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General solution for three-dimensional surface structures using direct methods

L. D. Marks
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208

~Received 31 July 1998!

A general method for solving surface structures in three dimensions using surface x-ray-diffraction data
coupled with direct methods is outlined. The method exploits the existence of a support constraint normal to
the surface, and couples the concepts of projections, operators, and sets used in the image reconstruction
literature with statistical operators used in direct methods. The approach presumes nothing beyond the fact that
the scattering comes from atoms, and is a true model-independent approach.@S0163-1829~99!06324-9#
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I. INTRODUCTION

For the last 20 or more years the standard approach w
trying to determine a surface structure has been to com
experimental data against one or more models. This
proach has a fundamental flaw; almost any technique@e.g.,
low-energy electron diffraction~LEED!, reflection high-
energy electron diffraction~RHEED!, x-ray diffraction, ion
scattering# can be refined to find a local minimum, and u
less one of the models is an approximation to the true st
ture there is no reason for the comparison to be particul
relevant. In some cases scanning tunneling microsc
~STM! or high resolution electron microscopy~HREM! im-
ages may be available, both of which can yield import
constraints on the symmetry and in some cases the ato
positions. In certain cases Patterson maps from x-ray
transmission electron diffraction experiments can be us
but with more complicated structures these can become
if not impossible to decode.

It follows that the central issue in determining a surfa
structure is not in fact refining against some initial mod
but instead finding these initial models. While enough
sometimes known about the general surface chemistry
material to make knowledgeable guesses, guessing is no
ence. What is needed is a global search mechanism tha
determine the set of feasible models for subsequent re
ment. This is true independent of whether the experime
data is LEEDI -V curves, RHEED rocking curves, or surfac
x-ray-diffraction data, the latter being the focus of this pap

This problem is not unique to surface structure deter
nation, but also occurs in bulk three-dimensional crystall
raphy. An x-ray-diffraction experiment only measures t
intensity in reciprocal space, from which the moduli of t
structure factors can be obtained. Missing are the phase
the structure factors, and if these are known even relativ
approximately a viable estimate of the charge density can
generated. In turn, peaks in the charge density can be a
ciated with atomic sites and feasible models constructed

To solve the phase problem, what are called ‘‘direct me
ods’’ have been developed over the last 30 years.1–7 Addi-
tional information is available; the diffraction from x ray
occurs from atoms, and the controlling equations are sim
and cleanly defined. By building in the fact that the scatt
ing comes from atoms statistical relationships linking t
phases~primarily of the stronger reflections! are known to
PRB 600163-1829/99/60~4!/2771~10!/$15.00
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exist. Coupling these statistical relationships with expe
mental data permits construction of feasible models for
structure~often only one! for subsequent refinement. In e
sence, direct methods perform a global search for the in
models, eliminating guesswork.

While direct methods have been used for many years
three-dimensional structure determination, it is only very
cently that they have been successfully employed
surface-structure determination,8–17 and to date only with
two-dimensional data. While there are problems when s
face reflections overlap bulk reflections, in general a large
of measurements is available in two dimensions enab
solutions to be obtained. In three dimensions a much sma
fraction of all possible measurements to a reasonable res
tion, e.g., 1 Å, is typically available. Perpendicular to t
surface for a given rel-rod~different l values for givenh and
k in reciprocal space! the sampling of measurements alongl
is generally relatively small, corresponding to an effectivec
lattice parameter of 40–60 Å, and limited to resolutions
about 1.5 Å at best. Even excluding the case when~h,k,l!
overlaps with a bulk reflection, typically only a small num
ber of rods are known, less than 30% of all possible in so
cases. With such incomplete data performing direct meth
in three dimensions for surfaces would appear to be m
harder, if not impossible.

