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Lattice dynamical Debye-Waller factor for silicon
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The mean-square amplitude of vibration of silicon at 293 K has been determined by a lattice-dynamical
procedure. A Born–von Ka´rmán model has been used to fit phonon dispersion data from inelastic neutron-
scattering measurements. The force-constant model included the first six nearest neighbors in the diamond-type
lattice. The least-squares results from the fitting of the force constants were used to carry out variance analyses
of properties dependent on the harmonic model. The density of phonon states was determined by sampling an
even mesh of 5.7 billion points in the unique part of the Brillouin zone. Moments of the frequency distribution
up to eighth order are tabulated. The frequency distribution function was used to calculate a^uLD

2 & for silicon.
The result is 0.005 94160.000 021 Å2. An Einstein-type potential of Dawson and Willis was used to extract an
anharmonic force constant from the temperature dependence of neutron-diffraction measurements of silicon
carried out by Batterman and co-workers. These measurements were restricted to the weak reflections from the
~222!, ~442!, and ~622! diffracting planes. With the use of the lattice-dynamical value for the vibrational
amplitude of silicon the result for thebDW anharmonic constant is 18.5860.27 N m21 Å 21.
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I. INTRODUCTION

For the last several decades very accurate measurem
of crystalline silicon structure factors by the method of x-r
Pendello¨sung fringes have appeared in the crystal phys
literature.1–4 In addition, rather weak reflections from th

crystal with space groupFd3̄m have been measured as int
grated Bragg diffraction intensities at essentially kinema
conditions. The associated diffracting planes are~222!,5

~442!, and ~622!.6,7 The nonzero intensities can only occ
due to nonspherically symmetrical scattering factors of o
order spherical surface harmonics at the silicon atom s

that have point-group symmetry 43̄m. These measured
structure factors of silicon have served as a benchmark
experimental determination of electron-density distributio
and physical properties that depend on the charge-den
distribution in the crystal. Very recently an extensive data
from diffraction with WKa1 radiation at approximate kine
matic conditions was reported and used for a constructio
a mean thermalelectron-density distribution.8 Although the
relative cross-section data lack the accuracy of the Pend¨-
sung data, the extension to a sinu/l value of 2.5 Å21 pro-
vided the investigators with an unusually high-resoluti
electron-density map.

The details of the charge-density analysis of accur
structure factors for silicon vary from one investigator
another. Spackman9 derived a static electron-density distr
bution with the rigid pseudoatom approximation and sou
comparison with solid-state calculations. On the other ha
Deutsch10 characterized the structure factors with
electron-density distribution that deforms with vibration
motion by the siliconnucleus. Sakata and Sato11 used Pen-
dellösung data to construct the mean thermal electron den
PRB 600163-1829/99/60~1!/284~8!/$15.00
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by the maximum entropy method. Similarly, the Japan
workers, Yamamotoet al.8 reported a mean thermal valenc
electron-density map also based on the principle of ma
mum entropy. Our own interests have focused on the t
mean thermalcharge-density distribution which includes th
nuclear charge density as well. In particular we seek a sili
Debye-Waller factor that is not based on an x-ray measu
ment.

A single-crystal neutron-diffraction experiment genera
gives reliable Debye-Waller factors if the diffracting cond
tions are nearly kinematic. Single crystals of silicon, ho
ever, are virtually perfect so that the dynamical scattering
neutrons renders the diffraction experiment intractable for
accurate determination of the mean-square amplitude of
bration ^u2& by the silicon nucleus. A powder-diffraction
experiment of silicon with neutrons can and does provid
reasonable determination of the Debye-Waller factor. Bai
eng et al. report a value of 0.456.02 Å2 at 284 K for B
which corresponds to a mean-square amplitude of vibra
of 0.0059 Å2 at 293 K.12 The neutron velocity of 3.34 km/s
in the incident beam was far below the minimum velocity
sound in the crystal. Thus the results were not contamina
with thermal diffuse scattering. The precision of theB value
was about 4%; a precision of 1% or better is our goal.

