maximum entropy method. Similarly, the Japanese
workers, Yamamotet al® reported a mean thermal valence
For the last several decades very accurate measurememectron-density map also based on the principle of maxi-
of crystalline silicon structure factors by the method of x-raymum entropy. Our own interests have focused on the total
Pendelleung fringes have appeared in the crystal physicsnean thermatharge-density distribution which includes the
literaturel™ In addition, rather weak reflections from this nuclear charge density as well. In particular we seek a silicon

crystal with space groupd3m have been measured as inte- Debye-Waller factor that is not based on an x-ray measure-
grated Bragg diffraction intensities at essentially kinematicent. , _ _
conditions. The associated diffracting planes &2@2)° A smgle-crystal neutron-dlffractlon experiment general!y
(442), and (622.57 The nonzero intensities can only occur 91V€S reliable Debye-Waller factors if the diffracting condi-
due to nonspherically symmetrical scattering factors of odd'ons are n_early kinematic. Single crystals .Of silicon, .hOW'
order spherical surface harmonics at the silicon atom site§ Ve are virtually perfept SO _that the d_ynam_lcal scattering of
] = neutrons renders the diffraction experiment intractable for an
that have point-group symmetry3m. These measured accyrate determination of the mean-square amplitude of vi-
structure factors of silicon have served as a benchmark fog ation (u?) by the silicon nucleus. A powder-diffraction
experimental determination of electron-density distributionsexperimem of silicon with neutrons can and does provide a
and physical properties that depend on the charge-densipgasonable determination of the Debye-Waller factor. Baish-
distribution in the crystal. Very recently an extensive data seéng et al. report a value of 0.45.02 A% at 284 K for B
from diffraction with WK« radiation at approximate kine- which corresponds to a mean-square amplitude of vibration
matic conditions was reported and used for a construction aff 0.0059 & at 293 K2 The neutron velocity of 3.34 km/s
a mean thermaklectron-density distributiofi Although the in the incident beam was far below the minimum velocity of
relative cross-section data lack the accuracy of the Pendellsound in the crystal. Thus the results were not contaminated
sung data, the extension to a 8k value of 2.5 A pro-  with thermal diffuse scattering. The precision of Bealue
vided the investigators with an unusually high-resolutionwas about 4%; a precision of 1% or better is our goal.
electron-density map. Another route to a Debye-Waller factor in a cubic crystal
The details of the charge-density analysis of accuratés by a lattice-dynamical sum over all the normal modes of
structure factors for silicon vary from one investigator tovibration in the crystal. For monatomic cubic crystals the
another. Spackmarderived a static electron-density distri- evaluation involves an integration over the vibrational fre-
bution with the rigid pseudoatom approximation and soughtjuency distribution. The appropriate expression was given
comparison with solid-state calculations. On the other handpriginally by Blackmart® With the use of dispersion curves
Deutsch® characterized the structure factors with anof the normal modes of vibration, measured by inelastic
electron-density distribution that deforms with vibrational neutron-scattering techniques, as well as measured Raman
motion by the silicomucleus Sakata and Satbused Pen- spectra and elastic constants, frequency distribution func-
dellosung data to construct the mean thermal electron densitijons can be determined. The actual evaluation requires a
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force-constant model of some sort that is used to fit the disbased on the data reported by Hastings and Batteffan,
persion curves and other lattice-dynamical data. Reid haRoberto, Batterman, and Keatifgand the Debye-Waller
given a brief summary oB values for silicon based on sev- factor from the present work.

eral lattice-dynamical modelé. At 293 K the values vary

from 0.516 & (shell model of Dollind®) to 0.473 &£ (bond

charge model of Dolling and Cowl&). Several valence Il. BvK MODEL FITS TO DISPERSION DATA

force potential models yielded values of 0.448, 0.467, and ' AND ELASTIC CONSTANTS