The intention of this note is to demonstrate that this is
in fact the case, and three-dimensional surfaces can be so
using direct methods relatively straightforwardly. The ma
reason for this is the relatively fine sampling normal to t
surface. Even though the effective unit cell parameter nor
to the surface is large, 40–60 Å, substantial relaxations
atomic positions only take place in a relatively small regi
near the surface. Hence the charge density normal to
surface must be zero except in some small region of perh
10–20 Å total thickness. This is equivalent to what is call
a ‘‘support constraint’’ in the image reconstructio
literature,18–21 and has a number of well established ma
ematical properties. Adding in this support constraint as
ditional information compensates for the small number
measurements in many cases.

The structure of this paper is as follows. In Sec. II, a br
outline of the basic approach is presented, a hybrid of c
sical direct methods and what is called the feasible
approach22–25from the image reconstruction literature whic
uses set theory, mathematical projections, and operators~A
2771 ©1999 The American Physical Society
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2772 PRB 60L. D. MARKS
general discussion of a feasible set approach to direct m
ods is described elsewhere!.26 The theory is developed firs
for the case when the only rods which do not overlap w
bulk reflections are available. This is then extended to
case when bulk data is available as well. Section III d
cusses an important exception to the general case, wha
refer to as Babinet solutions, as well as a method of proj
ing onto them. This is then followed by numerical exampl
concluding with a discussion.

II. THEORY

We have experimental measurements of the magnitu
of the structure factors,uF(k)u for different three-
dimensional reciprocal-lattice valuesk. The aim is to find a
good approximation to the phases. With this achieved,
can Fourier transformF(k) to obtain an approximation o
the surface charge density. While this approximation m
not be that good~it is often very good!, almost always
enough of the structure is defined to solve the rest thro
one of a number of different techniques.

We do not need to know the phases that accurately
average phase error of 10° or even 20° is good enou
Without any other information, the number of possible pha
permutations is prohibitively large, of the order of 8N for N
beams and sampling at 45° intervals. We have the follow
additional information:

~i! The true charge density is real and positive at
points.

~ii ! As mentioned above, the true charge density is z
outside a relatively small region normal to the surface.
discussed in the literature,18–21 this reduces the possibl
phase permutations to at most 2N.

~iii ! Statistical ~probabilistic! relationships connect th
phases of different reflections.

The approach is to consider the possible values of
charge density that satisfy constraints~i! and ~ii ! above as
sets, incorporating the constraints via mathematical pro
tions. To this we add the set of all possible~complex! struc-
tures which have the experimental moduli. Finally, we co
sider the statistical relationships via both operators
functionals, and the set of fixed points~eigenvectors! or the
sections of the functional below some value as a fourth
The problem is then decomposed into finding the union of
the above sets; see, for instance, Fig. 1.

To start, instead of dealing with the true structure fact

FIG. 1. Feasible set solution as the intersection of three con
sets, for instance the measured data, support and functional se
as discussed in the text.
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it is more convenient to use unitary structure factors defin
by

U~k!5F~k!/^ f ~k!2&1/2, ~1!

where the term on the right is the expectation value of
structure factor for random positions of atoms in the u
cell.

There exists a set ofU(k) values,SM , all of which have
the known moduli that are measured experimentally, i.e.

uU~k!u5uUe~k!u ~2!

the latter being the experimental values. A set is conve
any member lying on the line between two other member
also a member, i.e., ifX andY are two members of the set,
is convex if lX1(12l)Y for 0,l,1 is also a member
the above setSM is not convex. From any value ofU(k) we
can convert to values which lie on the setSM using the
projection operator

PM@U~k!#5U~k!uUe~k!u/uU~k!u, ~3!

i.e., replace the moduli by the measured values, leaving
phases unchanged.

For the second set, the charge densityu(r ) @Fourier trans-
form of U(k)] should be positive~a positivity constraint!,
and the set of all positiveu(r ) is a convex setSP . We can
write this via the projectionPP where

PP@u~r !#5u~r ! u~r !.0

5~12l!u~r ! u~r !,0, ~4!

where l is called a relaxation parameter which lies in t
range 0,l,2.23–27 Values less than 1 are called unde
relaxation, value greater than 1 over-relaxation. In gene
values greater than 1 improve the convergence.

