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We apply theexact surface scattering operatorto solve the problem of scalar~electron or sound! wave
propagation through a strip with absolutely soft randomly rough boundaries. This approach isnonperturbative
in either roughness heights or slopes. We analyzed the roughness-induced dephasing and attenuation of waves
both asymptotically and numerically. The analysis proves that the signal isalwaysscattered most effectively
into the ‘‘resonant’’ waveguide modes, whose transverse wavelength is comparable to the rms roughness
height z and whose total number is proportional toz21. According to this integral resonance rule, the
dephasing dominates over the attenuation and shows anonanalytic~square-root! dependence on the dispersion
z2 when (kz)2!1 (k is the wave number!. In the case (kz)2@1, the dephasing and attenuation may well
compete. We predict another two surprising effects:reentrant transparencyandincreaseof the phase velocity
of the wave.@S0163-1829~99!01525-8#
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I. INTRODUCTION

An electron wave, which travels through a directed na
odevice~thin film, junction, quantum wire, lead, etc.!, expe-
riences inevitable distortion due to scattering by imperf
lateral walls. If the guiding system is long enough, then ev
atomic-scale boundary perturbations can cause qualita
modification of the electron spectrum, which makes und
standing of this phenomenon very important. Clearly, t
effect is analogous to dephasing and attenuation of elec
magnetic and/or acoustic waves that propagate thro
rough-bounded waveguide lines.1,2 Therefore in what fol-
lows we will not make any distinction between systems t
carry electron or any other type of waves, but we will co
sider them from a generalized standpoint of their wavegu
ing efficiency.

In finite systems a waveguide propagation is caused
multiple rereflections of a wave from opposite lateral su
faces. Obviously, in rough-bounded channels each reflec
is accompanied by a noncoherent scattering of the wave
a result of the multiple successive scattering events, the
perturbed longitudinal wavenumberkn of annth propagating
normal mode is modified by a complex amountdkn5gn
1 i (2Ln)21, i.e., kn→kn1dkn . The real partgn is respon-
sible for the roughness-induced correction to the phase
locity, while Ln is theattenuation lengthof the given mode.
To preserve the waveguiding properties of the rou
bounded system, the complex phase shift associated withdkn
must remain small over thecycle lengthLn , i.e., over the
distance passed by thenth mode between two successiv
reflections from the rough surface,udknuLn!1. This crite-
rion assures a large numberLn /Ln@1 of the wave re-
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reflections over the attenuation lengthLn . The inequality
udknuLn!1 together with the obvious relationshipknLn
*1 imply smallness ofdkn in comparison with the unper
turbed wave numberkn .

For surface-corrugated systems, it is usually more pl
sible to calculate a wave field averaged over some statis
ensemble of reflecting boundaries than the exact~randomly
distributed! field itself. If the relief of lateral walls in a wave
guide is assumed to beergodic, then an average over th
ensemble of all realizations of the random surface is equ
lent ~in a sense of convergence in probability! to an average
over the coordinates of a given realization~see, e.g., Refs
1–3!. The idea behind this statement is that an ergodic r
dom surface has~by definition! the minimal fragment~re-
gion! which is statistically equivalent to one of the surfa
realizations. The statistical properties of a function, defin
within that region, are asymptotically independent of the
gion area. Apparently, the linear dimension of a surface
alization is of the order of the longitudinal variation scaleR̃c
of the surface scattering potential. Therefore, a statistical
eraging applies only if the spectrum deviationdkn causes
just weak complex phase shift over the realization lengthR̃c ,
udknuR̃c!1.

Thus, we are in a position to write down the necess
and sufficient conditions for astatistical approach to the
problem of awaveguidepropagation in a channel with ran
domly rough walls:

udknuLn!1, udknuR̃c!1, ~1.1!

dkn5gn1 i ~2Ln!21. ~1.2!
258 ©1999 The American Physical Society
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As far as we know, the problem formulated above w
first solved in Refs. 4–6~see also the book in Ref. 1!. The
authors1,4,5 calculated the average scalar field induced b
point source of radiation within a planar waveguide w
statistically rough lateral walls. In Ref. 6, quantum electr
states in a thin metal film with rough surfaces were analy
and the roughness-induced residual resistivity was fou
The results1,4–6 were based on theperturbationtheory in the
squared rms heightz of the boundary irregularities and wer
claimed to be valid within the so-calledBorn approximation
which required smallness of the three parameters, viz.
Rayleigh (kzz)2, the Fresnelkz2/Rc parameters, and th
squared slope (z/Rc)

2 of the surface defects,

~kzz!2!1, ~z/Rc!
2!1, kz2/Rc!1. ~1.3!