0.469 A, respectively. The Born-von Kman model of

Zdetsis and Warlg led to a value of 0.470 A The spread of The dispersion data from inelastic neutron-scattering mea-

values corresponds to a 14% deviation from a mean of 0.488urements are for the symmetry directiahis00], 2[110],
A2 if the shell result is not treated as an outlier. It would and A[111] in the Brillouin zone. The secular determinant of
seem that a lattice-dynamical determination of the siliconthe dynamical matrix can be solved in closed form for these
Debye-Waller factor cannot be used to obtain a value that iglirections. The explicit relations between frequencies and
precise to 1%. To cite John S. Reid and John D. Pirie in theiBvK force constants out to sixth-nearest neighbor have been
1980 publication: “Indeed, there can be few quantities sogiven by Hermalf and Zdetsi€2 The expressions for the 21
apparently straightforward to determine as the Debye-Walleforce constants have been confirmed with our own computer
factor but in practise so elusive.” code for generating the force-constant matrices in a
In the last 20 years, however, it has become easy to urdiamond-type lattice. The only discrepancy occurred for
dertake the computation of fitting the dispersion curves withs’'’" given by Zdetsis. We get the negative of his expres-
Born-von Kaman (BvK) force constant$BvK model, con-  sjon as does Herman, whichds'''=1(8""""—y''""). The
struction of the dynamical matrix elements and solution ofg|astic constant€,;, Cy,, andCyy are related to 19 of the
the secular equation, sampling the Brillouin zone at a larg&1 ByK force constants according to the method of long
number of phonon frequencies and modes, and the final cafyayes; the relations are in Zdetsis’ papefhe elastic con-
culation of the phonon frequency distribution function. Thestants do not depend on the antisymmetric off-diagonal ele-
BvK model is phenomenological and usually requires at leasfyeniss and s’ .
fifth-nearest neighbors for a satisfactory fit to the dispersion 5 least-squares program was written to fit the BvK force

data from a diamond-type lattic8.This is not a deterrent at constants to the squares of the measured cyclic frequencies
the present since in the 1990s more extensive data sets 9b o the A S andA symmetry directions. First and sec-
inelastic neutron scattering by silicon have become avallablq)nd derivatives of the dispersion relations given by Zdetsis
One can expect a |east-squares treatment to be well overdgz, regpect to the force constants were evaluated explicitly.
termined in the ratio of observations to disposable force contha elastic constants and an optically measured Raman fre-
stants. In addition, a variance analysis of the final results i uency were included as observational constraints. The gra-
an easy undertaking. We report below results for acalculateEient and the Hessian of the mean-square surface, a sum of

densityhpf é)_hont?n.stages in silicon Ibas;ad Oh” the E’VK molldelweighted residuals spanned by 21 variables, were determined
From this distribution function a value for the Debye-Waller at any point on the surface.

factor is determined at 293 K.
A single-particle potential for atomic motion in a

diamond-type structure was proposed by Dawson and Willis No
some years_agB.The functional form of this effective Ein- e= 2 w,(0,—F(q; P))?, 3)
stein potential is n=1
— 1 2 2 2
V(1) =Vot 5 apw(X"+y“+2°) + BowXyz (1) whereNo is the number of observationg), is the mass

weighted square of a phonon frequency based on neutron-
whereVy, the potential energy of the equilibrium configura- scattering measurements?(q) the square of a measured
tion, is taken as zero and they,zrefer to displacements Ryman frequencyuﬁA, or elastic constants, which can be
from the equilibrium positions. The harmonic force constant.q|ated to force constants by the method of long waf@&2*
is apw which is related to the mean-square amplitude Oftheyy s the inverse square of the error cited in the experi-
vibration as mental data listF is an explicit algebraic expression given
KT by Zdetsis which is a function af, a vector in the Brillouin
B - .
Apw=T— - 2) zone and ofP, a vector consisting of the BvK force con-
(u) stants. LetA,=[O,—F(q; P)]. Then the gradient of has

