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Computer simulation of general grain boundaries in rocksalt oxides
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The structures and energies of a series of tilt grain boundaries and corresponding surfaces were calculated to
obtain a general relationship between the grain boundary energy and the tilt angle for NiO and MgO. We show
that the simple elastic expressions for the grain boundary energy give reasonable results for low-angle grain
boundaries. We investigate the assumptions that lie behind thermal grooving experiments and show that the
torque terms should be large, even when far from a major[ploég100), (110), or (111) directiong. However,
the measured angles agree better with the calculations when torque terms are ignored. We discuss this effect in
terms of faceting and oxidation of the surfaf80163-18209)06627-9

[. INTRODUCTION gave a better fit to calculations on metal grain boundaries.
Further details can be found in Ref. 4.

Most materials have a polycrystalline structure with grain  There are no direct measurements on grain boundary en-
boundaries at the point where two crystallites meet. Thesergies. Some information can be obtained from thermal
boundaries are often complex structures. In principle, theyrooving experimentgsometimes called thermal etching.
are defined by the mutual orientation of the crystallites buiWithin a material most grain boundaries meet in sets of three
may have a complex structure of their own and may alsat a triple point. However, grooves form at the points where
contain large amounts of impurity. This often produces aa boundary meets the surface when the material is heated. By
boundary region with a distinct phase—the interphase. Thermeasuring the dihedral angi¥,, of this groove and ignoring
are, however, two special cases of boundaries on which mogite torsional components of the energy, the ratio of boundary
experiments and calculations have been done—théatiltl  to surface energy+,/vys) is given by
to a lesser extent the twjsboundaries. These are distin-
guished by the manner of their construction. If the two crys- vpl ys=2 cogV/2). 3
tallites are rotated with respect to each other about an axis . . . . L .
perpendicular to the interface between them, then the bouné diagram of the configuration of the experiment is given in

ary is called a twist boundary whilst if the axis of rotation is 9+ 1. Thermal grooving experiments have been carried out
parallel to the interface then the boundary is called a til

©n NiO by Dhalenneet al®” who showed that the groove
boundary. Although extensive work on simulating grain @"gl€[Presented in their work ag, /s using Eq.(3)] varied
boundaries within metals using pair potentials has been ca

gsa function of the orientation angle of a twin boundary and
ried out? there is comparatively little work on the simulation included cusps at the angles that corresponded to special
of boundaries in ionic materials. Duffy and Tasker studie

dboundaries(i.e., low-index boundaries with high coinci-
grain boundaries in Ni®.Subsequent work has only consid- dence. However, there was some disagreement between
ered boundaries with high coincidence and which contained€se re_sults anq the calc_ulatlons of D_uff_y and _Taél@ne
either a pure twist or tilt boundary. Low-angle grain bound-©f the aims of this paper is to study this inconsistency.
aries present particular difficulties because of the large sur-
face unit cells required. The energies of these boundéries
metals have been obtained by treating them as a wall of
dislocations and using simple elastic theory. Read and Groove surface,

Shockley showed that the energy per unit length of a grain ey

Normal to surface
\\".

Groove surface,
eNergy ys

boundary is given by an expression of the form  —cmemeeim LS exelo \
Nominal surface of material
E(6)=E°6(A—In o), (1)
P\ 1 A Normals to the surfaces
.86 joined to form the grain
whereE® andA are constant€® contains information about boundary
the elastic properties of the bulk where&sontains infor-
mation about dislocation cores. Wbolshowed empirically v
that the expression Grain boundary,
energy v,
E(9)=E’sind[A— In(sind)] (2 FIG. 1. Angles defined for the thermal grooving experiment.
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TABLE I. Potential parameters used in the calculation. Details are given in Refs. 10 and 11. Distances are in A and energies in eV. The
short-range cutoff was 1a§ wherea, is the nearest-neighbor cation-anion distance.