Herekz is the modulus of the normal~transverse! component
of the wave vectorkW andRc is the mean length of the surfac
defects. Since the appearance of the papers,4–6 both
classical7–14 and quantum15–28spectral and transport theorie
for systems with multiple electron-surface scattering ha
been mainly built within the Born approximation~1.3!.

In a series of works,29–32 the expansion of the scatterin
amplitude in powers of the mild roughness slopes rather t
in the small heights was applied. This made it possible
extend the theory of wave-surface scattering to arbitrary
ues of the Rayleigh parameter (kzz)2. However, the other
two inequalities of the set~1.3! were still necessary, which
put back the analysis of, e.g., steep roughness slo
@(z/Rc)

2*1# and/or the shadowing effect1,33 (kz2/Rc*1).
The authors34,35 applied the results29 to derive a boundary
condition for an electron distribution function at a rando
metal surface with mild roughness slopes. In Ref. 36,
diffusion classical and quantum transport in films w
mildly sloping surface defects was analyzed basing on
boundary condition.34,35

We emphasize that the abovementioned approximat
are based on perturbative expansions in smallexplicit param-
eters of the roughness~heights or slopes! and are therefore
much more restrictive than the generic conditions~1.1!.

In this paper we put forward the approach which isnon-
perturbativein the roughness heights or slopes as well as
any other explicit parameter. It is based instead on the
ploitation of theexactboundary scattering operator. Due
this fact, we managed to construct the theory of wavegu
propagation whose domain of applicability is as wide as t
defined by the conditions~1.1!. Note that these condition
are equations themselves with respect to the explicit exte
parametersk, z2, Rc , andn.

We calculate the average Green’s function~the average
field of a point source! in a planar strip with absolutely sof
lateral boundaries, one of which is smooth and the othe
randomly rough. Such system is physically equivalent t
waveguide with both boundaries being rough, statistica
identical, and not intercorrelated.

In Sec. II we derive a Dyson-type integral equation for t
exact~not averaged! Green’s function. The effect of the ran
dom inhomogeneities is completely incorporated in the in
gral kernel of the equation, which allows to consider it as
exact effective scattering potential. This potential is de
nitely nonperturbativein either roughness heights or slope
s
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In Sec. III we apply the elegant technique18,37 to average the
equation over the Gaussian ensemble of realizations of
random boundary. The averaged equation turns out to
solvable analyticallywithin the assumptions~1.1! due to
their being equivalent to the general criteria ofweakwave-
boundary scattering. Consequently, the self-energy can
sought in the first nonvanishing~quadratic! approximation in
the exact scattering potential ~i.e., in the Bourret
approximation38!. Based on the results of Sec. III, we deriv
in Sec. IV explicit expressions for the real spectrum shift~the
dephasing! gn and the attenuation lengthLn of annth propa-
gating mode.

In Sec. V we present the analysis of the expressions
tained, which clearly demonstrates the advantages of ourex-
act scattering operator approach. The most impressive one
is that our method leads to new physical results even in
region of extremely small roughness heights, (kz)2!1,
where the waveguide propagation has been believed to
well studied. In particular, we found a surprisingnonanalytic
~square-root! dependencedkn}Az2 of the spectrum devia-
tion on the dispersionz2 of the roughness height, whic
contrasts the conventional linear law1,2,4,5,29–32dkn}z2. This
nonanalyticitycannotbe in principle derived perturbatively
because we prove thatdkn is mainly formed by scattering o
the primary wave into the ‘‘resonant’’ evanescent mod
with normal wavelength 2p/qz being comparable to the
heightz, (qzz)2;1. At the same time, it is usually believe
that the condition (kz)2!1 is sufficient to infer that any
‘‘slipping’’ normal mode with (kzz)2!1 is mainly scattered
into the slipping modes as well, for which 2p/qz@z, or
(qzz)2!1. This assumption alone allows to replace the ex
Dirichlet boundary condition imposed on the random
rough surface by an approximate impedance one formula
on the averaged~deterministic! boundary. The abovemen
tioned domination of the resonant modes with (qzz)2;1
proves groundlessness of such a replacement. Thus, a p
lem of wave ~electron! propagation through a waveguid
~quantum strip! with absolutely soft random boundariescan-
not be reduced to a simpler problem with the smoo
random-impedance boundary even for arbitrarily weak p
turbations. We note that the spectrum deviationdkn}Az2 is
nearly real, i.e.,dkn.gn , gn@(2Ln)21. This leads to a non-
trivial new result that a signal, which propagates through
nearly smooth waveguide, is dephased~chaotized! much ear-
lier ~over much shorter distances! than its initial amplitude is
decayed. Moreover, if the boundary inhomogeneities
both low and very sharp (kRc!kz!1), then the real spec
trum modificationgn appears to benegative, which means
that the surface roughness may not only decrease but
increase the phase velocity of a propagating wave.