The Dawson-Willis potential predicts B temperature de- the components

pendence for a class ¢F,|’s which was observed from
neutron diffraction by thé222) reflecting planes in silicof’

In addition, theT? dependence was also observed for neutron
reflections from the(442) and (622 planes? If apy is
known, then it's possible to determing,,, from the mea-
sured temperature dependence of the integrated intensities
from the family of diffracting planes for whicth+k+I The Hessian of the mean-square error has the matrix ele-
=4n+2. We report the anharmonic force consta8,y, ments

No
as/apj:—22lwnAnaF/an, ji=1,..21 (4
n=
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92/ P3P, S (T/-/\B;_E I. Least-squares-fitted values of the force constants for
i (N/m).
No

=22, W[ (dF/9P;)(aF/IP) — And?FIIP;aP\], 1° a 46.50£0.70
n=1 B 41.01+0.48
° m 2.89+0.29
i=1,...,21, k=1,..,21.(5 v 5.07+0.33
Equation (3) was solved for a minimum by atabilized A —6.74+0.48
Newton-Raphson methdd Several initial values foP were g 2.10+0.32
submitted to our least-squares program. The starting values3’ w' 1.54+0.32
included: the 21 BvK force constants given by Zdetsis and v’ —1.78+0.30
Wangl’ a set equal to 0" wheren is the ordinal number N —3.44+0.42
for nearest neighbor, and 10 fer and 8 with zero for the o —1.64+0.18
remaining 19 force constants. For the cases given here the4® u —1.60+0.42
same stationary point on thesurface was found. The eigen- N 2.88+0.61
values of the Hessiafs) at this point were all positive, 5° w” 1.59+0.22
which ensures that a minimum was found. V" 0.92+0.29
The experimental neutron data used for the construction N 6.52+0.48
of ¢ are those of Dolling?® Nilsson and Nelirf® Strauch, S 2.39+0.20
Mayer, and Dornef! and Kuldaet al?® Altogether this set  g° w' 0.43+0.14
of neutron dispersion data is comprised of 189 observations. oz 0.54+0.15
Some of the measurements are overlapping but the weights N —0.43+0.18
differ with larger values(smaller error}; aSS|gned to more 5 —0.20-0.14
recent data. The Raman scattering line of 15.595 yr 0.27+0.12

+.015 THz, measured by Parker, Feldman, and Ashkin, has
a reported precision better than one part per thoufSaar
was used as an observational constraintdgp along with  0.001-0.01 in steps of 0.001 resulted in a convergence of all
the less precise values reported by Dolling (15.53BvK force constants to a constant value well within the as-
*.23THz) and Kuldaet al. (15.69-.07 THz). The elastic sociated estimated standard deviations whem)/v was
constants were based on the ultrasonic measurements @005 or larger. The correlation coefficients between the
McSkimin*® but no errors were reported. A small summaryforce constants were dramatically less fofv)/v=0.005
of results for different silicon single crystals given in Ref. 30 than for the result with weights based on the face values of
indicates a precision of about 0.5% for the velocity measurethe cited errors. A result with constant weights for all obser-
ments. Accordingly, we have assumed a relative error of 1%ations has a? value of 22.2 and a large numb@&? in all)
in the elastic constants as a basis for statistical weights. Thef correlation coefficient¢9) among the force constant vari-
total number of observatiorio in Eq. (3) is 193 so that the  aples in the ranges-1.00< Cjx<=—0.707 and 0.70%Cj,
ratio of observations to variablé$o/Nv is 9.2. <1.00.

