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We apply theexact surface scattering operatéo solve the problem of scaldelectron or soundwave
propagation through a strip with absolutely soft randomly rough boundaries. This appreexipeturbative
in either roughness heights or slopes. We analyzed the roughness-induced dephasing and attenuation of waves
both asymptotically and numerically. The analysis proves that the sigealvasy/sscattered most effectively
into the “resonant” waveguide modes, whose transverse wavelength is comparable to the rms roughness
height { and whose total number is proportional £6. According to thisintegral resonance rulethe
dephasing dominates over the attenuation and shavemanalytic(square-rogtdependence on the dispersion
£? when (k¢)?<1 (k is the wave numbegr In the case K)?>1, the dephasing and attenuation may well
compete. We predict another two surprising effetgntrant transparencgndincreaseof the phase velocity
of the wave[S0163-18209)01525-9

I. INTRODUCTION reflections over the attenuation length . The inequality
|8k,|A,<1 together with the obvious relationshig,A,
An electron wave, which travels through a directed nan=1 imply smallness o®k, in comparison with the unper-
odevice(thin film, junction, quantum wire, lead, elcexpe- turbed wave numbek, .
riences inevitable distortion due to scattering by imperfect For surface-corrugated systems, it is usually more plau-
lateral walls. If the guiding system is long enough, then eversible to calculate a wave field averaged over some statistical
atomic-scale boundary perturbations can cause qualitati@semble of reflecting boundaries than the exeatdomly
modification of the electron spectrum, which makes underdis_tribt_;ted field itself. If the re_lief of lateral walls in a wave-
standing of this phenomenon very important. Clearly, thisguide is assumed to bergodic then an average over the
effect is analogous to dephasing and attenuation of e|ectrda_nsemble of all realizations of th_e random §urface is equiva-
magnetic and/or acoustic waves that propagate througlr?m (ina sense of convergence in prpbab)llty an average
rough-bounded waveguide lin&4. Therefore in what fol- over the cpordmate_s of a given reallz_au(;see, 9., R_efs.
lows we will not make any distinction between systems that1_3)' The idea behind t_hlts_statement_ IS that an ergodic ran-
. dom surface hasgby definition the minimal fragmenire-
carry electron or any other type of waves, but we will con-

sider them from a generalized standpoint of their wave uid-gior!) W-hiCh Is statistipa_lly equivalept to one of t_he surface
9 P U8 ealizations. The statistical properties of a function, defined

'ng eff_lc!ency. : L within that region, are asymptotically independent of the re-
In finite systems a waveguide propagation is caused byion area. Apparently, the linear dimension of a surface re-
multiple rereflections of a wave from opposite lateral U alization is of the order of the longitudinal variation scRe

faces. Obwogsly, in rough-bounded chamjels each reﬂectlogf the surface scattering potential. Therefore, a statistical av-
is accompanied by a noncoherent scattering of the wave. Ag

. . . raging applies only if the spectrum deviatiék,, causes
a result of the multiple successive scattering events, the un- tg g kpp | i] h'ftp th lizati " lefiuth
perturbed longitudinal wavenumblef of annth propagating Justweak complex phase shift over the realization leriyt

normal mode is modified by a complex amousk,=v, |9Kn|Re<1. _ N _
+i(2L,)" Y, i.e. ko—k,+ 6k,. The real party, is respon- Thus, we are in a position to write down the necessary

sible for the roughness-induced correction to the phase veédnd sufficient conditions for atatistical approach to the
locity, while L, is the attenuation lengtrof the given mode. Problem of awaveguidepropagation in a channel with ran-
To preserve the waveguiding properties of the roughdomly rough walls:

bounded system, the complex phase shift associateddkijth

must remain small over theycle lengthA,,, i.e., over the - B <

distance passed by theth mode between two successive |Skal An<1, [ Skn[Re<1, .3
reflections from the rough surfacpsk,|A,<1. This crite-

rion assures a large numbér,/A,>1 of the wave re- 8Kn=yat+i(2L,) "L 1.2
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As far as we know, the problem formulated above wasin Sec. Il we apply the elegant technidfé’to average the
first solved in Refs. 4—@see also the book in Ref).1IThe equation over the Gaussian ensemble of realizations of the
author$“* calculated the average scalar field induced by aandom boundary. The averaged equation turns out to be
point source of radiation within a planar waveguide with solvable analyticallywithin the assumptiong1.1) due to
statistically rough lateral walls. In Ref. 6, quantum electrontheir being equivalent to the general criteriaveéakwave-
states in a thin metal film with rough surfaces were analyzedboundary scattering. Consequently, the self-energy can be
and the roughness-induced residual resistivity was foundsought in the first nonvanishir(guadrati¢ approximation in
The results*~®were based on theerturbationtheory in the the exact scattering potential (i.e., in the Bourret
squared rms heighit of the boundary irregularities and were approximatior®). Based on the results of Sec. Ill, we derive
claimed to be valid within the so-calldgiorn approximation in Sec. IV explicit expressions for the real spectrum gltfife
which required smallness of the three parameters, viz. thdephasing vy, and the attenuation length, of annth propa-
Rayleigh k,{)?, the Fresnelk{?/R, parameters, and the gating mode.

squared slopef(R.)? of the surface defects, In Sec. V we present the analysis of the expressions ob-
tained, which clearly demonstrates the advantages oéxur
(k,0)2<1, (LR)?<1, k2R <1. (1.3 act scattering operator approaciThe most impressive one

is that our method leads to new physical results even in the

Herek, is the modulus of the normédransversecomponent ~ region of extremely small roughness height&¢)¢<1,
of the wave vectok andR, is the mean length of the surface Where the waveguide propagation has been believed to be
defects. Since the appearance of the papérsboth well studied. In particular, we found asurprlsmgnanalytl_c
classical-**and quanturtt-2spectral and transport theories (Sauare-root dependencesk,o J¢> of the spectrum devia-
for systems with multiple electron-surface scattering havdion on the dispersiori? of the roughness height, which
been mainly built within the Born approximatidf.3). contrasts the conventional linear faf*>2%~%5k o £. This