The other important subject of Sec. V is a practica
interesting case of high boundary inhomogeneities, wh
(kz)2@1. This case is much more diverse and complica
than that with (kz)2!1. For a large part it is analyzable onl
numerically. We reveal that, in contrast to the low
perturbation limit, the imaginary part ofdkn may compete
with the real part. Moreover, the situation withdkn
. i (2Ln)21 is rather typical. As before, the real spectru
modification gn may reverse sign. This happens askz
reaches some threshold valuekz'1.5–2.5 that is almost in-
dependent of the other parameters. Another noteworthy
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sult is the prediction ofreentrant transparency. This effect
can be observed when the parameterkz is fixed at a value of
*2, while kRc is being increased. Then the weak-scatter
regime~1.1! collapses at some value ofkRc and then restores
again at a larger value ofkRc .

Section VI concludes our contribution. The short rep
preceding this comprehensive paper has been publishe
Optics Letters.39

II. PROBLEM FORMULATION. THE DYSON EQUATION

We consider a 2D strip confined to a region of thexz
plane defined byj(x)<z<d, wherej(x) is a Gaussian ran
dom function of the longitudinal coordinatex such that

^j~x!&50, ^j~x!j~x8!&5z2W~ ux2x8u!. ~2.1!

The angular brackets denote an average over the ensemb
realizations of the profile functionj(x). The binary coeffi-
cient of correlationW(uxu) is characterized by the unit am
plitude @W(0)51# and by the scaleRc of monotonous de-
crease~correlation radius! which is of the order of the mea
length of the boundary irregularities.

The retarded Green’s functionG(x,x8;z,z8) satisfies the
equation

~n1k2!G~x,x8;z,z8!5d~x2x8!d~z2z8! ~2.2!

(k is the wave number! and the boundary conditions which
in the case of absolutely soft walls, have the Dirichlet for

G~x,x8;z5j~x!,z8!50, ~2.3!

G~x,x8;z5d,z8!50. ~2.4!

Now we employ Green’s theorem to find out the relati
betweenG and the Green’s functionG0 of the ideally flat
strip:

E
V
dV~GnG02G0nG!5E

S
dSW ~G¹G02G0¹G!. ~2.5!

Integration on the left-hand side~LHS! of Eq. ~2.5! is taken
over the 2D volumeV of the strip and on the RHS over th
1D surface~contour! S. Equation~2.2!, which governs both
functionsG andG0, allows to reduce the volume integral t
the difference

E
V
dV~GnG02G0nG!5G~x,x8;z,z8!2G0~ ux2x8u;z,z8!.

~2.6!

The bounding contourS consists of the upper straight lin
z5d, the lower nonuniform boundaryz5j(x), and the infi-
nitely far (uxu→`) contours that connect the opposite st
edges. The integral along the linez5d vanishes due to the
boundary condition~2.4!. The integrals over the infinitely fa
contours are suppressed by the rapid oscillations ofG andG0.
Besides, the integral over the lower boundaryz5j(x) of the
g

t
in

of

first integrand on the RHS of Eq.~2.5! also vanishes due to
the boundary condition~2.3!. Thus, the RHS of Eq.~2.5!
transforms into

E
S
dSW ~G¹G02G0¹G!

52E
zs5j(xs)

dSWG0~ ux2xsu;z,zs!¹sG~xs ,x8;zs ,z8!.

~2.7!

Let us write down the scalar productdSW ¹s explicitly,

dSW ¹s52dxsF ]

]zs
2

dj~xs!

dxs

]

]xs
GU

zs5j(xs)

, ~2.8!

and substitute it into Eq.~2.7!. From Eqs.~2.5!–~2.7! we
immediately obtain the required Dyson-type equation:

G~x,x8;z,z8!5G0~ ux2x8u;z,z8!

1E
2`

`

dxsdzsG0~ ux2xsu;z,zs!

3Ĵ~xs ,zs!G~xs ,x8;zs ,z8!.
~2.9!

HereĴ(xs ,zs) is theexact effective scattering operator,

Ĵ~xs ,zs!5d@zs2j~xs!#F ]

]zs
2

dj~xs!

dxs

]

]xs
G . ~2.10!

Note that for the convenience of subsequent averaging
have introduced the additional integration over the transve
coordinatezs in Eq. ~2.9! which is compensated by the del
function in Eq.~2.10!.

In an ideal waveguide (j(x)[0) the expression~2.9! re-
duces toG5G0 due to vanishing of the unperturbed Green
functionG0 in the integrand of the RHS.

