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Unified model of diffractive and multiphonon He atom scattering from adsorbates: Holstein
renormalization of the interactions and the complete Debye-Waller factor

Branko Gumhalter* and David C. Langreth
Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08855-0849

~Received 9 March 1999!

We derive general expressions for the energy and lateral momentum resolved scattering spectrum describing
collisions of beams of thermal energy He atoms with adsorbates on a flat substrate surface. Elastic and inelastic
components of the projectile-adlayer interaction, of which the latter can be nonlinear in adsorbate displace-
ments, are treated to all powers in the coupling constantg and with full account of the projectile recoil. The
established formalism enables a combined treatment of elastic scattering~either diffuse or diffractive! and
inelastic excitation of multiple phonons and overtones in the adlayer on an equivalent footing. For nonlinear
vibrational coupling the distorted wave matrix elements of the interactions are Holstein-renormalized by zero
point motion of adsorbates. In the case of scattering intensities calculated to lowest order ing this gives rise to
a direct analog of the standard Glauber–van Hove Debye-Waller factor. The closed form solutions for the
scattering spectra to all orders ing are characterized by a unified or complete Debye-Waller factor which
embodies the effects discussed so far only separately in the literature:~i! attenuation of the scattered beam
intensities due to zero point motion of adsorbates, and~ii ! attenuation of the beam intensity in the elastic
channel due to inelastic scattering from adlayer phonons and overtones. The complete Debye-Waller factor
acquires a form of an exponentiated sum of Holstein-renormalized scattering intensities and acts to preserve the
unitarity of the scattering spectrum in accord with the optical theorem. The developed model facilitates
evaluation of the various approximate and limiting forms of the scattering spectra and the associated Debye-
Waller factors characteristic of the different scattering regimes and different types of adlayer vibrational
dynamics. Potential applications of the model are illustrated by estimating the effect of Holstein renormaliza-
tion occurring in the unified Debye-Waller factor and scattering intensities for several prototype adlayer
systems.@S0163-1829~99!02428-5#
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I. INTRODUCTION

Despite the many efforts to formulate and unify the noti
of the Debye-Waller factor~DWF! in atom-surface scatterin
theories, where it plays the role of an attenuation factor
the scattered beam intensities, its form has remained a m
of controversy. Already the earliest attempts in this direct
encountered difficulties which were realized and clea
pinpointed.1–6 Later approaches based either on a dir
transposition of the Glauber-van Hove form of the DW
from quantum theory of neutron scattering by vibrating cr
tals, in which it appears as a reduction factor for the inten
ties of first order diffracted neutron beams due to zero po
motion of the scattering centers,7,8 or its reformulation taking
into account the specific scattering conditions at surfaces9–11

have only confirmed such a state of affairs in the field. In
majority of these works the discussions of the DWF we
concentrated on a more or less modified form of the origi
expression exp@2(q^^(Dk•uq)

2&&# typical of inelastic neu-
tron scattering cross sections calculated in first order B
approximation. HereDk is the change of the projectile pa
ticle momentum in the course of the collision, and^^ . . . &&
denotes thermal averaging of the squares of normal m
amplitudesuq describing the vibrations of ion cores in th
crystal.

From the early stage of development of the theory of th
mal energy atom-surface scattering attempts have been m
to treat the diffractive and inelastic scattering on the sa
PRB 600163-1829/99/60~4!/2789~21!/$15.00
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footing. A combined quantum treatment of diffractive an
single-phonon He atom scattering~HAS! from clean surfaces
has been developed in the distorted wave Bo
approximation12–14 ~DWBA!. However, the Debye-Walle
type of reduction of the scattered beam intensities is
pected to be most prominent in collisions typified by mu
tiple phonon exchange.4,15–22 The theories aiming at taking
into account multiphonon atom-surface scattering proces
were often based on the trajectory approximation~TA! for
description of the projectile particle motion,23–26particularly
in the case of heavier projectiles and hyperthermal incid
energies.27 One of the standard quantities calculated in the
approaches is the loss spectrum or the probability that
amount of energy and momentum is transferred from
projectile to quantized vibrations of the crystal. The norm
ization factor of such spectra, given by the weight of t
elastic or no loss line, was found to exhibit the exponen
form reminiscent of the DWF of neutron scattering theo
By analogy, this factor was also termed the DWF althou
no justification as to the same physical origin of the tw
quantities could be given at that stage. Later improveme
over the results of the TA were achieved in the mean fiel28

and wave packet29 approaches which brought the expressio
for the DWF closer to the ones derived in earlier quant
theories.5,6

Recently, a completely quantum treatment of the scat
ing intensities in inelastic multiphonon scattering of He
oms from statically flat surfaces has been developed.30–32

This approach established the weight of the elastic pea
2789 ©1999 The American Physical Society
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2790 PRB 60BRANKO GUMHALTER AND DAVID C. LANGRETH
the exponential form, in a fashion analogous to the opt
theorem. It has also been shown that in the limit of a cla
cal motion of the projectile this exponential attenuation fa
tor turns into the expression found earlier in the TA a
proaches. Due to this analogy it was also termed the D
and its application to the calculation of intensities of elas
cally scattered thermal beams of noble gas atoms from s
cally flat surfaces33,34 yielded a very good agreement wit
experimental results.35,36 An additional analysis has show
that this type of the DWF has different origin relative to t
one introduced in neutron scattering theory and that only
the limiting case of a classical particle motion the two e
pressions may coincide.37 Obviously, this situation has give
rise to a dilemma as to which form of the DWF to use in t
discussions and interpretations of the atom-surface scatte
data, whether only one of these, their product or some o
more complex expression. The situation was additiona
complicated by the difficulty to deconvolute the experime
tal multiphonon HAS spectra from metal surfaces a
thereby identify the large DWF-induced reductions of t
scattered beam intensities.17–19

The likely representatives of the systems in which
above mentioned Debye-Waller effects could be most c
veniently studied are those in which a cross-over from
single to a multiphonon scattering regime can be ea
traced and assessed. Such systems are provided by the a
ers of atoms or molecules adsorbed on metal surfaces a
very many cases they have been found to sustain low en
vibrational modes (\v; few meV! of which some may ex-
hibit negligible dispersion. Their frequencies are usually
tached from other modes of the system over the largest
of the surface Brillouin zone which makes their multip
excitation easily identifiable in the HAS time-of-flight~TOF!
measurements. This has facilitated the studies of low ene
dynamics of a number of adlayer systems in the single
multiphonon scattering regimes over the past t
decades.16,20,21,38–46

Besides the Debye-Waller type of effects, the interes
the low energy modes stems also from the fact that they
be thermally activated already at very low temperatu
which is of particular importance for the thermodynamic
and structural properties of surfaces47 and for the sliding
friction.48 However, due to the different structural properti
of the various types of adlayers sustaining low ene
modes, the theoretical interpretation of a variety of the c
responding HAS TOF spectra cannot be restricted only to
use of the formalism outlined in Ref. 32. This formalis
proved successful in the interpretation of inelastic scatte
from statically flat surfaces,19–21,34,40,49whereas in the cas
of adlayers of submonolayer coverage or isolated adsorb
the incoming beam is primarily scattered by the underly
substrate surface on top of which the array of vibrating
sorbates represents a perturbation for the distorted wave
this situation the assumption of a statically flat surface
derlying the HAS theory developed in Ref. 32 is no long
justified and a different approach is needed to describe
scattering event.

In this paper we present a unified theory of diffractiv
elastic or diffuse-elastic and multiphonon-inelastic scatter
of thermal energy He atoms from vibrating adsorbates
adlayers of submonolayer coverage. The theory encompa
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combined aspects of the above mentioned two types of
DWF in a nontrivial fashion and allows one to retrieve ea
of them in special limits. The present work is focused on
general formulation of the theory of quantum scattering
He atoms from such adlayers and on the derivation of
proximate expressions for the scattering spectra approp
to the various scattering regimes. In the forthcoming pap
we shall concentrate on the use of the developed forma
to interpret the experimental data obtained for some pro
type adlayer systems studied by HAS. In Sec. II we form
late the projectile-adlayer interactions that are nonlinear
adsorbate displacements which then leads to Holstein re
malization of the scattering matrix elements. Thus form
lated interactions are employed to set up a model Ham
tonian needed for the description of the dynamics of He at
scattering from adlayers. With the aid of these prerequis
we develop in Sec. III a formalism for calculation of th
energy and parallel or lateral momentum resolved scatte
spectrum. Here we introduce the notion of a complete
unified Debye-Waller factor which encompasses the afo
mentioned two aspects of the Debye-Waller effects origin
ing from the Holstein renormalization of the scattering inte
action and the total current conservation in the collision.
suitably separating the uncorrelated from the correlated p
non excitation processes we are able to identify the domin
contributions to the scattering spectra in the various regim
of HAS and define approximations in which they can
reliably calculated. We apply the developed formalism
obtain closed form solutions for the spectra pertinent to H
from ordered submonolayers in Secs. IV and V and fro
disordered submonolayers and isolated adsorbates in Sec
Finally, in Sec. VII we reiterate the basic assumptions a
results of the developed theory and indicate the adlayer
tems to which it can be readily applied by estimating t
corresponding Holstein reductions of the scattering inten
ties and of the unified Debye-Waller factor. Formal deriv
tions of some specific forms of the interaction matrix e
ments and of the general expression for the scatte
spectrum based on the cumulant expansion are present
Appendices.

II. FORMULATION OF THE PROJECTILE-SURFACE
INTERACTION

We assume a flat substrate covered with adsorbates
cated in front of the physical surface of the substrate. Bea
of thermal energy He atoms can excite vibrations localiz
within and typical of such adlayers, giving rise to specifi
adsorbate-induced phonon structure in the experimental T
spectra.

The unperturbed He atom motion in front of a clean fl
substrate surface is governed by the projectile part
Hamiltonian

H0
part5

p2

2M
1U~z!, ~1!

where the He atom radius vectorr5(r,z) has the lateral or
parallel to the surface componentr and perpendicular to the
surface componentz, andp andM are the momentum opera
tor and mass of the projectile, respectively.U(z) is the lat-
erally averaged static He atom-surface potential respons
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PRB 60 2791UNIFIED MODEL OF DIFFRACTIVE AND . . .
for specular reflections of the projectile from the bare s
face. Its repulsive component originates from the overlap
the electronic wave functions of the He atom and the surfa
and hence is short ranged, whereas the attractive compo
follows asymptotically a long range van der Waals behav
}21/z3.

The wave functions diagonalizing~1! are written in the
form of distorted waves

^r uk&5^r,zuK ,kz&5
1

ALzLs
2

exp~ iKr!xkz
~z!. ~2!

Here \K denotes the lateral momentum of the project
which is a constant of motion in the absence of perturbati
destroying translational invariance along the flat subst
surface. The quantum numberkz describes the perpendicula
or normal to the surface motion of the atom in the poten
U(z) and\kz has the meaning of the projectile perpendic
lar momentum far away from the surface.xkz

(z) is the cor-
responding nondegenerate solution of the one-dimensi
Schrödinger equation.Ls andLz are the lengths of the quan
tization box in the direction parallel and perpendicular to
surface, respectively. The continuum state wave functi
~2! are equal up to an irrelevant phase factor to the unp
turbed distorted wave scattering states9,50,51 satisfying the
box normalization condition

^k8uk&5dk,k8 . ~3!

The choice of this normalization proves convenient in la
manipulations with the scattering matrix elements.

