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Computer simulation of general grain boundaries in rocksalt oxides
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The structures and energies of a series of tilt grain boundaries and corresponding surfaces were calculated to
obtain a general relationship between the grain boundary energy and the tilt angle for NiO and MgO. We show
that the simple elastic expressions for the grain boundary energy give reasonable results for low-angle grain
boundaries. We investigate the assumptions that lie behind thermal grooving experiments and show that the
torque terms should be large, even when far from a major pole@the~100!, ~110!, or ~111! directions#. However,
the measured angles agree better with the calculations when torque terms are ignored. We discuss this effect in
terms of faceting and oxidation of the surface.@S0163-1829~99!06627-8#
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I. INTRODUCTION

Most materials have a polycrystalline structure with gra
boundaries at the point where two crystallites meet. Th
boundaries are often complex structures. In principle, t
are defined by the mutual orientation of the crystallites
may have a complex structure of their own and may a
contain large amounts of impurity. This often produces
boundary region with a distinct phase—the interphase. Th
are, however, two special cases of boundaries on which m
experiments and calculations have been done—the tilt~and
to a lesser extent the twist! boundaries. These are distin
guished by the manner of their construction. If the two cr
tallites are rotated with respect to each other about an
perpendicular to the interface between them, then the bou
ary is called a twist boundary whilst if the axis of rotation
parallel to the interface then the boundary is called a
boundary. Although extensive work on simulating gra
boundaries within metals using pair potentials has been
ried out,1 there is comparatively little work on the simulatio
of boundaries in ionic materials. Duffy and Tasker stud
grain boundaries in NiO.5 Subsequent work has only consi
ered boundaries with high coincidence and which contai
either a pure twist or tilt boundary. Low-angle grain boun
aries present particular difficulties because of the large
face unit cells required. The energies of these boundarie~in
metals! have been obtained by treating them as a wall
dislocations and using simple elastic theory. Read
Shockley2 showed that the energy per unit length of a gra
boundary is given by an expression of the form

E~u!5E0u~A2 ln u!, ~1!

whereE0 andA are constants.E0 contains information abou
the elastic properties of the bulk whereasA contains infor-
mation about dislocation cores. Wolf3 showed empirically
that the expression

E~u!5E0 sinu@A2 ln~sinu!# ~2!
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gave a better fit to calculations on metal grain boundar
Further details can be found in Ref. 4.

There are no direct measurements on grain boundary
ergies. Some information can be obtained from therm
grooving experiments~sometimes called thermal etching!
Within a material most grain boundaries meet in sets of th
at a triple point. However, grooves form at the points whe
a boundary meets the surface when the material is heated
measuring the dihedral angle,C, of this groove and ignoring
the torsional components of the energy, the ratio of bound
to surface energy (gb /gs) is given by

gb /gs52 cos~C/2!. ~3!

A diagram of the configuration of the experiment is given
Fig. 1. Thermal grooving experiments have been carried
on NiO by Dhalenneet al.6,7 who showed that the groov
angle@presented in their work asgb /gs using Eq.~3!# varied
as a function of the orientation angle of a twin boundary a
included cusps at the angles that corresponded to sp
boundaries~i.e., low-index boundaries with high coinci
dence!. However, there was some disagreement betw
these results and the calculations of Duffy and Tasker.8 One
of the aims of this paper is to study this inconsistency.

FIG. 1. Angles defined for the thermal grooving experiment.
2740 ©1999 The American Physical Society
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TABLE I. Potential parameters used in the calculation. Details are given in Refs. 10 and 11. Distances are in Å and energies in
short-range cutoff was 1.6a0 wherea0 is the nearest-neighbor cation-anion distance.