An appropriate assignment of weights proved to be a vex- The BvK force constants by minimization of E@) with
ing problem. With weights based on the literatureweights based on the reported errors, ingteased if neces-
values,>?*~*%a minimum in Eq.(3) had ay® value[Eq. (8)]  saryto a relative precision not less than 0.005, are given in
of 21.4. On the other hand, when the neutron data were refable | with the estimated standard deviatie(P;) based
stricted to the 75 frequencies of Dolling, Nilsson, and Nelingn the inverse matrix elements of E&) and y2:
used by Zdetsis and Watghe value fory? was 1.52. Both
results include the three elastic constants and the optical Ra- o(P)=(x%H1? (7)
man frequency measurement. Evidently the sixth-nearest- . o .
neighbor BvK model of 21 force constants is deficient and/owhere sl is the jjth inverse matrix element of the least-
the data given by Kuldat al. have underestimated error Squares Hessian and
bars. A fit to the 73 neutron data in Ref. 28 plus the elastic 5
constants and the optically measured Raman frequency has a x“=el(No—No). ®

x° of 33.5. Yet the quality of fit is rather good in terms of the The correlation coefficient€;, , defined below, were rather

relative weighted error, small:
No No 1/2
L= glky [l
RW:(E wid? [ 3 wnoﬁ) ' ®) Ci=elNele ©
n=1 n=1

with only three outside the bounds afl/2. These values
of 1.61%. The errors cited by Kuldzt al. lack precision for were —0.92 for the correlation betweed’’’’ and y''’"’,
use as weights in least squares. For example, if an error listed0.85 for thew u” couple and—0.78 for theN” \''"' pair.
as £.01 THz is actually=.014 THz the corresponding dif- Despite the small off-diagonal elements in the inverse Hes-
ference in weight is nearly a factor of 2. We found inah  sian, one should not neglect these terms in computing a vari-
hoc fashion that imposing lower limits to the relative error ance for some property that depends on the BvK force con-
for all neutron frequency measurements in a range fronstants(vide infra). The final BvK force constant fits, given in
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FIG. 1. Dispersion fits for Si.

Table I, had arR,, [cf. Eq.(6)] of 2.54% and g? value[cf.
Eq. (8)] of 5.45. The BvK force constant fits to the disper-
sion curves in th¢Z 0 0], [£ £ 0], and[{ £ ] directions of the
Brillouin zone are shown in Fig. 1.

Ill. THE PHONON FREQUENCY DISTRIBUTION
AND ITS MOMENTS FOR SILICON

The force constants in Table | were used to construct the

2 4 6 8 10 12 14 16
V(THz)

FIG. 2. Density of phonon states for Si.

vp(n)=

VD(O)=EX[{§+

Kg
vp(=3)=1-0p(0).

1 1/n
§<n+3>Mn} ,

1 [fy(Inv)g(v)dv
Jog(v)dv

(12

(13

(14)

dynamical matrixD(q) for a diamond lattice which consists ©p(0) in Eq.(14) is the Debye temperature at zero degrees

of a 3X3 Hermitian matrixH(q), and a 3x3 symmetrical
matrix S(q). S(q) couples the sublattice with the sublat-

Kelvin. The vy are listed in THz as a function of in Table
Il. The estimated standard deviations of theggare also

tice k' andH(q) contains coupling among atoms in the samelisted; theseo(vp) values were derived from the inverse

sublattice. A unitary transformation introduced by Bhax
transformsD(q) into a 6X6 symmetric matrixD'(q) with
real elements. The 21 matrix elementsDA(q) can be de-
rived from four prototypes ob(q).?2 The phonon frequen-
cies for anyg can be determined by solving thex® secular
equation

|D’() — Imw?|=0, (10)

wherel is the 6X 6 identity matrix andn is the mass of the
silicon atom.
The unique part of the Brillouin zone was sampled on a

IV. SILICON DEBYE-WALLER FACTOR
AND ITS VARIANCE

matrix elements of the HessidB) and the numerical deriva-

tives of theM, with respect to the 21 force constants. The
entries in column B are derived from thermodynamic data
and are taken from Ref. 16.

