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We derive general expressions for the energy and lateral momentum resolved scattering spectrum describing
collisions of beams of thermal energy He atoms with adsorbates on a flat substrate surface. Elastic and inelastic
components of the projectile-adlayer interaction, of which the latter can be nonlinear in adsorbate displace-
ments, are treated to all powers in the coupling conggearid with full account of the projectile recoil. The
established formalism enables a combined treatment of elastic scatteitingr diffuse or diffractive and
inelastic excitation of multiple phonons and overtones in the adlayer on an equivalent footing. For nonlinear
vibrational coupling the distorted wave matrix elements of the interactions are Holstein-renormalized by zero
point motion of adsorbates. In the case of scattering intensities calculated to lowest aydieisigives rise to
a direct analog of the standard Glauber—van Hove Debye-Waller factor. The closed form solutions for the
scattering spectra to all orders gnare characterized by a unified or complete Debye-Waller factor which
embodies the effects discussed so far only separately in the liter@tuedtenuation of the scattered beam
intensities due to zero point motion of adsorbates, @ndattenuation of the beam intensity in the elastic
channel due to inelastic scattering from adlayer phonons and overtones. The complete Debye-Waller factor
acquires a form of an exponentiated sum of Holstein-renormalized scattering intensities and acts to preserve the
unitarity of the scattering spectrum in accord with the optical theorem. The developed model facilitates
evaluation of the various approximate and limiting forms of the scattering spectra and the associated Debye-
Waller factors characteristic of the different scattering regimes and different types of adlayer vibrational
dynamics. Potential applications of the model are illustrated by estimating the effect of Holstein renormaliza-
tion occurring in the unified Debye-Waller factor and scattering intensities for several prototype adlayer
systems[S0163-182@09)02428-5

[. INTRODUCTION footing. A combined quantum treatment of diffractive and
single-phonon He atom scatteriigAS) from clean surfaces
Despite the many efforts to formulate and unify the notionhas been developed in the distorted wave Born
of the Debye-Waller factofDWF) in atom-surface scattering approximatiod®** (DWBA). However, the Debye-Waller
theories, where it plays the role of an attenuation factor fotype of reduction of the scattered beam intensities is ex-
the scattered beam intensities, its form has remained a mattBgcted to be most prominent in collisions typified by mul-
of controversy. Already the earliest attempts in this directionfiPle Phonon exchang®'®~?The theories aiming at taking
encountered _difficulties which were realized and clearlylnto account multiphonon atom-surface scattering processes

pinpointed!~® Later approaches based either on a directVere often based on the trajectory approximatida,) for

transposition of the Glauber-van Hove form of the DWF _descrlpnon of the projectile particle motidh,2® particularly

from quantum theory of neutron scattering by vibrating crys—In the_c?e of heavier projectiles anq_hyperthermal _|nC|dent
tals, in which it appears as a reduction factor for the intensiNergIes. One of the standard quantities calculatgd in these
ties of first order diffracted neutron beams due to zero poin pproaches is the loss spectrum or the probability that an
motion of the scattering centef$ or its reformulation taking mpun't of energy and .mor.nentum Is transferred from the
: i : o o projectile to quantized vibrations of the crystal. The normal-
into account thg specific scattering cond!tlops at sgrfadés, ization factor of such spectra, given by the weight of the
have only confirmed such a state of affairs in the field. In the,|agtic or no loss line, was found to exhibit the exponential
majority of these works the discussions of the DWF werefqrm reminiscent of the DWF of neutron scattering theory.
concentrated on a more or less modified form of the or|g|na|3y analogy, this factor was also termed the DWF although
expression exXp-Zq(((Ak-ug)?))] typical of inelastic neu- ng justification as to the same physical origin of the two
tron scattering cross sections calculated in first order Borguantities could be given at that stage. Later improvements
approximation. Here\k is the change of the projectile par- over the results of the TA were achieved in the mean #feld
ticle momentum in the course of the collision, af{d . . )) and wave packét approaches which brought the expressions
denotes thermal averaging of the squares of normal modfer the DWF closer to the ones derived in earlier quantum
amplitudesu, describing the vibrations of ion cores in the theories>®
crystal. Recently, a completely quantum treatment of the scatter-
From the early stage of development of the theory of thering intensities in inelastic multiphonon scattering of He at-
mal energy atom-surface scattering attempts have been madms from statically flat surfaces has been develofetf.
to treat the diffractive and inelastic scattering on the sam&his approach established the weight of the elastic peak in
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the exponential form, in a fashion analogous to the opticatombined aspects of the above mentioned two types of the
theorem. It has also been shown that in the limit of a classiDWF in a nontrivial fashion and allows one to retrieve each
cal motion of the projectile this exponential attenuation fac-of them in special limits. The present work is focused on a
tor turns into the expression found earlier in the TA ap-general formulation of the theory of quantum scattering of
proaches. Due to this analogy it was also termed the DWHie atoms from such adlayers and on the derivation of ap-
and its application to the calculation of intensities of elasti-Proximate expressions for the scattering spectra appropriate

cally scattered thermal beams of noble gas atoms from statfo the various scattering regimes. In the forthcoming papers
cally flat surface®3* yielded a very good agreement with W€ shall concentrate on the use of the developed formalism

to interpret the experimental data obtained for some proto-
type adlayer systems studied by HAS. In Sec. Il we formu-
r{ate the projectile-adlayer interactions that are nonlinear in
adsorbate displacements which then leads to Holstein renor-

pressions may coincid®€.Obviously, this situation has given :T‘al'dza.t'on of.the scatterlnglg m%tnx elements. Thgsl flc_)|rmql—
rise to a dilemma as to which form of the DWF to use in the'3t€ mterzct(ljofns ﬁredemp.oy.e t? setdup a mo feH ami-
discussions and interpretations of the atom-surface scatterifg"'an needed for the description of the dynamics of He atom
data, whether only one of these, their product or some oth attering from adlayers. With the aid of these prerequisites

more complex expression. The situation was additionallyV® develo(;) n S”e(f I“I a fo:mallsm for calcullatlgn of the
complicated by the difficulty to deconvolute the experimen-EN€rgy and parallel or lateral momentum resolved scattering

tal multiphonon HAS spectra from metal surfaces angSPectrum. Here we introduce the notion of a complete or

thereby identify the large DWF-induced reductions of theuniﬁed Debye-Waller factor which encompasses the afore-

scattered beam intensiticé 19 mentioned two aspects of the Debye-Waller effects originat-
The likely representativ.es of the systems in which theing from the Holstein renormalization of the scattering inter-

above mentioned Debye-Waller effects could be most Congction and the total current conservation in the collision. By

veniently studied are those in which a cross-over from asuitably separating the uncorrelated from the correlated pho-

single to a multiphonon scattering regime can be easil;?on excitation processes we are able to identify the dominant

traced and assessed. Such systems are provided by the adi§ ntributions to the scattering spectra in the various regimes
HAS and define approximations in which they can be

ers of atoms or molecules adsorbed on metal surfaces as liabl lculated. W v the develoned f Y

very many cases they have been found to sustain low ener bla' y lca C(;’ fate : Ie' appfy t he eveloped forma 'ST_&%

vibrational modes#w~ few meV) of which some may ex- tain closed form solutions for the spectra pertinent to
from ordered submonolayers in Secs. IV and V and from

hibit negligible dispersion. Their frequencies are usually de- . . .
tz;clhed ?r(I)gr; oth(Iarpmoées of thle sygtlém c:ver theulalrjgegt paﬁlsordered submonolayers and isolated adsorbates in Sec. VI.

of the surface Brillouin zone which makes their multiple inally, in Sec. VIl we reiterate the _bagic assumptions and
excitation easily identifiable in the HAS time-of-fligHEOF) results of the developed theory and indicate the adlayer sys-

measurements. This has facilitated the studies of low energg?ms to which it can be readily applied by estimating the

dynamics of a number of adlayer systems in the single an orresponding Holstein reductions of the scattering intensi-
multiphonon  scattering regimes over the past twoll€s and of the unified Debye-Waller factor. Formal deriva-

decaded?20:21.38-46 tions of some specific forms of the interaction matrix ele-

Besides the Debye-Waller type of effects, the interest ifnents and of the general expression for the scattering

the low energy modes stems also from the fact that they cappectrum based on the cumulant expansion are presented in
pendices.

be thermally activated already at very low temperatureép
which is of particular importance for the thermodynamical
and structural properties of surfatesnd for the sliding Il. FORMULATION OF THE PROJECTILE-SURFACE

friction.*® However, due to the different structural properties INTERACTION

of the various types of adlayers sustaining low energy \ye assume a flat substrate covered with adsorbates lo-
modes, the theoretical interpretation of a variety of the COr¢aeq in front of the physical surface of the substrate. Beams
responding HAS TOF spectra cannot be restricted only 10 thg thermal energy He atoms can excite vibrations localized
use of the formalism outlined in Ref. 32. This formalism | ithin and typical of such adlayers, giving rise to specific,

proved successful in the interpretation of inelastic scattering,qsorpate-induced phonon structure in the experimental TOF
from statically flat surface® 21344049y hereas in the case spectra.

of adlayers of submonolayer coverage or isolated adsorbates 11 unperturbed He atom motion in front of a clean flat

the incoming beam is primarily scattered by the underlyinggpsirate surface is governed by the projectile particle
substrate surface on top of which the array of vibrating adyamiitonian

sorbates represents a perturbation for the distorted waves. In

experimental result®®® An additional analysis has shown
that this type of the DWF has different origin relative to the
one introduced in neutron scattering theory and that only i
the limiting case of a classical particle motion the two ex-

this situation the assumption of a statically flat surface un- art p?

derlying the HAS theory developed in Ref. 32 is no longer HE = —+U(2), (1)
S . : . 2M

justified and a different approach is needed to describe the

scattering event. where the He atom radius vector (p,z) has the lateral or

In this paper we present a unified theory of diffractive- parallel to the surface componemiand perpendicular to the
elastic or diffuse-elastic and multiphonon-inelastic scatteringurface componer# andp andM are the momentum opera-
of thermal energy He atoms from vibrating adsorbates antlbr and mass of the projectile, respectivali(z) is the lat-
adlayers of submonolayer coverage. The theory encompassesally averaged static He atom-surface potential responsible
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for specular reflections of the projectile from the bare surphonons to lowest order in the coupling constant can be in-

face. Its repulsive component originates from the overlap otluded in a rather straightforward fashion and some aspects
the electronic wave functions of the He atom and the surfaceyf this problem were addressed in Ref. 53. We further invoke

and hence is short ranged, whereas the attractive componesmtcommon approximation of atom-surface scattering theory
follows asymptotically a long range van der Waals behavioiin which the total He atom-adlayer interaction potentiét)

o —1/73. is represented by a pairwise sum of the potentiglis—r,
The wave functions diagonalizing) are written in the  —u,) describing the interaction of the scattered He atom with
form of distorted waves each single vibrating adsorba&This approximation is jus-
tified in the situation of submonolayer coverages and we