III. AVERAGING AND SOLUTION
OF THE DYSON EQUATION

As a consequence of the property~2.1!, the averaged
Green’s function̂ G(x,x8;z,z8)& turns out to be uniform and
isotropic in the coordinatex:

^G~x,x8;z,z8!&[G~ ux2x8u;z,z8!. ~3.1!

To derive the equation for̂G(x,x8;z,z8)& we apply the av-
eraging technique18,37 to Eq. ~2.9!, which yields
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G~ ux2x8u;z,z8!5G0~ ux2x8u;z,z8!1E
2`

`

dxsE
2`

`

dzsG0~ ux2xsu;z,zs!^Ĵ~xs ,zs!&G~ uxs2x8u;zs ,z8!

2E
2`

`

dxsdxs8E
2`

`

dzsdzs8G0~ ux2xsu;z,zs!^Ĵ~xs ,zs!&G0~ uxs2xs8u;zs ,zs8!^Ĵ~xs8 ,zs8!&G~ uxs82x8u;zs8 ,z8!

1E
2`

`

dxsdxs8E
2`

`

dzsdzs8G0~ ux2xsu;z,zs!^Ĵ~xs ,zs!G0~ uxs2xs8u;zs ,zs8!Ĵ~xs8 ,zs8!&G~ uxs82x8u;zs8 ,z8!.

~3.2!
n
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Note that the average of the scattering potentialĴ(xs ,zs)
~2.10! is given by

^Ĵ~xs ,zs!&5P~zs!
]

]zs
, P~zs!5~1/zA2p!exp~2zs

2/2z2!.

~3.3!

HereP(zs) is the Gaussian probability density of distributio
of the coordinatezs . Since ^Ĵ(xs ,zs)&, G0(ux2xsu;z,zs),
andG(ux2xsu;z,zs) are odd functions ofzs @see Eqs.~3.3!,
~4.1!, and~3.13! respectively#, then the second~linear in Ĵ)
term on the RHS of Eq.~3.2! vanishes. Similarly, the third
term can be also shown to vanish. So, we come to the
lowing equation for the average Green’s function:

G~ ux2x8u;z,z8!5G0~ ux2x8u;z,z8!

1E
2`

`

dxsdxs8E
2`

`

dzsdzs8G0~ ux2xsu;z,zs!

3^Ĵ~xs ,zs!G0~ uxs2xs8u;zs ,zs8!

3Ĵ~xs8 ,zs8!&G~ uxs82x8u;zs8 ,z8!.
~3.4!

As a matter of fact, Eq.~3.4! is not exact, since it include
only quadratic inĴ term, while the rest of the terms has be
cut off. To find out the necessary and sufficient conditio
for this truncation we used the ideas proposed in the bo2

More specifically, we first solved Eq.~3.4! itself ~see below!,
then we substituted the solution back into Eq.~3.4! in place
of the functionG0(uxs2xs8u;zs ,zs8) and solved the newmodi-
fied variant of Eq.~3.4!. Clearly, the modified equation i
more general than the original Eq.~3.4!, so that the compari-
son of their solutions is expected to give the required con
tions of applicability of the ‘‘quadratic’’ approximation
~3.4!. The analysis shows that these conditions areudknu
!kn andudknuR̃c!1. The latter coincides with the second
the weak-scattering conditions~1.1!, while the former fol-
lows from the first of Eqs.~1.1! and from the obvious in-
equalityknLn*1.

The statistical uniformity~2.1! makes it effective to apply
a longitudinal Fourier transformation to solve Eq.~3.4!:

G~ ux2x8u;z,z8!5E
2`

` dkx

2p
exp@ ikx~x2x8!#Ḡ~kx ;z,z8!,

~3.5!
l-

s
.

i-

G0~ ux2x8u;z,z8!5E
2`

` dkx

2p
exp@ ikx~x2x8!#G0~kx ;z,z8!,

~3.6!

wherekx is the longitudinal component of the wave vectorkW .
According to Eq.~3.4!, the Fourier transformḠ(kx ;z,z8)
satisfies the equation

Ḡ~kx ;z,z8!5G0~kx ;z,z8!1E
2`

`

dzsdzs8G0~kx ;z,zs!

3Q̂~kx ;zs ,zs8!Ḡ~kx ;zs8 ,z8!. ~3.7!

The effective average scattering operatorQ̂(kx ;zs ,zs8) is
given by

Q̂~kx ;zs ,zs8!5E
2`

`

dxs exp~2 ikxxs!^Ĵ~xs ,zs!

3G0~ uxs2xs8u;zs ,zs8!Ĵ~xs8 ,zs8!&exp~ ikxxs8!.

~3.8!

The integral overxs in Eq. ~3.8! is independent ofxs8 due to
the statistical uniformity~2.1!.