The density of phonon states, given in the previous sec-
tion for silicon, can be used to construct thermodynamic

TABLE Il. Equivalent Debye frequencies, for Si (THz).

uniform mesh of 3242 (or 1779 q sites, where at each

point, the six eigenfrequencies were determined by solving

Eq. (10). For the construction of the density of phonon states;
4096 intervals from 0—16 THz were used to make a histo-
gram of frequencies determined at earhoint. The resolu-
tion in v, by this procedure, was 0.0039 THz. The calculated
frequency distribution is shown in Fig. 2. The curve dis-
played here is very similar to Fig. 3 in the paper by Zdetsis
and Wang'’

The moments forg(v) have been calculated up tdg
where

Jov"g(v)dv
n foa(v)dv
and are conveniently reported in condensed form with the

11

n A2 B°
-3 13.398-0.033 13.44
-2 10.974-0.021 11.07
-1 11.434-0.018 11.50

0 12.454+0.021 12.46
1 13.451+0.028 13.37
2 14.181+0.035 14.0
3 14.651+0.039 —
4 14.943-0.042 14.8
5 15.124+0.044 —
6 15.239-0.045 15.0
7 15.313-0.046 —
8 15.362-0.047 —

equivalent Debye cutoff frequency, as recommended by BarfBased ong(v).
bBased on thermodynamic data.

ron et al;%?
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properties such as the specific heat. We use our present re- TABLE lll. Numerical derivatives ofB with respect to force
sults to calculate a Debye-Waller factor for silicon at 293 K. constant{m A%/N).
The explicit relation, first given by Blackmadn,is

dBloa —0.0241
2h? (= 1/1 1 aBIip 0.0223
B= ieT fo 9|zt /9 (1D IBlap ~0.0700
dBldv 0.0187
wherex=hv/kgT. The first term in the parentheses of Eqg. IBJIN —0.0418
(15) is due to the zero-point motion and the second includes 9BI3S —0.0040
the temperature dependence. With numerical integration over  ;g;,,’ —0.0937
the density of phonon stateg(v) displayed in Fig. 2, our 9Bl v’ —0.0085
result forB is 0.4691 0.0016 & or, equivalently, the mean- IBIIN —0.0453
square amplitude of vibration{u?), is 0.005941 IBJaS' 0.0028
+.000021 2. The average of the lattice-dynamical values aBlau” _0.0514
for B, reported in Ref. 14, is 0.4652Aif the shell model IBIIN _0'0237
value of 0.518 & is rejected as an outlier. ” '
: . Bliu -0.0904
If the Debye temperatur®p is less than four or five .
. 2 . Bl v 0.0228
timesT, then it is also possible to use the momentg ) IR/ 0.0505
to calculate a reliable value &. One has the expansions '
aBlas" 0.0266
h aBlou" -0.2181
B(0)=—-M_y, (16) Bl V" 0.0060
aBloN"" —0.1036
2KeT < B[ h | IB19S"" 0.0190
B(T)=— nZO o et Ma-2 (17) aBlay"" 0.0164

TheB, in Eq.(17) are the Bernoulli numbers, which are zero ) i o , _

for n odd and=3. The zero-point contribution tB is given ~ —0-1 MAYN are the partial derivatives qi’, a diagonal
in Eq. (16) while Eq. (17) has the temperature-dependente|e_mef_“ of third-nearest-neighbor fc_Jrce consta_nts am_zl "of
terms. In contrast to diamond, wheB{0) is 86% of the which is th.e(l,l) and (2,2 element_ in the matrix for f!fth-
Debye-Waller factor at 298 R3B(0) is 0.1864 &, whichis ~ Nearest neighbors. The(B) determined from Eq(18) with
40% of the silicon Debye-Waller factor at 293 K. From the the derivatives given in Table Il is 0.0016 AOn the other

entries in Table Il and with hand, ifonly the diagonal termsk(=j) are used in Eg(18),
then the estimated standard deviatiorBag 0.0746 K. The
M,=3v}/(n+3) caveat is to respect the off-diagonal elements in a least-