In a series of work&2-32the expansion of the scattering Nonanalyticitycannotbe in principle derived perturbatively,
amplitude in powers of the mild roughness slopes rather thaRecause we prove thak, is mainly formed by scattering of
in the small heights was applied. This made it possible tdhe primary wave into the “resonant” evanescent modes
extend the theory of wave-surface scattering to arbitrary valWith normal wavelength #/q, being comparable to the
ues of the Rayleigh parametek,£)2. However, the other height{, (d,{)?~1. Atthe same time, it is usually believed
two inequalities of the seftl.3) were still necessary, which that the condition kK{)?<1 is sufficient to infer that any
put back the analysis of, e.g., steep roughness slopeslipping” normal mode with k,£)*<1 is mainly scattered
[(¢/R.)?=1] and/or the shadowing efféct (k(?/R,=1). into the slipping modes as well, for whichm2q,>{, or
The author¥35 applied the resul® to derive a boundary (d,£)?<1. This assumption alone allows to replace the exact
condition for an electron distribution function at a random Dirichlet boundary condition imposed on the randomly
metal surface with mild roughness slopes. In Ref. 36, théough surface by an approximate impedance one formulated
diffusion classical and quantum transport in films with on the averageddeterministi¢ boundary. The abovemen-
mildly sloping surface defects was analyzed basing on théoned domination of the resonant modes witlp, )%~ 1
boundary conditiof*3° proves groundlessness of such a replacement. Thus, a prob-

We emphasize that the abovementioned approximation€m of wave (electror) propagation through a waveguide
are based on perturbative expansions in seilicitparam-  (quantum stripwith absolutely soft random boundariean-
eters of the roughnegdeights or slopesand are therefore not be reduced to a simpler problem with the smooth
much more restrictive than the generic conditi¢hsl). random-impedance boundary even for arbitrarily weak per-

In this paper we put forward the approach whicman-  turbations. We note that the spectrum deviatin o /72 is
perturbativein the roughness heights or slopes as well as imearly real, i.e.dk,=7y,, Yo>>(2L,) 1. This leads to a non-
any other explicit parameter. It is based instead on the extivial new result that a signal, which propagates through a
ploitation of theexactboundary scattering operator. Due to nearly smooth waveguide, is dephagelaotized much ear-
this fact, we managed to construct the theory of waveguiddier (over much shorter distangethan its initial amplitude is
propagation whose domain of applicability is as wide as thatlecayed. Moreover, if the boundary inhomogeneities are
defined by the condition§l.1). Note that these conditions both low and very sharpkR.<k¢{<1), then the real spec-
are eguations themselves with respect to the explicit externatum modificationy, appears to baegative which means
parameters, {2, R., andn. that the surface roughness may not only decrease but also

We calculate the average Green's functiphe average increase the phase velocity of a propagating wave.
field of a point sourckin a planar strip with absolutely soft The other important subject of Sec. V is a practically
lateral boundaries, one of which is smooth and the other ignteresting case of high boundary inhomogeneities, when
randomly rough. Such system is physically equivalent to gk)?>1. This case is much more diverse and complicated
waveguide with both boundaries being rough, statisticallythan that with k¢)?<1. For a large part it is analyzable only
identical, and not intercorrelated. numerically. We reveal that, in contrast to the low-

In Sec. Il we derive a Dyson-type integral equation for theperturbation limit, the imaginary part afk, may compete
exact(not averagedGreen’s function. The effect of the ran- with the real part. Moreover, the situation witdk,
dom inhomogeneities is completely incorporated in the inte=i(2L,) ! is rather typical. As before, the real spectrum
gral kernel of the equation, which allows to consider it as themodification y,, may reverse sign. This happens k&
exact effective scattering potential. This potential is defi- reaches some threshold valké~1.5-2.5 that is almost in-
nitely nonperturbativen either roughness heights or slopes. dependent of the other parameters. Another noteworthy re-
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sult is the prediction ofeentrant transparencyThis effect first integrand on the RHS of E@2.5) also vanishes due to
can be observed when the paraméigis fixed at a value of the boundary conditiori2.3). Thus, the RHS of Eq(2.5
=2, while kR; is being increased. Then the weak-scatteringtransforms into
regime(1.1) collapses at some value bR, and then restores
again at a larger value &R, .
Section VI concludes our contribution. The short report ~
preceding this comprehensive paper has been published iLdS(ngO_gOVg)
Optics Letters®

:_J . )d§g0(|x—xs|;z,zS)ng(xs,x’;zS,z’).
Z= &E(X
Il. PROBLEM FORMULATION. THE DYSON EQUATION ° °

(2.7)
We consider a 2D strip confined to a region of the
plane defined by(x) <z=<d, where§(x) is a Gaussian ran- | ot ;s write down the scalar produdéVS explicitly,
dom function of the longitudinal coordinatesuch that
x))=0, X)EX' N =W(x=x']). (2.1 . d  dé(xg) 9
(£00)=0, (EO0EXN=Mx=X]). (2.0 0&v.— —ax] 2 _ i( ) 9 s
The angular brackets denote an average over the ensemble of 9z Xs OXs

z5=&(xg)
realizations of the profile functiog(x). The binary coeffi-
cient of correlationV(|x|) is characterized by the unit am- 514 substitute it into Eq2.7). From Egs.(2.5—(2.7) we

plitude [)V(0)=1] and by the scal&. of monotonous de- jnmediately obtain the required Dyson-type equation:
creasgcorrelation radiuswhich is of the order of the mean

length of the boundary irregularities.

The retarded Green’s functiof(x,x’;z,z") satisfies the G(x,x":2,2")=Gyo(|x—x'|:2,2")
equation o T
+ dxdzGo(|X—Xg|; 2,2
(A+KD)G(xX';2.2)=8(x—x")8(z—2') (2.2 f_x <H2sol[x=xd:2.2,)

(k is the wave numberand the boundary conditions which,
in the case of absolutely soft walls, have the Dirichlet form -
X E(Xg,25)G(Xg,X";25,2").

Gixx' 2= £(x),2) =0, 23 29
Here 2 (xs,z,) is theexact effective scattering operafor
g(x,x";z=d,z’")=0. (2.9
Now we employ Green’s theorem to find out the relation g dé(xg) 4
betweeng and the Green's functiog, of the ideally flat é(xs,zs):(s[zs_g(xs)] —_ S| (2.10
strip: dzg  dXg X

Note that for the convenience of subsequent averaging we
f dV(GAGo—GoAG) = f dS(GVG,—GoVG). (2.5  have introduced the additional integration over the transverse
v S coordinatez, in Eq. (2.9 which is compensated by the delta
function in Eq.(2.10.
In an ideal waveguideg(x)=0) the expressiof2.9) re-
duces toG= G, due to vanishing of the unperturbed Green’s
function G, in the integrand of the RHS.