Obviously, Eq.~3.7! could be solved trivially if the inte-
gral kernel were degenerate, i.e., more specifically, if
componentG0(kx ;z,zs) of the kernel were factorable inz
and zs . To analyze a possibility of such factorization, w
write down an explicit representation forG0(kx ;z,zs):

G0~kx ;z,zs!5kz
22g0~kx!sin~kzz!sin~kzzs!

2kz
21 cos~kzz!sin~kzzs!u~z2zs!

2kz
21 sin~kzz!cos~kzzs!u~zs2z!. ~3.9!

Here kz is the modulus of the transverse component of
wave vectorkW ,

kz5kz~kx!5~k22kx
2!1/2. ~3.10!

The first term in Eq.~3.9! is known as thepole term. It
contains thepole factor g0(kx),

g0~kx!5kz cot~kzd!. ~3.11!

Simple poles ofg0(kx) form the complete set of eigenwav
numbers in a flat waveguide:

kz5pn/d, n51,2,3, . . . . ~3.12!
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We point out thatG0(kx ;z,zs) has no singularities other tha
those defined by Eq.~3.12!.

As far as the weak-scattering regime~1.1! is concerned,
the spectral poles ofḠ(kx ;z,z8) should lie comparatively
close to those ofG0(kx ;z,zs). At the same time, the poles o
Ḡ(kx ;z,z8) completelyform the integral~3.5!. Hence it is
sufficient to solve Eq.~3.7! only for those values ofkx that
correspond to relatively weak deviation ofkz from the un-
perturbed spectrum~3.12!. Following this conclusion, we re
placeG0(kx ;z,zs) in the integrand of Eq.~3.7! by the first
~pole! term of the representation~3.9! which dominates over
the rest of the terms if the spectrum is nearly ideal. After t
replacement the integral kernel in Eq.~3.7! becomes degen
erate and we easily get the solution:

Ḡ~kx ;z,z8!.
G0~kx ;z,z8!

12g0~kx!M ~kx!
, ~3.13!

where we have retained only the zeroth order term inQ̂ in
the numerator. The functionM (kx) enters Eq.~3.13! as the
self-energy and is related toQ̂ by

M ~kx!5E
2`

`

dzsdzs8
sin~kzzs!

kz
Q̂~kx ;zs ,zs8!

sin~kzzs8!

kz
.

~3.14!

To calculate the correctiondkn to the unperturbed longi
tudinal wave numberkn ,

kn5Ak22~pn/d!2, ~3.15!

we need to determine the poles ofḠ(kx ;z,z8) ~3.13!, i.e., to
solve the dispersion equation

g0
21~kx!2M ~kx!50. ~3.16!

The solution of this equation in the first~linear! approxima-
tion in M (kx) has the form

dkn52
~pn/d!2

knd
M ~kn!. ~3.17!

In fact, the form~3.17! of a relation betweendkn and
M (kn) is common and well known.1,18 Our improvement lies
in the self-energyM (kx) itself. Indeed, our result~3.14! and
~3.8! for M (kx) is nothing else but a first nonvanishing~qua-
dratic! term in an expansion ofM (kx) in powers of theexact
scattering operator~2.10!. We stress that such an approxim
s

tion is essentially different from and is much more gene
than an extensively exploited first term in an expansion
M (kx) in powers of the dispersionz2.

Concluding this section, we summarize the region of v
lidity for our results. For this purpose we list all the simp
fications that were used in deriving Eqs.~3.17! and~3.14!. ~i!
The approximate averaged equation~3.4! is applicable if
udknuR̃c!1 and udknu!kn . ~ii ! The first ~pole! term in the
representation~3.9! dominates over the rest two terms if th
inequality udknuLn!1 holds.~iii ! The perturbative solution
~3.17! of the dispersion equation~3.16! was obtained within
the limit udknuR̃c!1, udknuLn!1. Thus, we end up with the
three inequalities:udknuR̃c!1, udknuLn!1, andudknu!kn .
Since the last one is the direct consequence of the condit
udknuLn!1 and knLn*1, we conclude that the range o
validity of our results is confined by the two independe
criteria only, viz. by the weak-scattering conditions~1.1!.

IV. COMPLEX SPECTRUM SHIFT

To derive an explicit dependence of the complex sp
trum deviationdkn ~3.17! on the characteristics of an irregu
lar waveguide~such ask, d, z, Rc), we ~i! substitute Eq.
~3.8! into Eq. ~3.14!; ~ii ! replace the operatorsĴ(xs ,zs) and
Ĵ(xs8 ,zs8) by their explicit definition~2.10!; ~iii ! apply the
canonical representation for the Green’s functionG0(uxs

2xs8u;zs ,zs8):

G0~ uxs2xs8u;zs ,zs8!5
2

d (
n851

`

sinS pn8zs

d D
3sinS pn8zs8

d DG n8
(0)

~ uxs2xs8u!.