Magnesium oxide: Short-range interactions
Interaction A ~eV! r ~Å! C (eVÅ6)

Mg21 –O22 1275.2 0.3012
O22 –O22 22764.3 0.149 20.37

Magnesium oxide: shell model
Ion Ion charge (ueu) Shell charge (ueu) Spring constant (eVÅ2)

Mg21 12.0 0.0 Rigid ion
O22 22.0 22.8107 46.126

Nickel oxide: Short-range interactions
Interaction A ~eV! r ~Å! C (eVÅ6)

Ni21 –O22 1582.5 0.2882
O22 –O22 22764.3 0.149 27.88

Nickel oxide: shell model
Ion Ion charge (ueu) Shell charge (ueu) Spring constant (eVÅ2)

Ni21 12.0 3.344 93.7
O22 22.0 23.0 54.8
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II. THE CALCULATION

Since we wish to perform a large number of calculatio
on up to several thousand ions, we have used a clas
simulation method based on central-force pair potentials
a shell model. Full ionic charges are used; the short-ra
interaction takes the form

V~r !5A exp~2r /r!2C/r 6, ~4!

where the parametersA, r, C can either be fitted to suitabl
experimental data or calculated using a variety of appro
mations. The electronic polarizability of the ions~except for
Mg21 which is treated as a rigid ion! is included using the
shell model of Dick and Overhauser.9 In this model, the ions
are treated as massless cores linked to massless shells
spring. The coulombic terms act between all species~except
for cores and shells of the same ion!; the short-range term
act between the shells only. For convenience, the param
used are collected in Table I. Details of their derivation a
given in Refs. 10 and 11. In recent years, a number of co
parisons for both bulk and surface structures have been m
between models of this kind and quantum-mechanical ca
lations of various kinds. In particular, for MgO, bot
Hartree-Fock calculations and calculations based on
local-density approximation have been performed on
~001! surface and compared with classical shell model12

These show excellent agreement between the method
the surface energies. The calculations disagree on the sig
the small amount of rumpling observed; the Hartree-Fo
calculation obtaining the opposite sign to the other two. U
fortunately this issue has not yet been resolved by exp
ment; the accuracy is not sufficiently great. There is no co
parison possible with NiO because the only repor
calculations of the surface of NiO are local density calcu
tions. It is well-known that such calculations encounter ve
considerable problems in giving an adequate descrip
s
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even of bulk nickel oxide. The most accurate recent wor13

~which is still compelled to include the Mott-Hubbard corr
lation terms in an empirical fashion! discusses the electroni
surface states but not the structure or the surface en
~where a comparison with classical simulations would
possible!. The only comparison of grain boundaries in th
literature is that of Ref. 14 on the twist grain boundary
MgO. Here the agreement between the classical and e
tronic structure calculation is excellent. The overall compa
son of electronic structure calculations of the surfaces w
ionic crystals with classical simulations~see Ref. 15 for ref-
erences to other comparisons! suggests that the classic
methods are well able to describe a wide range of interfa
in ionic systems.

We need to simulate a large set of tilt grain boundar
and their corresponding surfaces. The various classical si
lation codes developed to do this use a common strat
pioneered by Tasker.16 The crystal is considered as a stack
planes normal to the interface to be calculated.~In the case of
an asymmetric tilt boundary, we will need to define tw
separate stacks of planes that meet at the interface!. Periodic
boundary conditions are imposed in the plane of the in
face, but not in the direction perpendicular to it. The calc
lation of the coulombic terms for such an arrangement
well known; the first discussion is that of Parry.17 The two-
dimensional summation is performed within the plane a
these planes are then summed in the perpendicular direc
The stack is divided into two regions; an inner region co
taining the interface and two outer regions beyond on eit
side of the interface. The ions in the inner region are rela
to positions of zero force using either a standard Newt
Raphson method or~for the largest calculations! a conjugate
gradient technique. The ions in the outer regions are fi
relative to each other, but the regions are allowed to mov
allow dilatation of the boundary. The choice of the bounda
between the regions is chosen so that increasing the siz
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2742 PRB 60J. H. HARDING, D. J. HARRIS, AND S. C. PARKER
the inner region further does not affect the results~i.e., all the
short-range relaxations due to the presence of the inter
die away before the boundary is reached!. In practice, this
means that the inner region is 30–40 Å thick depending
the surface under discussion. The number of ions in the in
region varies, being greatest for the vicinal surfaces~since
these have the largest surface unit cells!. In this case, there
may be 5000 ions in the inner region. The METADIS
code18 was used for the simulations.