For the particular case of a three-dimensional surface
mentioned in Sec. I the data are typically oversampled w
an effective cell size of 40–60 Å normal to the surfac
Within this cell there is only a limited region of 10–20 Å
where the atomic positions are substantially different fro

x
ion

FIG. 2. For a given value of the bulk truncation rodUT(k) and
some correct valueU(k) for the surface reflection, projection ont
the experimental moduliuUB(k)u gives the vector from the end o
UT(k) to PB@U(k)#.
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PRB 60 2773GENERAL SOLUTION FOR THREE-DIMENSIONAL . . .
the bulk. This prior knowledge called~in the image process
ing literature! a support constraint, leads to a third, conv
setSS and a projection operatorPS where

PS@u~r !#5u~r !, 2L,z,L

50 otherwise, ~5!

where 2L is the total width normal to the surface whe
relaxations have taken place.~We have experimented with
incorporating a relaxation parameter here, but it does
appear to be particularly useful.! This is a particularly pow-
erful constraint, with well-understood properties; the num
e
sta

ro

i.e

f

tie
ot

r

of possible solutions when a one-dimensional support c
straint is present is drastically reduced as mentioned ear

In many cases we have available measurements of
bulk rel-rodsuUB(k)u for the reconstructed surface, and c
make a good estimate of the structure factors~amplitude and
phase! for a simple truncation of the surface,UT(k). Since
we known that for the component ofU(k) that coincides
with the bulk data

uU~k!1UT~k!u5uUB~k!u, ~6!

we can construct a projection ofU(k) ~referred to asPB)
such that it will satisfy Eq.~6! ~see Fig. 2! given by
PB~U~k!!5$U~k!1UT~k!%uUB~k!u/uU~k!1UT~k!u2UT~k!. ~7!
e
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The set ofU(k) valuesSB that satisfies Eq.~6! is not convex.

Since the scattering of the x-rays comes from atoms, th
are certain statistical phase relationships that can be e
lished between different~typically the larger! U(k)’s. It is
more convenient to write these in real space. The most p
able vales ofu(r ) are eigenfunctions~fixed points! of an
operatorT that represents these statistical relationships,
for the true solution

T@u~r !#5u~r ! ~8!

and the difference betweenu(r ) and T@u(r )# can be inter-
preted as a log likelihood thatu(r ) comes from a set o
atoms. An important property ofT is whether it is contrac-
tive, i.e. for two different possible real space charge densi
x(r ) andy(r )

( uT@x~r !#2T@y~r !#u2<b( ux~r !2y~r !u2, 0,b,1,

~9!

with the summation taken overr, or nonexpansive:

( uT@x~r !#2T@y~r !#u2<( ux~r !2y~r !u2. ~10!

An important case of this is if we take

y~r !5T@x~r !#, ~11!

so that

( uT@x~r !#2T@T@x~r !##u2<( ux~r !2T@x~r !#u2,

~12!
re
b-

b-

.,

s

which implies thatT@x(r )# is closer to the solution than
x(r ). Let us define this log-likelihood as equivalent to som
functional g(u), a figure of merit ~FOM!, which ideally
should be zero. The sections of this functional such that

g~u!,b, ~13!

with b a constant, define a setST . If the operator is contrac-
tive this set, and the set of fixed points ofT are convex; if the
operator is nonexpansive both are in general nonconvex

The mathematical problem to be solved now decompo
into finding the union of all the above sets, i.e., the ‘‘feasib
set’’ S where

S5SMùSPùSSùSBùST . ~14!

If all the sets were convex, the feasible set is compact,
there is only one solution~plus, perhaps, a few minor vari
ants!. If one or more of the sets is nonconvex, the feasible
may be discontinuous, and we may have more than one
sible solution as initial models for the surface; see, for
stance, Fig. 3.~Since SM is never convex, we can neve
guarantee a single, unique solution.! The problem is known
~e.g., Refs. 23 and 25! to be solvable by applying in som
cyclic fashion the projections and the operatorT; it is fully
solvable to a unique solution if all the sets are convex, so
able in a locally convergent sense if they are not. For
latter case, one has to use a global search algorithm
different starting points.