. _ squares matrix when the variables are not restricted to coef-
the result for the sum in Eq17) is 0.2827 K for B(T) and ficients of orthogonal functions. For the case reported here,
B(0) from Eq.(16) is 0.1864 K. The sum from Eq(17) had  neglect of correlation terms gives an estimated standard de-

reached four-decimal-place accuracy by tfve6 term. Our  viation which is too large by nearly a factor of 50.
value for®p at 293 K is 666 K, so a rather rapid conver-

gence behavior of Eq17) is expected.
The precision we give foB is 0.34% and is based on the

least-squares results from the fits to the dispersion data with From the single-particle potentigl) proposed by Daw-

V. ANHARMONICITY IN SILICON

the BvK model. The variance relation used is son and Willis, the authors of Ref. 19 showed that the struc-
No ture factor for a diamond-type crystal has the functional form
2__ ¢ _s ) gk
5= No—Np & (27 0i(9BIoP))e(9BIoPy), F =813 exp(— M) (27/2)%( Bow/ @) (KD (ks T)2,
(18)

where ¢/ are the inverse matrix elements of the least- . ) . ,(19)
squares matrix witl at its minimum value. The first factor Whereb is the neutron-scattering lengta,is the cubic cell
in Eq. (18) is x2 [cf. Eq. (8)] which is used to scale the length, apyw andﬁDW are coeff_mentg for the potential from
variance ofB to an observation of unit weight. The partial Ed- (1) andMis the factorB(sin 4/A)". The structure factor
derivatives ofB with respect to the force constants are listed’ormula in Eq.(19) holds for that class of planes for which
in Table I1l. These were computed by numerical evaluatiof? T k+1=4n+2 and noh, k or | is zero. The connection
of B with small changes in the force constants. Notice thaP€tweenB andapy, is, via Eq.(2),

the partial derivatives of the diagonal elements of the force-

. . . . . 2
constant matrices are negative, which is to be expected since _ 87KkgT
an increase in a force constant lowers the root-mean-square apwl0?®

amplitude of vibration. The more negative derivatives occur
for u"” and \"”, which are the diagonal elements of the and apy is scaled from J/fto J/A? by the factor of 1.
sixth-nearest-neighbor force constants. Slightly larger thafrom the results for(uED> in this work, apy is 68.09
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+0.23 (N/m). This is the value to be used in the analysis of 000 - - - - 3
neutron structure factors for the anharmonic force constan .1 |
Bpw by virtue of Eq.(19). . }

Besides the expliciT? dependence on the right-hand side 0007
of Eg. (19, M and a are also temperature dependeki.
varies linearly withT [cf. Eq. (2)] anda has a very small
dependence oil. These temperature-dependent factors areg ooos

0.006 - {

fi

incorporated into the left-hand side of E@L9) and, after % ¥
expressing si/\ in terms ofa andh,kl, Eq. (19) is rewrit- & %% T
ten as 0.003 | ! p
[Fral) [ a)® 2m°KgT oy ]
(_hkl 5-| &8 2 1o comx 1 (h2+k2+12) | =cT>. oot | |
(20) . ; , , _ .
0 0.5 1T2(106 @ L5 2
If a(T) is known, one may use the left-hand side of Exf)
to construct reduced datdy,, from the neutron structure FIG. 3. Plot ofRy, vs T2.
factors. Thes®,'s may be plotted againdt’ to determine
c. A least-squares solution faris VI. CONCLUSION