Integration on the left-hand sideéHS) of Eq. (2.5) is taken
over the 2D volumeV of the strip and on the RHS over the
1D surface(contouy S. Equation(2.2), which governs both
functionsG and G,, allows to reduce the volume integral to
the difference

Ill. AVERAGING AND SOLUTION
OF THE DYSON EQUATION

fdV(QAQo—QoAQ)=G(x,X’;z,Z’)—Qo(IX—X’I;z,Z’)-
v As a consequence of the propert®.1), the averaged
(2.6)  Green’s function G(x,x’;z,z')) turns out to be uniform and

The bounding contous consists of the upper straight line ISOLrOPIC in the coordinate:

z=d, the lower nonuniform boundaz= £(x), and the infi-

nitely far (]x|—<°) contours that connect the opposite strip —

edges. The integral along the lize=d vanishes due to the (G(x,x";2,2'))=G(|x—x'[;2,2"). (3.9)
boundary conditiori2.4). The integrals over the infinitely far

contours are suppressed by the rapid oscillationgafidG,.  To derive the equation fofG(x,x’;z,z")) we apply the av-
Besides, the integral over the lower boundasry&(x) of the  eraging techniqu&®"to Eq.(2.9), which yields



PRB 60 SPECTRAL THEORY OF A SURFACE-CORRUGATE. .. 261
§(|X—X’|;Z,Z’)=g0(|X—X'|;Z,Z’)+j_ dxsf_ dzsgo(lx—xs|;z,zs)<é(x5,zs)>§(|xs—x’|;zs,z’)
— | x| dzdzdotixondiz 2 (B0 20Xl 2 2N 20X 124 2

+ [ axax | dzdzoxoxdiz 2 (B0 26X xili2s 202X 24,7,

(3.2

Note that the average of the scattering poterﬁiéks,zs) ,
(2.10 is given by Gol|x—x

»odke
;2,2’)=f_w 5 SXHikx(x=x")Go(ky;2,2"),
) P (3.6
(E(x,29)= P(Zs),g_zs' P(z9) = (Li\2m)expl — 221207 wherek, is the longitudinal component of the wave vedtor
(3.3 According to Eq.(3.4), the Fourier transfornG(k, ;z,z’)

HereP(z,) is the Gaussian probability density of distribution safisfies the equation

of the coordinatez;. Since (2(xs,2s)), Go(|X—X4;2,25), _ % ,

and G(|x—x4|;z,z5) are odd functions ot [see Eqs(3.3), G(ky;2,2")=Go(ke;2,2') + f_wd%d%eo(kx;z'zs)

(4.1), and(3.13 respectively, then the secondinear in E) A .

term on the RHS of Eq(3.2) vanishes. Similarly, the third X Q(Ky;2s,22)G(ky ;25 ,2"). 3.7

term can be also shown to vanish. So, we come to the fol- .

lowing equation for the average Green’s function: The etf)fective average scattering opera@(k,;zs,zg) is
given by

G(Ix—x'];2,2')=Go(|x—x'];2,2")

o * Q(kx;zsvzé):f dXseXF(—ikXXs)<é(XS,ZS)
+f, dedngl dzdZ Go(|x—X|;2,25) -

X GolIxs—x¢l125,2) B (%¢ ,24)) XPliK,Xg) .
3.9

« é(xg ,z;))§(|x;—x’|;zg 7). The intggral OVeKs in _Eq. (3.8 is independent ok; due to
(3.4) the stafustlcal uniformity(2.2). - ' '
Obviously, Eq.(3.7) could be solved trivially if the inte-
As a matter of fact, E(3.4) is not exact, since it includes gral kernel were degenerate, i.e., more specifically, if the

only quadratic ir term, while the rest of the terms has beenc0mponentGo(k,;2,z) of the kernel were factorable in
cut off. To find out the necessary and sufficient conditions2nd Zs. To analyze a possibility of such factorization, we
for this truncation we used the ideas proposed in the BookWrite down an explicit representation f@o(ky;z,zs):

More specifically, we first solved E@3.4) itself (see belowy,

X (B (Xs,25) Go(|Xs—X4];25,20)

. _ 72 . .
then we substituted the solution back into E814) in place Go(kx:2,29) =k, “go(ky)sin(k,z)sin(k,zs)
of the fqnctiong0(|xs—xg| 1Z¢,24) and solved the nemodi- —k; L cog k,2)sin(k,ze) 8(z— zo)
fied variant of Eq.(3.4). Clearly, the modified equation is
more general than the original E@.4), so that the compari- - k;l sin(k,z)cogk,zs) 8(zs—2). (3.9

son of their solutions is expected to give the required c:ondi-|_| K is th dul £ th f1h
tions of applicability of the “quadratic” approximation €€k IS the modulus of the transverse component of the

(3.4). The analysis shows that these conditions ki, wave vectork,

<k, and| 8k,|R.<1. The latter coincides with the second of _ k2 12\

the weak-scattering conditiond.1), while the former fol- k= Kz (ky) = (k"= k)™ (3.10
lows from the first of Eqs(1.1) and from the obvious in- The first term in Eq.(3.9) is known as thepole term It

equalityk,A,=1. contains thepole factor g(k,),
The statistical uniformity(2.1) makes it effective to apply

a longitudinal Fourier transformation to solve Eg.4): Jo(ky) =k, cot(k,d). (3.1
_ = dk, . Simple pqles ofgo(ky) form the complete set of eigenwave
g(|x—x’|;z,z’)=f Eexp[ikx(x—x’)]G(kx;z,z’), numbers in a flat waveguide:

(3.5 k,=mn/d, n=123.... (3.12
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We point out thaGy(ky ;z,z5) has no singularities other than
those defined by Eq3.12.
As far as the weak-scattering reginiel) is concerned,

the spectral poles o6(ky;z,z") should lie comparatively
close to those o6 (ky ;2,z5). At the same time, the poles of
G(ky;z,z") completelyform the integral(3.5. Hence it is
sufficient to solve Eq(3.7) only for those values ok, that
correspond to relatively weak deviation kf from the un-
perturbed spectrunB.12. Following this conclusion, we re-
place Gy(ky;z,zs) in the integrand of Eq(3.7) by the first
(pole) term of the representatiai3.9) which dominates over
the rest of the terms if the spectrum is nearly ideal. After this
replacement the integral kernel in E®.7) becomes degen-
erate and we easily get the solution:

Go(ky;2,2")
1—-go(k)M(ky)’

where we have retained only the zeroth order ternQiin
the numerator. The functioM (k,) enters Eq(3.13 as the

self-energy and is related @ by

G(ky;2,2')= (3.13

M(k,) j dzdZ. n(ZS)Q(kx,s, S)Sn(zZ)