Two separate types of perturbations can affect the mo
of He atoms described by the unperturbed wave functi
~2!. First, there is an interaction between He atoms and
dynamic corrugation of the substrate surface~substrate
phonons! and, second, with atoms or molecules adsorbed
the surface. The two types of perturbations produce sepa
as well as interference~mixed! contributions to the scatterin
amplitudes. Quite generally, the separate contributions
pear already in second order terms in the coupling cons
whereas the mixed contributions appear first in fourth or
terms in the coupling constant. Therefore, up to fourth or
in the coupling constant the substrate and adsorbate ind
modes can be studied separately as a superposition o
two dynamical structures in the scattering spectra. In
present study we shall concentrate on the systems in w
the low energy vibrations of the substrate and adsorbates
nearly decoupled and well separated throughout the m
part of the surface Brillouin zone~SBZ!. The exception oc-
curs in the long wavelength limit in which the frequencies
low energy adsorbate vibrations become degenerate with
continuum of substrate modes. However, even near the
ter of the SBZ one may consider the adsorbate indu
modes as distinct modes with renormalized frequency
lifetime which are readily determined from the parameters
the system.52 Hence, in the following we shall not conside
the coupling of He atoms to the dynamic corrugation of
crystal surface but study only the interaction of the clos
shell electronic structure of the He atom located atr with the
adsorbates of the adlayer which can vibrate around t
equilibrium positions atr l5(rl ,zl). The effect of substrate
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phonons to lowest order in the coupling constant can be
cluded in a rather straightforward fashion and some asp
of this problem were addressed in Ref. 53. We further invo
a common approximation of atom-surface scattering the
in which the total He atom-adlayer interaction potentialV(r )
is represented by a pairwise sum of the potentialsv(r2r l
2ul) describing the interaction of the scattered He atom w
each single vibrating adsorbate.54 This approximation is jus-
tified in the situation of submonolayer coverages and
obtain

V~r !5(
l

v~r2r l2ul!5(
l

v~r2rl2uli ,z2zl2ul'!,

~4!

whereul5(uli ,ul') denotes the displacement of thelth ad-
sorbate as a whole from the equilibrium position. In t
present formulation of the interaction we do not include t
effect of intra-adsorbate vibrations, usually of much high
frequencies and hence inaccessible to HAS, which are m
sured, e.g., in EELS experiments. Their treatment requ
the introduction of internal adsorbate vibrational degrees
freedom into the scattering potential, as was demonstrate
Ref. 55.

Assuming He atom wave functions given by Eq.~2! we
obtain for the He atom-adlayer interaction matrix elemen

^K 8,kz8uV~r !uK ,kz&5(
l

e2 i (K82K )(rl1uli)

3v~K 82K ,kz8 ,kz ,ul'!, ~5!

where

v~K 82K ,kz8 ,kz ,ul'!5
1

LzLs
2E dzxk

z8
* ~z!xkz

~z!

3E d2re2 i (K82K )rv~r,z2zl2ul'!.

~6!

Here the appearance of the adsorbate lateral coordinaterl
1uli in the exponent on the right-hand-side~RHS! of Eq. ~5!
is due to the translational invariance of the unperturbed p
ticle wave functions along the surface.

Next we observe that for adsorbates whose centers
outward the turning pointszt of the wave functionsxkz

(z),

i.e., zl>zt , it would be appropriate to represent both ther-
and z-dependence ofv(r,z2zl2ul') through its Fourier
transform~FT! vF(Q,p). Defining

v~r,z!5E d2Q

~2p!2E2`

` dp

2p
eiQreipzvF~Q,p!, ~7!

we obtain
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2792 PRB 60BRANKO GUMHALTER AND DAVID C. LANGRETH
^K 8,kz8uV~r !uK ,kz&5
1

LzLs
2 (

l
e2 i (K82K )(rl1uli)

3E
2`

` dp

2p
e2 ip(zl1ul')

3vF~K 82K ,p! f F~kz8 ,kz ,p!, ~8!

where we have introduced the generalized FT-generated
cillator strength:

f F~kz8 ,kz ,p!5E
2`

`

eipzxk
z8

* ~z!xkz
~z!dz. ~9!

On the other hand, for small adsorbates whose centers
lie nearer to the surface thanzt , viz. zl<zt , it may turn out
more convenient to use the Laplace transform to repre
the z-dependence ofv(r,z2zl2ul') as this could provide
faster convergence relative to the transformation coordin
p. This approach is briefly outlined in Appendix A.

Expressions~5!–~9! are quite general and valid for an
type of adsorbate-He atom potential. One of their import
and interesting properties, and thereby also of the He a
interactions with vibrating adlayers, can be recovered u
taking the thermal average over the vibrational modes
expression~5! which is assumed site-independent for ads
bates occupying equivalent adsorption sites. This yields

^K 8,kz8u^^V~r !&&uK ,kz&

5
1

Ls
2Lz

(
l

e2 i (K82K )rlE
2`

` dp

2p
e2w(K82K ,p)

3vF~K 82K ! f F~kz8 ,kz ,p!e2 ipzl. ~10!

Here ^^ && denotes the thermal average and

e2w(K82K ,p)5expF2
1

2
^^@~K 82K !uli1pul'#2&&G ,

~11!

where the exponential form of expression~11! follows from
the Bloch-Glauber theorem. Its explicit form depends on
expansion of the displacements in terms of normal pho
modes of the system~see Secs. IV and VI below!.

The occurrence of the exponential factor~11! arises from
the local character of the interaction of the projectile at
with adsorbate displacements to all orders in the coup
constant. This factor has the appearance of the Hols
renormalization of the interaction matrix elements@presently
vF(K 82K ,p)] which is commonly encountered in the stu
ies of boson fields perturbed by local potentials.56–60 Its
square plays the role of the standard Glauber-van Hove
of the Debye-Waller factor occurring in first order perturb
tion theories7,8 which reduces the magnitude of the scatter
intensities. Physically, this effect originates from zero po
vibrations of the adlayer which act so as to smear out
scattering potential in the lateral and perpendicular dir
tions. The explicit form of the contribution due to later
vibrations arises from the translational invariance of the
eral component of the unperturbed projectile wave functi
Perpendicular zero point vibrations smear out ea
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p-component of the Fourier transform of the potential ov
the oscillatory part of the distorted waves and this gives r
to the appearance of the factorpul' in the exponent on the
RHS of Eq.~11!. In both cases these renormalizations rep
sent an off-the-energy-shell effect as they arise from virt
phonon exchange processes.37

III. SCATTERING SPECTRUM AND THE COMPLETE
DEBYE-WALLER FACTOR

The derivation of the scattering spectrum is facilitated
writing the total Hamiltonian of the interacting scatterin
system in the form

H5H0
part1H0

ph1gV5H01gV, ~12!

and expressing the constituting terms in the second qua
zation. Thus

H0
part5 (

K ,kz

EK ,kz
cK ,kz

† cK ,kz
, ~13!

where EK ,kz
5Ek is the energy of the projectile particl

whose motion is described by the distorted waves, Eq.~2!,
and cK ,kz

† and cK ,kz
denote, respectively, the creation an

annihilation operators for the particle in the state denoted
quantum numbers (K ,kz). H0

ph is the Hamiltonian describing
unperturbed vibrations in the adlayer which after the qua
zation of the adsorbate displacements gives the free pho
Hamiltonian in terms of the phonon field creation and an
hilation operatorsa† anda, respectively. Its particular form
depends on the phonon quantum numbers, i.e., on whe
the adlayer sustains localized or delocalized~propagating!
modes. Hence, it will be explicitly written down in conne
tion with the application of expression~12! to either ordered
or disordered adlayers in Secs. IV and VI below.g is the
coupling constant introduced for convenience and eventu
set equal to unity. Making use of expression~5! we find for
the interaction term

V5(
l

(
K ,K8,kz ,kz8

e2 i (K82K )(rl1uli)

3v~K 82K ,kz8 ,kz ,ul'!cK8,k
z8

†
cK ,kz

, ~14!

where the scattering matrix elements are given by expres
~6! and the adsorbate displacement operatorsul are expressed
as a linear function of the phonon field operatorsa† and a
explicitly defined in Secs. IV and VI.

Since the quantitiesEK ,kz
and K fully specify the state

uK ,kz&, we can now define with the aid of Eq.~12! the an-
gular resolved scattering spectrum by the relation

Nki
~DE,DK !5 lim

t˜`
^C~ t !ud@DE2~H0

part2Ei !#

3d@\DK2~P̂2\Ki!#uC~ t !&, ~15!

whereki5(Ki ,kzi) are the quantum numbers describing t
initial state of the projectile particle,uC(`)& is the total
wave function of the interacting system att˜` after the
collision event has been completed and the particle scatt
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into the final stateuKf ,kz f&. P̂ is the operator of the latera
momentum of the particle, and the changes of quantum n
bers DK and DE appearing in the arguments of th
d-functions on the RHS of Eq.~15! are given byDK5Kf
2Ki and DE5Ekf

2Eki
5Ef2Ei . With this convention

used also in the terminology of the TOF spectra we h
DE,0(.0) in the case of particle energy loss~gain!.50,51

Since Ei and the direction ofki are fixed by experimenta
conditions the connection betweenDE and\DK through the
conservation of total energy and lateral momentum in
collision leaves onlyDE and the final spherical polar sca
tering anglesu f andw f as independent experimental obse
ables. Taking into account the in-sagittal-plane scattering
ometry in which the HAS TOF measurements are usu
carried out, it can be shown that the scattering spectrum
to
tr
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fined by Eq.~15! is directly proportional to the experimenta
spectrum.19 Let us also note that for later convenience w
have expressed in Eq.~15! the energy and lateral momentu
transfer in terms of the particle rather than the phonon
erators because in such a formulation we can retrieve
elastic diffraction and diffuse scattering effects explicit
from the elastic part of the spectrum for whichDE50. This
is in contrast to Ref. 32 in which the energy and late
momentum transfer between the projectile and phonons
the statically flat surface were expressed in terms of the
responding phonon operators.

A formal evaluation of expression~15! proceeds32 by ex-
pressing the energy and momentum conservingd-functions
as Fourier transforms of exponentials of the operatorsH0

part

and P̂. This yields
Nki
~DE,DK !5E

2`

` dt

2p\E d2R

~2p\!2
e( i /\)[(DE1Ei )t2\(DK1Ki)R]^C~`!ue2( i /\)(H0

partt2P̂R)uC~`!&

5E
2`

` dt

2p\E d2R

~2p\!2
e( i /\)[(DE1Ei )t2\(DK1Ki)R]^ i uSI

†e2( i /\)(H0
partt2 P̂xX2 P̂yY)SI u i &

5E
2`

` dt

2p\E d2R

~2p\!2
e( i /\)[(DE)t2\(DK )R]^ i ue2( i /\)(H 0

partt2PxX2PyY)u i &. ~16!
ap-
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HereR5(X,Y) is a two dimensional radiusvector parallel
the surface plane where the capital letters have been in
duced to avoid confusion with the coordinates (x,y) of the
particle,u i & is the initial noninteracting state of the scatteri
system att0˜2` ~implying also thermal averaging over th
phonon states!, SI is defined in the interaction picture accor
ing to

SI5 lim
t˜`,t0˜2`

UI~ t,t0!, ~17!

where

UI~ t,t0!5e( i /\)H0(t2t0)e2( i /\)H(t2t0)

5e( i /\)H0te2( i /\)H(t2t0)e2( i /\)H0t0

is the evolution operator in the interaction representatio61

and the canonically transformed operators appearing in
third line of Eq.~16! are defined by

H 0
part5SI

†H0
partSI5H0

part1WH , ~18!