For the operator, we need something which is correct
atoms. Starting with some estimateun(r ) for iteration cycle
n, we use a normalized relative entropy28,13,26or Kullback-
Leibler distance29 as an operator:
un11~r !5TE„un~r !…5a@un~r !ln$un~r !/^un~r !&%1^un~r !&#, un~r !.0

5^un~r !&, un~r !,0, ~15!
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where^un(r )& is the mean value, anda is a renormalization
term defined as the value which minimizes

g~u!5( 8 uUn~k!2aUn11~k!uY ( 8 uUn~k!u,

~16!

where(8 indicates that we are not including thek50 term
and the summation is over the measured reflections o
Numerical tests demonstrate that the operatorTE is nonex-
pansive. For reference, Eqs.~8!–~12! earlier for the fixed
points of the operator should only be interpreted for the m
sured reflections similar to Eq.~16!. While atoms are fixed
points of this operator for an infinite set of reflections, this
not the case for a finite set; typically measurements are o
available for an ellipsoidal region with limited resolutio
perpendicular to the surface. To strengthen the operator
introduce a window functionW(k),13 and instead of Eq.~1!
use the normalization:

U~k!5W~k!F~k!/^ f ~k!2&1/2, ~17!

whereW(k) is real, positive, and a fixed point ofT for an
ellipsoidal region in three dimensions which includes, bu
not limited to the measured reflection.~The fact that we in-
clude a complete ellipsoidal region here allows us to int
polate reflections, as will be discussed more below.! As a
consequence, a combination of nonoverlapping atoms
fixed point ofT, a zero ofg(u) assuming all the atoms ar
the same. With measurement errors and different type
atoms we can only state that it is probable that the FOM
small at the correct solution.

Two other points need to be mentioned. In the abo
equations, some apply to the real-space charge density w
implicitly contains all possible reflections; some, such as
~16!, apply only to the measured reflections. While only t
experimentally determined phases are being used for
scaling terma and the FOM, the window functionW(k) is
set up such that all the reflections within an ellipsoidal reg

FIG. 3. Schematic illustration of the nonconvexity and disco
tinuous nature of the problem. Shown is the intersection for
nonconvex set and the set defined byg(u)<b ~assumed to be lo-
cally convex!. The three subsets of the feasible set have been
beledA, B, andC since three such regions were found in some
the model systems, discussed later.
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are determined. Many of these are not measured, and so
be interpolated. Assuming that we have a reasonable num
of measured reflections, we therefore have estimates of
phases of the unmeasured reflections. The set of all pos
moduli for these is a convex set. Hence there is a very g
probability that these will be relatively accurate interpo
tions, provided that they are correctly scaled. The same s
ing terma used for the measured reflections should apply
the unmeasured ones, and in practice works very well. W
all the experimental data that we have seen to date on
relatively small fraction of the possible beams have be
measured. Without interpolation no such algorithm can
stable, but with both the positivity and~more importantly!
the support constraint the algorithm is stable with a surp
ingly small number of measurements.

Second, we know rather more than just the basic form
a statistical operator, we also know something about the
tistical distribution. In particular, we know that the pha
u~k! for any reflectionk in reciprocal space is

u~k!'u~k2h!1u~h!, ~18!

with a probability distribution whose width scales inverse
with uUe(k)u, uUe(k2h)u, anduUe(h)u. This implies that we
can also use the predicted value ofuU(k)u as a gauge of the
validity of a phase. We will refer to this as a ‘‘phase
extension’’ constraint, and code it into the algorithm as d
tailed below. The particular algorithm that we use is as f
lows.

~1! Start with some estimate~guess! for some of the
phases, and couple this with the known moduli to give
initial estimateU0(k).

~2! For some given estimate ofu(r ) ~Fourier transforming
as appropriate!, i.e., un(r ) for cycle n, determine new esti-
mates in reciprocal space in parallel using the statisti
positivity and support conditions via

Un
E~k!5FTE@PS~un~r !#, ~19!