Magnesium oxide: Short-range interactions

Interaction A (eV) p (A C (eVAS)
Mgt —O?~ 1275.2 0.3012
o -0 22764.3 0.149 20.37
Magnesium oxide: shell model
lon lon charge [€]) Shell charge |€]) Spring constant (eVA
Mg?* +2.0 0.0 Rigid ion
0% -2.0 —2.8107 46.126
Nickel oxide: Short-range interactions
Interaction A (eV) p (R C (eVAS)
NiZ*t -7~ 1582.5 0.2882
o> -0 22764.3 0.149 27.88
Nickel oxide: shell model
lon lon charge [€|) Shell charge |g|) Spring constant (eVA
Ni2* +2.0 3.344 93.7
o? -2.0 -3.0 54.8
Il. THE CALCULATION even of bulk nickel oxide. The most accurate recent Work

(which is still compelled to include the Mott-Hubbard corre-
tion terms in an empirical fashipuliscusses the electronic
urface states but not the structure or the surface energy

here a comparison with classical simulations would be
possiblg. The only comparison of grain boundaries in the
literature is that of Ref. 14 on the twist grain boundary of
V(r)=Aexp—r/p)—CIrS, (4) MgO. Here the agreement between the classical and elgc-
tronic structure calculation is excellent. The overall compari-
where the parametess p, C can either be fitted to suitable son of electronic structure calculations of the surfaces with
experimental data or calculated using a variety of approxiionic crystals with classical simulatiorisee Ref. 15 for ref-
mations. The electronic polarizability of the iofexcept for  erences to other comparisgnsuggests that the classical

Mg?" which is treated as a rigid ioris included using the methods are well able to describe a wide range of interfaces

shell model of Dick and Overhaus&m this model, the ions in ionic systems.

are treated as massless cores linked to massless shells by aWe need to simulate a large set of tilt grain boundaries

spring. The coulombic terms act between all spe@asept and their corresponding surfaces. The various classical simu-

for cores and shells of the same )pthe short-range terms lation codes developed to do this use a common strategy
act between the shells only. For convenience, the parametepioneered by Taskéf. The crystal is considered as a stack of
used are collected in Table I. Details of their derivation areplanes normal to the interface to be calculatéuthe case of
given in Refs. 10 and 11. In recent years, a number of coman asymmetric tilt boundary, we will need to define two
parisons for both bulk and surface structures have been madeparate stacks of planes that meet at the interf@eziodic
between models of this kind and quantum-mechanical calcusoundary conditions are imposed in the plane of the inter-
lations of various kinds. In particular, for MgO, both face, but not in the direction perpendicular to it. The calcu-

Hartree-Fock calculations and calculations based on thktion of the coulombic terms for such an arrangement are

local-density approximation have been performed on thavell known; the first discussion is that of PaffyThe two-

(001) surface and compared with classical shell modfels. dimensional summation is performed within the plane and

These show excellent agreement between the methods ftiiese planes are then summed in the perpendicular direction.

the surface energies. The calculations disagree on the sign ®he stack is divided into two regions; an inner region con-

the small amount of rumpling observed; the Hartree-Fockaining the interface and two outer regions beyond on either
calculation obtaining the opposite sign to the other two. Un=side of the interface. The ions in the inner region are relaxed
fortunately this issue has not yet been resolved by experito positions of zero force using either a standard Newton-
ment; the accuracy is not sufficiently great. There is no comRaphson method dfor the largest calculationg conjugate
parison possible with NiO because the only reportedgradient technique. The ions in the outer regions are fixed
calculations of the surface of NiO are local density calcularelative to each other, but the regions are allowed to move to
tions. It is well-known that such calculations encounter veryallow dilatation of the boundary. The choice of the boundary
considerable problems in giving an adequate descriptioibetween the regions is chosen so that increasing the size of