Another route to a Debye-Waller factor in a cubic crys
is by a lattice-dynamical sum over all the normal modes
vibration in the crystal. For monatomic cubic crystals t
evaluation involves an integration over the vibrational fr
quency distribution. The appropriate expression was gi
originally by Blackman.13 With the use of dispersion curve
of the normal modes of vibration, measured by inelas
neutron-scattering techniques, as well as measured Ra
spectra and elastic constants, frequency distribution fu
tions can be determined. The actual evaluation require
284 ©1999 The American Physical Society
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force-constant model of some sort that is used to fit the
persion curves and other lattice-dynamical data. Reid
given a brief summary ofB values for silicon based on sev
eral lattice-dynamical models.14 At 293 K the values vary
from 0.516 Å2 ~shell model of Dolling15! to 0.473 Å2 ~bond
charge model of Dolling and Cowley16!. Several valence
force potential models yieldedB values of 0.448, 0.467, an
0.469 Å2, respectively. The Born-von Ka´rmán model of
Zdetsis and Wang17 led to a value of 0.470 Å2. The spread of
values corresponds to a 14% deviation from a mean of 0.
Å2, if the shell result is not treated as an outlier. It wou
seem that a lattice-dynamical determination of the silic
Debye-Waller factor cannot be used to obtain a value tha
precise to 1%. To cite John S. Reid and John D. Pirie in th
1980 publication: ‘‘Indeed, there can be few quantities
apparently straightforward to determine as the Debye-Wa
factor but in practise so elusive.’’

In the last 20 years, however, it has become easy to
dertake the computation of fitting the dispersion curves w
Born-von Kármán ~BvK! force constants~BvK model!, con-
struction of the dynamical matrix elements and solution
the secular equation, sampling the Brillouin zone at a la
number of phonon frequencies and modes, and the final
culation of the phonon frequency distribution function. T
BvK model is phenomenological and usually requires at le
fifth-nearest neighbors for a satisfactory fit to the dispers
data from a diamond-type lattice.18 This is not a deterrent a
the present since in the 1990s more extensive data se
inelastic neutron scattering by silicon have become availa
One can expect a least-squares treatment to be well ove
termined in the ratio of observations to disposable force c
stants. In addition, a variance analysis of the final result
an easy undertaking. We report below results for a calcula
density of phonon states in silicon based on the BvK mod
From this distribution function a value for the Debye-Wall
factor is determined at 293 K.

A single-particle potential for atomic motion in
diamond-type structure was proposed by Dawson and W
some years ago.19 The functional form of this effective Ein
stein potential is

V~r !5V01
1

2
aDW~x21y21z2!1bDWxyz, ~1!

whereV0 , the potential energy of the equilibrium configur
tion, is taken as zero and thex,y,z refer to displacements
from the equilibrium positions. The harmonic force consta
is aDW which is related to the mean-square amplitude
vibration as

aDW5
kBT

^u2&
. ~2!

The Dawson-Willis potential predicts aT2 temperature de-
pendence for a class ofuFhklu ’s which was observed from
neutron diffraction by the~222! reflecting planes in silicon.20

In addition, theT2 dependence was also observed for neut
reflections from the~442! and ~622! planes.21 If aDW is
known, then it’s possible to determinebDW from the mea-
sured temperature dependence of the integrated intens
from the family of diffracting planes for whichh1k1 l
54n12. We report the anharmonic force constant,bDW ,
s-
as
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based on the data reported by Hastings and Batterma21

Roberto, Batterman, and Keating,22 and the Debye-Waller
factor from the present work.