III. RESULTS

We first consider the surface energies and grain bound
energies. These are given in Figs. 2–4. In some of the
culations, it was clear that the system had reached on
local, rather than global minimum. These calculations w
discarded. The curves in Fig. 2 are fits to fifth-order polyn
mials. Such functions can represent the general shape o
curve, but not the details of the faceting. Clearly, it would
possible to make a curve pass through all the calcula

FIG. 2. Surface energies as a function of angle with respec
~110! for MgO ~a! and NiO~b!.
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points by using a cubic spline, but this would still involve u
in assumptions about the shape of the surface energy c
between those points. The important point is that the sh
of the curve is different from the analogous curves for m
als. There is no flat region away from the major poles@i.e.,
such directions as~100!, ~110!, and~111!#. Moreover, since
the surface energies of the~110! and ~100! directions are so
different ~by 2.7 J/m2) there must be an overall downwar
slope as a function of surface angle from~110! to ~100! This
is important when we consider the torque terms.

There are two ways of expressing the energy of a gr
boundary; the first~Fig. 3! is with respect to the perfec
lattice ~and is usually called the grain boundary energy!; the
second~Fig. 4! is with respect to the surfaces out of whic
the boundary is constructed~and is usually called the binding
energy!. The first definition is our main concern here. Mg
and NiO have similar~but not identical! curves for the
boundary and binding energies as a function of the tw
angle ~the angle between the normals to the two nomi
surfaces that are joined to make the boundary!.

to FIG. 3. Grain boundary energies as a function of twin an
~twice the tilt angle! for MgO ~a! and NiO~b!.
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We first consider the connection between grain bound
energy and grain boundary structure. As can be seen f
Fig. 5, the boundaries consist of a series of small chan
formed by the step structure of the interface. For high-an
boundaries, for example the (331) boundary, these chan
are very close together. As the boundary angle decre
these channels move further apart from each other. Beyo
certain angle the dislocation cores begin to retain the s
structure although the distance between them increa
Thus, for very low-angle grain boundaries, the structure
be thought of as a series of edge dislocations as describe
the dislocation model.2 However, as the angle of the boun
ary increases these dislocation cores overlap and bec
hard to distinguish. It is possible to fit the low-angle boun
aries to the expressions 1 and 2 discussed above. The re
are shown in Table II. The value ofE0 can be estimated from
the elastic properties of the material;4

E05
mb

4p~12n!
, ~5!

FIG. 4. Binding energies of the grain boundaries as a function
twin angle for MgO~a! and NiO~b!.
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wherem is one of the Lame´ constants,n is Poisson’s ratio,
andb is the magnitude of the Burger’s vector of the disloc
tions forming the boundary. For both MgO and NiO th
gives a value forE0 of about 5.3 J/m2. The fitted values are
reasonably close to this given the simplicity of the theo
The value ofA is more difficult to estimate since it require
knowledge of the dislocation core energy. This can be
tained but we have not attempted it here.

The parameters of the two expressions are similar. Thi
to be expected since sinu'u for low-angle boundaries. The
advantage of the Wolf expression in metals is that it give
reasonable representation of the grain boundary ene
across the entire range of angles. It can be seen from
parameters in the table that this is unlikely to be true
ceramics. For MgO, theA parameter isnegative. This can
produce a reasonable fit for small angles~where the second
term is positive! but not for large angles. The parameter va
ues for the boundaries with respect to~110! and ~100! are
quite different, as might be expected from the graph of
energies~Fig. 3!.

We now proceed to calculate the grooving angle as
lows. We first ignore the torque terms. Thus, we take a giv
twin grain boundary and solve the equation

gb52gs~C!cos~C/2!. ~6!