Px5SI
†P̂xSI5 P̂x1Wx , ~19!

Py5SI
†P̂ySI5 P̂y1Wy . ~20!

The last line of expression~16! defines the kernelN(t,R) of
the spatio-temporal Fourier transform as

N~t,R!5^ i ue2( i /\)(H 0
partt2PxX2PyY)u i &, ~21!
o-

e

in which the initial state averages can be calculated by
plying the cumulant expansion32 ~cf. Appendix B!. This
yields

Nki
~DE,DK !5E

2`

` dt

2p\E d2R

~2p\!2

3e( i /\)[(DE)t2\(DK )R]expF (
n51

`

Cn~t,R!G ,

~22!

where the explicit form of the cumulantsCn(t,R) is given in
Appendix B. Expression~22! is exact as no approximation
have been employed in its derivation. The general proper
of the thus obtained scattering spectrum and its connec
and equivalence to theT-matrix scattering formalism have
been discussed in detail in Ref. 32. Here we shall obse
only one basic property of expression~22! which is impor-
tant for further analyses of the scattering spectra. The te
in the exponentiated series in the integrand on the RHS
Eq. ~22!, which are all functions of the Holstein
renormalized matrix elements of the projectile-adsorbate
teraction, can be separated into two subseries, one with
terms dependent and the other with the terms independe
the transformation variablest andR. The exponentiated sum
of (t,R)-independent terms, which can be factorized out
the integral, gives the weight of the elastic line. This c
easily be seen by expanding the remaining exponential fu
tion of the sum of (t,R)-dependent terms into a power seri
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and carrying out the (t,R)-integrations, after which the no
loss line is recognized as the term proportional
d(DE)d(DK ). Thereby the factorized (t,R)-independent
exponential term preserves the unitarity of the scatter
spectrum and hence can be identified with the comp
Debye-Waller factor.

The infinite series of cumulants in the exponent on
RHS of Eq.~22! cannot be easily calculated except for ve
simple model systems and therefore some approximation
the evaluation of this expression must be introduced as,
the truncation of the series. Due to the structure of exp
sion ~22! such a procedure does not violate the unitar
property of the scattering spectrum. In particular, the sum
the first two cumulantsC1 andC2, which is proportional to
g2, describes only uncorrelated scattering processes whe
all other higher order ones give corrections to these b
processes in terms of the correlated scattering events. T
for instance, the probabilities of resonant processes in wh
the projectile is first elastically scattered by an adsorbate
then inelastically by another one by emitting or absorbin
phonon, or vice versa,65 are correlated and proportional tog4

and hence require the evaluation of the cumulants of
corresponding order.

It has been shown32,63 that the terms describing uncorre
lated phonon scattering processes give dominant contr
-
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tions to the scattering matrix or the scattering spectrum
He atom incoming energiesEi up to ;100 meV. Hence,
one can retain only these terms in the exponent on the R
of Eq. ~22! as the remainder gives a small correction to t
cumulant sum. The spatio-temporal Fourier transform
such expression gives the scattering spectrum in the disto
wave exponentiated Born approximation~EBA!:

Nki

EBA~DE,DK !5E
2`

` dtd2R

~2p\!3
e( i /\)[(DE)t2\(DK )R]

3exp@2WEBA~t,R!22WEBA~0,0!#,

~23!

where

2WEBA~t,R!22WEBA~0,0!5C1~t,R!1C2~t,R!. ~24!

To obtain the explicit expression for 2WEBA(t,R) one fol-
lows the procedure outlined in Appendix B to calcula
Cn(t,R) by taking cumulant averages of the products
interaction operators (WH ,Wx ,Wy), with the latter calcu-
lated following Eqs.~18!–~20! and the procedure describe
in Sec. III B of Ref. 32. For the interaction given by Eq.~8!
this yields
2WEBA~t,R!5 (
K8,kz8

e2( i /\)[(Ek82Eki
)t2\(K82Ki)R]

1

~LzLs
2!2 (

l8,l9
ei (K82Ki)(rl82rl9)E

2`

` dp8

2p
eip8zl8e2w(K82Ki ,p8)

3vF* ~K 82Ki ,p8! f F* ~kz8 ,kzi ,p8!E
2`

` dp9

2p
e2 ip9zl9e2w(K82Ki ,p9)vF~K 82Ki ,p9! f F~kz8 ,kzi ,p9!

3
1

\2E2`

`

dt8E
2`

`

dt9e2( i /\)(Ek82Eki
)(t82t9)

3exp̂ ^@~K 82Ki!ul8i~ t8!1p8ul8'~ t8!#@~K 82Ki!ul9i~ t9!1p9ul9'~ t9!#&&. ~25!
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2WEBA(t,R) is the so-called EBA scattering or driving func
tion whose time dependent part comprises exponentiated
relation function of lateral and normal adsorbate vibratio
The different form of the correlation function in the later
and perpendicular directions reflects the break down of tra
lational symmetry in the system due to the presence of
surface. The scattering function embodies two important f
tures of the scattering event:~i! the projectile atom may in-
teract simultaneously with more than one adsorbate in
adlayer in the course of the collision, and~ii ! during this
interaction the particle may be scattered elastically or ine
tically, in the latter case by giving rise to either single
multiple ~subsequent! phonon excitations, or to overtone
~anharmonic vibrational transitions!, or combinations of
these.

In the EBA the exchange of energy and lateral moment
is automatically conserved in each interaction vertex~see
Sec. IV!. This property arises from the quantum character
both the particle and the phonon field and is preserved i
or-
.

s-
e

a-

e

s-

f
e-

spective of the actual validity of the EBA. On the other han
the EBA spectrum~23! does not on its own automaticall
imply conservation of the total energy and lateral moment
in a multiple scattering process. It is only in the range of t
validity of the EBA, in which the correlations between su
sequent phonon excitations in a sequence of the on-shell
cesses are very weak and therefore allCn.2(t,R) are negli-
gible, that as a consequenceDE and DK satisfy the total
energy and momentum conservation. Hence, in practical
plications of expression~23! to multiple scattering one mus
first check the validity of the EBA in a particular collisio
regime~e.g., by following the prescriptions outlined in Ref
30 and 32! and then calculate the EBA spectrum~23! for the
values ofDE andDK obeying total energy and lateral mo
mentum conservation, i.e., the values lying on the ‘‘sc
curve.’’ Of course, the same also applies to the scatte
spectra calculated in other approximations~classical trajec-
tory, impulsive scattering, etc.! which are the special limits
of the EBA ~cf. Ref. 32 and Sec. V below!.
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Further evaluation of 2WEBA(t,R) requires a specifica
tion of the vibrational displacementsul in terms of the pho-
non modes characteristic of the adlayer. However, an imp
tant remark can be made already at this point. As was no
in connection with expression ~22!, the quantity
exp@22WEBA(0,0)#5exp@22WEBA# on the RHS of Eq.~23!,
which is independent oft and R and whose exponentia
appearance is independent of a particular form of
projectile-surface interaction, can be factorized out of
triple integral. After expanding exp@22WEBA(t,R)# into a
power series and carrying out the integrals we find that in
EBA the total weightN0

EBA of the specular elastic peak
given in the form

Nspecular~DE,DK !5N0
EBAd~DE!d~DK !

5e22WEBA
d~DE!d~DK !, ~26!

which guarantees that the optical theorem is satisfie32

Hence, the factore22WEBA
is identified with a quantal analo

of the DWF obtained in the studies of scattering of class
particles by boson fields.9 In the present quantal formulatio
such total DWF combines the features of~i! off-the-energy-
shell Glauber-van Hove type of Debye-Waller factor arisi
from the Holstein renormalization of the interaction mat
elements in expression~25!, and ~ii ! on-the-energy- and
momentum-shell Debye-Waller factor discussed in Refs. 3
32,37 and 63 which according to Eq.~26! measures the tota
probability of finding the projectile in the entrance chann
after the collision with the surface.

Quite generally, the open scattering channels can be c
sified as elastic (DE50) and inelastic (DEÞ0). According
to Eq. ~25! the total scattering function appears as a sum
the scattering functions from all channels. Hence, the de
oped formalism lends itself as particularly suitable for t
description of HAS from adlayers in which both the elas
~diffuse or diffractive! and inelastic scattering effects a
pronounced.

IV. SCATTERING FROM ORDERED ADLAYERS

Quite generally, the amplitude and phase of the mo
over the neighboring adsorbates can be either cohe
~propagating adlayer phonons! or incoherent ~localized
phonons! and the experimental data do not always allow d
crimination between the two cases. However, in ordered
perstructures with not too large nearest adsorbate-adso
distances the interadsorbate interactions are not totally
sent. Thus, even weak interadsorbate forces would ca
some correlation between vibrations of the neighboring
sorbates and hence give rise to a coherent lateral propag
of the vibrational modes in the adlayer. This causes disp
sion of the adlayer modes, i.e., the dependence of their
quency on the lateral wave vector describing th
propagation.64 On the other hand, in the case of less den
and disordered adlayers the adsorbate vibrations may re
localized character. In this section we shall apply the form
ism developed in Sec. III to elastic and inelastic scatter
from ordered adlayers sustaining coherent vibrations
leave the problem of scattering from disordered adlayers
isolated adsorbates to Sec. VI.

The adsorbate displacementsul5(uli ,ul') in the case of
r-
ed
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coherent vibrations propagating in a periodic adlayer can
expanded in terms of normal phonon modes as:50,51

ul5~uli ,ul'!5(
Q, j

e~Q, j !S \

2MaNavQ, j
D 1/2

3eiQrl~aQ, j1a2Q, j
† !, ~27!

where Q, j, \vQ, j and e(Q, j )5@ei(Q, j ),e'(Q, j )#
5e* (2Q, j ) denote the two dimensional wave vecto
branch index, energy and polarization vector of a norm
phonon mode, respectively,Ma is the adsorbate mass and th
phonon mode creation and annihilation operatorsaQ, j

† and
aQ, j , respectively, satisfy the commutation relations:

@aQ, j ,aQ8, j 8
†

#5dQ,Q8d j , j 8 . ~28!

In terms of these operators the unperturbed phonon fi
Hamiltonian which determines the time dependence oful
takes the form

H0
ph5(

Q, j
\vQ, jaQ, j

† aQ, j . ~29!

Substitution of expansion~27! in expression~25! enables the
full calculation of the scattering function pertinent to HA
from periodic adlayers.

A. Elastic diffractive scattering and the Debye-Waller factor

Elastic scattering processes are described by the term
tained in 2WEBA(t,R), Eq. ~25!, which is obtained by ex-
panding the exponentiated correlation function into a pow
series and retaining only the zeroth order term, i.e., un
Then the summations overl8 and l9 can be carried out by
recalling that for ordered overlayers

(
l

exp@ i ~Ki2K8!rl#5Na(
G

dK82Ki ,G , ~30!

whereNa is the number of adsorbates on the surface, i.e.,
areaLs

2 . Hence, in elastic scattering from ordered adlay
the lateral momentum is conserved up to the reciprocal
layer lattice wave vectorG. Assumption of equivalent ad
sorption sites implieszl5za and we find

2Wdiffr
EBA~t,R!5(

G
eiGR (

K8,kz8
uV

K8,Ki ,G

kz8 ,kzi ~0,za!u2

52Wdiffr
EBA~0,R!, ~31!

in which the on-the-energy and lateral-momentum-shell m
trix elements describing diffraction are given by
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V
K8,Ki ,G

kz8 ,kzi ~0,za!5dK8,Ki1G

2pd~Eki
2Ek8!