Un
P~k!5FPP@PS~un~r !#, ~20!

whereF stands for a Fourier transform.
~3! If we did not previously have an estimate for the pha

for a particulark, apply the phase-extension constraint
setting

Un
E~k!50 if uUn

E~k!u,gnuUe~k!u, ~21!

wheregn is an adjustable scalar, and similarly for the po
tivity. Empirically, the form

gn50.3 exp~2n/2! ~22!

is close to optimal.
~4! Combine the two estimates in parallel via

Un
1~k!5wUn

E~k!1~12w!Un
P~k!, ~23!

where a good choice of the weighting termw is

w50.5* @11exp~2n/3!#. ~24!

~5! Correct the values of the moduli in reciprocal spa
back to the experimental values, using a relaxed projec
operator

-
e

a-
f
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Q~k!5Un~k!1l@Un
1~k!2Un~k!#, ~25!

Un11~k!5Q~k!uUe~k!u/uQ~k!u, kùSM

5aUn
1~k!, kùSU

50 otherwise, ~26!

whereSM is the set of measured reflections andSU the set of
unmeasured reflections which lie within the aperture defi
by the window functionW(k) of Eq. ~17! anda the renor-
malization scaling from Eq.~16!.

~6! Project~if appropriate! onto the bulk reflections.
~7! Evaluate via the FOM applied only to the relativ

entropy how well the current set of phases obeys both
statistical relationships, and how close are the moduli to
experimental values.

~8! If the FOM is decreasing, go back to~2! and continue
the iteration; if it is increasing store the initial starting phas
and best FOM.

The global search is then performed by a gene
algorithm11 which finds approximate values for the phases
the feasible set. For reference, not all phases need to
specified in step~1!, but typically only 5–10% of the stron
ger reflections.

III. BABINET SOLUTIONS

There is one interesting extension to the above ca
which we will refer to as ‘‘Babinet solutions.’’12 To under-
stand these, we will use the simpler unitary Sayre equat

u~r !5Nu~r !2, ~27!

which is true forN identical, nonoverlapping atoms. Let u
decompose the charge density into two components;uM(r )
for that due to the measured reflections (SM), anduU(r ) for
that due to the unmeasured ones (SU). Then

TABLE I. Unique atomic positions for model 1,p2mm with
a54.581 Å,b518.325 Å, andc564.79 Å. For model 2, they co-
ordinate of the first atom is 0.128 726, leading to strong attenua
of the scattering from the first and last atoms, which lie alm
exactly at bulk sites in thex-y plane. For model 3 an additiona
atom at~0, 0.25, 0.513! was added.

X Y Z

0.500 000 0.178 726 0.500 000
0.000 000 0.376 172 0.498 513
0.000 000 0.219 691 0.506 416
0.500 000 0.372 170 0.533 348

TABLE II. Atomic positions for model 4, cm witha
520.79 Å,b54.00 Å, andc565.33 Å, anda5b5g590.0. The
same unit-cell parameters were used for the fourth data set.

X Y Z

0.500 000 0.0 0.5
0.055 556 0.5 0.5
0.166 667 0.5 0.5
0.222 222 0.0 0.5
d

e
e

s

c

be

e,

n:

uM~r !5N„uM~r !1uU~r !…22uU~r !. ~28!

Solutions of Eq.~28! are
~1! if uU(r ) is small,

uM~r !'0 or 1/N; ~29!

~2! if uU(r ) is large, approximately 1/N,

uM~r !'0 or 21/N. ~30!

We start the iteration cycle with zero for the unmeasu
reflections, so the algorithm will tend to find the solutions f
case~1! above; the true solution might correspond to ca
~2!. To handle this problem, we note that the primary diffe
ence between the two is reversal of the sign ofuM(r )—we
are obtaining negative or Babinet solutions.