Provided that the groove is entirely symmetric~i.e., the same
surfaces on both sides and the grain boundary perpendic
to the overall surface of the specimen!, we have a simple
relation between the groove angleC and the angle of the
surface of the groove (a) with respect to the overall surfac
@assumed to be~110!#: C5p22a. This angle is plotted as a
function of boundary twin angle (u) in Fig. 6 ~see Fig. 1 for
nomenclature!, together with the experimental data o
Dhalenneet al.6,7 A number of points should be noted. Firs
since it is our purpose to investigate the size of the torq
term, we have reconverted the experimental results bac
groove angles using Eq. 3. The results in Fig. 6~b! show that
there is a good match between the shapes of the experim
and calculated curves, with a series of cusps in the ener
that correspond to those boundaries that have previo
been simulated. One particularly deep cusp at 70.53° is
to the (111) boundary which, as Duffy and Tasker8 pointed
out, is a coherent twin. However, there is a significant d

FIG. 5. Structure of grain boundaries from high to low t
angles (331)~top!, (661) ~middle!, (18181) ~bottom!.
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TABLE II. ParametersE0 (J/m2) andA for the Read@Eq. ~1!# and Wolf @Eq. ~2!# expressions for low
angle boundaries in MgO and NiO. The directions@~110! and ~100!# gives the major pole with respect t
which they are low-angle boundaries.

MgO ~110! MgO ~100! NiO ~110! NiO ~100!
E0 A E0 A E0 A E0 A

Read 9.41 20.24 6.08 0.25 6.31 0.56 5.96 0.36
Wolf 9.41 20.23 6.13 0.25 6.31 0.58 6.00 0.36
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crepancy between the experimental and calculated angle
the region 120°,u,140°. It is true that one of the exper
mental points has a very large error bar, but even so, th
not enough to resolve the problem.

One possibility is that the torsional terms that we ha
neglected are important. These are given in the full exp
sion for the equilibrium of three boundaries at a point19,20

(
i 51

3

g i t i1S ]g i

]c i
Dni50. ~7!

FIG. 6. Calculation of the groove angle ignoring the torq
terms for MgO~a! and NiO~b!. Experiments for NiO from Refs. 6
and 7.
in

is

e
s-

g i is the energy of a boundary defined by a vectort i in the
plane of that boundary and normal to the line of intersect
of the three boundaries.l is a unit vector along that intersec
tion line andni5 l3t i . c i is the angle between boundaryi
and the next boundary clockwise around the intersection l
In the case of a twin boundary perpendicular to the surfa
matters are considerably simplified. We can ignore the
sional effect of the grain boundary~provided that the bound
ary is close to perpendicular to the surface!. This gives as our
force balance equation

gg52gs cos~C/2!22S ]gs

]a D sin~C/2!, ~8!

where we can identify the anglea as the misorientation o
the plane of the groove with respect to the overall surfa
plane ~see Ref. 21!. We, therefore, obtain the surface to
sional term from the plot of the surface energy as a funct
of groove angle using the relationC5p22a ~the angles are
as in Fig. 1!. Our revised expression for the groove angle

gb52gs~C!cos~C/2!14S ]gs~C!

]C D sin~C/2!. ~9!

The second term can be calculated provided that we ass
that our approximation of the angle dependence of the
face energy by a polynomial is reasonable. The results
shown in Fig. 7. From this it is clear that the torque te
does have a large effect, but that it worsens rather impro
agreement with experiment. The reason for the large tor
term can be seen from Fig. 2; the surface energy va
strongly with angle for the angles in the region of the calc
lated ~and experimental! groove angles. This is quite differ
ent from the behavior observed for metals by Hodgson
Mykura,21 where the surface energy varied strongly w
angle only in the region of the poles.