LzAa

3E
2`

` dp

2p
eipzae2w(K82Ki ,p)

3vF~K 82Ki ,p! f F~kz8 ,kz ,p!

5dK8,Ki1Gd k̄zi(0),k
z8
Q„k̄zi

2 ~0!…

3
ṽF~K 82Ki ,kz8 ,kzi ,za!

Aa\Avzvz8
. ~32!

Here vz5\kz /M ,Aa5Ls
2/Na is the area of the surface un

cell of the superstructure, the requirement of energy con
vation is expressed by using standard identities involv
d-functions32 as

2pd~Eki
2Ek8!/Lz5d k̄zi(0),k

z8
Q„k̄zi

2 ~0!…/~\Avzvz8!,

~33!

where

k̄zi
2 ~0!5Ki

22K 821kzi
2 , ~34!
e
to
io

s

e

to
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and the step functionQ„k̄zi
2 (0)… selects only the open sca

tering channels for whichk̄zi
2 (0).0. Note in passing that the

application of the latter condition to higher order cumulan
which describe correlated processes, would exclude the
lective adsorption processes from the scattering spect
and hence should not be implemented there. The pair in
action matrix elementṽ(K 82Ki ,kz8 ,kzi ,za) can be ex-
pressed as

ṽF~K 82Ki ,kz8 ,kzi ,za!

5E
2`

`

dzxk
z8

* ~z!xkzi
~z!ṽF~K 82Ki ,z2za!

5E
2`

`

dzxk
z8

* ~z!xkzi
~z!E

2`

` dp

2p
e2 ip(z2za)

3 ṽF~K 82Ki ,p!, ~35!

with

ṽF~K 82Ki ,p!5e2w(K82Ki ,p)vF~K 82Ki ,p!. ~36!

The factor exp@2w(K 82K ,p)# multiplying vF(K 82K ,p)
on the RHS of Eq.~36! is given by
e2w(K82Ki ,p)5expF2
1

2 (
Q8, j 8

\u~K 82Ki!ei~Q8, j 8!1pe'~Q8, j 8!u2

2 MaNavQ8, j 8
@2n̄~vQ8, j 8!11#G , ~37!
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whereQ8 is restricted to the first SBZ of the adlayer. Henc
for coherent vibrations the Holstein renormalization fac
associated with the Fourier transform of the interact
vF(K2K 8,p) defined in Eq.~7! is explicitly given by ex-
pression ~37!. Due to the Kronecker symbol
dK8,Ki1Gd k̄zi(0),k

z8
contained in expression~32! all the sum-

mations over the final wave vectors in Eq.~31! are easily
carried out. Note that the diffraction amplitud

V K1G,Ki

k̄zi(0),kzi(0,za) is a dimensionless quantity and that due

coherent scattering from an ordered overlayer one obt
2Wdiffr

EBA(0,R)}Aa
22 and all other quantization lengths andNa

factors cancel out. Thus obtained 2Wdiffr
EBA(0,R) allows elastic

scattering of the particles only into the diffraction chann
of the k-space, viz. the transitions (Ki ,kzi)˜@Ki

1G,k̄zi(0)# where k̄zi(0) depends onG through Eqs.~30!
and ~34!, and the probability of this process is given b

uV Ki1G,Ki

k̄zi(0),kzi(0,za)u2. Diffraction processes give rise to a redu

tion of the intensity of the specularly reflected beam by
diffraction-induced Debye-Waller factor

e22Wdiffr
EBA

5expF2(
G

UV Ki1G,Ki

k̄zi(0),kzi~0,za!U2G , ~38!

in accord with the optical theorem. The ‘‘standard’’ Glaube
van Hove Debye-Waller factor appears here in the scatte

amplitudeV Ki1G,K
k̄zi(0),kzi(0,za) through the Holstein renormaliza
,
r
n

ns

s

a

-
g

tion of the Fourier transform of the pair interaction~36! in a
fashion also discussed in Refs. 57, 58, and 60. It should
observed that the exponential form of this renormalization
a consequence of the specific symmetry of the unpertur
wave functions of the projectile and the interaction poten
employed to calculate the matrix elements~5!. On the other
hand, the exponential form of the total DWF in Eq.~26!, and
thereby also in Eq.~38!, is independent of the particularitie
of these quantities since it arises from general conserva
laws. Hence, the complete DWF for diffractive scatteri
given by Eq.~38! combines two effects, the renormalizatio
of the interaction matrix elements~36! due to elastic particle
scattering by zero point vibrations of the adlayer, and
reduction of the intensity of the elastic specular beam due
the projectile diffractive scattering out of the entrance ch
nel (Ki ,kzi).

B. Multiquantum inelastic scattering and the unified
Debye-Waller factor

Expression~25! for the EBA scattering function contain
all powers of the adsorbate displacement operatorsul
5(ul i ,ul') and as such can generate two types of m
tiphonon processes upon expansion of the exponentiated
relation function into a power series in the displacemen
The zeroth order term describes elastic diffraction effe
discussed above. Multiphonon processes comprising su
quent phonon exchange in which only one phonon can
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emitted or absorbed in an interaction vertex arise if besi
the zeroth term, the next linear or first order term in t
expansion of the exponentiated correlation function is
tained in the scattering function~25!. Then, due to the ap
pearance of this term in the argument of the exponen
function on the RHS of Eq.~23!, it is repeated through ex
panding the latter function into a power series. Thus, annth
order term in this expansion generates phonon excita
processes with multiplicity of ordern. In all diagrams repre-
senting these processes only a single phonon line can te
nate in each interaction vertex~cf. Fig. 1a in Ref. 32!. Alter-
natively, one can first expand exp@22WEBA(t,R)# in Eq.
~23! into a series in powers of 2WEBA(t,R) and keep only
the zeroth and first order terms@the zeroth order term giving
rise to the no loss line described by expression~26!#, retain
the correlation function in exponential form and treat it fo
lowing the lines of Glauber–van Hove first order Born a
proximation approach.53,71 This produces in the diagram
matic representation ofN(t,R) of Eq. ~21! a class of
diagrams with only two interaction vertices~each carrying a
factor g) in which any number of phonon lines can term
nate, but each such diagram appearing only once.37 This type
of interaction is nonlinear in displacements and hence
give rise to excitation of overtones. The diagrammatic rep
sentation of such correlation functions is shown in Fig. 1
Ref. 37. However, this latter approximation leads to expr
sions for
s

-

al

n

i-

-

n
-
f
-

the scattering spectrum in which the unitarity is genera
violated. Of course, combinations of the two types of t
above described approaches are also possible.

The analyses of theT-matrix expansion for inelastic atom
surface scattering processes have shown63 that multiphonon
vertices arising from nonlinear coupling give rise to di
grams for the scattering matrix which for not too high i
coming energies and substrate temperatures produce sm
contributions than the multiphonon diagrams of the sa
multiplicity but involving multiple single phonon vertice
only. Hence, in the following we shall pursue the approa
in which only the contributions leading to single phono
vertices are taken into consideration. The treatment of
complementary scattering regime in which the multiple ph
non vertices were taken into account up to second orde
the coupling constantg was presented in Ref. 53.

Expanding the exponentiated correlation function in e
pression~25!, retaining the terms bilinear in the displac
ments and making use of the identity

E dp

2p
pe2 ipza5 i

]

]za
E dp

2p
e2 ipza ~39!

we find the contribution to the scattering function whic
gives rise to subsequent one-phonon exchange proce
~subscript 1 means single phonon vertices!:
on

tions
2W1coh
EBA~t,R!5 (

K8,kz8
e2( i /\)[(Ek82Eki

)t2\(K82Ki)R]
1

~LzLs
2!2 (

l8,l8
ei (K82Ki)(rl82rl9)

3
1

\2E2`

`

dt8E
2`

`

dt9e2( i /\)(Ek82Eki
)(t82t9)

3^^@~K 82Ki!•ul8i~ t8!2 iul8'~ t8!~]/]zl8!#@~K 82Ki!•ul9i~ t9!1 iul9'~ t9!~]/]zl9!#&&

3 ṽF* ~K 82Ki ,kz8 ,kzi ,zl8!ṽF~K 82Ki ,kz8 ,kzi ,zl9!. ~40!

This is expressed in terms of the Holstein-renormalized interactions~35! and~36! and can be calculated once the polarizati
eigenvectors and eigenfrequencies of adsorbate vibrations are specified.

Substituting expression~27! into Eq. ~40!, carrying out summations over (l8,l9), which yield the lateral momentum
conservation, and integrations overt8 andt9, which yield the energy conservation, we obtain in the case of coherent vibra

2W1coh
EBA~t,R!5 (

K8,kz8
e2( i /\)[(Ek82Eki

)t2\(K82Ki)R](
Q, j

(
G

{ uF
K8,Ki,Q , j

kz8 ,kzi ~1,za!u2@ n̄~vQ, j !11#1uF
K8,Ki ,Q, j

kz8 ,kzi (2,za)u2n̄(vQ, j )%

5(
Q, j

(
G

$uFKi2Q2G,Ki , j
k̄zi(1),kzi (1,za)u2[ n̄(vQ, j )11]ei [vQ, jt2(Q1G)R]

1uFKi1Q1G,Ki , j
k̄zi(2),kzi ~2,za!u2n̄~vQ, j !e

2 i [vQ, jt2(Q1G)R] . ~41!

Here the force matrix elementsF are defined by

F
K8,Ki,Q, j

kz8 ,kzi ~6,za!5S \

2MaNavQ, j
D 1/2

@~K 82Ki!•ei~Q, j !1 ie'~Q, j !~]/]za!#V
K8,Ki,Q , j

kz8 ,kzi ~6,za!, ~42!

in which the inelastic counterpart of expression~32! is given by
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K8,Ki ,Q, j

kz8 ,kzi ~6,za!5dK86Q6G,Ki
d k̄zi(6),k

z8
Q„k̄zi

2 ~6 !…
ṽF~K 82Ki ,kz8 ,kzi ,za!

Aa\Avzvz8
. ~43!
u

ro

th

g

-

rte
th

dif

sc
n

se
rin

tio
um

-
s

e
a

nd

om
e-
e

in
he
-

rs

een
e-

ul-
by

ed

S of
re

ts
d

ing
g

In this expression the values ofK 8 andEk8 are confined to the
energy- and lateral-momentum-shell through the prod
dK86Q6G,K i

d k̄zi(6),k
z8
Q„k̄zi

2 (6)… in which the symbols (1)

and (2) refer to one-phonon emission and absorption p
cesses, respectively, and

k̄zi
2 ~6 !5Ki

22K 821kzi
2 72MvQ, j /\. ~44!

The conditionk̄zi
2 (6).0 present in expression~43! auto-

matically excludes the sticking processes for which
EBA-derived probabilities scale asg2 but which are negli-
gible for the studied systems.66 Thus, the inelastic scatterin

matrix elementsF
K8,Ki ,Q, j

kz8 ,kzi (6,za) conserve the lateral mo

mentum and energy in each one-phonon interaction ve
but also embody the off-the-energy-shell features through
Holstein renormalization factor~37!.