~4.1!

Here G n8
(0)(uxs2xs8u) is the subchannel~or mode! Green’s

function defined by

G n8
(0)

~ uxu!5E
2`

` dqx

2p

exp~ iqxx!

~kn81 i0!22qx
2

5
exp~ ikn8uxu!

2ikn8

;

~4.2!

~iv! differentiate with respect tozs and zs8 according to Eq.
~2.10!; ~v! take integrals overzs andzs8 with the help of the
d functions ~2.10!; ~vi! perform straightforward averagin
over the Gaussian ensemble~2.1! of realizations of the ran-
dom fieldj(x). These six steps yield
M ~kx!5
1

2kzd
(

n851

` S pn8

d D E
2`

`

dx exp~2 ikxx!H F1S kz ,
pn8

d
;uxu DG n8

(0)
~ uxu!2S pn8

d D 21 ]

]x
F2S kz ,

pn8

d
;uxu D ]

]x
G n8

(0)
~ uxu!

1 i
kx

kz
G n8

(0)
~ uxu!

]

]x
F2S pn8

d
,kz ;uxu D1 i S pn8

d D 21 kx

kz

]2

]x2
F3S kz ,

pn8

d
;uxu D ]

]x
G n8

(0)
~ uxu!J . ~4.3!

Here the symbolsF1 , F2 , F3 stand for

F1~kz ,qz ;uxu!5~kz1qz!
2S~kz1qz ,kz1qz ;uxu!2~kz2qz!

2S~kz2qz ,kz2qz ;uxu!, ~4.4!

F2~kz ,qz ;uxu!52kzS~kz1qz ,kz2qz ;uxu!2~kz1qz!S~kz1qz ,kz1qz ;uxu!2~kz2qz!S~kz2qz ,kz2qz ;uxu!, ~4.5!
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F3~kz ,qz ;uxu!52S~kz1qz ,kz2qz ;uxu!2S~kz1qz ,kz1qz ;uxu!2S~kz2qz ,kz2qz ;uxu!; ~4.6!

S~ t1 ,t2 ;ux2x8u!5~ t1t2!21^sin@ t1j~x!#sin@ t2j~x8!#&5~ t1t2!21sinh@ t1t2z2W~ ux2x8u!#exp@2~ t1
21t2

2!z2/2#. ~4.7!

Now we break up the integral overx in Eq. ~4.3! into two parts: from2` to 0 and from 0 tò . In the former we reverse
the sign of the integration variable:x→2x. We next substitute the explicit Green’s functionG n8

(0)(uxu) ~4.2! into the expression
obtained and integrate by parts once the second and third terms of Eq.~4.3! and twice the fourth term to get rid of th
derivatives acting on the functionsF2 andF3. This procedure gives us the most convenient for analysis representation f
self-energyM (kx),

M ~kx!5M1~kx!1M2~kx!. ~4.8!

Here the first term is given by

M1~kx!52 i z2 (
n851

`
~pn8/d!2

kn8d
H E

0

`

dx exp@2 i ~kx2kn8!x#W̃~kx ,kn8 ;uxu!1E
0

`

dx exp@ i ~kx1kn8!x#W̃~kx ,2kn8 ;uxu!J .

~4.9!

The second term arises from the integration by parts. It is nothing else but the term outside the integral,

M2~kx!5
k2

2kz
2d

(
n851

`

@A~kz ,pn8/d!1B~kz ,pn8/d!#; ~4.10!

A~kz ,qz!52S~kz1qz ,kz2qz ;0!2S~kz1qz ,kz1qz ;0!2S~kz2qz ,kz2qz ;0!, ~4.11!

B~kz ,qz!52
kzqz

k2
@S~kz1qz ,kz1qz ;0!2S~kz2qz ,kz2qz ;0!#. ~4.12!

The functionW̃(kx ,qx ;x) is the generalized coefficient of correlation,

W̃~kx ,qx ;x!5~4kzqzz
2!21H F ~kz1qz!

21~kz1qz!~kx2qx!S kx

kz
2

qx

qz
D2~kx2qx!

2
kxqx

kzqz
GS~kz1qz ,kz1qz ;x!

2F ~kz2qz!
21~kz2qz!~kx2qx!S kx

kz
1

qx

qz
D1~kx2qx!

2
kxqx

kzqz
GS~kz2qz ,kz2qz ;x!12~kx2qx!

3Fqx

kz

qz
2kx

qz

kz
1~kx2qx!

kxqx

kzqz
GS~kz1qz ,kz2qz ;x!J , ~4.13!
e
where qz5kz(qx). As z2→0, this function reduces to th
coefficient of correlationW(uxu) ~2.1! of the underlying ran-
dom fieldj(x),

W̃~kx ,qx ;x!.W~ uxu! as z2→0. ~4.14!