Since we wish to perform a large number of calculation
on up to several thousand ions, we have used a classic
simulation method based on central-force pair potentials an
a shell model. Full ionic charges are used; the short-rang
interaction takes the form
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; ; . FIG. 3. Grain boundary energies as a function of twin angle
FIG. 2. Surface energies as a function of angle with respect tg. . . .
(110 for MgO () and Ni%ib). 9 P (twice the tilt angle for MgO (a) and NiQb).

the inner region further does not affect the res(ilts, all the ~ points by using a cubic spline, but this would still involve us
short-range relaxations due to the presence of the interfadg assumptions about the shape of the surface energy curve
die away before the boundary is reached practice, this between those points. The important point is that the shape
means that the inner region is 30—40 A thick depending or®f the curve is different from the analogous curves for met-
the surface under discussion. The number of ions in the innetls. There is no flat region away from the major pdles.,
region varies, being greatest for the vicinal surfacgiace  such directions agl00), (110, and(111)]. Moreover, since
these have the largest surface unit gells this case, there the surface energies of tli&10 and (100 directions are so
may be 5000 ions in the inner region. The METADISE different (by 2.7 J/n?) there must be an overall downward
code® was used for the simulations. slope as a function of surface angle froiri0 to (100) This
is important when we consider the torque terms.

There are two ways of expressing the energy of a grain
boundary; the first(Fig. 3) is with respect to the perfect

We first consider the surface energies and grain boundarattice (and is usually called the grain boundary energlye
energies. These are given in Figs. 2—4. In some of the cakecond(Fig. 4) is with respect to the surfaces out of which
culations, it was clear that the system had reached only the boundary is constructédnd is usually called the binding
local, rather than global minimum. These calculations wereenergy. The first definition is our main concern here. MgO
discarded. The curves in Fig. 2 are fits to fifth-order polyno-and NiO have similar(but not identical curves for the
mials. Such functions can represent the general shape of thwundary and binding energies as a function of the twin
curve, but not the details of the faceting. Clearly, it would beangle (the angle between the normals to the two nominal
possible to make a curve pass through all the calculatedurfaces that are joined to make the boungary

Ill. RESULTS
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(a) Twin angle (degrees) where u is one of the Lameonstantsy is Poisson’s ratio,

andb is the magnitude of the Burger’s vector of the disloca-
500 3 tions forming the boundary. For both MgO and NiO this
Ni0 calculations gives a value folE, of about 5.3 J/rh The fitted values are
‘ @ Grain boundary binding energles reasonably close to this given the simplicity of the theory.
500 — The value ofA is more difficult to estimate since it requires
; * knowledge of the dislocation core energy. This can be ob-
, . o« tained but we have not attempted it here.
o e ! The parameters of the two expressions are similar. This is
‘ PO to be expected since s#x=6 for low-angle boundaries. The
L ‘ advantage of the Wolf expression in metals is that it gives a
reasonable representation of the grain boundary energy
o : across the entire range of angles. It can be seen from the
1 L parameters in the table that this is unlikely to be true for
L ‘ ‘ ceramics. For MgO, thé parameter imegative This can
¥ A produce a reasonable fit for small angl(@here the second
. i (001) term is positive but not for large angles. The parameter val-
¢ ues for the boundaries with respect (til0) and (100 are
o0 o \ Fr quite different, as might be expected from the graph of the
(b) 0.00 40.00 vaion.o:ngle (d;SSéO:s) 160.00 200.00 energies(Fig. 3.
We now proceed to calculate the grooving angle as fol-
FIG. 4. Binding energies of the grain boundaries as a function ofows. We first ignore the torque terms. Thus, we take a given
twin angle for MgO(a) and NiQb). twin grain boundary and solve the equation