Expressions~37! and~41! are independent ofNa since the
final summations overK 8 or Q when transformed into a
two-dimensional integration introduce a factorNaAa /(2p)2.
Hence, expression~41! remains proportional toAa

21 and not
to Aa

22 as was the case with the analogous quantity in
fraction @cf. expression~31!#. Thus, larger unit cells of the
superstructure act so as to reduce the amplitude of the
tering function for inelastic processes, and vice versa, but
to the extent as in the case of elastic diffraction proces
Note also the difference between the inelastic scatte
probabilities of loss and gain processes in expression~41!

which are associated with@ n̄(vQ, j )11# and n̄(vQ, j ), re-
spectively. These terms are different which is a manifesta
of the recoil effects in both the energy and lateral moment
phase space.

Now, according to Eq.~23! the unified Debye-Waller fac
tor due to inelastic scattering by coherent vibrations read

e22W1coh
EBA

5expF2(
Q, j

(
G

$uF Ki2Q2G,Ki , j
k̄zi(1),kzi ~1,za!u2@ n̄~vQ, j !

11#1uFKi1Q1G,Ki , j
k̄zi(2),kzi ~2,za!u2n̄~vQ, j !%G . ~45!

The exponent on the RHS of Eq.~45! is integrated over all
scattering channels and is therefore independent ofNa and
scales asAa

21 . In the limit of high temperature and larg
projectile incident energy it becomes effectively proportion
to a product of the Holstein renormalization factor a
Weare’s parameter67 a5(M /Ma)(Ei /kBQD)(T/QD) which
estimates the importance of multiphonon processes in at
surface scattering (kB is the Boltzman constant and the D
bye temperatureQD should be identified with the averag
phonon energy at the adlayer zone edge!. Moreover, inspec-
tion of the various formulas of the one-phonon scatter
theory~cf. Ref. 50! enables us to identify the exponent on t
RHS of Eq. ~45! with the sum of one-phonon inelastic re
ct

-

e

x
e

-

at-
ot
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g

n

l
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g

flection coefficientsR̃f i
DWBA calculated in the DWBA and

weighed by the Glauber–van Hove DWF which ente
through the Holstein renormalization of the interaction~5!,
viz.

e22W1coh
EBA

5expF2 (
f (Þ i )

R̃f i
DWBAG . ~46!

This expression clearly demonstrates the relation betw
the EBA and the DWBA and the corresponding Deby
Waller factors.

Substitution of the sum of expressions~31! and ~41! into
Eq. ~23! gives the momentum and energy resolved m
tiphonon scattering spectrum with the total DWF given
the product of expressions~38! and ~45!.

C. Mean energy transfer

An important property of the lateral momentum integrat
spectrum is its first momentm1(Ts) or the mean energy
transfer in the course of inelastic projectile scattering49 from
the surface at the temperatureTs . Starting from expression
~22! it is easily shown that

m1~Ts!5E ~DE!~dDE!E d2~DK !N~DE,DK !

5 i
]

]t (
n51

`

Cn~t,R50!ut50 . ~47!

This expression is exact. In the EBA we obtain

m1
EBA~Ts!5 i

]

]t
2W~t,R50!ut50 . ~48!

For coherent vibrations this takes the form

m1coh
EBA~Ts!5(

G
(
Q, j

~\vQ, j !$uF Ki2Q2G,Ki , j
k̄zi(1),kzi ~1,za!u2

1@ uF Ki2Q2G,Ki , j
k̄zi(1),kzi ~1,za!u2

2uF Ki1Q1G,Ki , j
k̄zi(0),kzi ~2,za!u2#n̄~vQ, j !%. ~49!

Note here the minus sign in the square bracket on the RH
Eq. ~49! which gives rise to a recoil induced temperatu
dependent contribution tom1coh

EBA(Ts). However, the total tem-
perature dependence ofm1

EBA(Ts) comes both through the
Holstein renormalization of the interaction matrix elemen
F by the factore2w and the recoil-induced term. It shoul
also be pointed out thatm1

EBA will provide a reliable estimate
of the total energy transfer inasmuch as the correspond
EBA spectrum~23! reliably reproduces the exact scatterin
spectrum~22!.
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D. Mean energy transfer for fixed scattering geometry

In the majority of TOF experiments the scattered partic
are detected in the sagittal plane with no change of the
muth, i.e.,w i5w f , and withu i1u f5uSD5const for a given
apparatus. Additionally, during recording of each TOF sp
trum the incident angleu i is kept fixed, which all determine
DK in the sagittal plane as a function of the energy trans
only, viz.

~DK !sag5kfsinu f2kisinu i5DK~DE!, ~50!

where

kf5A2M ~Ei1DE!

\2
, ki5A2MEi

\2
. ~51!

This enables us to define the mean energy transfer fo
particular TOF spectrum:

m1~w i ,u i ,Ts!5

E
2`

`

«N„«,DK ~«!…d«

E
2`

`

N„«,DK ~«!…d«

, «5DE.

~52!

Comparing the values obtained by applying expression~52!
to the measured TOF spectra with the corresponding va
calculated from the theoretical spectra enables yet ano
test of validity of the particular model employed in the d
scription of the scattering event.49,70

Equations~41!–~52! represent the central results of th
paper and demonstrate the essential features of the
tiphonon scattering spectra and the corresponding un
DWF. The latter comprises the properties of analogous
pressions which occurred as separate quantities in ea
theories. In the present theory we shall recover them as
cial limits ~cf. Sec. V!.

The fundamental difference between the above results
those for clean surfaces derived in Ref. 32 is in that
present approach allows for the static corrugation of the
layer through ‘‘embedding’’ of the adsorbates into the d
torted wave functions of the projectile. This effect combin
with the multiphonon expansion leads in turn to the Holst
renormalization of the interaction matrix elements and th
za-dependence, and the possibility of simultaneous occ
rence of diffraction peaks and multiple and overtone exc
tions in the scattering spectra.

V. SPECIAL LIMITS OF THE SCATTERING SPECTRUM
AND THE DEBYE-WALLER FACTOR

A. On-shell versus Glauber–van Hove Debye-Waller factor in
single phonon scattering

The on-shell Debye-Waller factor compatible with the o
tical theorem was derived in Refs. 30–32 under the assu
tion of a simpler, i.e., linear projectile-phonon coupling.
the present approach this is equivalent to keeping only
terms quadratic in phonon displacement amplitudes in
expansion of the exponent of the complete DWF given
Eq. ~45!. Hence, we retrieve the on-shell DWF of Refs.
s
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and 37 by neglecting the Holstein renormalization effect
the force matrix elementsF in the exponent on the RHS o
expression~45!.

On the other hand, the appearance of the stand
Glauber–van Hove DWF is retrieved under the assump
of first order DWBA or weak coupling~small g) but large
vibrational amplitudes. In this case one retains in the exp
sion of the scattering spectrum only the terms which
zeroth order and quadratic in the coupling constantg. To this
order the expression for the no-loss line is given by

N0
DWBA~DE,DK !5~122W1coh

EBA!d~DE!d~DK !, ~53!

in which (122W1coh
EBA) plays the role of the complete DWF

up to second order ing with the Holstein-renormalized inter
action matrix elements in 2W1coh

EBA . The analogy with the
Glauber-van Hove DWF appears most clearly in the n
term describing the inelastic one-phonon DWBA scatter
probability. For coherent vibrations and to the same orde
g this is given by

N1coh
DWBA~DE,DK !5

NaAa

~2p\!2 (
Q,G, j

$uFKi1DK ,Ki , j
k̄zi(1),kzi ~1,za!u2

3@ n̄~vQ, j !11#d~DE

1\vQ, j !dDK ,2Q2G

1uFKi1DK ,Ki , j
k̄zi(2),kzi ~2,za!u2n̄~vQ, j !

3d~DE2\vQ, j !dDK ,Q1G%, ~54!

where the Glauber–van Hove DWF effect is contained in
Holstein-renormalized matrix elementsF @cf. Eq. ~42!#. Ex-
pressions analogous to expression~54! but without the Hol-
stein renormalization have been extensively used as a p
of departure in discussions of single phonon He atom s
tering from surfaces.50,51 As regards the DWF and the one
phonon excitation properties, they are distorted wave ana
of the standard Glauber–van Hove expression describing
elastic neutron scattering from crystal lattices. Energy c
servation enters each of them through the fac
d k̄zi(6),k

z8
Q„k̄zi

2 (6)… present inF @cf. Eqs. ~42! and ~43!#,

which together with the lateral momentum conservation e
bodied in the Kronecker symbolsdDK ,6Q6G defines the
‘‘scan curve’’ in standard TOF geometries.

B. Trajectory approximation in multiphonon scattering

Another frequently used approximation in the calculatio
of inelastic scattering spectra in the multiphonon regime
the so-called trajectory approximation~TA! for the projectile
motion which is usually employed in the quasiclassical sc
tering regime. The conditions of validity for a passage fro
the description of the scattering event in terms of the qu
classical scattering matrix elements to the description
terms of the projectile classical trajectory were discussed
Refs. 30 and 68 for short and long range projectile-surf
interactions, respectively. However, as this also presen
difficult problem to solve if the classical projectile motion
subject to recoil, one further assumes the projectile part
motion on aprescribedand hence recoilless trajectory. Th
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projectile motion then represents a time dependent pertu
tion on the phonon field and one may hope that the ac
loss spectrum of the projectile can be calculated from c
servation laws as the negative of the energy and lateral
mentum gain of the phonon field. As this is an inheren
inconsistent procedure the TA may represent a reason
approximation in HAS from surfaces only under very r
stricted conditions.30–32

Expression~15! for the scattering spectrum proves ina
equate as a starting point for the implementation of the
because it is based on the projection of thequantum states o
the projectilefrom the wave function of the collision system
In order to retrieve the TA expression for the inelastic sc
tering spectrum one has to revert to the projections using
phonon field operatorsH0

ph andP̂ph instead ofH0
part andP̂ in

Eq. ~15!.30–32This is only feasible for flat surfaces for whic
the energy and momentum transfer to the phonon field is
the negative of the energy and momentum transfer to
projectile particle. Having done this one projects the desi
final quantum states of the phonon field from the wave fu
tion of the system irrespective of whether the phonon fi
has been perturbed by a quantum or a classical perturba
Thus, the application of the classical trajectory approxim
tion to the projectile motion automatically rules out the po
sibility of calculating the diffraction and related effects.

To obtain the TA limit of the inelastic scattering spectru
~15! in which the operatorsH0

ph and P̂ph have been intro-
duced one carries out the procedure completely analogou
the one described in Refs. 30–32. Here one has to take
to express all the summations in terms of phonon quan
numbers (Q, j ) and excitation frequenciesvQ, j . Then, the
TA amounts to replacing the interaction matrix eleme
taken between the projectile states by their classical coun
parts given by the Fourier transforms in the time variable
the classical forceF(t) exerted on the adatoms by the pa
ticle moving along the classical trajectoryr (t).25,69 A de-
tailed description of this procedure was given in Re
25, 31, and 32 and will not be further elaborated here.
shall only reiterate that the EBA is superior to both t
DWBA and TA, moreover, it contains them as special lim
and smoothly interpolates between the two.