One interesting feature of the calculation is the variat
of the surface energy as a function of the boundary tw
angle. This is shown in Fig. 8. In all cases~except for low-
angle boundaries! the spread of values of the surface ener
is low ~about60.1 J/m2 at most.! As far as the first term is
concerned, the surface energy could be approximated b
constant and the shape of the groove angle curve would
flect the shape of the grain boundary energy since the tor
term would be zero. This illustrates a critical assumption t
we have made; that we can identify the surface at a gi
groove angle with the perfect surface appropriate to t
angle. There are two reasons why that might not be so. F
there is the possibility of faceting. As an extreme examp
there is a peak in the surface energy for the (554) surf
@Fig. 2~a!#. This is also revealed in the plot of the bindin
energy of the boundaries~the stability of the boundary with
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PRB 60 2745COMPUTER SIMULATION OF GENERAL GRAIN . . .
respect to forming two free surfaces! as shown in Fig. 4~a!.
The energy is very high relative to the other energies of
neighboring surfaces and may be a result of using the s
dard method of restructuring to quench the dipole associ
with this surface. Work by de Leeuwet al.22 has shown that
faceting is a favorable process on some surfaces. For
ample, faceting of the (110) surface of MgO lowered t
surface energy from 3.02 to 1.87 Jm22. Faceting of the
(554) surface resulted in a lower energy of 3.26 Jm22, simi-
lar to that calculated for the unfaceted (111) surface. Ho
ever, this cannot remove our problem; the surface ene
curve for angles close to the groove angle decreases m
tonically and there is no obvious way that faceting can a
this. Indeed, it is likely that by fitting the surface energy to
smooth function we are~in effect! assuming some degree o
faceting. This is clear from Fig. 2~a! where the requiremen
to fit to a reasonably simple function has, in effect, discard
the (554) surface from consideration. The second possib
is a change in the effective surface energy due to the for
tion of surface defects. This is possible in nickel oxide.

FIG. 7. Calculation of the groove angle including the torq
terms for MgO~a! and NiO~b!. Experiments for NiO from Refs. 6
and 7.
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readily oxidizes, particularly at high temperature. The e
perimental procedure is not discussed in sufficient detai
determine how likely this is. Calculations by Oliver23 show
strong variation of the surface energy as a function of oxi
tion. The effect is different for different boundaries; the su
face energy of the~100! and~110! boundaries rises, wherea
the energy of the~111! boundary falls. It is likely that the
effects of oxidation would smooth out the variation of su
face energy with angle. A quite different possibility is th
the assumption that the grain boundary is perpendicula
the surface is incorrect. If the boundary was more than ab
5° degrees away from perpendicular, the grain bound
torque term would begin to become significant. There is
indication from the experiments that this is so.

IV. CONCLUSIONS

We have used atomistic simulation to calculate the gr
boundary energy and structure for oxides of the rock s
structure. The energies and structures of the low-an

FIG. 8. Calculated surface energies appropriate to the groo
for various boundary twin angles: MgO~a! and NiO ~b!.
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boundaries are what we would expect from a simple dis
cation model. We have attempted to compare the calc
tions of the energies with the thermal grooving experime
of Dhalenne and co-workers.6 Here, there are a number o
problems. First, if we interpret the experiment in the obvio
manner, with the grain boundary perpendicular to the ove
surface and the groove boundaries being the relevant
surfaces, then agreement between the calculations and
periment is poor. Furthermore, if this analysis of the expe
mental situation is correct, the assumption made in the
perimental analysis, that the torque terms can be igno
must be incorrect. Although it is usually the case that
torque terms are negligible in metals, the calculations sh
that this is a very dangerous assumption to make in ceram
The only way that the experiments and calculations can
~at least partially! reconciled is to assume that the surfaces
the grooves are not the pure surfaces corresponding to
angle of the groove, but can be described by an aver
ux

m
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surface energy of about 3.4 J/m2. If true, this suggests that, in
this case at least, the groove angle directly monitors the g
boundary energy. It is unfortunate that almost no informat
on thermal grooving is available on any system other th
nickel oxide. This is particularly the case since such exp
ments are almost the only way of obtaining information
boundary energies rather than boundary structures. More
perimental information on other systems is highly desira
to investigate the issues discussed here.
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