II. BvK MODEL FITS TO DISPERSION DATA
AND ELASTIC CONSTANTS

The dispersion data from inelastic neutron-scattering m
surements are for the symmetry directionsD@100#, S@110#,
andL@111# in the Brillouin zone. The secular determinant
the dynamical matrix can be solved in closed form for the
directions. The explicit relations between frequencies a
BvK force constants out to sixth-nearest neighbor have b
given by Herman18 and Zdetsis.23 The expressions for the 2
force constants have been confirmed with our own comp
code for generating the force-constant matrices in
diamond-type lattice. The only discrepancy occurred
d28888 given by Zdetsis. We get the negative of his expre
sion as does Herman, which isd288885 1

2 (d88882g8888). The
elastic constantsC11, C12, andC44 are related to 19 of the
21 BvK force constants according to the method of lo
waves; the relations are in Zdetsis’ paper.23 The elastic con-
stants do not depend on the antisymmetric off-diagonal
mentsd andd28888 .

A least-squares program was written to fit the BvK for
constants to the squares of the measured cyclic frequen
v2, for theD, S, andL symmetry directions. First and sec
ond derivatives of the dispersion relations given by Zde
with respect to the force constants were evaluated explic
The elastic constants and an optically measured Raman
quency were included as observational constraints. The
dient and the Hessian of the mean-square surface, a su
weighted residuals spanned by 21 variables, were determ
at any point on the surface.

«5 (
n51

No

wn~On2F~q; P!!2, ~3!

where No is the number of observations,On is the mass
weighted square of a phonon frequency based on neut
scattering measurements,vn

2(q) the square of a measure
Raman frequencyvRA

2 , or elastic constants, which can b
related to force constants by the method of long waves.18,23,24

The wn is the inverse square of the error cited in the expe
mental data list.F is an explicit algebraic expression give
by Zdetsis which is a function ofq, a vector in the Brillouin
zone and ofP, a vector consisting of the BvK force con
stants. LetDn5@On2F(q; P)#. Then the gradient of« has
the components

]«/]Pj522(
n51

No

wnDn]F/]Pj , j 51,...,21 ~4!

The Hessian of the mean-square error has the matrix
ments
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]2«/]Pj]Pk

52(
n51

No

wn@~]F/]Pj !~]F/]Pk!2Dn]2F/]Pj]Pk#,

j 51,...,21, k51,...,21. ~5!

Equation ~3! was solved for a minimum by astabilized
Newton-Raphson method.25 Several initial values forP were
submitted to our least-squares program. The starting va
included: the 21 BvK force constants given by Zdetsis a
Wang,17 a set equal to 1022n wheren is the ordinal number
for nearest neighbor, and 10 fora and b with zero for the
remaining 19 force constants. For the cases given here
same stationary point on the« surface was found. The eigen
values of the Hessian~5! at this point were all positive
which ensures that a minimum was found.

The experimental neutron data used for the construc
of « are those of Dolling,15 Nilsson and Nelin,26 Strauch,
Mayer, and Dorner,27 and Kuldaet al.28 Altogether this set
of neutron dispersion data is comprised of 189 observatio
Some of the measurements are overlapping but the wei
differ with larger values~smaller errors! assigned to more
recent data. The Raman scattering line of 15.5
6.015 THz, measured by Parker, Feldman, and Ashkin,
a reported precision better than one part per thousand29 and
was used as an observational constraint forvRA along with
the less precise values reported by Dolling (15.
6.23 THz) and Kuldaet al. (15.696.07 THz). The elastic
constants were based on the ultrasonic measuremen
McSkimin,30 but no errors were reported. A small summa
of results for different silicon single crystals given in Ref. 3
indicates a precision of about 0.5% for the velocity measu
ments. Accordingly, we have assumed a relative error of
in the elastic constants as a basis for statistical weights.
total number of observationsNo in Eq. ~3! is 193 so that the
ratio of observations to variablesNo/Nv is 9.2.