C. Extreme multiphonon scattering regime

Another frequently encountered general limit of the sc
tering spectrum is reached in the extreme multiphonon
gime in which 2WEBA@1, i.e., when the mean number o
exchanged phonons is large.9,31 In this case the major contri
bution to the Fourier transform in Eq.~23! comes from small
values of the exponent@2WEBA(t,R)22WEBA# upon ex-
panding it into a power series int andR and retaining only
linear and quadratic terms. Collecting the leading contri
tions to this series we obtain

lim
2WEBA@1

N~DE,DK !5
1

~2p!3/2svsxsy

3expF2
„DE2m1~Ts!…

2

2sv
2

2
~\DKx!

2

2sx
2

2
~\DKy!2

2sy
2 G . ~55!
a-
al
-
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-
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Herem1(Ts) is given by Eq.~49!, and in the case of coheren
vibrations the temperature dependent spectral widthss are
given by

sl
2~Ts!5 (

K8,kz8
(

G,Q, j
l2$uF

K8,Ki ,Q, j

kz8 ,kzi ~1,za!u2

3@ n̄~vQ, j !11#dK81Q1G,Ki

1uF
K8,Ki ,Q, j

kz8 ,kzi ~2,za!u2n̄~vQ, j !dK82Q2G,Ki
%,

~56!

wherel stands for\vQ, j , \(K 82Ki)x or \(K 82Ki)y . Ex-
pression~55! should represent a good approximation to e
pression~23! in the multiphonon limit in whichDE andDK
are small and confined to the scan curve~i.e., connected
through the total energy and lateral momentum conse
tion!. Due to this, the maximum of the spectrum~55! will
generally not coincide withm1, viz. it may occur either on
the positive or negative energy transfers, depending on
scattering conditions. The intensity prefact
@(2p)3/2svsxsy#

21 exhibits the temperature dependen
which approachesTs

23/2 behavior in the high-Ts limit both
for coherent and incoherent adsorbate vibrations. The
tailed structure of the interaction matrix elements is here
no importance~e.g., pairwise interactions versus some diffe
ent expressions! as long as the general structure of the sc
tering function~41! persists in that form. Note also that a
though expression~55! represents a limiting case of th
momentum and energy resolved spectrum, the value of
mean energy transfer is here given by the momentum i
grated expressionm1(Ts), Eq. ~49!, and not by the corre-
spondingK -resolved quantity as one might expect. This
due to the uncertainty in energy and momentum fluctuat
involved in the short-t and small-R component of the re-
sponse of the phonon system which is only relevant in
riving expression ~55!. The temperature dependence
m1(Ts) and sl(Ts) explicitly affects the position of the
spectral maximum in the extreme multiphonon regime.
sl(Ts) this dependence is strong and analogous to that of
Debye-Waller exponent. On the other hand, inm1(Ts) it is
weaker due to the structure of the recoil correction@cf. Eq.
~49!#. As for relatively high incoming projectile energies th
difference between the gain and loss values of the interac
matrix elements becomes very small, the temperature va
tion of m1(Ts) may then be dominantly determined by th

Holstein renormalization ofuF
K8,Ki ,Q, j

kz8 ,kzi (6,za)u2. However,

the position of the spectral maximum of expression~55! may
nevertheless be strongly temperature dependent as it als
pends onsv , sx and sy which are all stronglyTs depen-
dent.

D. Scattering from adlayers sustaining Einstein modes

The multiquantum and Debye-Waller type of effects w
manifest themselves most clearly in the case of excitation
adsorbate low energy vibrational modes which exhibit lit
or no dispersion. With incoming He atom energies exceed
several times the energies of such modes and for not too
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substrate temperatures, one can clearly observe spe
peaks corresponding to multiple excitation of dispersionl
modes both on the energy loss and gain sides in the T
spectra of a number of systems.17,20,21,41,49Depending on the
specificities of the systems studied, these modes can b
sociated either with lateral or perpendicular adsorbate
tions.

A closed form solution for the scattering spectrum ch
acteristic of an adlayer sustaining Einstein-like modes is
tained by separating the nondispersive branchj 0 of fre-
quencyv0 out of the sum in expression~41!, giving

exp@2W1coh
EBA~t,R!22W1coh

EBA#5Nki ,Ts

Ein ~t,R!Nki ,Ts

dis ~t,R!,

~57!

where Ein and dis denote components comprising Eins
and all other dispersive modes, respectively. In the rem
der of this subsection we shall for the sake of simplic
disregardNki ,Ts

dis (t,R) as its effect on the total scatterin

spectrum can be easily restored by a simple convolu
procedure.21,40Denoting the single frequency of a set of Ei
stein oscillators byv0, the corresponding component of th
scattering function~41! can be written in the form

2WEin~t,R!5F 2~R,1 !@ n̄~v0!11#e2 iv0t

1F 2~R,2 !n̄~v0!eiv0t, ~58!

where F 2(R,6) are obtained by carrying out th
(K 8,Q,G,kz8) summations over the separatedj 0th compo-

nent of expression~41!. Now, observing that (n̄11)/n̄
5exp(\v0 /kBTs) and introducing the notation

F 2~R,1 !1F 2~R,2 !5M~R!, ~59!

i @F 2~R,1 !2F 2~R,2 !#5N~R!, ~60!

u~t!5~v0t2 i\v0/2kBTs!, ~61!

and

w~R!5arctan@N~R!/M~R!#5
i

2
ln
F 2~R,1 !

F 2~R,2 !
, ~62!

we may write

Nki ,Ts

Ein ~t,R!5e22W0

3exp$An̄~ n̄11!@M 2~R!1N 2~R!#

3cos@u~t!1w~R!#%

5e22W0
exp$A4n̄~ n̄11!F 2~R,1 !F 2~R,2 !

3cos@u~t!1w~R!#%, ~63!

where

2W052WEin~t50,R50!5~ n̄11!F 2~0,1 !1n̄F 2~0,2 !.
~64!

Making use of the generating function expansion for
modified Bessel function of the first kind, exp(zcosa)
5(l52`

` Il(z)exp(ila), we find
tral
s
F

as-
o-

-
-

in
n-

n

e

Nki ,Ts

Ein ~t,R!5e22W0

(
l 52`

`

Pl~R!e2 i l v0t, ~65!

where

Pl~R!5F SA~ n̄11!F 2~R,1 !

n̄F 2~R,2 !
D l

3I l„A4n̄~ n̄11!F 2~R,1 !F 2~R,2 !…G . ~66!

This gives for the separated Einstein phonon componen
the scattering spectrum

Nki ,Ts

Ein ~DE,DK !5e22W0

(
l 52`

`

Nl~DK !d~DE1 l\v0!,

~67!

where

Nl~DK !5E d2R

~2p!2
e2 i (DK )RPl~R!. ~68!

The angular integrated scattering spectrum correspon
to expression~67! is obtained upon replacingNl(DK ) on the
RHS of Eq. ~67! by Pl(R50). Accordingly, the DWF of
such lateral momentum integrated spectrum72 is given by
e22W0

P0(R50) whereP0(R50)Þ1 and both factors con
tain the contributions from all inelastic scattering channe

Expressions~66! and ~67! exhibit interesting structure
Expression~66! contains complex quantitiesF 2(R,1) and
F 2(R,2) whose difference2 iN(R) measures the recoil o
the projectile in the one-phonon creation and annihilat
events. Namely, in the limit of classical recoilless trajecto
approximation one hasF 2(R,1)5F 2(R,2) and conse-
quently N(R)50 and w(R)50. In this limit the angular
integrated spectrumNki ,Ts

Ein (DE) is given by a generalized

Poisson distribution@cf. Eq. ~86! in Ref. 32# typical of the
forced oscillator model applied to Einstein phonons. Ho
ever, as is seen from expressions~66! and ~67!, the lateral
momentum resolution and recoil effects destroy such
simple structure. The deviations ofNki ,Ts

Ein (DE) from the

Poisson distribution grow larger asN(R) increases, i.e., as
the quantum recoil effects become more important.

For finite Ts one generally hasNki ,Ts

Ein (DE50,DKÞ0)

Þ0, meaning that due to coupling to the phonon heatba
finite momentum transfer may occur also in nondiffracti
elastic collisions. The spectral intensity of such off-specu
elastic transitions in theDK direction is given by
e22W0

N0(DK ). In the limit of specular elastic transition
(DK˜0) this tends toe22W0

P0(R˜`)d(DK ). The quan-
tity e22W0

P0(R˜`) may be identified with the DWF cor
responding to the elastic specular peak. However, from d
nitions of P0(R), Eq. ~66!, andF 2(R,6) we can deduce
that P0(R˜`)˜1 because of the destructive interferen
effects in the argument ofP0(R). Hence, the DWF corre-
sponding to the elastic specular peak is again given
e22W0

.
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The angular integrated or total mean energy transfer in
case of Einstein oscillators acquires in the EBA a sim
form

m1~Ts!5

(
l 52`

`

~ l\v0!Pl~0!

(
l 52`

`

Pl~0!

5\v0@F 2~0,1 !~ n̄11!2F 2~0,2 !n̄#, ~69!

because from the normalization of the spectrum it follo
that ( l 52`

` Pl(0)5e2W0
. Although expression~69! is remi-

niscent of the angular resolved mean energy transfer~52!, the
information contained in the two quantities is different a
they may even bear different signs for the same scatte
conditions.70

VI. SCATTERING FROM DISORDERED ADLAYERS

A different situation regarding the various terms in t
expansion of expression~25! arises if the overlayer exhibit
certain degree of internal disorder. Several situations c
cerning the structure of such overlayers are possible~cf. ex-
haustive discussions in Refs. 73 and 74! but here we shall
focus on the case of lower coverages and temperatures w
the island formation is precluded. In this case one may sa
assume that interadsorbate distances are large enough~limit
of isolated adsorbates! so as that their vibrations are unco
related or incoherent. Here we define an effective mean
^Aa&5Ls

2/Na associated with each adsorbate whereNa is
now the number of adsorbates on the surface. In the foll
ing we shall consider for simplicity only external transl
tional vibrations of isolated adsorbates which are assume
occupy equivalent adsorption sites.

We introduce the expansion of adsorbate displacemen
terms of localized normal modes

ul5 (
s51

3 S \

2Mavs
D 1/2

~el,sal ,s1el,s* al,s
† !, ~70!

wherev l,s5vs andel,s are the frequency and polarizatio
vector of thesth normal mode associated with the adsorb
at sitel, respectively, and the phonon field operators sat
the commutation relations

@al,s ,al8,s8
†

#5d l,l8ds,s8 . ~71!

For simplicity we shall also assume that these modes
decoupled from the phonon modes of the underlying s
strate over almost the entire surface Brillouin zone which
practically fulfilled in the examples of adlayer systems d
cussed below. The corresponding unperturbed adsor
phonon field Hamiltonian then takes the form

H0
ph5(

l,s
\vsal,s

† al,s . ~72!

To carry out summations over adsorbates in expression~25!
for the scattering function, i.e., over the pairs of random
occupied adsorption sites (l8,l9), we assume configurationa
e
e
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averaging based on the use of the joint probabilitypl8,l9 that
the sitesl8 and l9 are both occupied for a given overlaye
coverageQ. In the simplest independent site model this
given by73,74

pl8,l95Q2S 11
12Q

Q
d l8,l9D , ~73!

where Q5Na /Nsite and Nsite is the number of available
equivalent adsorption sites on the substrate surface. The
figurational averaging is then performed according to

K (
occ.l8,l9

L
conf

˜ (
all sites l8,l9

pl8,l9 . ~74!