1 _ obtain
(r|k>=<p,z|K,kZ>=ﬁexp(| Kp)xe(2). (2

Here AK denotes the lateral momentum of the projectile v<r>=2 v(r—r|—u|)=2 vip—p— Uy, z=z—Uuy),
which is a constant of motion in the absence of perturbations ! ! 4
destroying translational invariance along the flat substrate (4)
surface. The quantum numbler describes the perpendicular
or normal to the surface motion of the atom in the potentiawhereu;= (uy,u,) denotes the displacement of titb ad-
U(2) and7ik, has the meaning of the projectile perpendicu-sSorbate as a whole from the equilibrium position. In the
lar momentum far away from the surfacg, (2) is the cor- present formulation of the interaction we do not include the

responding nondegenerate solution of the one-dimension ffect of intra-adsorbate vibrations, usually of much higher

Schradinger equationL, andL, are the lengths of the quan- requencies and hence inaccessible to HAS, which are mea-

tization box in the direction parallel and perpendicular to thesure_d, €.g., In EEL.S experiments. The_|r tr(_eatment requires
e introduction of internal adsorbate vibrational degrees of

surface, respectively. The continuum state wave function : . . )
(2) are equal up to an irrelevant phase factor to the unpe freedom into the scattering potential, as was demonstrated in

; ; o Ref. 55.
turbed distorted wave scattering stdt€%! satisfying the . . .
box normalization condition Assuming He atom wave functions given by E@) we

obtain for the He atom-adlayer interaction matrix elements:
(k'|Ky= 8y’ - 3

The choice of this normalization proves convenient in later <K’,kz,|V(r)|K,kZ):2 e K =K)(pr+uy))
manipulations with the scattering matrix elements. I

Two separate types of perturbations can affect the motion
of He atoms described by the unperturbed wave functions
(2). First, there is an interaction between He atoms and the
dynamic corrugation of the substrate surfatmibstrate where
phonon$ and, second, with atoms or molecules adsorbed on
the surface. The two types of perturbations produce separate L
as well as interferendenixed) contributions to the scattering , *
amplitudes. Quite generally, the separate contributions ap\-’(K,_K'kZ 'kZ’ulL):mJ dZXk;(Z)sz(Z)
pear already in second order terms in the coupling constant £

XV(K,_K,ké,kz,th), (5)

whereas the mixed contributions appear first in fourth order 2 iK' —K)p,

terms in the coupling constant. Therefore, up to fourth order X f dpe Vipz=z—uy).
in the coupling constant the substrate and adsorbate induced

modes can be studied separately as a superposition of the ©)

two dynamical structures in the scattering spectra. In the

present study we shall concentrate on the systems in whicHere the appearance of the adsorbate lateral coordipates
the low energy vibrations of the substrate and adsorbates areu in the exponent on the right-hand-sitRHS) of Eq. (5)
nearly decoupled and well separated throughout the majds due to the translational invariance of the unperturbed par-
part of the surface Brillouin zon€SBZ). The exception oc- ticle wave functions along the surface.

curs in the long wavelength limit in which the frequencies of Next we observe that for adsorbates whose centers lie
low energy adsorbate vibrations become degenerate with theutward the turning pointg; of the wave functions(kz(z),
continuum of substrate modes. However, even near the cefe 7>z, it would be appropriate to represent both e

ter of the SBZ one may consider the adsorbate inducednq zdependence of/(p,z—z—u,) through its Fourier
modes as distinct modes with renormalized frequency angansform(FT) v¢(Q,p). Defining

lifetime which are readily determined from the parameters of

the system? Hence, in the following we shall not consider

the coupling of He atoms to the dynamic corrugation of the d’Q (= dp .. .
crystal surface but study only the interaction of the closed V(P,Z)=J 5 EE'Q”E'F’ZVF(QP), 7
shell electronic structure of the He atom located with the (2m)") ==

adsorbates of the adlayer which can vibrate around their

equilibrium positions at,=(p,,z). The effect of substrate we obtain
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p-component of the Fourier transform of the potential over

(K" Kk [V(NIK k) =— > e K =K)(pruy) the oscillatory part of the distorted waves and this gives rise
s ! to the appearance of the factpy;, in the exponent on the
= dp RHS of Eqg.(11). In both cases these renormalizations repre-
XJ —_TeTip(mtuy) sent an off-the-energy-shell effect as they arise from virtual
—w 2T phonon exchange processés.

’ !
XVe(KT =K p)fe(k; kz,p), (8) Ill. SCATTERING SPECTRUM AND THE COMPLETE
where we have introduced the generalized FT-generated os- DEBYE-WALLER FACTOR
cillator strength:
The derivation of the scattering spectrum is facilitated by

/ _ 7 Lipz* writing the total Hamiltonian of the interacting scattering
fe(k; . k;,p) Lce X (Dxi(2)dz. ©) system in the form
On the other hand, for small adsorbates whose centers may H=HP"+HB"+ gV=Hy+gV, (12

lie nearer to the surface tham, viz. z<z;, it may turn out

more convenient to use the Laplace transform to represe

the zdependence of(p,z—z—u;,) as this could provide

faster convergence relative to the transformation coordinate

p. This approach is briefly outlined in Appendix A. HE= > Exk.Ck k Ck kr (13
Expressiong5)—(9) are quite general and valid for any Kk Lo

type of adsorbate-He atom potential. One of their importantyhere Ex . =Ex is the energy of the projectile particle

and interesting properties, and thereby also of the He atorfgn,se motion is described by the distorted waves, ().

interactions with vibrating adlayers, can be recovered upon CL,kZ and Crok, denote, respectively, the creation and

taking the thermal average over the vibrational modes in "z .
expression(5) which is assumed site-independent for adsor-annihilation operators for the particle in the state denoted by

bates occupying equivalent adsorption sites. This yields ~duantum numbersi(,k;). HE" is the Hamiltonian describing
unperturbed vibrations in the adlayer which after the quanti-

(K" ko [({V(r))) K, ky) zation of the adsorbate displacements gives the free phonon
Hamiltonian in terms of the phonon field creation and anni-

r?tnd expressing the constituting terms in the second quanti-
zation. Thus

1 E Sk ke [79P ko) hilation operatora' anda, respectively. Its particular form
7.4 e leﬁe depends on the phonon quantum numbers, i.e., on whether
stz the adlayer sustains localized or delocalizgdopagating
XVe(K' = K)fe(k, k,,p)e”ira, (10) modes. Hence, it will be explicitly written down in connec-
tion with the application of expressidid?2) to either ordered
Here(()) denotes the thermal average and or disordered adlayers in Secs. IV and VI belayis the

coupling constant introduced for convenience and eventually
set equal to unity. Making use of expressi@ we find for

&K K = exg — = ([(K’ K )uy+pu, 7))
2 I 1L : the interaction term

(13)
where the exponential form of expressig) follows from v=2 X e (K Kt
the Bloch-Glauber theorem. Its explicit form depends on the P OKK kg kg
expansion of the displacements in terms of normal phonon , , +
modes of the systerfsee Secs. IV and VI below Xv(K'=K.k, ’kZ’uu)CK’,kZ'CK«kz’ (14)

The occurrence of the exponential factad) arises from ) ) . .
the local character of the interaction of the projectile atomVhere the scattering matrix elements are given by expression

with adsorbate displacements to all orders in the coupling® @nd the adsorbate displacement operaipese expressed
constant. This factor has the appearance of the HolsteiftS @ linear function of the phonon field operatafsanda
renormalization of the interaction matrix elemefpisesently ~ €XPlicitly defined in Secs. IV and VI. _
ve(K'—K,p)] which is commonly encountered in the stud- Since the quantmeEK'kZ and K fully specify the state
ies of boson fields perturbed by local potentf€° Its  |K k), we can now define with the aid of E¢L2) the an-
square plays the role of the standard Glauber-van Hove typgular resolved scattering spectrum by the relation

of the Debye-Waller factor occurring in first order perturba-

tion theorie$® which reduces the magnitude of the scattering Ny (AE,AK) = lim (¥ (t)| JAE— (H§"E)]
intensities. Physically, this effect originates from zero point i
vibrations of the adlayer which act so as to smear out the X S AAK — (P—#K)][W(t)), (15

scattering potential in the lateral and perpendicular direc-

tions. The explicit form of the contribution due to lateral wherek;=(K;,k,;) are the quantum numbers describing the
vibrations arises from the translational invariance of the latinitial state of the projectile particle,¥(«)) is the total

eral component of the unperturbed projectile wave functionwave function of the interacting system &t~ after the
Perpendicular zero point vibrations smear out eaclcollision event has been completed and the particle scattered
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into the final statdK;,k,). P is the operator of the lateral fined by Eq.(15) is directly proportional to the experimental
momentum of the particle, and the changes of quantum nurpectrum'® Let us also note that for later convenience we
bers AK and AE appearing in the arguments of the have expressed in E(L5) the energy and lateral momentum
S-functions on the RHS of Eq15) are given byAK=K; transfer in terms of the particle rather than the phonon op-
—K; and AE=E, —E,=E;—E;. With this convention erators because in such a formulation we can retrieve the
used also in the terminology of the TOF spectra we havélastic diffraction and diffuse scattering effects explicitly
AE<0(>0) in the case of particle energy loggain.5®5  from the elastic part of the spectrum for whiaE=0. This
Since E; and the direction ok; are fixed by experimental IS in contrast to Ref. 32 in which the energy and lateral
conditions the connection betwearE and#AK through the  Momentum transfer between the projectile and phonons of
conservation of total energy and lateral momentum in thdhe statically flat surface were expressed in terms of the cor-

collision leaves onlyAE and the final spherical polar scat- f€SPonding phonon operators. v
tering angle®y; and ¢; as independent experimental observ- A formal evaluation of expressiofiS) proceeds” by ex-

ables. Taking into account the in-sagittal-plane scattering ge?€SSing the energy and momentum consendrignctions
ometry in which the HAS TOF measurements are usually2s Fourier transforms of exponentials of the operatt§s'

carried out, it can be shown that the scattering spectrum deand P. This yields

= dr AR N _ i part__
Nki(AE,AK)=f_w2Wﬁfme(l/h)[(AaE,)r h,(AK+K,)R]<\I,(OO)|e (irt)(H§" PR)|q,(OO)>
w 2 ..
:f ﬂf d—Re(i/h)[(AE+Ei)T—h(AK+Ki)R]<i|S|e—(i/h)(Hganr—PXX—PyY)SI|i>
—=2mh ) (27h)2
- 2
:J' dr J d'R Ze(i/h)[(AE)T—ﬁ(AK)R]<i|e—(i/h)(Hga“r—PXX—PyY)li>_ (16)
—=2mh ) (27h)