No No We have made a determination of the Debye-Waller fac-
c= 2 WR, T2 E wT4 (21 tor in silicon at 293 K by lattice-dynamical methods. The
n=1 n=1 essential feature was a fit to inelastic neutron-scattering data
for special directions of the Brillouin zone with Born-von
Thew are the inverse square errors reporteddgy,. Witha  Karman force constants, the BvK model. This is a phenom-
solution forc from Eq.(21), the estimated standard deviation enological model which makes no prejudgement about the

is nature of the forces. One starts at a central atom and assigns
undetermined force constants to successive atoms
SN W(Ry—CT2)2 1/2 “coupled” to the central atom with no co_nstraints other than
a(c)z( NG v ) (22 ones that satisfy the symmetry properties of normal vibra-
(No—1)Zp-ywT tions in a crystaf®3” The effective potential for the nuclear

. motion is assumed to be due to an electronic system that
The sums in Egs(21) and (22) extend over the observed remains in its adiabatic ground state. For a crystal of the

neutron structure factors, of which there &fe. diamond structure, there are two sublattices of the atoms;
The lattice parameter of silicon as a functionofrom  one centered at the sitg0, 0, 0 and the other at
300-1500 K, published by Okada and Tokum#ruas used (a/4)[1,1,1], wherea is the cubic lattice cell length. The

to construct theRy [the left-hand side of Eq20)] along By force constant matrices are arranged in a series of shells
with the temperatures and neutron structure factor$2®?),  \yhich are labeled by the ordinal numbers 1st, 2nd,... nearest
(442, and the(622) diffracting planes, given in Refs. 21 and pgjghhors. It is often tacitly assumed that the relative impor-
22. Altogether, 11 reflections made tyo data used for the  tance of the force constant matrices decrease with increasing
sums in Eq.(21). The value forc, from Eq.(21), is 3.723  gjstance between the atoms. This is decidedly not the case as
x10"7, and its estimated standard deviation, via B is  first suggested by Herm¥hand illustrated by actual fits to
5.4X10 ~in non-Si units of RfmK™2 A plot of R VS dispersion datd’ Our results are based on 21 BvK force
T displays the fit of the reduced data to the temperatur@onstants derived from the first six-nearest-neighbor force
dependence predicted by the Dawson-Willis poterifial. constant matrices. Truncation of the BvK expansion neces-
The range ofl was 288—1523 K for the plot in Fig. &  sarily introduces a systematic error of some sort, but it is
varied from 5.4309-5.4580 A and the fac®in M varied difficult to quantify with the present information. The figure
from 0.4611-2.438 Apver the temperature range that was of merit for quality of fitR,, (6) changes from 2.81-2.54%
used for the construction @y’s. with a change from fifth-nearest neighbdgsxteen dispos-
From c=8b(Bpw/apw)ks, We extract the anharmonic able force constantsgo our “complete” set of 21 BvK con-
parameteBpy . The resultis 18.580.27 Nmi A~ which  stants. The corresponding values Bmre 0.470 and 0.469
are non-Sl units that read newton per meter per angsterni? respectively. By contrast, a second-nearest-neighbor fit
This result is about 75% of the average of the values in Tabl@as arR,, of 14.2%, the force constants of which predid a
Il of Tischler and Batterman.This discrepancy is primarily of 0.53 A2 The truncation at 2 compared to 5 or 6 has a
due to the different values used fap,y, . Our value of 68.09  systematic error of 13%, while the difference between fifth-
N/m is derived from(uZ,) but a value of 78.5 N/m was and sixth-nearest neighbor differ Bivalues by about 0.2%.
based on measurements @,y done by Batterman and The omission of force constants beyond second nearest
Chipmari® and the approximation by Dawson and Wilfls neighbors predicts a much “softer” crystal with a mean-
that the Debye functiod® (x,,,) + X,/4 was essentially unity. square amplitude of vibration that is more than 12% larger
Actually, at 300 K, the value is=1.08, but the use of unity than for the real crystal of silicon at 293 K. The near agree-
does not account for the 15% difference. ment of B values based on fifth- or sixth-nearest neighbor