It might be effective to start with random initial values fo
some of the unmeasured reflections; we have not tested
Instead, one can simply run a calculation starting with

n
t

TABLE III. Rod data used for models 1 and 2. Shown are t
largestl values (l max) in the data for givenh andk values.

h k lmax

0 2 20
0 3 25
0 5 30
0 6 30
0 7 30
0 9 30
0 11 30
0 13 30
0 14 30
1 2 27
1 3 30
1 5 32
1 6 32
1 7 32
1 9 30
1 10 30
2 1 30
2 2 30
2 3 30
2 5 30
2 6 29
2 7 30

TABLE IV. Two-dimensional (l 50) data values used, excep
for whenk54n with n an integer.

h kmax

0 19
1 19
2 18
3 15
4 11
5 3
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2776 PRB 60L. D. MARKS
unmeasured moduli, then invert the phase of the meas
values and rerun, retaining the estimates of the unmeas
reflections.

IV. NUMERICAL TESTS

Here we will present results for five different data se
four model structures, and one set of experimental data.~We
have also applied the method to three other sets of exp
mental data. However, since the structure of the latter h
not previously been solved they will not be discussed furt
herein.! In addition to origin-defining reflections, in all case
a total of 80 reflections were quadrant permuted~90° steps!
and the charge density was limited to a total height of
along thec axis. ~Smaller heights will converge faster, but
conservative approach needs to be taken with real exp
mental data.! Within the genetic search algorithm11 the popu-
lation size was twice the number of bits, and the numbe
children twice this number. Each calculation was perform

TABLE V. Rod data used for models 3 and 4.

h k lmax

1 1 35
2 0 23
2 2 37
4 0 32
5 1 40
7 1 36
8 0 36

10 0 36
ed
ed

,

ri-
e
r

3

ri-

f
d

for ten generations, a total of about 5000 different cas
except for the first model where two different initial~ran-
dom! seedings were used to improve the statistics.

The four model structures contain atoms at the positi
listed in Tables I and II, in standard crystallographic no
tion. The first two models are based around the 431 subcell
of the InSb(001)238 reconstruction.30 Comparing model 2
to model 1, the first and last atoms lie almost exactly at b
sites in thex-y plane, with a height difference of about 2 Å
They will therefore only contribute strongly to relativel
largel values, which are not well represented in the availa
reflections. This makes the second model harder to so
based just on the surface reflections, without using the b
reflections. The third model includes an extra pair of ato
very close to two existing atoms. While physically unreal
tic for true atomic positions, this structure no longer consi
of well-separated atoms which therefore weakens the st
tical relationships@the functionalg(u) discussed above wil
be small, but not zero for the correct solution#. The reflec-
tions used for the first three models are shown in Tables
and IV, again in standard crystallographic notation, and
semble those actually measured for the 431 subcell of the

TABLE VI. Two-dimensional (l 50) data values used for th
last two data sets, excludingh53n.

hmax k

20 0
19 1
16 2
13 3
e-

d

ial
FIG. 4. Reconstructed charge densities sectioned normal to thez axis with slices of thickness approximately 0.5 Å, with white corr
sponding to regions of high charge density~atoms!. In ~a! and ~c! the background level is close to zero, and in~b! negative holes~black
regions! exist. Shown in~a! is the result with both the measured and unmeasured reflections, and in~b! the result with only the measure
reflections. In 6~c! we show the best solution from setC. Strong artifacts in~b!, some of which appear as ‘‘atoms’’ in~c!, should be noted.
For both ~a! and ~c! the sections were essentially featureless outside the regions shown; for~b! some artifacts persisted to substant
distances away from the atoms.
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InSb(001)238 reconstruction.30 The last two data sets ar
based on the Rb on Ge(111)331,31 with the available reflec-
tions shown in Tables V and VI. Model 4 is a simple on
layer representation of the recently solved structure,31 and
the final data set is actual experimental data. To analyz
more detail how the algorithm performs, it is useful to intr
duce three parametrizations of the agreement between
reconstructed amplitudes and phases. The first is a co
tency figure of merit~CFOM1! defined as

CFOM5( Ut~k!$12cos@u t~k!2uc~k!#%Y 2( Ut~k!,

~31!

whereu t(k) are the true phases anduc(k) those returned by
the algorithm,Ut(k) is the true unitary structure factors, an
the summation is taken over the reflections initially set
the genetic algorithm. The second, CFOM2, has the sa
equation but the sum is now extended to all reflections~ex-
ceptk50). The last RFOM is defined as

RFOM5( uUt~k!2Uc~k!uY ( Ut~k!. ~32!