(3.19

To calculate the correctiodk,, to the unperturbed longi-
tudinal wave numbek, ,

VkZ—(an/d)?, (3.15

we need to determine the poIes@(kx ;2,2') (3.13,i.e.,t0
solve the dispersion equation

9o (k) — M (k) =0. (3.16

The solution of this equation in the firfiinearn approxima-
tion in M(k,) has the form

k,=

(7n/d)?
knd

Sk,=— M (k). (3.1
In fact, the form(3.17) of a relation betweersk,, and
M (k,,) is common and well knowh® Our improvement lies
in the self-energ\M (k,) itself. Indeed, our resul3.14) and
(3.8) for M(k,) is nothing else but a first nonvanishifmua-

dratic term in an expansion d¥l (k,) in powers of theexact

scattering operatd2.10. We stress that such an approxima-
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tion is essentially different from and is much more general
than an extensively exploited first term in an expansion of
M (k,) in powers of the dispersioff.

Concluding this section, we summarize the region of va-
lidity for our results. For this purpose we list all the simpli-
fications that were used in deriving E@8.17) and(3.14). (i)
The approximate averaged equati@h4) is applicable if
| 8k |Re<1 and|dk,|<k,. (i) The first(pole) term in the
representatiori3.9) dominates over the rest two terms if the
inequality | k,|A,<1 holds.(iii) The perturbative solution
(3.17 of the dispersion equatiof8.16 was obtained within
the limit | k,|R.<1, | 5ky|A,<1. Thus, we end up with the
Sthree inequalitiest ok,|R.<1, | 5k,|A,<1, and|dk,|<k,.
Since the last one is the direct consequence of the conditions
|okn|Ay<1 andk,A,=1, we conclude that the range of
validity of our results is confined by the two independent
criteria only, viz. by the weak-scattering conditiofisl).

IV. COMPLEX SPECTRUM SHIFT

To derive an explicit dependence of the complex spec-
trum deviationsk,, (3.17) on the characteristics of an irregu-
lar waveguide(such ask, d, ¢, R;), we (i) substitute Eq.
(3.9 into Eq.(3.14; (i) replace the operatofs (xs,zs) and
E(x.,z.) by their explicit definition(2.10); (iii) apply the
canonical representation for the Green's functiGg(|xs
—Xg|125,29):

Qo(IXs—Xé|:Zs,Zé)——

E sm( il ZS)

n—l

X sin

Z) ) (x5 x.)).

(4.1)

Here g(o)(|xs—x |) is the subchannefor mode Green's
function defined by

(0)(|X|)_f°° dg, exp(igyx) :exp(ikn,|x|)_
—= 27 (Ky+i0)2—q2 2k,
(4.2

(iv) differentiate with respect tas and z, according to Eqg.

(2.10; (v) take integrals overg andz, with the help of the

é functions (2.10); (vi) perform straightforward averaging
over the Gaussian ensemliz1) of realizations of the ran-
dom field ¢(x). These six steps yield

M(ky) = 2k.d n%l (%) fwxdxexp(—ikxx){Fl(kz, x| g(o)(|x|) ( )‘1 d Fz( |x|)_g(0)(|x|)
(0)(|X|)—F2 T kil | +il - )_lt—zj—:za( kz.%;lxl)aX ‘O’(IXI)] 4.3
Here the symbol§&,, F,, F3 stand for
F1(kz 023X = (k+0,)*S(k,+ 0z K.+ Az 5[ x]) = (K.~ 0,)*S(k,— Az k,— A5 X]), (4.4
Fa(k;,02:[X]) = 2K,S(k, +0; .k, =03 [X]) = (K, +0,) S(k,+ 0z K, + 03[ x]) = (k, = 0) S(k,— 4z, K, = Az [x]), (4.5
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FS(kaQZ;|X|):ZS(kz+ QZ rkz_ QZ ; |X|)_S(kz+q21kz+qz;|xl) - S(kz_ QZ!kZ_ QZ;|X|); (4-6)
S(ty, ta; X —=X"|) = (tst) “H(sinty €(x) ISIMtE(X") 1) = (tato) ~IsinH tyt,2W(x—x'|) Jexd — (5 +t5)¢%2].  (4.7)

Now we break up the integral overin Eq. (4.3) into two parts: from—cc to 0 and from 0 toe. In the former we reverse
the sign of the integration variable:— — x. We next substitute the explicit Green’s functi@ﬁf)(|x|) (4.2) into the expression
obtained and integrate by parts once the second and third terms dfiBgand twice the fourth term to get rid of the
derivatives acting on the functiois, andF 3. This procedure gives us the most convenient for analysis representation for the
self-energyM (k,),

M(kx):Ml(kx)+M2(kx)- (48)
Here the first term is given by

o (A2 [ . . . .
Ml(kx):_lg 2 ﬁ fo dXGXF{—I(kX—kn/)X]W(kX,knr ;|X|)+f0 dxequ(kx_"kn’)X]W(an_kn’ ;|X|) :
n=1 '
" 4.9
The second term arises from the integration by parts. It is nothing else but the term outside the integral,
G-
Ma(k) === > [A(k,,m7n'/d)+B(k,,7n'/d)]; (4.10
2kzd n'=1
A(kaqz):zs(kz+qz1kz_QZ;O)_S(kz+qz1kz+QZ;O)_S(kz_qukz_QZ;o)a (4-11)
_ ka, _ _
B(kzqu)__ k2 [S(kz+qzvkz+qzvo)_s(kz_qzvkz_qzvo)]- (4-12)
The functionV(k, ,q,;X) is the generalized coefficient of correlation,
vt . _ 2\ —1 2 kX qX 2quX .
W(kX1qX1X)_(4quZ§) (kz+qz) +(kz+qz)(kx_qx) v AN _(kx_qx) S(kz+QZ1kz+anX)
k, q, k.0,
2 I(X qX 2quX .
- (kz_qz) +(kz_qz)(kx_qx) k_+_ +(kx_qx) k_ S(kz_ankz_qZuX)‘l'z(kx_qx)
Z qZ ZqZ
k q Kyl
X[ G ke + (K Gy *}S<kz+qz,kz—qz;x>}, (4.13
qZ z ZqZ
|
where q,=k,(q,). As {2—0, this function reduces to the mld S (an’/d)2 (=
coefficient of correlationV(|x|) (2.1) of the underlying ran- 75,3)=4 ZA_ Z —f
dom field £(x), non'Zngr [Kndd Jo
- x exp(— [kn/|X)R —ikpX) WK i [Kn|:%)].
W(anqX;X)2W(|X|) as §2—>0 (414) exq | n |X) q:exli | nX)W( nr|| n |!X)]