HereR=(X,Y) is a two dimensional radiusvector parallel to in which the initial state averages can be calculated by ap-
the surface plane where the capital letters have been intr@lying the cumulant expansiéh (cf. Appendix B. This
duced to avoid confusion with the coordinatesy() of the yields

particle,|i) is the initial noninteracting state of the scattering

system at,— — (implying also thermal averaging over the © dr d2r
phonon statgs S, is defined in the interaction picture accord- Nki(A E,AK)= _wmf W
ing to
S,=t Iitm U, (t,tg), (17 Xe(i/ﬁ)[(AE)rﬁ(AK)R]eXF{ 2 C. (R,
—00, o_>730 n=1
where (22
U (t,tg) = eli/MHo(t=to) g~ (i/)H(tto) where the explicit form of the cumulan@;,(7,R) is given in

Appendix B. Expressioli22) is exact as no approximations
have been employed in its derivation. The general properties
of the thus obtained scattering spectrum and its connection
and equivalence to th&-matrix scattering formalism have
Been discussed in detail in Ref. 32. Here we shall observe
only one basic property of expressi¢22) which is impor-

tant for further analyses of the scattering spectra. The terms

— li/MHotg—(i/H)H(t—tg) o= (i/h)Hto

is the evolution operator in the interaction representatfon,
and the canonically transformed operators appearing in th
third line of Eq.(16) are defined by

art_ ot yparic art
HE=STHE™S = HE™ + W, (18 in the exponentiated series in the integrand on the RHS of
. . Eq. (22, which are all functions of the Holstein-
Pe=SPS =P+ W, (19 renormalized matrix elements of the projectile-adsorbate in-
teraction, can be separated into two subseries, one with the
py:sl’ffaysl = |5y+ W, . (200  terms dependent and the other with the terms independent of
the transformation variablesandR. The exponentiated sum
The last line of expressiofi6) defines the kernéM(7,R) of  of (r,R)-independent terms, which can be factorized out of
the spatio-temporal Fourier transform as the integral, gives the weight of the elastic line. This can
. . easily be seen by expanding the remaining exponential func-
N(7,R)=(i|e” (/M= PX-PY)jy, (21)  tion of the sum of ¢,R)-dependent terms into a power series
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and carrying out the {,R)-integrations, after which the no tions to the scattering matrix or the scattering spectrum for

loss line is recognized as the term proportional toHe atom incoming energie§; up to ~100 meV. Hence,

S(AE)S8(AK). Thereby the factorized 7(R)-independent One can retain only these terms in the exponent on the RHS

exponential term preserves the unitarity of the scattering@f EQ. (22) as the remainder gives a small correction to the

spectrum and hence can be identified with the completéumulant sum. The spatio-temporal Fourier transform of

Debye-Waller factor. such expression gives the scattering spectrum in the distorted
The infinite series of cumulants in the exponent on thewvave exponentiated Born approximatitEBA):

RHS of Eq.(22) cannot be easily calculated except for very

simple model systems and therefore some approximationsin . = d7d’R

the evaluation of this expression must be introduced as, e.g., Nk, (AE,AK)= J:OO 23

the truncation of the series. Due to the structure of expres- (27#)

sion (22) such a procedure does not violate the unitarity X exd 2WEBA(7,R) — 2WEBA(0,0)],

property of the scattering spectrum. In particular, the sum of

the first two cumulant€,; andC,, which is proportional to (23

g?, describes only uncorrelated scattering processes whereg$ere

all other higher order ones give corrections to these basic

processes in terms of the correlated scattering events. ThuswEBA 7 R)— 2WEBA(0,0)=C,(7,R)+ Co(7,R). (24)

for instance, the probabilities of resonant processes in which

the projectile is first elastically scattered by an adsorbate anfio obtain the explicit expression foV2BA(7,R) one fol-

then inelastically by another one by emitting or absorbing dows the procedure outlined in Appendix B to calculate

phonon, or vice vers& are correlated and proportionalgd ~ C,(7,R) by taking cumulant averages of the products of

and hence require the evaluation of the cumulants of thénteraction operators)f; ,)Vy, V), with the latter calcu-

corresponding order. lated following Eqgs.(18)—(20) and the procedure described
It has been showR*®® that the terms describing uncorre- in Sec. Ill B of Ref. 32. For the interaction given by H&)

lated phonon scattering processes give dominant contribuhis yields

li/M)(AE) 7= A(AK)R]

QWEBA(7 R)= S e (/MI(E—EQ)h(K'~K)R] 12 S ei(K’—Ko(mr—me AP ip 2y g w(k K )
’or L L )2 Y — 2'77'
K' K., (LL9) v

, o0 dp// ) _ I A , , "
XV;(K,_th/)f;(kzvkzivp/)f_xﬁe P72 g WK =K POy (K =K, p") Fr(K, Ky, D)

Xifm dt’foc dt//ef(i/ﬁ)(EkrfEk‘)(t'7’[")
h2) - —o

Xexp(([L(K" = Ki)up(t") +p"up (1) JLK" =Ky up (1) +p"up, (1) 1)), (29

2WEBA(7 R) is the so-called EBA scattering or driving func- spective of the actual validity of the EBA. On the other hand,
tion whose time dependent part comprises exponentiated coiie EBA spectrum23) does not on its own automatically
relation function of lateral and normal adsorbate vibrationsimply conservation of the total energy and lateral momentum
The different form of the correlation function in the lateral in a multiple scattering process. It is only in the range of the
and perpendicular directions reflects the break down of transsalidity of the EBA, in which the correlations between sub-
lational symmetry in the system due to the presence of theequent phonon excitations in a sequence of the on-shell pro-
surface. The scattering function embodies two important feacesses are very weak and thereforeGylL,(7,R) are negli-
tures of the scattering evert) the projectile atom may in- gible, that as a consequen&d and AK satisfy the total
teract simultaneously with more than one adsorbate in thenergy and momentum conservation. Hence, in practical ap-
adlayer in the course of the collision, arfid) during this  plications of expressiof23) to multiple scattering one must
interaction the particle may be scattered elastically or inelasfirst check the validity of the EBA in a particular collision
tically, in the latter case by giving rise to either single or regime(e.g., by following the prescriptions outlined in Refs.
multiple (subsequentphonon excitations, or to overtones 30 and 32 and then calculate the EBA spectry8) for the
(anharmonic vibrational transitionsor combinations of values ofAE and AK obeying total energy and lateral mo-
these. mentum conservation, i.e., the values lying on the *“scan

In the EBA the exchange of energy and lateral momentuncurve.” Of course, the same also applies to the scattering
is automatically conserved in each interaction versge  spectra calculated in other approximatidietassical trajec-
Sec. V). This property arises from the quantum character otory, impulsive scattering, efcwhich are the special limits
both the particle and the phonon field and is preserved irreef the EBA (cf. Ref. 32 and Sec. V below
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Further evaluation of WEBA(7,R) requires a specifica- coherent vibrations propagating in a periodic adlayer can be
tion of the vibrational displacements in terms of the pho- expanded in terms of normal phonon modes’a?:
non modes characteristic of the adlayer. However, an impor-
tant remark can be made already at this point. As was noted

in connection with expression(22), the quantity U= (U )=E 0 j)( 12
exf —2WEBA(0,0)] = exyd — 2WEBA] on the RHS of Eq(23), AT g N 2M N qwg |

which is independent of and R and whose exponential io N

appearance is independent of a particular form of the xeP(ag+alq)), (27)

projectile-surface interaction, can be factorized out of the

triple integral. After expanding ekp2WFBA(7,R)] into @ yhere Q j, fiwg; and &Q.J)=[e(Q.}).e (Q.j)]
power series and _carrying out the integrals we fiqd thatin_the__e*(_Q,j) denote 'Jthe two dimensional wave vector,
EBA the total weightNG™" of the specular elastic peak is pranch index, energy and polarization vector of a normal
given in the form phonon mode, respectivelyl , is the adsorbate mass and the

honon mode creation and annihilation o eratzm&q and
Nepecuiaf AE,AK) = N5BAS(AE) 5(AK) P . ! | Operaags
ag,j, respectively, satisfy the commutation relations:

=e 2V SAE)S(AK),  (26)

which guarantees that the optical theorem is satisfied. [aQ,j,ag,’j,]zéQ,Q,(Sj,j,. (28)

Hence, the factoe2%""" is identified with a quantal analog

of the DWF obtained in the studies of scattering of classica

particles by boson fieldSIn the present quantal formulation

such total DWF combines the features(pf off-the-energy-

shell Glauber-van Hove type of Debye-Waller factor arising

from the Holstein renormalization of the interaction matrix

elements in expressiof25), and (ii) on-the-energy- and

momentum-shell Debye-Waller factor discussed in Refs. 30— HE"= > hwgjad ag, - (29)

32,37 and 63 which according to E@6) measures the total Q!

probability of finding the projectile in the entrance channel

after the collision with the surface. Substitution of expansiof27) in expression(25) enables the
Quite generally, the open scattering channels can be clagdll calculation of the scattering function pertinent to HAS

sified as elasticAE=0) and inelastic AE+#0). According from periodic adlayers.

to Eqg. (25) the total scattering function appears as a sum of

the scattering functions from all channels. Hence, the devel-

oped formalism lends itself as particularly suitable for the A. Elastic diffractive scattering and the Debye-Waller factor

description of HAS from adlayers in which both the elastic  Elastic scattering processes are described by the term con-
(diffuse or diffractive and inelastic scattering effects are tained in 2VEBA(7,R), Eq. (25), which is obtained by ex-

|n terms of these operators the unperturbed phonon field
Hamiltonian which determines the time dependenceuof
takes the form

pronounced. panding the exponentiated correlation function into a power
series and retaining only the zeroth order term, i.e., unity.
IV. SCATTERING FROM ORDERED ADLAYERS Then the summations ovéf and|” can be carried out by

Quite generally, the amplitude and phase of the modegecalhng that for ordered overlayers

over the neighboring adsorbates can be either coherent

(propagating adlayer phononsor incoherent (localized

phonons and the experimental data do not always allow dis- > exfi(Ki—K)p]=N> Ok' -k, .G (30)
crimination between the two cases. However, in ordered su- ! ¢

perstructures with not too large nearest adsorbate-adsorbate

distances the interadsorbate interactions are not totally alwhereN, is the number of adsorbates on the surface, i.e., per
sent. Thus, even weak interadsorbate forces would causgeal 2. Hence, in elastic scattering from ordered adlayers
some correlation between vibrations of the neighboring adthe lateral momentum is conserved up to the reciproca| ad-

sorbates and hence give rise to a coherent lateral propagatigiyer lattice wave vecto6. Assumption of equivalent ad-
of the vibrational modes in the adlayer. This causes dispefsorption sites implieg,=z, and we find

sion of the adlayer modes, i.e., the dependence of their fre-
qgquency on the lateral wave vector describing their
propagatior?* On the other hand, in the case of less dense