The first metric CFOM1 will describe how good a match
obtained between the phases of the reflections used in
starting set and their true values, being zero for perf

FIG. 5. Scatter plot of CFOM1 vs FOM for the top 1200 sol
tions for model 1. Three ‘‘arrow’’ shaped regions pointing towar
smaller FOM values are marked asA, B, andC and correspond to
three subsets of the total feasible set regime.

FIG. 6. Scatter plot of CFOM2 vs FOM for model 1, demo
strating that small FOM values give very good restoration of
phases of the unmeasured reflections.
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ct

agreement. Based upon prior experience, a value of appr
mately 0.1 or better will give a very good reconstruction
the charge density. The second metric does the same fo
the phases, i.e., it includes the phases of the unmeas
reflections as well. Since phases are more important than
moduli in obtaining a viable reconstruction, values of 0.1
better are very good. The final metric RFOM shows ho
good an overall fit is achieved including interpolation of t
moduli of the unmeasured reflections. This need not be
small for a good restoration of the charge density.

The first model structure solves without use of any bu
projections, and a typical result is shown in Fig. 4~a!. Not
only are the atom sites very well resolved, very good rec
struction of the unmeasured reflections is obtained. To ill
trate this, Fig. 4~b! shows the charge density if only the me
sured reflections are used. Figure 5 plots CFOM1 versus
FOM for the best 1200 solutions for a search of abo
10 000. As can be seen from the figure, there are three
rowlike features in the scatter plot pointing towards lo
FOM values, indicating three different subsets~solutions!
within the total feasible set. The first two, labeledA andB in
the figure, both give very good reconstructions similar to F
4~a!. The third, labeledC, is rather inferior and is shown in
Fig. 4~c!. At a rigorous level it would be necessary to che
~via a x2 refinement! each of these three possible solutio
for a full structure determination. Shown in Fig. 6 is CFOM
versus FOM, and shown in Fig. 7 is RFOM versus FOM
the top 120 solutions. Good results are obtained for rest
tion of the phases of the unmeasured reflections, not so g
~but adequate! for restoration of the moduli as well. To show
the later in more detail, Fig. 8 is a plot of the true vers
restored moduli for one of the stronger rel-rods~i.e., h andk
fixed, and different values ofl!.

The second model structure does not solve so well us
the surface reflections, as can be seen from the plo
CFOM1 versus FOM in Fig. 9; the incorrect set of solutio
markedC @similar to the subsetC in Fig. 5! move to lower
FOM values. This is accentuated in the third model, wh
subsetC moves to lowest FOM as shown in Fig. 10~a!.#
While part of the structure is correct~the nearly coincident
atoms are found!, the second layer is too close to a perfe
bulk and is not determined. Sufficient information might
available for the true structure to be determined by sub
quent structure completion by Fourier methods,x2 analysis,
and chemical information, but this would not be easy. Ho

e

FIG. 7. Scatter plot of RFOM vs FOM for model 1, showin
that a reasonably good restoration of the amplitudes is obtaine
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2778 PRB 60L. D. MARKS
ever, when three bulk rods@the (1,0,l ), (0,4,l ), and (1,4,l )
rods# are included in the calculation, it does solve as sho
by the plot of CFOM1 versus FOM in Fig. 10~b!. ~The sec-
ond model behaves similarly, collapsing to the correct so
tion when projection onto the bulk rods is employed.!

As an alternative approach, the complexity of the probl
can be reduced by solving first in two dimensions~both for
the phases and ax2 refinement! prior to analyzing the three
dimensional~3D! problem. One can then apply some of t
phases from the 2D solution as part of the starting set.
both models 2 and 3 this works well, and reduces subs
tially the FOM of the correct solution within the feasible s
as illustrated in Fig. 11.