(4.18
Now we substitute the self-energ4.8) into Eq. (3.17)
and extract real and imaginary parts &,. The real spec- The expression for the attenuation length* is much sim-
trum shift y,, has a quite complex structure: pler:

TG
Yo=YtV (4.19 L % mn’/d
: An 21 Ay

W md & an'id ~
=282 2 = [Wakn k) = Wk, —kn)]
n

n=1 n’
(4.16

X[We(kn k) +We(kn, —k)].  (4.19

Here integer

anl/d
M (Kn), (4.17)

(2)— _ 2
Ay ng=[kd/ 7] (4.20

Yn
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is the number of the propagating normal modesnducting
electron subchannelsn the smooth strip. The cycle length
A, for annth propagating mode is explicitly given by

(4.21

The functionsVVS(C)(kx,qX) stand for sine and cosine Fou-
rier transforms ofA(k,,qy;X), respectively:

Ap=2K,d/(n/d).

Wy (ks =2 | dxsincosl (k— axI7V(k ).
(4.22
Note that the derivation of Eq$4.15—(4.19 relied on
two properties of the functionA(ky,q,;|x|) (4.13: (i)

W(ky ,0y;|X|) is real for real arguments, andqy (i.e., for
n'=ng); (i) WKy, =Ko [X)=W* (ko ke sIx]) for n’
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subchannel contributions into the suwh3) in a vicinity of
then,th subchannel. The detailed analysis of Egsl7) and
(4.3 reveals the existence of the peak and proves its being
wide (smooth enough. The summands in E¢4.3) decrease
rather slowly(as a power ofi’) towards the both sides of the
resonance peak’ ~n,, which makes the total number of the
contributive (resonant modes large enough, viz~n,.
Therefore the sunid.3) is formed not by few isolated sum-
mands but by a large number of terms with comparable am-
plitudes. We call such a type of resonanceititegral reso-
nant effect

Since ng/n,~k¢{ [see Egs.(4.20 and (5.1)], then, de-
pending on how large ikZ, the “resonance point'n, may
be smaller or larger than the numbey of propagating
modes. If the boundary irregularities are low/}?<1, then
ng<n, i.e., the resonance peak falls into the infinitely wide
domain of evanescent modes, for which>ng. Since the

>ng4. These properties lead to an essential distinction beevanescent modes contribute to thal part y, of 5k, only,

tweeny, (4.19—-(4.18 andL,* (4.19. Specifically,L ' is
formed by scattering of a giventh propagating mode into
propagating waveguide modes witH<ny only, while vy,

then the resonant selection rule allows to conclude that the
spectrum deviatiodk,, is nearly real 5k,= v, . The number
~n, of the summands contributing ték, is much larger

has much more complicated structure due to contributions ahan the total numbemn, of propagating modes.

both propagatingn{’<ng,) and evanescent(>ng) normal
modes.

V. ANALYSIS OF RESULTS

Otherwise, in the case of high boundary inhomogeneities,
(k9)’>1, we haven,<ny. The resonant peak is now lo-
cated among the propagating scattered modes which contrib-
ute to bothy, andL,. Consequently, depending on the ex-
ternal parameters, the real and imaginary partslgf may

Now we are in a position to analyze the complex spectompete. Below we will demonstrate that the competition

trum shift 5k, as a function of the explicit external param-
eters. Since there are as many as four dimensionless para
eters, k¢)?, kR, kd/, andn, the complete analysis seems

basically relies on the parameter. . If the boundary rough-
Mess is small scal&R.<1, then the spectrum deviation is
almost real 5k,,= v,,. However, if the irregularities are large

unnecessarily cumbersome. Therefore we concentrate on alekR.> 1, then the attenuation is much stronger than the

on those features afk,, which have been brought in by the
exact scattering operator method.

Following this idea, we address the expressi¢Bd?),
(4.39). It is seen thabk, is, in general, a result of incoherent
scattering intcall normal modes, both propagating and eva-

dephasing andk,, is nearly imaginarysk,=i(2L,) 1. As
applied to the high boundary defects, the integral resonance
principle says thatk, is formed by a relatively small frac-
tion n,/ng<1 of the propagating scattered modes.

To illustrate the most interesting consequencethefin-

nescent. Depending on values of the external parameters, thtl?gral resonance rulend the exact scattering operator ap-

or that group of the scattered modes may dominate in form

ing &k, . The careful analysis of Eq&3.17), (4.3) shows that

proach altogether, we will analyze briefly the limits of low
and high boundary inhomogenetities.

the dominating group can be singled out in any given case

with the help of theesonant selection rulehich is the most
striking result of our theory. It says that the primary wave is
scattered most intensively into so-callagsonant” modes,
whose normal wavelengths2q, is comparable to the rough-
ness height, i.e., (9,¢)%>~ 1. This rule holds true regardless
of how small is{ or what are the values of the other param-
eters.

The concept of the resonant modes introduces a chara
teristic integem, :

n,=[d/m{]. (5.1

A. Low boundary perturbations

We start with a relatively simple and widely used case of
low boundary perturbations
(k&)%<1. (5.2
§his definition ensures the smallness of the Rayleigh param-
eter for both the primary wavek{/)? and the propagating

scattered modesy(l)?, since k,¢)2<(k¢)?<1 and @,¢)?
=(mn’ {ld)2<(mngld)?=(k{)?<1 for n’<ng. Under

This number separates the regions of small and large valugfe conditions ,¢)?><1 and @,£)?<1, the generalized co-

of the Rayleigh parametem{?)? for the scattered modes.
Indeed, if the numben’ of a given scattered mode obeys
n'<ng, then (ng)2=(wn’/d)zgzz(r.]’/ng)2<1. Other-
wise, if n’>n,, then @,{)>>1. Obviously, the notation
(5.1) is meaningful only ifn/>1.