An appropriate assignment of weights proved to be a v
ing problem. With weights based on the literatu
values,15,26–28a minimum in Eq.~3! had ax2 value@Eq. ~8!#
of 21.4. On the other hand, when the neutron data were
stricted to the 75 frequencies of Dolling, Nilsson, and Ne
used by Zdetsis and Wang17 the value forx2 was 1.52. Both
results include the three elastic constants and the optical
man frequency measurement. Evidently the sixth-near
neighbor BvK model of 21 force constants is deficient and
the data given by Kuldaet al. have underestimated erro
bars. A fit to the 73 neutron data in Ref. 28 plus the ela
constants and the optically measured Raman frequency h
x2 of 33.5. Yet the quality of fit is rather good in terms of th
relative weighted error,

Rw5S (
n51

No

wnDn
2Y (

n51

No

wnOn
2D 1/2

, ~6!

of 1.61%. The errors cited by Kuldaet al. lack precision for
use as weights in least squares. For example, if an error li
as 6.01 THz is actually6.014 THz the corresponding dif
ference in weight is nearly a factor of 2. We found in anad
hoc fashion that imposing lower limits to the relative err
for all neutron frequency measurements in a range fr
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0.001–0.01 in steps of 0.001 resulted in a convergence o
BvK force constants to a constant value well within the a
sociated estimated standard deviations whens~n!/n was
0.005 or larger. The correlation coefficients between
force constants were dramatically less fors(n)/n>0.005
than for the result with weights based on the face values
the cited errors. A result with constant weights for all obs
vations has ax2 value of 22.2 and a large number~87 in all!
of correlation coefficients~9! among the force constant var
ables in the ranges21.00<Cjk<20.707 and 0.707<Cjk
<1.00.

The BvK force constants by minimization of Eq.~3! with
weights based on the reported errors, butincreased if neces-
sary to a relative precision not less than 0.005, are given
Table I with the estimated standard deviations(Pj ) based
on the inverse matrix elements of Eq.~5! andx2:

s~Pj !5~x2« j j !1/2, ~7!

where « j j is the j j th inverse matrix element of the leas
squares Hessian and

x25«/~No2Nv !. ~8!

The correlation coefficientsCjk , defined below, were rathe
small:

Cjk5« jk/A« j j «kk ~9!

with only three outside the bounds of61/&. These values
were 20.92 for the correlation betweend8888 and g8888,
20.85 for them m- couple and20.78 for thel9 l8888 pair.
Despite the small off-diagonal elements in the inverse H
sian, one should not neglect these terms in computing a v
ance for some property that depends on the BvK force c
stants~vide infra!. The final BvK force constant fits, given in

TABLE I. Least-squares-fitted values of the force constants
Si ~N/m!.

1° a 46.5060.70
b 41.0160.48

2° m 2.8960.29
n 5.0760.33
l 26.7460.48
d 2.1060.32

3° m8 1.5460.32
n8 21.7860.30
l8 23.4460.42
d8 21.6460.18

4° m9 21.6060.42
l9 2.8860.61

5° m- 1.5960.22
n- 0.9260.29
l- 6.5260.48
d- 2.3960.20

6° m8888 0.4360.14
n8888 0.5460.15
l8888 20.4360.18
d8888 20.2060.14
g8888 0.2760.12



r-

th
s

e

-

in
es
to

te
is-
si

th
a

es

e
-
he
ata

ec-
ic

PRB 60 287LATTICE DYNAMICAL DEBYE-WALLER FACTOR FOR SILICON
Table I, had anRw @cf. Eq. ~6!# of 2.54% and ax2 value@cf.
Eq. ~8!# of 5.45. The BvK force constant fits to the dispe
sion curves in the@z 0 0#, @z z 0#, and@z z z# directions of the
Brillouin zone are shown in Fig. 1.

III. THE PHONON FREQUENCY DISTRIBUTION
AND ITS MOMENTS FOR SILICON

The force constants in Table I were used to construct
dynamical matrixD(q) for a diamond lattice which consist
of a 333 Hermitian matrixH(q), and a 333 symmetrical
matrix S(q). S(q) couples the sublatticek with the sublat-
ticek8 andH(q) contains coupling among atoms in the sam
sublattice. A unitary transformation introduced by Lax31

transformsD(q) into a 636 symmetric matrixD8(q) with
real elements. The 21 matrix elements inD8(q) can be de-
rived from four prototypes ofD(q).23 The phonon frequen
cies for anyq can be determined by solving the 636 secular
equation

uD8~q!2Imv2u50, ~10!

whereI is the 636 identity matrix andm is the mass of the
silicon atom.