The final two data sets demonstrate the importance
Babinet solutions. The structure is equivalent to one Ge
layer ~at the same height! minus a dimer. The standard algo
rithm suggests a dimer structure as shown in Fig. 12~a! for
model 4, while the Babinet solution in Fig. 12~b! gives the
correct solution. The same is found with the experimen
data @Fig. 12~c!#, very close to that recently determined,31

although see Sec. V.~In practice, both the dimer and four
atom solutions would have to be considered as part of
feasible set of possible solutions for a subsequent full refi
ment.! Note that if the bulk rods were included in the ana
sis, the possibility of a Babinet solution would be remove

V. DISCUSSION

It is perhaps best to start with a word of warning:
method is completely foolproof, and it is always possible

FIG. 8. Plot of the (0,4,l ) rel-rod showing both the true value
~solid line! and the restored values.

FIG. 9. Scatter plot of CFOM1 vs FOM for model 2; the inco
rect subset of solutions markedC have moved to lower FOM value
relative to Fig. 5.
n
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or
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of
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l

e
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end up with the wrong result if due care is not exercis
While the algorithms herein are powerful, care is need
with the global search and in some cases there may sim
not be enough data to determine a surface structure.~If there
are not enough data for direct methods to work, there
almost certainly not enough data to solve the full thre
dimensional structure; one or two measurements of the
rods may not be adequate.!

Very important is the quality of the data, both in terms

FIG. 10. Scatter plots of CFOM1 vs FOM for model 3. In~a!
only the surface data are used, and the incorrect solutionC found in
both Figs. 5 and 9 dominates. However, when projection onto
bulk rods is exploited only the true move to smaller FOM values
shown in~b!.

FIG. 11. Scatter plot of CFOM1 vs FOM for model 3, where t
(h,k,0) reflections have been fixed to mimic initial 2D solution
SolutionsA andB dominate, albeit with higher FOM values than
Fig. 10~a!.
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measurement errors and other issues such as secon
phases. It is not at all unusual to have defects and pa
occupancies of certain sites due to surface disorder. Furt
more, in almost all cases there will also be additional surfa
phases whose reflections may be coincident with that of
target surface structure. The latter means that it may be
ficult to extract the bulk component due to a particular su
face structure~or domain!, although in principle it is possible
to extend the method herein to include simultaneous proj
tions onto a number of different surface structures.

Also of prime importance is the symmetry of the reco

FIG. 12. Charge-density sections normal to thez axis with a
slice thickness of about 0.5 Å for model 4, and the experimen
data. Shown in~a! is a dimer solution obtained with the standar
algorithm; in~b! we show the Babinet solution after a sign revers
projection as described in the text, and in~c! the Babinet solution
for the experimental data.
ary
ial
er-
e
e

if-
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struction. This severely constrains the possible solutions, a
might be determined by STM, although rather little attentio
has been paid to this to date. Better information about t
unit cell contents always helps, since this is used in the n
malizations.~In practice one can run for a number of differ
ent assumptions about the symmetry and contents.!

Many other versions of direct methods will probably als
work for surfaces in three dimensions, and it is not unre
sonable to hope for fully automated structure solutions in
few years. Some modification to existing codes will almo
certainly be needed, particularly the introduction of the su
port constraint. At present some manual intervention is s
required in an interpretation of the maps and a conversi
from these to atomic positions, a problem since bias can
introduced. Due to the large number of unmeasured refle
tions conventional Fourier difference techniques do not wo
very well, although some preliminary results suggest th
modifications to include projections may be viable.

These caveats aside, we have outlined herein what
pears to be a completely general method of solving, witho
guesswork, surface structures using three-dimensional x-r
diffraction data. In many cases the 3D data will solve on i
own ~with appropriate attention paid to Babinet solutions!.
As an alternative, if bulk-rod data are available and the co
erage of the structure relatively is well known~for scaling
purposes!, this information can be used; if a reasonablex2

can be obtained in two dimension, a determination of the fu
structure from a limited number of rods is quite realistic.
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FIG. 12. ~Continued!.
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