; S g EBA _ iGR 2 Kai 2
and disordered adlayers the adsorbate vibrations may retain 2 Wair (TaR)—é e Z Ve K, (024
localized character. In this section we shall apply the formal- K"k
ism developed in Sec. Il to elastic and inelastic scattering =2W5i'f3ff(0,R), (31)

from ordered adlayers sustaining coherent vibrations and

leave the problem of scattering from disordered adlayers and

isolated adsorbates to Sec. VI. in which the on-the-energy and lateral-momentum-shell ma-
The adsorbate displacements=(u;,u,) in the case of trix elements describing diffraction are given by
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< ey 2775(Eki_Ek’) and the step functio@(@i(O)) selects only the open scat-

VK’,Ki ,G(O’Za): Ok K+ G L,A, tering channels for whicﬁﬁi(O)>0. Note in passing that the

application of the latter condition to higher order cumulants,
% fm %eipzae*W(K’*Ki,p) which describe correlated processes, would exclude the se-
W2 lective adsorption processes from the scattering spectrum
and hence should not be implemented there. The pair inter-

XVe(K'=K;,p)fe(k; kz,p) action matrix elemeniv(K'—K; k, ,k,i,z,) can be ex-
ressed as
:5K',Ki+e5k;i(0),k;®(2i(0)) P

- '\N/F(K,_Ki,kz’ykziiza)
XVF(KI_Ki Kz Kzi1Za)

AV,

(32) © ~
=f deXké(Z)szi(z)VF(K,_Kivz_za)
Herev,=#k,/M,A,= L§/Na is the area of the surface unit

cell of the superstructure, the requirement of energy conser- _ f” dzy’(2) (z)fw ﬂefip(zfza)
vation is expressed by using standard identities involving K Xy 27T
5-functions? as

L : XVe(K'=K;,p), (39
27 6(Ey,— B ) Lz= i, (0, O (K51(0)) (v v5), with
(33
where VE(K'=K;j,p)=e MK ~KiPly (K ~K;,p).  (36)
The factor exp—w(K’'—K,p)] multiplying ve(K’'—K,p)
2 '
KZi(0) =K = K'2+Kk3;, (34 on the RHS of Eq(36) is given by

) 1 % Kr_Ki r,-r +pe !,'I 2 .

Q"j’

whereQ’ is restricted to the first SBZ of the adlayer. Hence,tion of the Fourier transform of the pair interacti(86) in a

for coherent vibrations the Holstein renormalization factorfashion also discussed in Refs. 57, 58, and 60. It should be
associated with the Fourier transform of the interactionobserved that the exponential form of this renormalization is
Ve(K—K',p) defined in Eq.(7) is explicitly given by ex- a consequence of the specific symmetry of the unperturbed
pression (37). Due to the Kronecker symbols wave functions of the projectile and the interaction potential
5K’vKi+65k_Zi(0)-k; contained in expressio(82) all the sum- employed to Calculgte the matrix elemerBs. On the other
mations over the final wave vectors in E@1) are easily hand, the exponential form of the total DWF in Eg6), and

carried out. Note that the diffraction amplitude thereby also in_ I_Eq(3E_S), is i.nde.pendent of the particularitieg
szi(o),kzi of these quantities since it arises from general conservation

K+ok, (0Za) is a dimensionless quantity and that due 015,y Hence, the complete DWF for diffractive scattering
coherent scattering from an ordered overlayer one obtaingiven by Eq.(38) combines two effects, the renormalization
2WEBA(O,R) A 2 and all other quantization lengths aNg  of the interaction matrix element86) due to elastic particle
factors cancel out. Thus obtainetMZE~(0,R) allows elastic ~ Scattering by zero point vibrations of the adlayer, and the
scattering of the particles only into the diffraction channelsreduction of the intensity of the elastic specular beam due to
of the k-space, viz. the transitions K(,k,;)—[K; the projectile diffractive scattering out of the entrance chan-
+G,k,;(0)] wherek,;(0) depends or& through Eqs(30) M€l (Ki.Kz).
and (34), and the probability of this process is given by

IV',iz_iioé'sz_‘(O,za)F. Diffraction processes give rise to a reduc- B. Multiquantum inelastic scattering and the unified
I L |
tion of the intensity of the specularly reflected beam by a Debye-Waller factor
diffraction-induced Debye-Waller factor Expression25) for the EBA scattering function contains
all powers of the adsorbate displacement operatars
—2WEBA _ Ksi(0) Ky 2 =(uy,u,) and as such can generate two types of mul-
e “difir = expg — V2l F(0.z , 38 A AL . .
F{ % ‘ Ki+G'Ki( ) (38) tiphonon processes upon expansion of the exponentiated cor-

relation function into a power series in the displacements.

in accord with the optical theorem. The “standard” Glauber- o zeroth order term describes elastic diffraction effects

van Hove Debye-Waller factor appears here in the scatteringjscssed above. Multiphonon processes comprising subse-
amplitudeV

ﬁzi‘ioe):‘;”(o,za) through the Holstein renormaliza- quent phonon exchange in which only one phonon can be
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emitted or absorbed in an interaction vertex arise if besidethe scattering spectrum in which the unitarity is generally
the zeroth term, the next linear or first order term in theviolated. Of course, combinations of the two types of the
expansion of the exponentiated correlation function is reabove described approaches are also possible.

tained in the scattering functiof25). Then, due to the ap-  The analyses of th&-matrix expansion for inelastic atom-
pearance of this term in the argument of the exponentia§urface scattering processes have sfdwmat multiphonon
function on the RHS of Eq(23), it is repeated through ex- vertices arising from nonlinear coupling give rise to dia-
panding the latter function into a power series. Thuspn  grams for the scattering matrix which for not too high in-
order term in this expansion generates phonon excitatiofoming energies and substrate temperatures produce smaller
processes with multiplicity of order. In all diagrams repre-  cqonyiputions than the multiphonon diagrams of the same
rTHﬁultiplicity but involving multiple single phonon vertices
only. Hence, in the following we shall pursue the approach
in which only the contributions leading to single phonon
vertices are taken into consideration. The treatment of the
complementary scattering regime in which the multiple pho-
non vertices were taken into account up to second order in

nate in each interaction vertégf. Fig. 1a in Ref. 32 Alter-
natively, one can first expand gxp2WFBA(7,R)] in Eq.
(23) into a series in powers of\®EBA(7,R) and keep only
the zeroth and first order territhe zeroth order term giving
rise to the no loss line described by expresdi®®) ], retain
the correlation function in exponential form and treat it fol-

lowing the lines of Glauber—van Hove first order Born ap-1€ coupling constarg was presented in Ref. 53.
proximation approack®’® This produces in the diagram- Expanding the exponentiated correlation function in ex-

matic representation oN(7,R) of Eq. (21) a class of pression(25), re_taining the terms pilinear in the displace-
diagrams with only two interaction verticésach carrying a Ments and making use of the identity
factor g) in which any number of phonon lines can termi-

nate, but each such diagram appearing only dhddis type dp Cipz J (dp
of interaction is nonlinear in displacements and hence can J 2P ) 2n
give rise to excitation of overtones. The diagrammatic repre-

sentation of such correlation functions is shown in Fig. 1 ofwe find the contribution to the scattering function which
Ref. 37. However, this latter approximation leads to expresgives rise to subsequent one-phonon exchange processes
sions for (subscript 1 means single phonon vertjces

e Pz (39

1 2 el (K" =K (py = pyr)

R e R
z=s) 'V

K’ k]
1 * * H ! 4

X— dt’ dt//e—(llﬁ)(Ekr—Eki)(t —t")
h2) - —o

XK =Kq) - up () =iup  (8) (91 9zy) JLOK = K5 - up (87) + iUy (87) (91 92i) 1))
XVE(K' =K k. K,z )VE(K' = KiK. Kyi,2Zp0). (40)

This is expressed in terms of the Holstein-renormalized interact@BB)sand(36) and can be calculated once the polarization
eigenvectors and eigenfrequencies of adsorbate vibrations are specified.

Substituting expressiofi27) into Eq. (40), carrying out summations ovei’(l”), which vyield the lateral momentum
conservation, and integrations otérandt”, which yield the energy conservation, we obtain in the case of coherent vibrations

g r B I e " Ky — " Ky —
2WEBA(7,R) = > e MI(EEr—h(K K.)R]é % {|kaZ’ KzilQ j(+|za)|2[n(wQ,j)+1]+|‘Fl|<<zl KZiIQj(_'Za)|2n(wQ,j)}
K’k . Qe Ki,Q,

(+ Yk . _, i C—
=2 2 A ek, i+ 22 In(wg ) + L]ellvai (TG

(— Yk. ) —i WA i T—
1Rk, i~z (g e e (@O (4D

Here the force matrix elemenis are defined by

[(K'— Ki)~q|(Q,j)+iei(Q,j)(Waza)]vk;",izii,@i

]:k, ) 112
z "z —+ =
-(—vza) (ZMaNan‘j)

K’,K;,Q,j (i,Za), (42)

in which the inelastic counterpart of expressi@?2) is given by
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\‘\‘/F(K,_Ki ;kz’ 1kziiza)

k,vkzi 2
V. (*+,2)=6kr+0-6k 0k (+)k OKZ(£)) =
K’ K;,Q.j a 1 Hai( =)k TR ANV, v,

(43

In this expression the values Kf andEy are confined to the  fiection coefficientsR"BA calculated in the DWBA and

energy- and lateral-momentum-shell through the produciyeighed by the Glauber—van Hove DWF which enters
5K’rQiG,Ki5k_zi(:),k£®(E§i(i)) in which the symbols )  through the Holstein renormalization of the interacti@y,
and (—) refer to one-phonon emission and absorption pro-ViZ-

cesses, respectively, and

o 2WE exp[_ S owea| (46
f(#1)

(#i

K2(£)=KZ—K"2+Ki{F2Mwq, /. (44)

matically excludes the sticking processes for which thegh® EBA and the DWBA and the corresponding Debye-

EBA-derived probabilities scale ag but which are negli- Waller factors.

gible for the studied systeni8 Thus, the inelastic scattering _ Substitution of the sum of expressio(&l) and (41) into
Eq. (23) gives the momentum and energy resolved mul-