The unique part of the Brillouin zone was sampled on
uniform mesh of 232.42 ~or 109.76) q sites, where at each
point, the six eigenfrequencies were determined by solv
Eq. ~10!. For the construction of the density of phonon stat
4096 intervals from 0–16 THz were used to make a his
gram of frequencies determined at eachq point. The resolu-
tion in n, by this procedure, was 0.0039 THz. The calcula
frequency distribution is shown in Fig. 2. The curve d
played here is very similar to Fig. 3 in the paper by Zdet
and Wang.17

The moments forg(n) have been calculated up toM8
where

Mn5
*0

`nng~n!dn

*0
`g~n!dn

~11!

and are conveniently reported in condensed form with
equivalent Debye cutoff frequency, as recommended by B
ron et al.:32

FIG. 1. Dispersion fits for Si.
e

a

g
,
-

d

s

e
r-

nD~n!5F1

3
~n13!MnG1/n

, ~12!

nD~0!5expS 1

3
1

*0
`~ ln n!g~n!dn

*0
`g~n!dn D , ~13!

nD~23!5
kB

h
QD~0!. ~14!

QD(0) in Eq. ~14! is the Debye temperature at zero degre
Kelvin. ThenD are listed in THz as a function ofn in Table
II. The estimated standard deviations of thesenD are also
listed; theses(nD) values were derived from the invers
matrix elements of the Hessian~5! and the numerical deriva
tives of theMn with respect to the 21 force constants. T
entries in column B are derived from thermodynamic d
and are taken from Ref. 16.

IV. SILICON DEBYE-WALLER FACTOR
AND ITS VARIANCE

The density of phonon states, given in the previous s
tion for silicon, can be used to construct thermodynam

FIG. 2. Density of phonon states for Si.

TABLE II. Equivalent Debye frequenciesnD for Si ~THz!.

n Aa Bb

23 13.39860.033 13.44
22 10.97460.021 11.07
21 11.43460.018 11.50

0 12.45460.021 12.46
1 13.45160.028 13.37
2 14.18160.035 14.0
3 14.65160.039 —
4 14.94360.042 14.8
5 15.12460.044 —
6 15.23960.045 15.0
7 15.31360.046 —
8 15.36260.047 —

aBased ong(n).
bBased on thermodynamic data.
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properties such as the specific heat. We use our presen
sults to calculate a Debye-Waller factor for silicon at 293
The explicit relation, first given by Blackman,13 is

B5
2h2

mkBT E
0

`

g~n!
1

x S 1

2
1

1

~ex21! Ddn, ~15!

wherex5hn/kBT. The first term in the parentheses of E
~15! is due to the zero-point motion and the second inclu
the temperature dependence. With numerical integration o
the density of phonon states,g(n) displayed in Fig. 2, our
result forB is 0.469160.0016 Å2 or, equivalently, the mean
square amplitude of vibration ^u2&, is 0.005 941
6.000 021 Å2. The average of the lattice-dynamical valu
for B, reported in Ref. 14, is 0.465 Å2, if the shell model
value of 0.518 Å2 is rejected as an outlier.

If the Debye temperatureQD is less than four or five
timesT, then it is also possible to use the moments ofg(n)
to calculate a reliable value ofB. One has the expansions

B~0!5
h

m
M 21 , ~16!

B~T!5
2kBT

m (
n50

Bn

n! S h

kBTD n

Mn22 . ~17!

TheBn in Eq. ~17! are the Bernoulli numbers, which are ze
for n odd and>3. The zero-point contribution toB is given
in Eq. ~16! while Eq. ~17! has the temperature-depende
terms. In contrast to diamond, whereB(0) is 86% of the
Debye-Waller factor at 298 K,33 B(0) is 0.1864 Å2, which is
40% of the silicon Debye-Waller factor at 293 K. From th
entries in Table II and with

Mn53nD
n /~n13!

the result for the sum in Eq.~17! is 0.2827 Å2 for B(T) and
B(0) from Eq.~16! is 0.1864 Å2. The sum from Eq.~17! had
reached four-decimal-place accuracy by then56 term. Our
value for QD at 293 K is 666 K, so a rather rapid conve
gence behavior of Eq.~17! is expected.