This procedure yields for the two-dimensional structure f
tor:

K (
occ.l8,l9

eiK (rl82rl9)L
conf

5Na
2(

G
dK ,G1Na , ~75!

whereG is a two-dimensional reciprocal lattice vector of th
substrate surface lattice made of adsorption sitesl, with the
valueG50 also included in the summation. After introdu
ing such averages into the EBA expressions for the scatte
function ~25! the first term on the RHS of Eq.~75! gives rise
to a coherent scattering contribution whose presence wo
reflect the existence of some long range order in the ov
layer. This term leads to expression for the coherent ela
scattering component of the EBA scattering function ana
gous to the one discussed in Sec. IV but now withNa and
^Aa& acquiring the meaning defined at the beginning of t
section. The second term leads to incoherent or diffuse s
tering which according to expression~73! will give rise to a
dominant contribution to the elastic component of the sc
tering function ~25! in the low coverage limit Q!1.
Whereas both these terms contribute to elastic scatte
component of the scattering function~25!, only thel85 l9 or
the diffuse term can contribute to its inelastic component d
to the assumed local character of adsorbate modes expre
through commutation relations in Eq.~71!.

Since the coherent scattering component of the EBA s
tering function can be obtained by a trivial generalization
the formulas derived in the preceding sections by redefin
the meanings ofNa and Aa , we shall concentrate in this
section only on the incoherent scattering contribution. W
first calculate zeroth order term in the expansion of the s
tering function ~25! which gives a contribution describin
diffuse elastic scattering. Using Eq.~71! we find that the
Holstein renormalization factor contained inV(6,za) is
now, strictly speaking,l-dependent and reads

e2wloc(K82Ki ,p)5expF2
1

2 (
s

\u„~K 82Ki!,p…•el,su2

2Mavs

3@2n̄~vs!11#G . ~76!

It should also be noted that the derived expressions for
Holstein renormalization factore2w, Eqs.~37! and ~76!, are
functions of (K2K 8), i.e., they areK 8-resolved quantities.
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Hence, they will also appear asDK -resolved quantities in the
inelastic scattering spectrum calculated in the DWBA, b
not in the total DWF.

In order to make the calculations feasible we shall repl
the l-dependent exponent on the RHS of Eq.~76! by an an-
satz which is obtained by taking a configurational average
the exponent by averaging over all directions of the polari
tion vectorsel,s of adsorbate normal vibrations:

u„~K 82Ki!,p…•el,su2˜^u„~K 82Ki!,p…•esu2&conf. ~77!

The use of this ansatz makes expression~76! l-independent
and we may write

2Wdiffuse
EBA ~t,R!5

1

Na
(

K8,kz8
ei (K82Ki)RuV

K8,Ki

kz8 ,kzi~0,za!u2

52Wdiffuse
EBA ~0,R!. ~78!

This expression is again independent ofNa because integra
tion over d2K 8 introduces a factorNa^Aa&, but sinceuVu2

}^Aa&
22 expression~78! is now proportional tô Aa&

21 and
not to the square of this quantity as in the case of cohe
scattering contribution. Hence, the disordering of the adla
has an effect on the scaling property of the diffuse ela
component of the scattering probability making it propo
tional to ^Aa&

21.
The next term in the expansion of the scattering funct

characteristic of vibrating disordered adlayers takes the f

2W1loc
EBA~t,R!5 (

K8,kz8
ei (K82Ki)R

1

Na
2

3(
s

$uF
K8,Ki ,s

kz8 ,kzi ~1 loc ,za!u2@ n̄~vs!11#eivst

1uF
K8,Ki ,s

kz8 ,kzi ~2 loc ,za!u2n̄~vs!e2 ivst%, ~79!

in which the transition probabilities are given by

uF
K8,Ki ,s

kz8 ,kzi ~6 loc ,za!u2

5
\

2Mavs
(

l
@~ q̂–els!* „V

K8,Ki ,s

kz8 ,kzi ~6 loc ,za!…* #

3@~ q̂–els!„V
K8,Ki ,s

kz8 ,kzi ~6 loc ,za!…#. ~80!

HereV
K8,Ki ,s

kz8 ,kzi (6 loc ,za) is given by the on-the-energy-she

expression analogous to that on the RHS of Eq.~43! but
without the factordK86Q6G,Ki

, and the vector operatorq̂ is
defined by

q̂5„~K 82Ki!,i ~]/]za!…, ~81!

and acts onV(6,za) whereas the complex conjugateq̂* acts
on V* (6,za). As the quantityV(6,za) in Eq. ~80! is now
proportional tô Aa&

21, expression~79! is again independen
of Na because the summations overK 8 and l bring around
such a factor. It also scales as^Aa&

21, analogously to what
t

e

f
-

nt
r

ic
-

n
m

has been found for expression~41!. This means that a tran
sition from incoherent localized to coherent delocalized
brations, which may occur in an adlayer with the increase
coverage, does not introduce any changes in the scalin
inelastic scattering intensities withQ ~or ^Aa&) which would
facilitate easy experimental resolution between the two ty
of vibrations.

The above assumption of configurational averaging a
the therefrom obtainedl-independent Holstein factor~76! en-
able us to take such an average in the expression on the
of Eq. ~80!. This amounts to the replacement

(
l

~ q̂–els…* ~ q̂–els!˜Na^~ q̂–es!* ~ q̂–es!&conf. ~82!

and such a procedure can be easily carried out in some
cial cases which are nevertheless of physical relevance.
instance, if the projectile coupling to perpendicular adsorb
vibrations is much stronger than to the lateral vibrations
effect of the latter may be neglected, whence

uF
K8,Ki ,'

kz8 ,kzi ~6 loc ,za!u25
\Na

2Mav'
U ]

]za
V

K8,Ki ,'

kz8 ,kzi ~6,za!U2

,

~83!

and the Holstein renormalization factor contained in the m
trix elementsV is given by

e2wloc'(K82Ki ,p)5expF2S 1

2D \p2

2Mav'

@2n̄~v'!11#G .
~84!

Such a situation can be typical of noble gas adlayers at
coverage. On the other hand, if the adsorbate vibrations w
polarization perpendicular to the surface exhibit much lar
frequencies than the ones with lateral polarization, the p
jectile coupling to perpendicular vibrations may be neglec
relative to the lateral ones. In this case

uF
K8,Ki ,si

kz8 ,kzi ~6 loc ,za!u25
\~K 82Ki!

2Na

4Mavsi
uV

K8,Ki ,si

kz8 ,kzi ~6,za!u2,

~85!

and the corresponding Holstein renormalization factor
given by

e2wloci(K82Ki ,p)5expF2S 1

2D(
si

\~K 82Ki!
2

4Mavsi

3@2n̄~vsi!11#G . ~86!

Expressions~85! and~86! are well suited for the description
of excitation of the modes describing frustrated translatio
of Na atoms and CO molecules chemisorbed on m
surfaces.42,43,45

The incoherent vibration induced DWF is simply obtain
by setting t50 and R50 in Eq. ~79!. As for disordered
adlayers both the elastic incoherent and inelastic terms in
scattering function describe diffuse scattering the magnit
of the corresponding total DWF calculated in the EBA w
decrease exponentially witĥAa&

21, i.e., with the coverage
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In a similar fashion we obtain the expression for the me
energy transfer to localized vibrations:

m1loc
EBA~Ts!5

1

Na
(
K8

(
kz8 ,s

\vs$uF
K8,Ki ,s

kz8 ,kzi ~1 loc ,za!u2

1@ uF
K8,Ki ,s

kz8 ,kzi ~1 loc ,za!u2

2uF
K8,Ki ,s

kz8 ,kzi ~2 loc ,za!u2#n̄~vs!%. ~87!

As regards the DWBA limit of the inelastic scatterin
spectrum, we find for disordered overlayers and localiz
vibrations

N1loc
DWBA~DE,DK !5

^Aa&

~2p\!2Na
(

kz8 ,s

3$uFKi1DK,K i ,s
kz8 ,kzi ~1 loc ,za!u2

3@ n̄~vs!11#d~DE1\vs!

1uFKi1DK,K i ,s
kz8 ,kzi ~2 loc ,za!u2n̄~vs!

3d~DE2\vs!%. ~88!

Finally, the scattering spectrum in the extreme m
tiphonon limit acquires the form identical to Eq.~55! with
the first moment given by Eq.~87! and a set ofsl’s which
are derived in a fashion analogous to the one employe
obtaining the quantities typical of localized vibrations.

VII. APPLICATIONS OF THE DEVELOPED FORMALISM
TO He ATOM SCATTERING FROM ADLAYERS

The formalism developed in the preceding sections sho
be best suited for applications to HAS from ordered or d
ordered adlayers in which the static projectile-surface in
action originates dominantly from a flat projectile-substr
potential defining the distorted waves, Eq.~2!, and describ-
ing specular reflections. The distorted waves are then
turbed by the projectile coupling to adsorbates sticking
from the substrate surface which gives rise to combined
fractive or diffuse elastic and inelastic atom-surface scat
ing. This model can be applied to adlayer structures wh
are disordered and free from islands in the low cover
limit,62 or ordered superstructures with interadsorbate
tances large enough to cause that the dominant part o
incoming beam flux is scattered by the substrate surface
all cases the adlayers should sustain either localized or d
calized low energy modes which could be efficiently excit
in HAS experiments. As typical examples of the first class
systems one may consider noble gas and alkali atoms42,43 or
CO molecules44 adsorbed on metals at low coverage and
low enough substrate temperatures to preclude any ap
ciable diffusion leading to island formation. A typical ex
ample of the second class of systems are the (A3
3A3)R30° adlayers of CO adsorbed on~111! surfaces of
Rh41 and Pt45 in which the interadsorbate spacing is st
much larger than the effective adsorbate radius. Cl
n

d

-

in

ld
-
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r-
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e
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he
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e

packed monolayers of heavier noble gas atoms~e.g., Xe! on
metals would not fall into this category because they the
selves represent a relatively flat reflecting surface, as
denced by He diffraction measurements.20,21,40Hence inelas-
tic HAS from such adlayers should be treated using
approach developed earlier.20,21,32,40The same may also ap
ply to more densely packed ordered overlayers of CO m
ecules on Rh~111! and Pt~111! ~see also below!.

The importance of the effects which the present mo
predicts for HAS from adlayers can be illustrated by maki
a simple quantitative estimate of the Holstein renormali
tion of the interaction matrix elements~which are renormal-
ized by the factore2w) or the one-phonon scattering prob
abilities ~which are renormalized by the factore22w) since
they represent a prerequisite for calculating the scatte
spectra and the complete DWF. The exhaustive calculat
of the latter quantities will be left for a future publication.

We first consider Xe and Na atoms and CO molecu
adsorbed at very low coverage on metal surfaces. These
sorbates act as isolated scattering centers for He beams
atoms adsorbed on Cu~111! and Cu~001! exhibit a low en-
ergy mode (\vS;2.6 meV) with the polarization vecto
perpendicular to the surface,20 for isolated Xe atoms on
Pt~111! one finds\vS;3.5 meV,46 whereas isolated Na at
oms on Cu~001!42,43and CO molecules on Cu~001!44 exhibit
frustrated translation modes parallel to the surface with
ergies\vFT55.6 meV and\vFT53.94 meV, respectively.