. ! Ky
matrix elementsﬁz,‘Kzi"Q’j(i,za) conserve the lateral mo- tiphonon scattering spectrum with the total DWF given by

mentum and energy in each one-phonon interaction verte$he product of expressior88) and (45).
but also embody the off-the-energy-shell features through the
Holstein renormalization factq37). C. Mean energy transfer
Expression$37) and(41) are independent dfl, since the
final summations oveK’ or Q when transformed into a
two-dimensional integration introduce a factgA, /(21)2.
Hence, expressiof1) remains proportional té\; 1 and not
to A, ? as was the case with the analogous quantity in dif
fraction [cf. expression(31)]. Thus, larger unit cells of the
superstructure act so as to reduce the amplitude of the scat-
tering function for inelastic processes, and vice versa, but not Ml(Ts):f (AE)(dAE)f d?(AK)N(AE,AK)
to the extent as in the case of elastic diffraction processes.
Note also the difference between the inelastic scattering .
probabilities of loss and gain processes in expres$idn =i 3 21 Cn(7,R=0)]|,-0. (47)
which are associated withn(wg ;) +1] and n(wq ), re- "
spectively. These terms are different which is a manifestatiorrhis expression is exact. In the EBA we obtain
of the recoil effects in both the energy and lateral momentum
phase space. £BA .
Now, according to Eq(23) the unified Debye-Waller fac- pr (Ts) =1=—2W( 7,R=0)|,—0. (48
tor due to inelastic scattering by coherent vibrations reads

An important property of the lateral momentum integrated
spectrum is its first moment(T;) or the mean energy
transfer in the course of inelastic projectile scattelirigpom
the surface at the temperatufg. Starting from expression
(22) it is easily shown that

For coherent vibrations this takes the form

_ EBA kzi ’kzi N
e 2W1coh=eXF{—§ % {|fKi£g)_G‘Ki,j(+,za)|2[n(wQ,j) . _ 2
’ lu“lcoh(Ts):% QZJ (ﬁwQ,j){|sziLQ;élyKi'j(+vza)|

+1]+|FEC N (= z)Pn(wo )] (45) =

) G,K.,j Kzi Kzi
i+Q+ il +[|FKi£g)fG,Ki,j(+’za)|2
The exponent on the RHS of E@5) is integrated over all i (0) Ky g
scattering channels and is therefore independem ofind —|F i ek (7 zalFIn(wg )} (49

scales asA;'. In the limit of high temperature and large ) o

projectile incident energy it becomes effectively proportionalNote here the minus sign in the square bracket on the RHS of
to a product of the Holstein renormalization factor andEd. (49) which gives rise to a recoil induced temperature
Weare's paramet® o= (M/M,)(E; /ks®p)(T/@p) which  dependent contribution ta7o(Ts). However, the total tem-
estimates the importance of multiphonon processes in atonperature dependence gf;>"(Ts) comes both through the
surface scatteringkg is the Boltzman constant and the De- Holstein renormalization of the interaction matrix elements
bye temperaturé® should be identified with the average F by the factore™" and the recoil-induced term. It should
phonon energy at the adlayer zone eddéoreover, inspec-  also be pointed out that=® will provide a reliable estimate
tion of the various formulas of the one-phonon scatteringof the total energy transfer inasmuch as the corresponding
theory(cf. Ref. 50 enables us to identify the exponent on the EBA spectrum(23) reliably reproduces the exact scattering

RHS of Eq.(45) with the sum of one-phonon inelastic re- spectrum(22).
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D. Mean energy transfer for fixed scattering geometry and 37 by neglecting the Holstein renormalization effect on

In the majority of TOF experiments the scattered particledn€ force matrix element#in the exponent on the RHS of

are detected in the sagittal plane with no change of the azEXPression4s).
muth, i.e.,¢;= ¢, and with@, + 6; = Asp=const for a given On the other hand, the appearance of the standard

apparatus. Additionally, during recording of each TOF specGlauber—van Hove DWF is retrieved under the assumption
trum the incident angl@; is kept fixed, which all determines ©f first order DWBA or weak couplingsmall g) but large

AK in the sagittal plane as a function of the energy transfewbrational amplitud_es. In this case one retains in the_ expan-
sion of the scattering spectrum only the terms which are

only, viz. o . .
y zeroth order and quadratic in the coupling constarito this
(AK) gag= Kesin 6;— kisin 6,= AK (AE) (50) order the expression for the no-loss line is given by
where Ng"*A(AE,AK) = (1-2Wicgy) S(AE) 8(AK),  (53)

in which (1—2WEE%) plays the role of the complete DWF
K [2M(E;+AE) K= [2ME; (51  UP to second order ig with the Holstein-renormalized inter-
! 52 b n2 action matrix elements in \® oy, The analogy with the

Glauber-van Hove DWF appears most clearly in the next
This enables us to define the mean energy transfer for germ describing the inelastic one-phonon DWBA scattering
particular TOF spectrum: probability. For coherent vibrations and to the same order in
g this is given by

o0

f eN(e,AK(g))de

_ N,A K. Ko
ma(@i, 0, Te)=—7 , e&=AE. N?‘\:IXEA(AE’AK):(Z;}/L; QEG:]. {|ff<ﬁ'i1)k,.i'i,j(+ Za)|?
f N(e,AK(g))de o
Comparing the values obtained by applying expressiih thoqj)dsk,-o-c

to the measured TOF spectra with the corresponding values
calculated from the theoretical spectra enables yet another Ki+AK K,
test of validity of the particular model employed in the de-
scription of the scattering evef#.”” X S(AE—fhwq ) dak,o+ah (54)
Equations(41)—(52) represent the central results of this where the Glauber—van Hove DWF effect is contained in the
paper and demonstrate the essential features of the mukolstein-renormalized matrix element[cf. Eq. (42)]. Ex-
tiphonon scattering spectra and the corresponding unifiefressions analogous to expressiéd) but without the Hol-
DWF. The latter comprises the properties of analogous eXstein renormalization have been extensively used as a point
pressions which occurred as separate quantities in earligy departure in discussions of single phonon He atom scat-
theories. In the present theory we shall recover them as speering from surface2®®! As regards the DWF and the one-
cial limits (cf. Sec. V. phonon excitation properties, they are distorted wave analogs
The fundamental difference between the above results angk the standard Glauber—van Hove expression describing in-
those for clean surfaces derived in Ref. 32 is in that thes|astic neutron scattering from crystal lattices. Energy con-
present approach allows for the static Corrugation of the adservation enters each of them through the factor

layer through “embedding” of the adsorbates into the dis-5_ .0 (K2(+ resent inF [cf. E 42) and (43
torted wave functions of the projectile. This effect combined kzi_(i)’kz ( Z'(_),) pres ! [cf. Egs. (42) and ( _)]'
with the multiphonon expansion leads in turn to the HolsteinWhich together with the lateral momentum conservation em-

renormalization of the interaction matrix elements and theirf-:’c’died in the, Kronecker symbol§s, -q-c defines the
z,-dependence, and the possibility of simultaneous occur-S¢an curve” in standard TOF geometries.
rence of diffraction peaks and multiple and overtone excita-

+|]:Ezi(_)’k2i j(—,za)lzﬁ(wo,i)

tions in the scattering spectra. B. Trajectory approximation in multiphonon scattering
Another frequently used approximation in the calculations
V. SPECIAL LIMITS OF THE SCATTERING SPECTRUM of inelastic scattering spectra in the multiphonon regime is
AND THE DEBYE-WALLER FACTOR the so-called trajectory approximationA) for the projectile

motion which is usually employed in the quasiclassical scat-
tering regime. The conditions of validity for a passage from
the description of the scattering event in terms of the quasi-
The on-shell Debye-Waller factor compatible with the op-classical scattering matrix elements to the description in
tical theorem was derived in Refs. 30—32 under the assumperms of the projectile classical trajectory were discussed in
tion of a simpler, i.e., linear projectile-phonon coupling. In Refs. 30 and 68 for short and long range projectile-surface
the present approach this is equivalent to keeping only thenteractions, respectively. However, as this also presents a
terms quadratic in phonon displacement amplitudes in thelifficult problem to solve if the classical projectile motion is
expansion of the exponent of the complete DWF given bysubject to recoil, one further assumes the projectile particle
Eq. (45). Hence, we retrieve the on-shell DWF of Refs. 32 motion on aprescribedand hence recoilless trajectory. The

A. On-shell versus Glaubervan Hove Debye-Waller factor in
single phonon scattering
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projectile motion then represents a time dependent perturbddere w(Ts) is given by Eq(49), and in the case of coherent
tion on the phonon field and one may hope that the actualibrations the temperature dependent spectral widthae
loss spectrum of the projectile can be calculated from congiven by

servation laws as the negative of the energy and lateral mo-

mentum gain of the phonon field. As this is an inherently

inconsistent procedure the TA may represent a reasonable af(Ts)= > Z )\Z{IJ’-*Z,’kKZ' o (+,20)]?
approximation in HAS from surfaces only under very re- K’k &:QJ e
stricted conditions®-%2 _
Expression(15) for the scattering spectrum proves inad- X[N(wqj)+1]6k +q+c.k,
equate as a starting point for the implementation of the TA
because it is based on the projection of ¢fuantum states of 2 Kz _ 2 wom ) S s
the projectilefrom the wave function of the collision system. " |]:1:<I'Ki ~Q~J'( Za)["n(0g) 3 ~o-cexh
In order to retrieve the TA expression for the inelastic scat- (56)

tering spectrum one has to revert to the projections using the

phonon field operatorslf" and PP" instead ofHE* andP in ~ where stands fofiwg j, (K’ —Kj), or 7i(K' = K;), . Ex-

Eq. (15).3°-32This is only feasible for flat surfaces for which pression(55) should represent a good approximation to ex-
the energy and momentum transfer to the phonon field is jugtression(23) in the multiphonon limit in whiclAE andAK

the negative of the energy and momentum transfer to thare small and confined to the scan curie., connected
projectile particle. Having done this one projects the desiredhrough the total energy and lateral momentum conserva-
final quantum states of the phonon field from the wave function). Due to this, the maximum of the spectruis) will

tion of the system irrespective of whether the phonon fieldgenerally not coincide withu,, viz. it may occur either on
has been perturbed by a quantum or a classical perturbatiothe positive or negative energy transfers, depending on the
Thus, the application of the classical trajectory apprOXima'scattering conditions. The intensity prefactor
ti_or_1_to the project_ile motion aut(_)matically rules out the pos-[(zw)s/zawoxoy]q exhibits the temperature dependence
sibility of calculating the diffraction and related effects. which approache§;3’2 behavior in the highF, limit both