From the resonant selection rule it follows that the domi-

efficient of correlation/V(k, ,qy;|x|) (4.13 reduces to the
asymptotic (4.14). Accordingly, the functionWg(Ky,qy)
(4.22 can be replaced with the spatial spectringk,) of
surface irregularities, i.e., with the Fourier transform of
W(IX]),

nating scattered modes are always located near the resonance

point n’=n,. In other words, there should be the peak of

WC(kx qu):W(|kX_QX|) as 52_>0,
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W(kx)=2f dx cog kx)W(|x]). (5.3
0

Substituting Eq(5.3) into Eqg. (4.19, we come to the stan-
dard perturbative inf? expressioh*® for the attenuation
lengthL,:

Ng

wn’/d
>

n=1 An’
X [W(|kn_kn’|)+W(|kn+kn’|)]- (5-4)
This formula has been analyzed in Refs. 1, 4, and 5 in detai
Here we just need to emphasize that Exj4) always yields
a linear dependence &f,* on the dispersion?, i.e.,, L,
ocgz_
Within the limit (5.2), the resonance poimt’=n, falls

271'r1/d
Ay

L*l

n

into the interval of evanescent scattered modes, for which

n'>ny. Now we trace how this fact affects the real spec-
trum shifty,, (4.15. The first termygl) (4.16 is very similar

to L;l (4.19 and is also made up by the propagating scat
tered modes only. Therefore, under the assumpa®), we
can apply forWs(k,,q,) an asymptotic similar to Eq5.3)
but with the sine instead of the cosine. As a result, the fo
lowing interpolation formula for/\") can be derived:

(kO)? (kR)? an/d
K 1+(kRy)2 An 7

|v§01~ (5.5
In contrast toy(", the second/{? and thirdy{>) terms of
Eq. (4.15 take account of the infinitely large number of the

evanescent modes. Let us consider the sifh (4.17),

[A( )*B( Tl

We break it up into two parts: the firsy, , consists of the
terms with I=n’=<n,, while the secondy, , is made up by
the rest of terms witm’=n,.

The inequalities(5.2) andn’<n, allow to use a small-
argument asymptotic forS(t,,t,;0) in Eq. (4.11) for
A(mn/d,7n'/d) and in Eq.(4.12 for B(wn/d,wn’/d). As
the consequence A~ —(mn/d)2(an’/d)?%, while B
~ (mn/d)?(mn’1d)?¢*k 2. Thus, |A/B|~(k{)?<1, so that
the terms withA(mn/d,7n’/d) in y5; can be neglected in
comparison with those containirg(wn/d,z7n’/d). So, we

have
o 55
4 (mnld)? K [an’

2

~ \d

2 o0
NON. K
n n

1
Aq

nn'=1

an mn’ mn wn’

d’d

K2 1 X

i 3

mn nn'=1

mn wn’
d'd
n/

d
T ¢ (5.7

mn

For the other subsurny, , the conditions(5.2) and n’
=n, yield (k,{)?<1=<(wn'/d)?{?*=(q,{)?. This fact al-
lows to substitute a
S(ty,t,;0) in Egs.(4.11) and(4.12. After expandingA and
B in a small parameter k{/q,)> we obtain A~
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—(mid) X’ Id) 4, B~ (mn/d)2(mn’/d) 2k 2. So, |A/B|
~(ng/n")2<(ng/n;)?~(k{)?><1. Thus, we can omit
A(mn/d,7n’/d) again:

K21 & mn an’
>~___ -
& wnAnnaB( i
4
1 (wn/d)? i (ﬂ-n’ 2 an/d
T e A i A WS

n :ng
(5.9

ICombining the asymptotic®.7) and(5.8), we finally arrive
at the result

7n/d
An

yP=vy5

L. (5.9

>
Ty~

We see thaty(?) exhibits alinear dependencen the
roughness height. This surprising fact can be easily ex-

plained and understood. Actually, from E®.7) it follows

that the subchannel contributioyﬁ), of ann’th waveguide
mode intoy{?) increases as’'? for n’<n,. This increase

|_terminates an’~n, and is displaced by a power decrease

n’~2 in accordance with Eq5.8). Consequently, there ex-

ists the maximum of the subchannel summands in the sum
(5.6) that is located around’~n,. This is exactly the re-
gion that is referred to by theesonant selection rulas the
most effective for scattering. The subchannel contributions
decrease rather slowly towards the both sides of the maxi-
mum. Therefore the number of the resonant modes is quite
large, viz. of the order ofi,>ny=1, which gives rise to the
integral natureof the resonance. Although the probability of
scattering into each of the resonant modes is proportional to
2 for n’~n,, their total numben,~d/{ makes their total
contribution linear inZ, i.e., nonanalyti¢square-rogtin the
dispersionz2.

In a similar, but more cumbersome technically, manner it
can be shown that the third terp>) (4.18 of Eq. (4.15 is
also mainly formed by a vicinity of the resonance pairit
=n,. This term is well described by the simple interpolation
formula

wn/d (R,
A, H+RS

From Eqgs(5.10 and(5.9) it follows that y* is negligible in
comparison with yff) if the surface roughness is sharp
enough,{/R:>1. On the other hand, for mildly sloping ir-
regularities, //R.<1, the contributionsy(® and y? are
comparable. So, if we want to deal with arbitrary values of
the slope, we should keep the both terms in the syﬁfﬁ
+9 At the same time, it is easy to see that under the
assumption(5.2) the termy{! is always much less thayf® .
Thus, the expressiof4.15 for vy, reduces to the following
asymptotic:

7nl/d R.

A, (1 1.7§ TR

Certainly, the numerical factor 1.7 in E¢.11) cannot be
obtained by simple adding up Eg&.9 and (5.10. This

O~

(5.10

(3~ _
n

o=y +y {0 (511
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factor results from the comparison of E(.11) with the  conditions kR,<1<(k{)? define, beyond any doubt, the
numerical calculations based on the general formidakh—  most interesting and unexplored physical situation.
(4.18. The presence of that factor is very important, because Let us subdivide the analysis of E@.19 into cases of
it is responsible for the possibility foy, to change the sign. “slipping,” ( k,¢)?<1, and steeply falling, K,)>>1,
Obviously, a leading term of E@5.11) is always linear in  modes. For the former case one can derive the asymptotic for
{ regardless of the ratig/R., i.e., y,>{. At the same time, L, in a similar manner as it was done above, i.e., by breaking
the inverse attenuation Iengtlr}:l (4.19 is proportional to  up the sum(4.19 into the subsums witm’=<n, and n’
£? under the conditior5.2), L;locgz. These two facts imply =n,. The subchannel contributiong;nl, can be shown to
that|y,|>(2L,) " and therefore the complex spectrum shift increase as’? for n’<=n, and decrease approximately as
5k, is nearly real,ok,=1v, , for low boundary perturbations n’~? for n;sn’s<ny. So, we have again the resonance peak
(5.2. This means that the low surface irregularities causeatn’~n,, and the total number of the contributive modes to
much more intensive dephasifchaotization of the primary  be ~n,. Within the resonance domain ~n, the subchan-
wave than damping of its amplitude. N nel contributionsL % are almost independent ¢f As the
For rather smooth boundary inhomogeneitiésR:) the  reqyt, the asymptotic fot; ! exhibits an unconventional
both terms n Eq.(5.1]).altre equally S'gf"f'ca”t .and _the rgal inversely proportionaldependence on the heiglit Under
spectrum shifty, is positive. However, in the situation with condition(5.13, the inequality k,£)2<1 is satisfied for
extremely sharp surface defectsR.<k{<1) the second 5 5nomalously small group of nearly ballistic modes with