In the case of disordered Xe submonolayers we emp
Eq. ~84! and observe that according to Eq.~9! the maximum
contribution to Holstein renormalization comes from the v
ues ofp for which p2.b21(K 82K 9)2 whereb is the ef-
fective range of the repulsive Xe-He pair interaction75 and
(K 82K 9) is the change of the projectile lateral momentu
in a real one-phonon exchange process. From this we
estimate the magnitude of the Holstein renormalization f
tor in the scattering probabilities~the quantitiesuVu2 anduFu2

derived in Secs. IV and VI!, for transitions in which the
lateral momentum of magnitudeuK 82K 9u has been ex-
changed in an interaction vertex. This is plotted in Fig. 1
a function ofuK 82K 9u and the surface temperatureTs . The
plot shows that in the range of typical experimental para
eters the reduction of the one-phonon scattering probabil
may be as large as;20%. This in turn means that highe
multiquantum scattering intensities will be accordingly r
duced, orientationally by a factor (0.8)n wheren is the num-
ber of real phonons exchanged. Hence, the effect sho
most strongly manifest itself in the multiphonon scatteri
regime which has so far been routinely achieved in H
from Xe overlayers.20,46

In the case of isolated Na and CO adsorbates on Cu~001!,
which exhibit low energy vibrations parallel to th
surface42–44 ~degenerate frustrated translation modes!, the
Holstein effect is estimated by employing Eq.~86!. Here we
find that in a typical range of experimental parameters
reduction of the one-phonon scattering probability may
even more significant, mainly due to the larger intervals
experimentally accessible temperatures which are not lim
by low adlayer desorption temperatures~see Figs. 2 and 3!.
This can strongly affect the intensities of higher multiqua
tum peaks and hence the present formalism should be
ployed in the studies of these systems as well.
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The final example pertains to HAS from ordered adlaye
i.e., the (A33A3)R30° superstructure of CO on Rh~111!76

at the coverageQ5 1
3 . These adlayers exhibit dispersionle

frustrated translation modes with \vFTx
5\vFTy

55.75 meV which can be multiply excited in HAS.41 Here
the interadsorbate distances in the CO adlayer are l
(;4.64 Å ) relative to the distance of the closest approa
of He atoms to an adsorbed CO molecule77 (;2.12 Å ), and
hence the present formalism should be applicable. To e
mate the Holstein effect in this case we apply Eqs.~37! and
~86! with e'(Q, j )50. Note that to obtain expression~86!
the Q8-summation was carried out over the virtual phon
modes, and not the ones giving rise to the changeK 8
2K 9) of the lateral momentum of the projectile. The Ho
stein reduction of the one-phonon exchange probabilitie

FIG. 1. Holstein renormalization factor exp(22w') of the one-
phonon scattering probability pertinent to He atom scattering fr
isolated Xe atoms adsorbed on the Cu~111! surface plotted as a
function of the lateral momentum exchangeuK 82K 9u and substrate
temperatureTs in the experimentally relevant intervals.

FIG. 2. Holstein renormalization factor exp(22wi) of the one-
phonon scattering probability pertinent to He atom scattering fr
the isolated CO molecule adsorbed on the Cu~001! surface plotted
as a function of the lateral momentum exchangeuK 82K 9u and sub-
strate temperatureTs in the experimentally relevant intervals.
,

ge
h

ti-

is

illustrated in Fig. 4 and in the range of experimental para
eters it reaches;20%. Hence, the present model should
also well suited for the studies of multiquantum excitatio
in HAS from (A33A3)R30° layers of CO on Rh~111! and,
by analogy, also on the Pt~111! surface. On the other hand
in the case of a denser (232) CO superstructure on the sam
substrate76 (Q5 3

4 ), the interadsorbate distances are sma
and presumably this adlayer itself acts as a corrugated
flecting surface which defines the boundary conditions
distorted He atom wave functions. In this situation a diffe
ent approach to obtain the wave functions describing diffr
tive scattering should be applied.9,78

Let us finally note that since the exponents in the expr
sions for the Holstein renormalization factor, Eqs.~37! and
~76!, are inversely proportional to the mode frequency,

FIG. 3. Holstein renormalization factor exp(22wi) of the one-
phonon scattering probability pertinent to He atom scattering fr
isolated Na atoms adsorbed on the Cu~001! surface plotted as a
function of the lateral momentum exchangeuK 82K 9u and substrate
temperatureTs in the experimentally relevant intervals.

FIG. 4. Holstein renormalization factor exp(22wi) of the one-
phonon scattering probability pertinent to He atom scattering fr
ordered (A33A3)R30° submonolayer of CO on the Rh~111! sur-
face plotted as a function of the lateral momentum excha
uK 82K 9u and substrate temperatureTs in the experimentally rel-
evant intervals.
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2806 PRB 60BRANKO GUMHALTER AND DAVID C. LANGRETH
largest reduction effect is expected for low energy mod
The existence of the mode degeneracy or of several low
ergy modes~including also the modes that cannot be sing
excited in the first SBZ for the sagittal plane scattering
ometry~e.g., shear horizontal modes! reduces the magnitud
of the Holstein renormalization factor. Thus the role of t
Holstein effect in HAS from adlayers sustaining more th
one low energy mode is more pronounced. However
should be pointed out that despite the Holstein reduction
the interaction matrix elements, the latter would still be ge
erally larger for isolated adsorbates~e.g., Xe atoms! than for
dense adlayers made of the same atoms. This is so bec
isolated adsorbates are embedded into the He atom dist
wave functions which makes their overlap with th
projectile-adatom pair potential large. On the other hand,
dense adlayer itself acts as the reflecting surface for He a
wave functions, their overlap with each adatom is sign
cantly smaller, producing correspondingly smaller inter
tion matrix elements.

In conclusion, we have demonstrated that the theory
veloped in this work, which takes into account the interp
between diffraction or diffuse scattering and virtual and r
phonon exchange processes, should prove indispensab
providing a full quantum mechanical description of multip
He atom scattering from the low energy modes character
of adlayers of submonolayer coverage on flat metal surfa
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APPENDIX A: LAPLACE TRANSFORM OF PAIR
POTENTIALS AND GENERALIZED OSCILLATOR

STRENGTHS

In the case in which thez-coordinate of the centers o
adsorbates lie closer to the surface than the classical tur
points zt of the projectile motion, i.e.,za,zt , the Laplace
transform~LT! may prove more convenient in representi
the pair potentials:

v~r,z!5E d2Q

~2p!2
eiQrE

0

`

dpe2pzvL~Q,p!. ~A1!
s.
n-

-

it
f
-

use
ted

a
m
-
-

e-
y
l
in

ic
s.

l

ng

Using this representation the matrix elements of
projectile-adlayer interaction can be written in the form

^K 8,kz8uV~r !uK ,kz&

5
1

LzLs
2 (

l
e2 i (K82K )(rl1uli)E

0

`

dpep(zl1ul')

3vL~K 82K ,p! f L~kz8 ,kz ,p!, ~A2!

where the generalized LT generated oscillator strength
now defined by

f L~kz8 ,kz ,p!5E
2`

`

e2pzxk
z8

* ~z!xkz
~z!dz. ~A3!

Thermal averaging then gives

^K 8,kz8u^^V~r !&&uK ,kz&5
1

Lz
E

0

`

dpe2wL(K82K ,p)

3vL~K 82K ,p! f L~kz8 ,kz ,p!

3
1

Ls
2 (

l
e2 i (K82K )rlepzl. ~A4!

where the Holstein renormalization factor is now comple

e2wL(K82K ,p)5expF2
1

2
^^@~K 82K !uli1 ipul'#2&&G ,

~A5!

and the structure factor on the RHS of Eq.~A2! is corre-
spondingly modified.

To understand expression~A4! for zl<zt we observe that
here the perpendicular zero point vibrations of adsorba
which take place in the steeply growing part of the distor
waves, bring the scattering centers closer to the projec
during the halfperiod of vibration. This, on the average, m
give rise to an enhancement of the scattering probabili
derived with the interaction matrix elements renormaliz
through expression~A5!.

Analogously, in the case in which Eq.~A2! is employed,
the corresponding scattering function takes the form
2WL
EBA~t,R!5 (

K8,kz8
e2 i [(Ek82Eki

)t2(K82Ki)R]
1

~LzLs
2!2 (

l8,l9
ei (K82Ki)(rl82rl9)E

2`

`

dp8ep8zl8e2wL* (K82Ki ,p8)

3vL* ~K 82Ki ,p8! f L* ~kz8 ,kz ,p8!E
2`

`

dp9ep9zl9e2wL(K82Ki ,p9)vL~K 82Ki ,p9! f L~kz8 ,kz ,p9!

3
1

\2E2`

`

dt8E
2`

`

dt9e2 i (Ek82Eki
)(t82t9)/\

3exp̂ ^@~K 82Ki!ul8i~ t8!2 ip8ul8'~ t8!#@~K 82Ki!ul9i~ t9!1 ip9ul9'~ t9!#&&. ~A6!
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The scattering amplitudesF(6,za) and other relevan
quantities deriving thereof are obtained following the pro
dures employed in Sec. III with the Holstein-renormaliz
pair interaction matrix elements:

ṽL~K 82Ki ,p!5e2wL(K82Ki ,p)vL~K 82Ki ,p!. ~A7!

APPENDIX B: CUMULANT EXPANSION
OF THE SCATTERING SPECTRUM

According to a general theorem79 the evolution operator
of a quantum system can be expressed in the interaction
resentation in exponential form:

UI~ t,t0!5e2 iG(t,t0)5expF2 i (
n51

`

Gn~ t,t0!G , ~B1!

where G(t,t0) is a Hermitian operator which has a nest
commutator expansion in powers of the coupling constang:

G1~ t,t0!5
g

\Et0

t

dt1VI~ t1!, ~B2!

G2~ t,t0!52
i ~g/\!2

2 E
t0

t

dt1E
t0

t1
dt2@VI~ t1!,VI~ t2!#,

~B3!

G3~ t,t0!5
~g/\!3

4 E
t0

t

dt1E
t0

t1
dt2E

t0

t2
dt3

3†VI~ t1!,@VI~ t2!,VI~ t3!#‡

1
~g/\!3

12 E
t0

t

dt1E
t0

t1
dt2E

t0

t1
dt3

3†@VI~ t1!,VI~ t2!#,VI~ t3!‡, ~B4!

etc., where all other higher order terms in the coupling c
stant comprise higher order commutators@ .,@ ..,@ . . . .,.### of
the particle-boson interaction operators:

VI~ t j !5e( i /\)H0t jVe2( i /\)H0t j . ~B5!

Thus, according to Eqs.~17! and ~B1! the S-matrix in the
interaction picture can be written in a general formSI
5e2 iG and the various canonically transformed operators
Eq. ~16! can be calculated using the identity

SI
†ASI5eiGAe2 iG5 (

m50

`
i m

m!
Gm@A#, ~B6!

whereGm@A# denotesmth order repeated commutator ofG
with an arbitrary operatorA. This generates the terms in th
exponent on the RHS of Eq.~16! which are expressed
through the operators (WH ,Wx ,Wy)5(WH ,W) defined by
Eqs.~18!–~20!.
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Nki
~DE,DK !5E

2`

` dt

2p\E d2R

~2p\!2
e( i /\)[(DE)t2\(DK )R]

3expF (
n51

`

Cn~t,R!G , ~B11!
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0

l51
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0

ln21
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operators inWI(l j ) is given by expression~B10! and the
subscriptc denotes the cumulant average.80
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