T‘? obta|'n the TA limit of th§h|nelas}Li scattering spectrumfor coherent and incoherent adsorbate vibrations. The de-
(15 in which the operatorsiy” and PP have been intro-  ileq structure of the interaction matrix elements is here of
duced one carries out the procedure completely analogous i@ jmportancde.g., pairwise interactions versus some differ-
the one described in Refs. 30-32. Here one has to take cafe, oxpressionsas long as the general structure of the scat-

to express all the summations in terms of phonon quanturHering function(41) persists in that form. Note also that al-

numbers Q,j) and excitation frequenciesq ;. Then, the : P,
TA amounts to replacing the interaction matrix eIementsthouQh expressior(55) represents a limiting case of the

taken between the projectile states by their classical Coumepjomentum antd en;ergy rﬁsolveq SD%Ctr?hm' the valre of tthe
parts given by the Fourier transforms in the time variable of€an energy transier i1s here given by the momentum inte-

the classical forcé(t) exerted on the adatoms by the par- 9rated expressiop,(Ty), Eq. (49), and not by the corre-
ticle moving along the classical trajectoryt).2>%% A de- spondingK-resolved quantity as one might expect. This is

tailed description of this procedure was given in Refs.dué to the uncertainty in energy and momentum fluctuation
25, 31, and 32 and will not be further elaborated here. wénvolved in the short= and smallR component of the re-

shall only reiterate that the EBA is superior to both theSPonse of the phonon system which is only relevant in de-
DWBA and TA, moreover, it contains them as special limitsving expression (55). The temperature dependence of

and smoothly interpolates between the two. r1(Ts) and o,(Ts) explicitly affects the position of the
spectral maximum in the extreme multiphonon regime. In
C. Extreme multiphonon scattering regime o, (T,) this dependence is strong and analogous to that of the

Another frequently encountered general limit of the Scat_Debye—WaIIer exponent. On the other handuf(Ts) it is

tering spectrum is reached in the extreme multiphonon re\_/veaker due to the structure of the recoil correctiof Eq.

gime in which V51, i.e., when the mean number of (49)]. As for relatively high incoming projectile energies the
exchanged phonons is Ia’r&.él.l,n this case the major contri- difference between the gain and loss values of the interaction
bution to the Fourier transfoﬁn in ER3) comes from small matrix elements becomes very Sma"' the tempgrature varia-
values of the exponerf2WEBA(7,R) — 2WEBA] upon ex- tion of u4(Ts) may then be dominantly determined by the

A L o . o 2 K
panding it into a power series inandR and retaining only  Holstein renormalization of}'kZ “ J.(i,za)lz. However,

X : : ! . " K;.Q,
I|_near and. quadrauc terms._ Collecting the leading contrlbu—the position of the spectral maximum of expressiss may
tions to this series we obtain

nevertheless be strongly temperature dependent as it also de-
pends onc,,, o, and o, which are all stronglyTs depen-

1
lim N(AE,AK)=T dent.
SWEBAS. 1 (2m)* o040y
(AE—Ml(Ts))Z D. Scattering from adlayers sustaining Einstein modes
xexp - 252 The multiqguantum and Debye-Waller type of effects will

@ manifest themselves most clearly in the case of excitation of

(hAK)?  (HAK,)2 adsorbate low energy vibrational modes which exhibit little
- >~ >—|- (85 orno dls_persmn. With incoming He atom energies exceeding
20y 20y several times the energies of such modes and for not too low
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substrate temperatures, one can clearly observe spectral

peaks corresponding to multiple excitation of dispersionless E'” (7' R)=e" -2 E P/(R)e o, (65

modes both on the energy loss and gain sides in the TOF

spectra of a number of systefs>?414*Depending on the \yhere

specificities of the systems studied, these modes can be as-

sociated either with lateral or perpendicular adsorbate mo-

tions. P/(R)=
A closed form solution for the scattering spectrum char-

acteristic of an adlayer sustaining Einstein-like modes is ob-

tained by separating the nondispersive branfghof fre-

guencyw, out of the sum in expressia@l), giving

( (n+ 1) F2(R,+) '
nFR,-)

x1,(\an(n+ 1) FAR, +)F2(R,—))|. (66)

exp 2WEEa( 7,R) — 2Wica] =N (m,RIN®; (7,R), This gives for the separated Einstein phonon component of
(57)  the scattering spectrum

where Ein and dis denote components comprising Einstein

and all other dispersive modes, respectively. In the remain- NE'" (AE AK)= e—ZWO E N(AK)S(AE+ 1A wg),
der of this subsection we shall for the sake of simplicity i =

d|sregarde'S (7 R) as its effect on the total scattering (67)

spectrum can be easily restored by a simple convolutionvhere
proceduré!*° Denoting the single frequency of a set of Ein-
stein oscillators bywg, the corresponding component of the

2
R
scattering functior{41) can be written in the form e (AKRP|(R). (68)

Ein _ T2 Y —iwgT
2WEH(7,R)=F5(R, +)[n(wo) +1]e" "0 The angular integrated scattering spectrum corresponding
+F2(R,—)n(wg)e “o7, 58 to expressiori67) is obtained upon replgcir@(AK) on the
(R,=)n(wo) 8 RHS of Eq.(67) by P,(R=0). Accordingly, the DWF of
where F2(R,+) are obtained by carrying out the such lateral momentum integrated spectftins given by
(K",Q,G,k;) summations over the separatggth compo- e‘ZWOPO(R=0) wherePy(R=0)#1 and both factors con-
nent of expression4l). Now, observing that {+1)/n  tain the contributions from all inelastic scattering channels.

=expfwy/kgTy and introducing the notation Expressions(66) and (67) exhibit interesting structure.
Expression(66) contains complex quantities?(R,+) and
FAR,+)+F4R,—)=M(R), (59 F(R,—) whose difference-i M(R) measures the recoil of
) the projectile in the one-phonon creation and annihilation
i[FXR,+)=F4R,—)]=MR), (60 events. Namely, in the limit of classical recoilless trajectory
_ approximation one hasF?(R,+)=F?(R,—) and conse-
0(7)=(woT—1hwol2KgTs), (61) quently N(R)=0 and ¢(R)=0. In this limit the angular
and integrated spectruni‘r\lE'n [(AE) is given by a generalized
Poisson dlstr|but|or[cf. Eq. (86) in Ref. 37 typical of the
i FAR,+) forced oscillator model applied to Einstein phonons. How-
cp(R)=arctar|j/\/(R)/M(R)]=§In 2

m* (62) ever, as is seen frqm expressio(ﬁ_@) and (67), the lateral
' momentum resolution and recoil effects destroy such a
we may write simple structure. The deviations cNE' (AE) from the
Poisson distribution grow larger e&f(R) increases, i.e., as
the quantum recoil effects become more important.
i 5 5 For finite Ts one generally ha$|'5'n [(AE=0AK#0)
xexpvn(n+ DIMAR)+NA(R)] #0, meaning that due to coupling to the phonon heatbath a
X cog 6(7)+ o(R) ]} finite momentum transfer may occur also in nondiffractive
elastic collisions. The spectral intensity of such off-specular
—e Mexp{\4n(n+1)F2(R,+)F3R,—~) elastic transitons in theAK direction is given by
e‘2WON0(AK). In the limit of specular elastic transitions
(AK—0) this tends tee 2"’ Po(R—)8(AK). The quan-
where tity e 2¥’p,(R—x) may be identified with the DWF cor-
Ein — ) — responding to the elastic specular peak. However, from defi-
2WO=2WH(7=0R=0)=(n+1)F*(0,+)+nF*0,-). nitions of Py(R), Eq. (66), and F2(R,+) we can deduce
64 that Po(R—=)—1 because of the destructive interference
Making use of the generating function expansion for theeffects in the argument dPy(R). Hence, the DWF corre-
modified Bessel function of the first kind, exmosa) Sponding to the elastic specular peak is again given by
== __I(dexplla), we find e 2w

E|n (TR) e —2wP

X cod 6(7)+e(R) 1}, (63



2802 BRANKO GUMHALTER AND DAVID C. LANGRETH PRB 60

The angular integrated or total mean energy transfer in th@veraging based on the use of the joint probabjity» that
case of Einstein oscillators acquires in the EBA a simplethe sitesl’ and|” are both occupied for a given overlayer

form coverage®. In the simplest independent site model this is
. given by’
2 (Hhag)Py(0) . 1-0
ma(Ts) = = P =0 1+ —5—ai |, (73
|;x Pi(0) where ® =N, /Nge and Ngie is the number of available

- o equivalent adsorption sites on the substrate surface. The con-
hoo[ F2(0,+)(n+1)—F?0,—)n], (69  figurational averaging is then performed according to

> > - X Py - (74)

occ.l”,I” conf all sites 1",1”

because from the normalization of the spectrum it follows
thatEfL,ocP,(O):eZWO. Although expressiorn69) is remi- <
niscent of the angular resolved mean energy trar{s8r the

information contained in the two quantities is different andThis procedure y|e|ds for the two-dimensional structure fac-
they may even bear different signs for the same scatteringyy-

conditions’®

eiK(p|fP|”)> :N§§G) d¢,ctNg, (75

conf

VI. SCATTERING FROM DISORDERED ADLAYERS < E

occ.l”,1”

A different situation regarding the various terms in the _ . . . .
expansion of expressiof25) arises if the overlayer exhibits WHereG is a two-dimensional reciprocal lattice vector of the
certain degree of internal disorder. Several situations corguPstrate surface lattice made of adsorption Sitegith the
cerning the structure of such overlayers are possitfleex- valueG=0 also included in the summation. After introduc-
haustive discussions in Refs. 73 and B4t here we shall N9 sych averages into the EBA expressions fort.he scattering
focus on the case of lower coverages and temperatures whéction (25) the first term on the RHS of E79) gives rise
the island formation is precluded. In this case one may safelf? @ coherent scattering contribution whose presence would
assume that interadsorbate distances are large er{bmjh reflect th_e existence of some Ion_g range order in the over-
of isolated adsorbateso as that their vibrations are uncor- 1@Yer- This term leads to expression for the coherent elastic
related or incoherent. Here we define an effective mean are3fattering component of the EBA scattering function analo-
(A)=L2%IN, associated with each adsorbate whbkg is gous to the one discussed in Sec. IV but now with and

now the number of adsorbates on the surface. In the foIIonga>. acquiring the meaning define(_j at the beginni_ng el
ing we shall consider for simplicity only external transla- section. The second term leads to incoherent or diffuse scat-

tional vibrations of isolated adsorbates which are assumed t&'"9 which acpordlng to express[(ﬁﬂS) will give rise to a
occupy equivalent adsorption sites. ominant contribution to the elastic component of the scat-

We introduce the expansion of adsorbate displacements {§ing function (25 in the low coverage limit®<1.
terms of localized normal modes Whereas both these terms contribute to elastic scattering

component of the scattering functi¢®5), only thel’ =1" or
3 112 the diffuse term can contribute to its inelastic component due
u=>, ) (8,a,0+€,a,), (70 tothe assumed local character of adsorbate modes expressed
7=1\2Ma0, s through commutation relations in EZ1).