term in Eq.(5.11) can be omitted and the quantity, be- /1)2<(kz)=2<1 only. Therefore the domain of realiza-
comesnegative This unusual effect can be interpreted as thetion for the asymptotid_—locg—l is quite narrow. The nu-
n .

increaseof the phase velocity of the primary wave. merical simulations confirm that this asymptotic is hardly

The last step in analyzing the cagg?) is to obtain the ; - “ ) "
explicit form of the weak-scattering conditiof.1). To this gg)s/r?"n?)/f(l)?ilg andis quickly overpowered by the “steep-mode

gnd, we substitute the leading terg‘(ltn/d)/An for |5k“_| The analysis of the steeply falling mode,{)?>1, is

into Egs.(1.1) and apply the asymptotie.:=R. that is valid  pasjcally the same as before: we break up the ufs) into

for (k{)?<1. As the result, Eqg(1.1) can be rewritten as  two subsums and then treat them separately. The subchannel
terms L;nl, show the usual quadratic in’ increase as’

=n,. On reaching the resonance regiofi~n,<ny, the
increase is replaced by a rather slow decrease that cannot be
successive reflections of arth mode from the rough bound- describ_ed b}/ a simple power law. For a simpler treatment of
ary arenot correlateg™*®i.e., if R,.<A,. However, if the the regionn =N, We assume thek,~k. In contrast to the
correlations arestrong (A,<R.), then Eq.(5.12 supple- Previous casel . exhibit a quadratic dependence @n
ments Eq.(5.2) and may even become more restrictive. WeWithin the resonance interval’~n,. Hence, the integral
emphasize here once again that the roughness gltige  resonant effect results in a linear dependenck,gf on ¢,

may far exceed unity within the domain of validit$.2),

(5.12 of our results. L;1~ (kg)jiﬂ for kR.<1<(k,0)?~(kZ)2.

(kz0)?=(n/ny)?<min{1,(A,/R)%}. (5.12

This inequality is automatically satisfied within Ech.2) if

(5.19

This asymptotic is rather typical of the high boundary defects
(5.13 and clearly seen in the numerical calculations.

B. High boundary perturbations
Within a limiting case otigh boundary perturbations

2>

(k&)™>1, (5.13 C. Numerical results
the resonant peak’ ~n, lies among the propagating scat-  We start with the attenuation length, (4.19. Figure 1
tered modes, £n’~n,<ny. Since those modes contribute demonstrates the behavior &f,/2L, as a function ok{ for
to both y, andL,*, it seems probable that the reg| and  several fixed values &R;. The thicker curves represent the
imaginary (2.,) ! parts may be equally important in form- general formula4.19, while the thinner curves correspond
ing 8k,. This conclusion makes it necessary to analyze theo the perturbative resul.4) of the earlier works:*® We
whole set of equation§4.15—(4.19 to understand the be- see that all the thicker curves almost coincide with the cor-
havior of 6k, . In addition to this, the Rayleigh parameter for responding thinner curves f&=<0.2, while for the larger
both falling (k,£)? and propagating scattered,{)? modes values ofk{ the distinctive divergence for all the curves
can be now in an arbitrary proportion to unity. This suggestsappears. Consequently the perturbative expres&aeh ap-
a mostly numerical approach to the ca8el3 that is de- plies as long ak{ is not exceeding the “threshold” value of
scribed in the next subsection. In the rest of this subsectioabout 0.2.
we studyL , in strips withsmall-scaleboundary irregularities It is worth mentioning that the curve witkR.=5 inter-
(kR;<1), which is the only limit allowing relatively simple sects those corresponding to the smaller valudsRaf This
analytical treatment within E(q5.13). is a manifestation of the surprising effectrefentrant trans-

It is erroneous to think of the limkR.<1 as physically parencythat will be discussed below.
trivial. Indeed, if the both inequalitie$5.13 and kR.<1 It is indicated in Fig. 1 that the curves wikR.<0.1 are
hold simultaneously, then the roughness slgfe. and the governed by the linear i asymptotic(5.14) within a range
Fresnel parametek{?/R, turn out to be large. Thus, the of large enough values ok{. However, this range is



PRB 60 SPECTRAL THEORY OF A SURFACE-CORRUGATE. . . 267
- //\ . 4\,,
13 10 ot e

1 . imaginary spectrum shift
014l ¢

=

c
-
[aV]
~
<

<

1x1024
E 7 real spectrum shift

0. 1 0.1 4= T — —r— T v —

kg ke
FIG. 3. The planek{-kR. (log-log scalg¢ divided into the re-

gions where the entire spectrum shifk, is nearly real,|v,|

>(2L,) "1, or nearly imaginary}y,| <(2L,) . The regions where

FIG. 1. A/2L, vs k¢ (log-log scalg for several fixed values of
kR, and fixedkd/w=5.5, n=3. The thicker curves represent the
general Eq(4.19 for L,,, while the thinner curves depict the per-
turbative resul{5.4) of the earlier papers. All the curves to the left

of the dash-dot line are proportional £8, L, = 72.

bounded above with the weak-scattering conditiog2L
<1 and for, e.g.kR;=0.1 is not very wide, viz. 38k{
=8.5.

|5kn|An<1 (weak-scattering regimeand |sk,|A,>1 (no wave-
guide propagationare shown. The figure corresponds to fixed val-
ues ofkd/7=5.5 andn=3.

reverses the sign into negative. This effect occurs at some
threshold values ok{~1.5-2.5 that are slightly dependent

Now we turn to the numerical analysis of the real spec-on kR,. Thus, the high boundary irregulariti€5.13, as
trum shift y, (4.19-(4.18. In Fig. 2 we present the graphs well as low sharp perturbation&R.<k{<1), may not only

of y,A, vs k¢ for some fixed values dfR.. The behavior
of vy, in the domain of low irregularitie$5.2) is well de-
scribed by the asymptotical resufi.11). Therefore we pro-

decrease but also increase the phase velocity of a propagat-
ing wave.
Finally, we present Fig. 3 to illustrate where the real and

ceed directly to the much more diverse and complicated casenaginary parts of the complex spectrum deviatitg may

of high surface defect&.13.

compete and what is the domain of validity of our theory.