Boundary energy

2.00 —| ‘f_ ; Q‘

We first consider the connection between grain boundary Yo=27s(¥)cog ¥/2). (6)
energy and grain boundary structure. As can be seen from
Fig. 5, the boundaries consist of a series of small channelprovided that the groove is entirely symmetiie., the same
formed by the step structure of the interface. For high-anglgurfaces on both sides and the grain boundary perpendicular
boundaries, for example the (331) boundary, these channels the overall surface of the specimemve have a simple
are very close together. As the boundary angle decreasgslation between the groove angle and the angle of the
these channels move further apart from each other. Beyondsurface of the grooved)) with respect to the overall surface
certain angle the dislocation cores begin to retain the sam@ssumed to b&él10)]: ¥ = w— 2«. This angle is plotted as a
structure although the distance between them increasegnction of boundary twin angled) in Fig. 6 (see Fig. 1 for
Thus, for very low-angle grain boundaries, the structure camomenclaturg together with the experimental data of
be thought of as a series of edge dislocations as described Iphalenneet al®’ A number of points should be noted. First,
the dislocation modéi.However, as the angle of the bound- since it is our purpose to investigate the size of the torque
ary increases these dislocation cores overlap and beconigrm, we have reconverted the experimental results back to
hard to distinguish. It is possible to fit the low-angle bound-groove angles using Eq. 3. The results in Figp)&how that
aries to the expressions 1 and 2 discussed above. The resufi@re is a good match between the shapes of the experimental
are shown in Table II. The value &, can be estimated from and calculated curves, with a series of cusps in the energies

the elastic properties of the materfal; that correspond to those boundaries that have previously
been simulated. One particularly deep cusp at 70.53° is due
ub to the (111) boundary which, as Duffy and Taskgointed

©)

Eog=—F7+——, ) : . S )
O 4m(1-v) out, is a coherent twin. However, there is a significant dis-
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TABLE Il. Parameter€E® (J/n?) andA for the Read Eq. (1)] and Wolf[Eq. (2)] expressions for low
angle boundaries in MgO and NiO. The directidii$10) and (100] gives the major pole with respect to

which they are low-angle boundaries.

MgO (110 MgO (100) NiO (110 NiO (100
EC A E° A E° A EC A
Read 9.41 -0.24 6.08 0.25 6.31 0.56 5.96 0.36
Wolf 9.41 -0.23 6.13 0.25 6.31 0.58 6.00 0.36

crepancy between the exper_imental and calculated anglgs M is the energy of a boundary defined by a vedtan the
the region 120% #<140°. It is true that one of the experi- plane of that boundary and normal to the line of intersection
mental points has a very large error bar, but even so, this isf the three boundariesis a unit vector along that intersec-

not enough to resolve the problem.

tion line andn;=1Xt;. ; is the angle between boundairy

One possibility is that the torsional terms that we haveand the next boundary clockwise around the intersection line.
neglected are important. These are given in the full expresm the case of a twin boundary perpendicular to the surface,

sion for the equilibrium of three boundaries at a pbift
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matters are considerably simplified. We can ignore the tor-
sional effect of the grain boundafprovided that the bound-
ary is close to perpendicular to the surfackhis gives as our
force balance equation

Yg=275CoL W/2) — 2(2—?)9«\?/2), (8)

where we can identify the angle as the misorientation of
the plane of the groove with respect to the overall surface
plane (see Ref. 2l We, therefore, obtain the surface tor-
sional term from the plot of the surface energy as a function
of groove angle using the relatioh= 7— 2« (the angles are
as in Fig. 2. Our revised expression for the groove angle is

dys(W)
oV

The second term can be calculated provided that we assume
that our approximation of the angle dependence of the sur-
face energy by a polynomial is reasonable. The results are
shown in Fig. 7. From this it is clear that the torque term
does have a large effect, but that it worsens rather improves
agreement with experiment. The reason for the large torque
term can be seen from Fig. 2; the surface energy varies
strongly with angle for the angles in the region of the calcu-
lated (and experimentalgroove angles. This is quite differ-
ent from the behavior observed for metals by Hodgson and
Mykura?! where the surface energy varied strongly with
angle only in the region of the poles.