wherew, ,=w, andeg , are the frequency and polarization Since the coherent scattering component of the EBA scat-

vector of theoth normal mode associated with the adsorbatetering function can be obtained by a trivial generalization of

at sitel, respectively, and the phonon field operators satisyfl€ formulas derived in the preceding sections by redefining
the commutation relations the meanings oN, and A,, we shall concentrate in this

section only on the incoherent scattering contribution. We
[a mal’r, =616, (72) firs_t calcula‘ge zeroth or_der term in the e>§par_15ion of th_e_scat-
’ 7 o tering function(25) which gives a contribution describing

For simplicity we shall also assume that these modes ardiffuse elastic scattering. Using E¢71) we find that the
decoupled from the phonon modes of the underlying subHolstein renormalization factor contained W *,z,) is
strate over almost the entire surface Brillouin zone which ishow, strictly speakingl-dependent and reads
practically fulfilled in the examples of adlayer systems dis- , )
cussed below. The corresponding unperturbed adsorbate e_Wloc(K,_Kilp):exp{ 1 D A|((K'=K;i),p)-8,4

phonon field Hamiltonian then takes the form 25 2M o,

HEh= |2 hw,al,a,,. (72) x[2n(w,)+1]]. (76)

To carry out summations over adsorbates in expred@bn It should also be noted that the derived expressions for the
for the scattering function, i.e., over the pairs of randomlyHolstein renormalization factae™ ", Eqgs.(37) and(76), are
occupied adsorption site’ (I"), we assume configurational functions of K —K'), i.e., they areK’-resolved quantities.
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Hence, they will also appear aK -resolved quantities in the has been found for expressiohl). This means that a tran-

inelastic scattering spectrum calculated in the DWBA, butsition from incoherent localized to coherent delocalized vi-

not in the total DWF. brations, which may occur in an adlayer with the increase of
In order to make the calculations feasible we shall replac€overage, does not introduce any changes in the scaling of

the I-dependent exponent on the RHS of Egf) by an an-  inelastic scattering intensities with (or (A,)) which would

satz which is obtained by taking a configurational average ofacilitate easy experimental resolution between the two types

the exponent by averaging over all directions of the polarizaof vibrations.

tion vectorse , of adsorbate normal vibrations: The above assumption of configurational averaging and
’ the therefrom obtainedindependent Holstein factgr6) en-

[(K'=K),p) 8 o/>= (| (K'=K{),p)-&]%)coni- (77)  able us to take such an average in the expression on the RHS

The use of this ansatz makes expres<io®) I-independent of Eq. (80). This amounts to the replacement

and we may write A A A A
EI(q-ag)*(q-a(,)—»Na«q-ea)*(q-e[,»conf. (82

K. k. Kyi
2Wiittsd 7 R)—— 2 TRy 2 B0 Z,)]? N .
Na K, o and such a procedure can be easily carried out in some spe-
EBA cial cases which are nevertheless of physical relevance. For
= 2Wjittuse OR). (78 instance, if the projectile coupling to perpendicular adsorbate

vibrations is much stronger than to the lateral vibrations the

This expression is again independent\yf because integra-
P d P o J effect of the latter may be neglected, whence

tion over d’K’ introduces a factoN,(A,), but since|v|2
«(A,) "2 expressior(78) is now proportional tgA,) ! and AN, | g 2
not to the square of this quantity as in the case of coherent |],J< " (*100.20) 2= Ky Kai (*+,2,)
scattering contribution. Hence, the disordering of the adlayer =~ <Kt~ "1 " 2M o, gz, K0t 5
has an effect on the scaling property of the diffuse elastic (83
component of the scattering probability making it propor-
tional to (A,) L.

The next term in the expansion of the scattering function
characteristic of vibrating disordered adlayers takes the form

and the Holstein renormalization factor contained in the ma-
trix elementsy is given by

~Wioe (K" =Kj,p) =
. e "oct exp{ (2) M0 [2n(col +1]}

2Wiea(7,R) = 2 e‘(K"Ki)Rm (84)
Kk @ Such a situation can be typical of noble gas adlayers at low

_ coverage. On the other hand, if the adsorbate vibrations with

X E {|5"*Z Z_' (+100:2Za)|2[N(w,) +1]€'“e™  polarization perpendicular to the surface exhibit much larger
7 frequencies than the ones with lateral polarization, the pro-

]-* Ky — Cior jectile coupling to perpendicular vibrations may be neglected
K/ K, Tl Za)[“N(@,)e™ 7, (79 elative to the lateral ones. In this case

in which the transition probabilities are given by ]Ik K, , |2_ﬁ(Kr_ Ki)ZNa| K ke
|OC1 a TV N

&+ 2
VK’,Ki,o'”(_,Za)| 1

, K’ K; aH AM
|‘7:Kr K, U(+I001Za)| (85)
and the corresponding Holstein renormalization factor is
=50 E [(q-8,)* (vK,K S(Fioeza)*] given by
, , A(K —Kj)?
2 ky ki ~Wiog| (K" =Kj,p) = —| = - 7
X[(q'QU)(VKr,Ki,g(ilomza))]- (80) e exr{ (2) o 4Mawy

Herev';z"';{i U(imc,Za) is given by the on-the-energy-shell x[Zﬁ(m D+1]]. (86)

expression analogous to that on the RHS of Ef) but

without the factordy: .-k, and the vector operataris  Expressiong85) and(86) are well suited for the description
defined by of excitation of the modes describing frustrated translations
of Na atoms and CO molecules chemisorbed on metal
= (K" =K}),i(9192,)), (81)  surfaces®

R The incoherent vibration induced DWF is simply obtained
and acts on/(*,z,) whereas the complex conjugaj® acts by setting7=0 andR=0 in Eq. (79. As for disordered
on V*(=*,z,). As the quantity)(*,z,) in Eqg. (80) is now  adlayers both the elastic incoherent and inelastic terms in the
proportional to{A,) !, expressior(79) is again independent scattering function describe diffuse scattering the magnitude
of N, because the summations ouwef and| bring around of the corresponding total DWF calculated in the EBA will
such a factor. It also scales é&,) %, analogously to what decrease exponentially witA,) 2, i.e., with the coverage.
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In a similar fashion we obtain the expression for the meampacked monolayers of heavier noble gas atéeng., Xe on

energy transfer to localized vibrations: metals would not fall into this category because they them-
selves represent a relatively flat reflecting surface, as evi-
LEBAT ):i S e {|]_J<£ K22 denced by He diffraction measuremefft€"*°Hence inelas-
Hoet TN, i T T KK loerta tic HAS from such adlayers should be treated using the
-

approach developed earl#&?!%24°The same may also ap-
+[|}*£ Kzi (+100,20)|2 ply to more densely packed ordered overlayers of CO mol-
'K, locrfa ecules on R{111) and P{111) (see also beloyw
e _ The importance of the effects which the present model
— I}J;Z,’KZ_' A —10c:Za) |2 In(w )} (87)  predicts for HAS from adlayers can be illustrated by making
s a simple quantitative estimate of the Holstein renormaliza-
As regards the DWBA limit of the inelastic scattering tion of the interaction matrix elementahich are renormal-

spectrum, we find for disordered overlayers and localized?€d by the factoe™) or the one-phonon scattering prob-
vibrations abilities (which are renormalized by the facter <) since

they represent a prerequisite for calculating the scattering
OWBA (A spectra and the complete DWF. The exhaustive calculations
Nipc (AEAK)=———— > of the latter quantities will be left for a future publication.
(277)"Na i, o We first consider Xe and Na atoms and CO molecules
adsorbed at very low coverage on metal surfaces. These ad-

><{|fiz,'+k§iK,K, ,(,(+|o<:y2a)|2 sorbates act as isolated scattering centers for He beams. Xe
' ' atoms adsorbed on CLL1) and Ci001) exhibit a low en-
x[F(wU)+1]5(AE+hwU) ergy mode ftws~2.6 meV) with the polarization vector
) perpendicular to the surfad® for isolated Xe atoms on
+ |].J:<z "‘giKK (=10, 22) | 2n( ) Pt(111) one findsh wg~3.5 meV:® whereas isolated Na at-
iTARR;o oms on C00D)*?**3and CO molecules on @01** exhibit
X S(AE-fiw,)}. (88)  frustrated translation modes parallel to the surface with en-

ergieshi wgr=5.6 meV anth wpr=3.94 meV, respectively.
Finally, the scattering spectrum in the extreme mul- In the case of disordered Xe submonolayers we employ
tiphonon limit acquires the form identical to E5) with  Eq. (84) and observe that according to Ef) the maximum
the first moment given by Eq87) and a set ofr,’s which  contribution to Holstein renormalization comes from the val-
are derived in a fashion analogous to the one employed ities ofp for which p?= g%+ (K’ —K")? where g is the ef-

obtaining the quantities typical of localized vibrations. fective range of the repulsive Xe-He pair interacfoand
(K"=K") is the change of the projectile lateral momentum
VIl. APPLICATIONS OF THE DEVELOPED FORMALISM in a real one-phonon exchange process. From this we can
TO He ATOM SCATTERING FROM ADLAYERS estimate the magnitude of the Holstein renormalization fac-

tor in the scattering probabilitigghe quantitie$)|? and| |2

The formalism developed in the preceding sections shoulderived in Secs. IV and V] for transitions in which the
be best suited for applications to HAS from ordered or disdateral momentum of magnitudgK’—K”| has been ex-
ordered adlayers in which the static projectile-surface interchanged in an interaction vertex. This is plotted in Fig. 1 as
action originates dominantly from a flat projectile-substratea function of|[K’ —K”| and the surface temperatufg. The
potential defining the distorted waves, Eg), and describ-  plot shows that in the range of typical experimental param-
ing specular reflections. The distorted waves are then peeters the reduction of the one-phonon scattering probabilities
turbed by the projectile coupling to adsorbates sticking ouinay be as large as 20%. This in turn means that higher
from the substrate surface which gives rise to combined difmultiquantum scattering intensities will be accordingly re-
fractive or diffuse elastic and inelastic atom-surface scatterduced, orientationally by a factor (0"8yvheren is the num-
ing. This model can be applied to adlayer structures whiclher of real phonons exchanged. Hence, the effect should
are disordered and free from islands in the low coveragenost strongly manifest itself in the multiphonon scattering
limit,®% or ordered superstructures with interadsorbate disregime which has so far been routinely achieved in HAS
tances large enough to cause that the dominant part of theom Xe overlayer$®*®
incoming beam flux is scattered by the substrate surface. In |n the case of isolated Na and CO adsorbates of@@l),
all cases the adlayers should sustain either localized or delgvhich exhibit low energy vibrations parallel to the
calized low energy modes which could be efficiently excitedsurfacé?** (degenerate frustrated translation mogebe
in HAS experiments. As typical examples of the first class ofHolstein effect is estimated by employing EH&6). Here we
systems one may consider noble gas and alkali dfofier  find that in a typical range of experimental parameters the
CO molecule¥’ adsorbed on metals at low coverage and forreduction of the one-phonon scattering probability may be
low enough substrate temperatures to preclude any appreven more significant, mainly due to the larger intervals of
ciable diffusion leading to island formation. A typical ex- experimentally accessible temperatures which are not limited
ample of the second class of systems are th@ ( by low adlayer desorption temperatur@ge Figs. 2 and)3
x /3)R30° adlayers of CO adsorbed @h11) surfaces of This can strongly affect the intensities of higher multiquan-
Rh* and Pf in which the interadsorbate spacing is still tum peaks and hence the present formalism should be em-
much larger than the effective adsorbate radius. Closeloyed in the studies of these systems as well.
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exp(_zvvn)

FIG. 1. Holstein renormalization factor exp2w,) of the one- FIG. 3. Holstein renormalization factor expgw) of the one-
phonon scattering probability pertinent to He atom scattering fronphonon scattering probability pertinent to He atom scattering from
isolated Xe atoms adsorbed on the(ClL) surface plotted as a isolated Na atoms adsorbed on the(@l) surface plotted as a
function of the lateral momentum exchar|¢f€ —K”| and substrate  function of the lateral momentum exchang€ —K”| and substrate
temperaturel g in the experimentally relevant intervals. temperatureT ¢ in the experimentally relevant intervals.