The precision we give forB is 0.34% and is based on th
least-squares results from the fits to the dispersion data
the BvK model. The variance relation used is

sB
25

«

No2Nv (
k> j

Nv

~22d jk!~]B/]Pj !«
jk~]B/]Pk!,

~18!

where « jk are the inverse matrix elements of the lea
squares matrix with« at its minimum value. The first facto
in Eq. ~18! is x2 @cf. Eq. ~8!# which is used to scale th
variance ofB to an observation of unit weight. The parti
derivatives ofB with respect to the force constants are list
in Table III. These were computed by numerical evaluat
of B with small changes in the force constants. Notice t
the partial derivatives of the diagonal elements of the for
constant matrices are negative, which is to be expected s
an increase in a force constant lowers the root-mean-sq
amplitude of vibration. The more negative derivatives oc
for m99 and l99, which are the diagonal elements of th
sixth-nearest-neighbor force constants. Slightly larger t
re-
.
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20.1 m Å2/N are the partial derivatives ofm8, a diagonal
element of third-nearest-neighbor force constants and ofm-
which is the~1,1! and ~2,2! element in the matrix for fifth-
nearest neighbors. Thes(B) determined from Eq.~18! with
the derivatives given in Table III is 0.0016 Å2. On the other
hand, ifonly the diagonal terms (k5 j ) are used in Eq.~18!,
then the estimated standard deviation ofB is 0.0746 Å2. The
caveat is to respect the off-diagonal elements in a le
squares matrix when the variables are not restricted to c
ficients of orthogonal functions. For the case reported h
neglect of correlation terms gives an estimated standard
viation which is too large by nearly a factor of 50.

V. ANHARMONICITY IN SILICON

From the single-particle potential~1! proposed by Daw-
son and Willis, the authors of Ref. 19 showed that the str
ture factor for a diamond-type crystal has the functional fo

Fhkl58i 3b exp~2M !~2p/a!3~bDW /aDW
3 !~hkl!~kBT!2,

~19!

whereb is the neutron-scattering length,a is the cubic cell
length,aDW andbDW are coefficients for the potential from
Eq. ~1! andM is the factorB(sinu/l)2. The structure factor
formula in Eq.~19! holds for that class of planes for whic
h1k1 l 54n12 and noh, k, or l is zero. The connection
betweenB andaDW is, via Eq.~2!,

B5
8p2kBT

aDW1020

andaDW is scaled from J/m2 to J/Å2 by the factor of 1020.
From the results for̂ uLD

2 & in this work, aDW is 68.09

TABLE III. Numerical derivatives ofB with respect to force
constants~m Å2/N!.

]B/]a 20.0241
]B/]b 0.0223
]B/]m 20.0700
]B/]n 0.0187
]B/]l 20.0418
]B/]d 20.0040
]B/]m8 20.0937
]B/]n8 20.0085
]B/]l8 20.0453
]B/]d8 0.0028
]B/]m9 20.0514
]B/]l9 20.0237
]B/]m- 20.0904
]B/]n- 0.0228
]B/]l- 20.0505
]B/]d- 0.0266
]B/]m99 20.2181
]B/]n99 0.0060
]B/]l99 20.1036
]B/]d99 0.0190
]B/]g99 0.0164
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60.23 (N/m). This is the value to be used in the analysis
neutron structure factors for the anharmonic force cons
bDW by virtue of Eq.~19!.

Besides the explicitT2 dependence on the right-hand si
of Eq. ~19!, M and a are also temperature dependent.M
varies linearly withT @cf. Eq. ~2!# and a has a very small
dependence onT. These temperature-dependent factors
incorporated into the left-hand side of Eq.~19! and, after
expressing sinu/l in terms ofa andh,k,l, Eq. ~19! is rewrit-
ten as

S uFhklu
hkl D S a

2p D 3

expS 2p2kBT

a2aDW31020~h21k21 l 2! D5cT2.