One interesting feature of the calculation is the variation
of the surface energy as a function of the boundary twin
angle. This is shown in Fig. 8. In all casésxcept for low-
angle boundariggshe spread of values of the surface energy
is low (about+0.1 J/nf at most) As far as the first term is
concerned, the surface energy could be approximated by a
constant and the shape of the groove angle curve would re-
flect the shape of the grain boundary energy since the torsion
term would be zero. This illustrates a critical assumption that
we have made; that we can identify the surface at a given
groove angle with the perfect surface appropriate to that
angle. There are two reasons why that might not be so. First
there is the possibility of faceting. As an extreme example,

Yp=2v(¥)cogV¥/2)+4

)sin(‘l’/Z). 9

FIG. 6. Calculation of the groove angle ignoring the torquethere is a peak in the surface energy for the (554) surface
terms for MgO(a) and NiO(b). Experiments for NiO from Refs. 6 [Fig. 2(@)]. This is also revealed in the plot of the binding

and 7.

energy of the boundarigghe stability of the boundary with
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respect to forming two free surfageass shown in Fig. @).  readily oxidizes, particularly at high temperature. The ex-
The energy is very high relative to the other energies of theperimental procedure is not discussed in sufficient detail to
neighboring surfaces and may be a result of using the starttetermine how likely this is. Calculations by Oli¥&show
dard method of restructuring to quench the dipole associatestrong variation of the surface energy as a function of oxida-
with this surface. Work by de Leeuet al?® has shown that tion. The effect is different for different boundaries; the sur-
faceting is a favorable process on some surfaces. For eXace energy of th€100) and(110) boundaries rises, whereas
ample, faceting of the (110) surface of MgO lowered thethe energy of thg111) boundary falls. It is likely that the
surface energy from 3.02 to 1.87 Jfn Faceting of the effects of oxidation would smooth out the variation of sur-
(554) surface resulted in a lower energy of 3.26 3psimi-  face energy with angle. A quite different possibility is that
lar to that calculated for the unfaceted (111) surface. Howthe assumption that the grain boundary is perpendicular to
ever, this cannot remove our problem; the surface energthe surface is incorrect. If the boundary was more than about
curve for angles close to the groove angle decreases mong® degrees away from perpendicular, the grain boundary
tonically and there is no obvious way that faceting can altetorque term would begin to become significant. There is no
this. Indeed, it is likely that by fitting the surface energy to aindication from the experiments that this is so.

smooth function we arén effec) assuming some degree of

faceting. This is clear from Fig.(8) where the requirement IV. CONCLUSIONS

to fit to a reasonably simple function has, in effect, discarded

the (554) surface from consideration. The second possibility We have used atomistic simulation to calculate the grain
is a change in the effective surface energy due to the formaboundary energy and structure for oxides of the rock salt
tion of surface defects. This is possible in nickel oxide. Itstructure. The energies and structures of the low-angle
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boundaries are what we would expect from a simple dislosurface energy of about 3.4 Jnif true, this suggests that, in
cation model. We have attempted to compare the calculahis case at least, the groove angle directly monitors the grain
tions of the energies with the thermal grooving experimentsoundary energy. It is unfortunate that almost no information
of Dhalenne and co-workefsHere, there are a number of on thermal grooving is available on any system other than
problems. First, if we interpret the experiment in the obviousnickel oxide. This is particularly the case since such experi-
manner, with the grain boundary perpendicular to the overalinents are almost the only way of obtaining information on
surface and the groove boundaries being the relevant puisoundary energies rather than boundary structures. More ex-
surfaces, then agreement between the calculations and e¥erimental information on other systems is highly desirable
periment is poor. Furthermore, if this analysis of the experito investigate the issues discussed here.

mental situation is correct, the assumption made in the ex-

perimental analysis, that the torque terms can be ignored, ACKNOWLEDGMENTS
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