The final example pertains to HAS from ordered ad|ayersillustrated in Fig. 4 and in the range of experimental param-

i.e., the (3% y3)R30° superstructure of CO on RH1)7® eters it reaches-20%. Hence, the present model should be
ét .t’he coverag® = L. These adlayers exhibit dispersionlessalso well suited for the studies of multiquantum excitations
3.

frustrated ~ translation ~ modes  with fiwgr =fiwer, in HAS from (y3x y3)R30° layers of CO on Ri111) and,

B . . o y by analogy, also on the @tl1) surface. On the other hand,
=575 meV which can be multiply excited in HAS Here in the case of a denser ¥2) CO superstructure on the same

the interadsorbate distances in the CO adlayer are lardgq o (®=3%), the interadsorbate distances are smaller

(~4.64 A) relative to the distance of the closest approacfb : :
7 nd presumably this adlayer itself acts as a corrugated re-
of He atoms to an adsorbed CO moleclle-2.12 A), and flecting surface which defines the boundary conditions for

hence the present formalism should be applicable. To es'[Historted He atom wave functions. In this situation a differ-

mate the Holstein effect in this case we apply BGS) and ent approach to obtain the wave functions describing diffrac-
(86) with e, (Q,j)=0. Note that to obtain expressiqB6) tive s?:gttering should be appli€d® g

, ; . )
the Q"-summation was carried out over the virtual phonon Let us finally note that since the exponents in the expres-

modes, and not the ones giving rise to the changé ( sions for the Holstein renormalization factor, E¢®87) and

—K") of the lateral momentum of the projectile. The Hol- (7¢) “are inversely proportional to the mode frequency, the
stein reduction of the one-phonon exchange probabilities is

CO/Cu(001)

FIG. 4. Holstein renormalization factor expRw) of the one-
FIG. 2. Holstein renormalization factor expw)) of the one-  phonon scattering probability pertinent to He atom scattering from
phonon scattering probability pertinent to He atom scattering fronordered (/3% \/3)R30° submonolayer of CO on the RH.1) sur-
the isolated CO molecule adsorbed on th€@Dd) surface plotted face plotted as a function of the lateral momentum exchange
as a function of the lateral momentum exchafigé—K”| and sub- |K’—K”| and substrate temperatufg in the experimentally rel-
strate temperatur&, in the experimentally relevant intervals. evant intervals.
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largest reduction effect is expected for low energy modesUsing this representation the matrix elements of the
The existence of the mode degeneracy or of several low erprojectile-adlayer interaction can be written in the form
ergy modeqdincluding also the modes that cannot be singly, ,

excited in the first SBZ for the sagittal plane scattering ge—<K ke[ V(D]K k)

ometry(e.g., shear horizontal mode®duces the magnitude 1 "

of the Holstein renormalization factor. Thus the role of the = 2 e—i(K’—K)(p|+u||\)J dpéj(zl_"uu)
Holstein effect in HAS from adlayers sustaining more than LL2 T 0

one low energy mode is more pronounced. However, it , ,

should be pointed out that despite the Holstein reduction of XVL(K' =K, p)fL(kz kz,P), (A2)

the interaction matrix elements, the latter would still be 9€N< here the generalized LT aenerated oscillator strenath is
erally larger for isolated adsorbatésg., Xe atomsthan for 9 9 9

dense adlayers made of the same atoms. This is so becad&&V defined by

isolated adsorbates are embedded into the He atom distorted o

wave functions which makes their overlap with the fL(k, ,kz,p)=j e Px (2 xi (2)dz (A3)
projectile-adatom pair potential large. On the other hand, if a o ‘

dense adlayer itself acts as the reflecting surface for He atom ) )

wave functions, their overlap with each adatom is signifi- 1hermal averaging then gives

cantly smaller, producing correspondingly smaller interac-

tion matrix elements. (K’,kz,|<<V(r)))|K,kz>=Lif dpe WK’ ~K.p)

In conclusion, we have demonstrated that the theory de- /0
veloped in this work, which takes into account the interplay r_ /
between diffraction or diffuse scattering and virtual and real XVUKT=K Pk ke p)
phonon exchange processes, should prove indispensable in 1 o
providing a full quantum mechanical description of multiple X— E e [(K'=Kmgpz  (A4)
He atom scattering from the low energy modes characteristic Ls |

of adlayers of submonolayer coverage on flat metal surfaces. ) o )
where the Holstein renormalization factor is now complex:
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and the structure factor on the RHS of E#&2) is corre-
spondingly modified.

To understand expressidA4) for z<z, we observe that
here the perpendicular zero point vibrations of adsorbates,

In the case in which the-coordinate of the centers of which take place in the steeply growing part of the distorted
adsorbates lie closer to the surface than the classical turningaves, bring the scattering centers closer to the projectile
points z, of the projectile motion, i.e.z,<z, the Laplace during the halfperiod of vibration. This, on the average, may
transform(LT) may prove more convenient in representinggdive rise to an enhancement of the scattering probabilities

APPENDIX A: LAPLACE TRANSFORM OF PAIR
POTENTIALS AND GENERALIZED OSCILLATOR
STRENGTHS

the pair potentials: derived with the interaction matrix elements renormalized
d2Q B through expressi_o(AS). _ . _
V(p’z):f e‘QPf dpe PA (Q,p). (A1) Analogously, in the case in which EGA2) is employed,
(2m)? 0 the corresponding scattering function takes the form

ZWEBA(T'R): 2 e 1[(E—E)m(K'~K)R] 1 2 ei(K’—Ki)(p,,—p,”)j

ee]
o dpye?' e K1)
Y (L L2 -

XV (K =K, p)ff (K, ,kz.p’>f dp’eP e "' —KiP)y (K’ —K;,p")f (K. k,,p")

Xifw dt’fx dt//e—i(Ekr—Eki)(t/—t")/h
h2) - —o

Xexp(([(K" = Ki)up(t") =ip (1) LK = Ki)up (1) +ip"up, (1)), (AB)
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The scattering amplitude$(+,z,) and other relevant Now, by writing the last line on the RHS of E4L6) in
quantities deriving thereof are obtained following the proce-the form
dures employed in Sec. Il with the Holstein-renormalized

pair interaction matrix elements: (7,R)=(i|exd — (i/A)(HB"'r— PR)\
VLK =K, p)=e "K' ~KiPy (K'=K;,p). (A7) — (i) War—=WR)N][i)y=1,  (BY)
where the parameter has been introduced for mathematical
APPENDIX B: CUMULANT EXPANSION convenience, we can calcula 7,R) on noticing that the
OF THE SCATTERING SPECTRUM operator on the RHS of EdB7) has the appearance of an

part B ; ; ;
According to a general theoréithe evolution operator ev?:utlocvoperr?t\cl)vrrll[n mhlt%hl-ﬁnt Tr ZR% Irs dlragor:lztal t?dr:  th
of a quantum system can be expressed in the interaction re§|e ce, we ca € € Interaction representation ot the
resentation in exponential form: space

N(7,R)=e (/M (Eir=AKRX

[’

U|(t,to)=eiG(t’t0)=ex;{ —i 21 Gn(t,to)} ., (BY

A
x<i|Txexr{—(i/h)j dA’W,(A’)}H)x_l,
where G(t,ty) is a Hermitian operator which has a nested 0
commutator expansion in powers of the coupling conggant (B8)

g [t where
t,t :_f dt,V,(ty), (B2
1( 0) % t 1 I( 1 ) WI()\'):e(i/ﬁ')(Hpm PR))\ [W -

i(g/fi)? _ UOIGHS NG
Gy(t,tg)=— > J' dtlf dtz[Vi(t1),V,(t2) ], WR]e (B9)
(B3) andT, is the ordering operator in the-space. Here it should
be observed that the action of the transformati®f) on all

(g/h)3 [t ty t, bilinear products of particle operatoc%, K CK K, appearing
Gs(tito)= Jto Jto dt . dts in [W"r—WR] leads to expressions of the type
X[Vi(t),[Vi(t2),Vi(ta)]] cL,’k;cK,kze—(”ﬁ)KEk—Ek'ﬁ—ﬁ(K—K’)R”’. (B10)
3
g/ﬁ) J ftldtz tldtg Now, applying the cumulant expansion to calculate the aver-
to to to age on the RHS of EqB8) and taking the Fourier trans-
forms we find

X[[Vi(ty), Vi(t2) ], Vi(ta) ], (B4)
etc., where all other higher order terms in the coupling con- Ny (AE,AK)= = dr f d*R e(/MI(AE) 7= (AK)R]
stant comprise higher order commutatprs..,[ ... .,.]]] of ki ' —=2mh ) (27h)2
the particle-boson interaction operators:

Vi(t)) = el/MHoty g~ (7MHY, (B5) Xex;{ > Cy(mR)|, (B11)
n=1
Thus, according to Eqg17) and (B1) the Smatrix in the )
interaction picture can be written in a general for$n with
=e ' and the various canonically transformed operators in _
Eq. (16) can be calculated using the identity Cn(r,R)z(—i/ﬁ)“f drg ...
0
SIAS=€CAe ®= > —GMA], B6 Mot :
AS P Y x| 0w O,

whereG"[ A] denotesmth order repeated commutator Gf (B12)

with an arbitrary operatof. This generates the terms in the
exponent on the RHS of Eq16) which are expressed in which the\;-dependence of bilinear products of particle
through the operators/{y; , W, ,Wy) = (W, W) defined by  operators mW,()\ ) is given by expressioiiB10) and the
Egs. (18)—(20). subscriptc denotes the cumulant averatfe.
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