Now we substitute the self-energy~4.8! into Eq. ~3.17!
and extract real and imaginary parts ofdkn . The real spec-
trum shift gn has a quite complex structure:

gn5gn
(1)1gn

(2)1gn
(3) , ~4.15!

gn
(1)52z2

pn/d

Ln
(

n851

nd pn8/d

Ln8

@W̃S~kn ,kn8!2W̃S~kn ,2kn8!#,

~4.16!

gn
(2)522

pn/d

Ln
M2~kn!, ~4.17!
gn
(3)54z2

pn/d

Ln
(

n85nd11

`
~pn8/d!2

ukn8ud
E

0

`

dx

3exp~2ukn8ux!Re@exp~2 iknx!W̃~kn ,i ukn8u;x!#.

~4.18!

The expression for the attenuation lengthLn
21 is much sim-

pler:

Ln
2154z2

pn/d

Ln
(

n851

nd pn8/d

Ln8

3@W̃C~kn ,kn8!1W̃C~kn ,2kn8!#. ~4.19!

Here integer

nd5@kd/p# ~4.20!
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is the number of the propagating normal modes~conducting
electron subchannels! in the smooth strip. The cycle lengt
Ln for an nth propagating mode is explicitly given by

Ln52knd/~pn/d!. ~4.21!

The functionsW̃S(C)(kx ,qx) stand for sine and cosine Fou
rier transforms ofW̃(kx ,qx ;x), respectively:

W̃S(C)~kx ,qx!52E
0

`

dx sin~cos!@~kx2qx!x#W̃~kx ,qx ;uxu!.

~4.22!

Note that the derivation of Eqs.~4.15!–~4.19! relied on
two properties of the functionW̃(kx ,qx ;uxu) ~4.13!: ~i!
W̃(kx ,qx ;uxu) is real for real argumentskx andqx ~i.e., for
n8<nd); ~ii ! W̃(kn ,2kn8 ;uxu)5W̃* (kn ,kn8 ;uxu) for n8
.nd . These properties lead to an essential distinction
tweengn ~4.15!–~4.18! andLn

21 ~4.19!. Specifically,Ln
21 is

formed by scattering of a givennth propagating mode into
propagating waveguide modes withn8<nd only, while gn
has much more complicated structure due to contribution
both propagating (n8<nd) and evanescent (n8.nd) normal
modes.

V. ANALYSIS OF RESULTS

Now we are in a position to analyze the complex sp
trum shift dkn as a function of the explicit external param
eters. Since there are as many as four dimensionless pa
eters, (kz)2, kRc , kd/p, andn, the complete analysis seem
unnecessarily cumbersome. Therefore we concentrate
on those features ofdkn which have been brought in by th
exact scattering operator method.

Following this idea, we address the expressions~3.17!,
~4.3!. It is seen thatdkn is, in general, a result of incoheren
scattering intoall normal modes, both propagating and ev
nescent. Depending on values of the external parameters
or that group of the scattered modes may dominate in fo
ing dkn . The careful analysis of Eqs.~3.17!, ~4.3! shows that
the dominating group can be singled out in any given c
with the help of theresonant selection rulewhich is the most
striking result of our theory. It says that the primary wave
scattered most intensively into so-called‘‘resonant’’ modes,
whose normal wavelength 2p/qz is comparable to the rough
ness heightz, i.e., (qzz)2;1. This rule holds true regardles
of how small isz or what are the values of the other para
eters.

The concept of the resonant modes introduces a cha
teristic integernz :

nz5@d/pz#. ~5.1!

This number separates the regions of small and large va
of the Rayleigh parameter (qzz)2 for the scattered modes
Indeed, if the numbern8 of a given scattered mode obey
n8!nz , then (qzz)25(pn8/d)2z2.(n8/nz)

2!1. Other-
wise, if n8@nz , then (qzz)2@1. Obviously, the notation
~5.1! is meaningful only ifnz@1.

From the resonant selection rule it follows that the dom
nating scattered modes are always located near the reson
point n85nz . In other words, there should be the peak
e-

of

-

m-

ly

-
his
-

e

-

c-

es

-
nce
f

subchannel contributions into the sum~4.3! in a vicinity of
thenzth subchannel. The detailed analysis of Eqs.~3.17! and
~4.3! reveals the existence of the peak and proves its be
wide ~smooth! enough. The summands in Eq.~4.3! decrease
rather slowly~as a power ofn8) towards the both sides of th
resonance peakn8;nz , which makes the total number of th
contributive ~resonant! modes large enough, viz.;nz .
Therefore the sum~4.3! is formed not by few isolated sum
mands but by a large number of terms with comparable a
plitudes. We call such a type of resonance theintegral reso-
nant effect.