~20!

If a(T) is known, one may use the left-hand side of Eq.~20!
to construct reduced dataRhkl from the neutron structure
factors. TheseRhkl’s may be plotted againstT2 to determine
c. A least-squares solution forc is

c5 (
n51

No

wRhklT
2Y (

n51

No

wT4. ~21!

Thew are the inverse square errors reported forFhkl . With a
solution forc from Eq.~21!, the estimated standard deviatio
is

s~c!5S (n51
No w~Rhkl2cT2!2

~No21!(n51
No wT4 D 1/2

. ~22!

The sums in Eqs.~21! and ~22! extend over the observe
neutron structure factors, of which there areNo.

The lattice parameter of silicon as a function ofT from
300–1500 K, published by Okada and Tokumaru,34 was used
to construct theRhkl @the left-hand side of Eq.~20!# along
with the temperatures and neutron structure factors for~222!,
~442!, and the~622! diffracting planes, given in Refs. 21 an
22. Altogether, 11 reflections made upNo data used for the
sums in Eq.~21!. The value forc, from Eq. ~21!, is 3.723
31029, and its estimated standard deviation, via Eq.~22! is
5.4310211 in non-SI units of Å3 fm K22. A plot of Rhkl vs
T2 displays the fit of the reduced data to the temperat
dependence predicted by the Dawson-Willis potential.19

The range ofT was 288–1523 K for the plot in Fig. 3.a
varied from 5.4309–5.4580 Å and the factorB in M varied
from 0.4611–2.438 Å2 over the temperature range that w
used for the construction ofRhkl’s.

From c58b(bDW /aDW
3 )kB

2, we extract the anharmoni
parameterbDW . The result is 18.5860.27 N m21 Å 21 which
are non-SI units that read newton per meter per angstø
This result is about 75% of the average of the values in Ta
III of Tischler and Batterman.7 This discrepancy is primarily
due to the different values used foraDW . Our value of 68.09
N/m is derived from^uLD

2 & but a value of 78.5 N/m was
based on measurements ofQM done by Batterman and
Chipman35 and the approximation by Dawson and Willis19

that the Debye functionF(xm)1xm/4 was essentially unity
Actually, at 300 K, the value is'1.08, but the use of unity
does not account for the 15% difference.
f
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VI. CONCLUSION

We have made a determination of the Debye-Waller f
tor in silicon at 293 K by lattice-dynamical methods. Th
essential feature was a fit to inelastic neutron-scattering
for special directions of the Brillouin zone with Born-vo
Kármán force constants, the BvK model. This is a pheno
enological model which makes no prejudgement about
nature of the forces. One starts at a central atom and ass
undetermined force constants to successive ato
‘‘coupled’’ to the central atom with no constraints other th
ones that satisfy the symmetry properties of normal vib
tions in a crystal.36,37 The effective potential for the nuclea
motion is assumed to be due to an electronic system
remains in its adiabatic ground state. For a crystal of
diamond structure, there are two sublattices of the ato
one centered at the site@0, 0, 0# and the other at
(a/4)@1, 1, 1#, wherea is the cubic lattice cell length. The
BvK force constant matrices are arranged in a series of sh
which are labeled by the ordinal numbers 1st, 2nd,... nea
neighbors. It is often tacitly assumed that the relative imp
tance of the force constant matrices decrease with increa
distance between the atoms. This is decidedly not the cas
first suggested by Herman18 and illustrated by actual fits to
dispersion data.17 Our results are based on 21 BvK forc
constants derived from the first six-nearest-neighbor fo
constant matrices. Truncation of the BvK expansion nec
sarily introduces a systematic error of some sort, but it
difficult to quantify with the present information. The figur
of merit for quality of fit Rw ~6! changes from 2.81–2.54%
with a change from fifth-nearest neighbors~sixteen dispos-
able force constants! to our ‘‘complete’’ set of 21 BvK con-
stants. The corresponding values forB are 0.470 and 0.469
Å2, respectively. By contrast, a second-nearest-neighbo
has anRw of 14.2%, the force constants of which predict aB
of 0.53 Å2. The truncation at 2 compared to 5 or 6 has
systematic error of 13%, while the difference between fif
and sixth-nearest neighbor differ inB values by about 0.2%
The omission of force constants beyond second nea
neighbors predicts a much ‘‘softer’’ crystal with a mea
square amplitude of vibration that is more than 12% lar
than for the real crystal of silicon at 293 K. The near agre
ment of B values based on fifth- or sixth-nearest neighb