The numerical study reveals that, in full accordance withWe note that the second of the weak-scattering conditions

the resonant selection rule, the main contributionytofor
(k{)?>1 is given by terms witn’~n,<ny, i.e., by the
relatively small subsums of(") (4.16 and y? (4.17). The

(1.1) is not so restrictive as the first one fkR,<100 and
therefore it is not displayed in Fig. 3.
From Fig. 3 it follows thatdk,, is nearly real 6k,= vy, , in

evanescent scattered modes are not resonant and therefthese regions of thk{-kR; plane, where onéor both of the

can be neglected.

parameterk{ or kR, are small enough. So, e.g., ki is

In Fig. 2 we see a different behavior of the curves correfixed at a value less than 0.14, thef always dominates

sponding to smakR.<1 and largekR;>1. The most strik-
ing feature of this difference is the fast increaseygfwith
the increase ok{ for kR.<1 andk{=1, in contrast to the
slow decrease fokR.>1 andk{=1. Due to this gradual
decrease, the curves gf, intersect the axiy,A,=0 andy,

10 /
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FIG. 2. y,A, vsk{ (semi-log scalgfor kd/==10.5,n=5 and
few fixed values okR; .

over (2L,) "%, no matter how large i&R; (at least, up to
several hundred If we fix kR.=<0.2 instead, then the spec-
trum shift remains almost real up @~ 2, after which the
weak-scattering condition fails. In contrast, the imaginary
part of 5k,, is dominant for a rather corrupted boundary with
high and long irregularities simultaneously.

The curve| 8k,|A,=1 never enters the region of moder-
ate boundary inhomogeneities, wheété<2. Thus, such a
type of defects automatically ensures weak wave-surface
scattering. Besides, it is seen that either of the widely used
inequalities¢/R,<1 or k{?/R.<1 is sufficient for the ful-
fillment of the weak-scattering requiremeniisd).

Our theory predicts the effect géentrant transparency
which can be easily introduced and explained with the help
of Fig. 3. Let us start off from a point, salg{=2.1 on thek{
axis vertically upward along thkR. axis. We first pass the
region where the spectrum shift is nearly real and the bound-
ary scattering is still weak. Then we cross the curve
| 6kn| A, =1 and get into the domain where a waveguide type
of propagation is no longer possiliee., the scattering is not
weak. If we keep moving, then we finally cross the curve
|okn|A,=1 again, which means that the weak-scattering
conditions(1.1) have been restored, i.e., we haeentered
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the regime of waveguide propagation. However, we are nowludes~n,>1 modes with comparable amplitudese Eq.
in a region where the spectrum shék,, is not real, but close (5.1]. Due to this, a few interesting and unexpected effects
to imaginary. The origin of the reentrant transparency lies ircan be observed. So, e.g., for low boundary perturbations
an unconventional nonmonotonic dependence of bgth (5.2 the integral resonance princ'iple results in a'linear de-
(4.19-(4.18 andL,* (4.19 onkR, for large enough values Pendence of the real spectrum shyff (4.15 on ¢, while the
of k(=1. inverse attenuation length, - (4.19 shows the standard
quadratic la*® L ' £2. As the consequence, it turns out
VI. CONCLUSION that | y,|>L,,* and therefore the entire spectrum deviation
) _ ) ok, is nearly real, i.e.fk,=vy,. This leads to much faster
In concluding, we list the most important consequences ijephasing(chaotizatiom of the propagating signal in com-
the exactnonperturbativescattering operator approach pre- parison with damping of its amplitude. From the asymptotics
sented in this paper: Sk,=7y, and y,=¢ it follows that 8k, is a nonanalytic
(2) It has been believed that the “absolutely soft” bound- (square-rootfunction of the dispersio?, or of the binary
ary condition(2.3) can be treated perturbatively Whenevercorrelator(z.l): Sk 22,
the surface deviation&x) are small enoug(seg, e.g., Refs. (3) It is found that the real spectrum shift, may reverse
1,2,4-7,15,16,18,20—22Under the perturbative approach, he signfrom positive to negative in some domains of the
the exactboundary conditior(2.3) is expanded into power gytarnal parameters. In particular, this occurs in the low per-
series ing(x) up to linear term inclusive. As the result, one {rpation limit (5.2 when the parametekR, is decreased
obtains thempedanceoundary condition formulated on the g0\ k¢, i.e., when the boundary irregularities are ex-
unperturbed plane=0, tremely sharpkR.<kZ<1. This effect can be interpreted as
P the roughness-induced increase of the phase velocity of the
G(xx';:z=02")+£(X) | G(xx';2.2')=0. (6.1)  primary wave. _ _
7=0 (4) Theexact scattering operator approaciwhich we put
The relief ¢(x) of the rough wall enters Eq6.1) as the LOszrr(ijcgl]l };h: paper, ma?_e It %035|(kj)le to z_inalllja_e least,
impedance. Theesonant selection rujevhich has been in- .=~ ) a quite complicated and practically important
troduced in this paper, proves that the reduction of ) situation with high bour_1d_ary |nhom_ogene|t|é'513). It. has
to Eq.(6.1) is groundless, no matter how low are the sun‘acebeen proved thadk, exhibits a sur_prlsmglonm(_)notonlcd_e-
irregularities. The main contribution to the complex Spec_pendence on the parameﬂe_:Rc with t_he maximum be_mg
trum shift 5k, (1.2) is always given by theesonantscattered located arounckR;~1. Basing on t.h's fact, we predicted
modes with ¢rn’/d) 1~ ¢. This suggests that it is incorrect reentrant transparencywhenkR; is increased from sma_ll,
to apply a perturbative approach iheven if { is much ch<<.%’ up to Iarg_e,kR9>1, values, the weak-scattering
smaller than the wavelength of the falling wavé, condltlons(l.l) are first .V|.0Ia‘t‘ed atf,RCS.l and then restored
<(mn/d) L. In other words, a problem of wave propagation again after passing a finite “dark™ region.
through a strip with absolutely soft randomly rough bound-
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