290 CLAUS FLENSBURG AND ROBERT F. STEWART PRB 60

BvK force constants does not guarantee that our results have With the use of a single-particle potential, proposed by
converged to the correct lattice-dynamical value with a sysDawson and Willis, an anharmonic force constant has been
tematic error less than two or three parts per thousand. Irextracted from the temperature dependent neutron structure
clusion of seventh- and eighth-nearest neighbors would eXfactors measured by Batterman and co-workgré The re-

tend the list of disposable force constant parameters to 29 iyt for By, is critically dependent upon the choice for
the least-squares fitting of the phonon dispersion data. Inthg_ In a paper on thé222) “forbidden” reflection, Keat-
absence of more inelastic neutron-scattering measuremen;ﬁg et al?° use a value of 78.5 N/m fakpy, which is taken

the degree_s of_ freedqm would be reduced to 164 and afqom the paper by Dawson and Wiflfswho set the Debye
overdeterm_lnatlon rat'd\lO/N‘f of 6.7 (_:ompareo! to the function to unity in order to get an estimate of the isotropic
present ratio of 9.2. The lattice-dynamically derived valueforce constant from®,,. The temperature dependence of
for B probably has an accuracy of four parts per thousand oy M-

better. We leave the matter here and turn to a discussio)r%_ray_dIﬁracnon intensities from powder samples of silicon

comparing the value oB derived in this work to other ex- was used bly Ba’;te5r‘rtnsa8nKa?d C_rl!lpman to deter:ﬁ)(;ﬂ,ﬁ. AF‘an f
perimental estimates. average value o or silicon was reported in Ref.

. oo 35. Our lattice-dynamical value f@, is 527 K. The slopes
The thermal mean-square amplitude of vibratiar,,) M .
derived from neutron powder-diffraction d&ais 0.0059 of the temperature plots done by Batterman and Chipman are

. 72 . .
+0.0002 A2 when scaled from 284—293 K, which agrees proportional to® ,,~ so the difference in slopes amounts to a

with the result here, albeit a far less precise value. Recall thJ?Ctor of 1.06 and implies that a value of 72.3 N/m taf

(U2 is 0.00594% 0.000 021 &. A number of8 values for IS more compatible with the Batterman and Chipman value
siIiL(?on dérived from. x—ray—diﬁréction measurements are re_for O - If 72.3 N/m is used for the isotropic force constant
ported’ in the literature. In a study of the electron-densityin the Dawson-Willis potential function with the same data

oen e T and analysis as done in this pap8gyy is 21.9 Nm A tin
distribution in silicon by S_packma?wwhere concern for the Icontrast to the lattice-dynamically based value of 18.58. The
nature of the core scattering was addressed, an average va

actual value for the anharmonic force constant in the
2

for <quaY> equal to 0.0058660.000 0_14@was reported. Dawson-Willis potential is strongly dependent on the choice
The average was based on x-ray-diffraction data from A

K d MoK diation. Th ¢ %bf the isotropic force constant rather than the reduced neu-
a and MoK radiation. The x-ray structure factors were ., yata given in Eq(20).

taken from measurements in a temperature range from 293—
298 K as cited in Ref. 9. In comparing to our value at 293 K,
the range for (uiray> has a systematic uncertainty of
+0.000099 X if the temperature for the x-ray Debye-
Waller factor is taken as 295t32.5 K. Notice that the tem- We are indebted to Thorstein Thorsteinsson for guiding us
perature range introduces a spread <foiray) that is about to a useful algorithm for atableNewton-Raphson method in
seven times the quoted estimated standard deviation. In artige solution of the least-squares equations. One GRUS.S)
event, the x-ray value isery close to the lattice-dynamical is grateful to the Center For Crystallographic Studies for the
value. For the results presented here, there is little or ndospitality and, most of all, for the stimulation from the sci-
evidence of a systematic difference due to an erroneous ®intists and staff in the Center. Both of us are thankful for the
X-ray-scattering factor or to an incomplete expansion of BvKencouragement and support provided by Professor Sine
force constants. Larsen.
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