FIG. 3. Plot ofRhkl vs T2.
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BvK force constants does not guarantee that our results h
converged to the correct lattice-dynamical value with a s
tematic error less than two or three parts per thousand.
clusion of seventh- and eighth-nearest neighbors would
tend the list of disposable force constant parameters to 2
the least-squares fitting of the phonon dispersion data. In
absence of more inelastic neutron-scattering measurem
the degrees of freedom would be reduced to 164 and
overdetermination ratioNo/Nv of 6.7 compared to the
present ratio of 9.2. The lattice-dynamically derived va
for B probably has an accuracy of four parts per thousan
better. We leave the matter here and turn to a discus
comparing the value ofB derived in this work to other ex
perimental estimates.

The thermal mean-square amplitude of vibration^uNeu
2 &

derived from neutron powder-diffraction data12 is 0.0059
60.00025 Å 2 when scaled from 284–293 K, which agre
with the result here, albeit a far less precise value. Recall
^uLD

2 & is 0.005 94160.000 021 Å2. A number ofB values for
silicon, derived from x-ray-diffraction measurements are
ported in the literature. In a study of the electron-dens
distribution in silicon by Spackman,9 where concern for the
nature of the core scattering was addressed, an average
for ^uxray

2 & equal to 0.005 86660.000 014 Å2 was reported.
The average was based on x-ray-diffraction data from
Ka and MoKa radiation. The x-ray structure factors we
taken from measurements in a temperature range from 2
298 K as cited in Ref. 9. In comparing to our value at 293
the range for ^uxray

2 & has a systematic uncertainty o
60.000 099 Å2 if the temperature for the x-ray Debye
Waller factor is taken as 295.562.5 K. Notice that the tem-
perature range introduces a spread for^uxray

2 & that is about
seven times the quoted estimated standard deviation. In
event, the x-ray value isvery close to the lattice-dynamica
value. For the results presented here, there is little or
evidence of a systematic difference due to an erroneou
x-ray-scattering factor or to an incomplete expansion of B
force constants.
tal
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With the use of a single-particle potential, proposed
Dawson and Willis, an anharmonic force constant has b
extracted from the temperature dependent neutron struc
factors measured by Batterman and co-workers.20–22The re-
sult for bDW is critically dependent upon the choice fo
aDW . In a paper on the~222! ‘‘forbidden’’ reflection, Keat-
ing et al.20 use a value of 78.5 N/m foraDW which is taken
from the paper by Dawson and Willis19 who set the Debye
function to unity in order to get an estimate of the isotrop
force constant fromQM . The temperature dependence
x-ray-diffraction intensities from powder samples of silico
was used by Batterman and Chipman to determineQM . An
average value of 54368 K for silicon was reported in Ref
35. Our lattice-dynamical value forQM is 527 K. The slopes
of the temperature plots done by Batterman and Chipman
proportional toQM

22 so the difference in slopes amounts to
factor of 1.06 and implies that a value of 72.3 N/m foraDW
is more compatible with the Batterman and Chipman va
for QM . If 72.3 N/m is used for the isotropic force consta
in the Dawson-Willis potential function with the same da
and analysis as done in this paper,bDW is 21.9 N m21 Å21 in
contrast to the lattice-dynamically based value of 18.58. T
actual value for the anharmonic force constant in
Dawson-Willis potential is strongly dependent on the cho
of the isotropic force constant rather than the reduced n
tron data given in Eq.~20!.
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