Since nd /nz.kz @see Eqs.~4.20! and ~5.1!#, then, de-
pending on how large iskz, the ‘‘resonance point’’nz may
be smaller or larger than the numbernd of propagating
modes. If the boundary irregularities are low, (kz)2!1, then
nd!nz , i.e., the resonance peak falls into the infinitely wi
domain of evanescent modes, for whichn8.nd . Since the
evanescent modes contribute to thereal partgn of dkn only,
then the resonant selection rule allows to conclude that
spectrum deviationdkn is nearly real,dkn.gn . The number
;nz of the summands contributing todkn is much larger
than the total numbernd of propagating modes.

Otherwise, in the case of high boundary inhomogeneit
(kz)2@1, we havenz!nd . The resonant peak is now lo
cated among the propagating scattered modes which con
ute to bothgn andLn . Consequently, depending on the e
ternal parameters, the real and imaginary parts ofdkn may
compete. Below we will demonstrate that the competiti
basically relies on the parameterkRc . If the boundary rough-
ness is small scale,kRc!1, then the spectrum deviation i
almost real,dkn.gn . However, if the irregularities are larg
scale,kRc@1, then the attenuation is much stronger than
dephasing anddkn is nearly imaginary,dkn. i (2Ln)21. As
applied to the high boundary defects, the integral resona
principle says thatdkn is formed by a relatively small frac
tion nz /nd!1 of the propagating scattered modes.

To illustrate the most interesting consequences ofthe in-
tegral resonance ruleand the exact scattering operator a
proach altogether, we will analyze briefly the limits of lo
and high boundary inhomogeneities.

A. Low boundary perturbations

We start with a relatively simple and widely used case
low boundary perturbations,

~kz!2!1. ~5.2!

This definition ensures the smallness of the Rayleigh par
eter for both the primary wave (kzz)2 and the propagating
scattered modes (qzz)2, since (kzz)2<(kz)2!1 and (qzz)2

5(pn8z/d)2<(pndz/d)2.(kz)2!1 for n8<nd . Under
the conditions (kzz)2!1 and (qzz)2!1, the generalized co
efficient of correlationW̃(kx ,qx ;uxu) ~4.13! reduces to the
asymptotic ~4.14!. Accordingly, the functionW̃C(kx ,qx)
~4.22! can be replaced with the spatial spectrumW(kx) of
surface irregularities, i.e., with the Fourier transform
W(uxu),

W̃C~kx ,qx!.W~ ukx2qxu! as z2→0,
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W~kx!52E
0

`

dx cos~kxx!W~ uxu!. ~5.3!

Substituting Eq.~5.3! into Eq. ~4.19!, we come to the stan
dard perturbative inz2 expression1,4,5 for the attenuation
lengthLn :

Ln
2154z2

pn/d

Ln
(

n851

nd pn8/d

Ln8

3 @W~ ukn2kn8u!1W~ ukn1kn8u!#. ~5.4!

This formula has been analyzed in Refs. 1, 4, and 5 in de
Here we just need to emphasize that Eq.~5.4! always yields
a linear dependence ofLn

21 on the dispersionz2, i.e., Ln
21

}z2.
Within the limit ~5.2!, the resonance pointn85nz falls

into the interval of evanescent scattered modes, for wh
n8.nd . Now we trace how this fact affects the real spe
trum shiftgn ~4.15!. The first termgn

(1) ~4.16! is very similar
to Ln

21 ~4.19! and is also made up by the propagating sc
tered modes only. Therefore, under the assumption~5.2!, we
can apply forW̃S(kx ,qx) an asymptotic similar to Eq.~5.3!
but with the sine instead of the cosine. As a result, the
lowing interpolation formula forgn

(1) can be derived:

ugn
(1)u;

~kz!2

k

~kRc!
2

11~kRc!
2

pn/d

Ln
}z2. ~5.5!

In contrast togn
(1) , the secondgn

(2) and thirdgn
(3) terms of

Eq. ~4.15! take account of the infinitely large number of th
evanescent modes. Let us consider the sumgn

(2) ~4.17!,

gn
(2)52

k2

pn

1

Ln
(

n851

` FAS pn

d
,
pn8

d D1BS pn

d
,
pn8

d D G .
~5.6!

We break it up into two parts: the first,g2
, , consists of the

terms with 1<n8&nz , while the second,g2
. , is made up by

the rest of terms withn8*nz .
The inequalities~5.2! and n8&nz allow to use a small-

argument asymptotic forS(t1 ,t2 ;0) in Eq. ~4.11! for
A(pn/d,pn8/d) and in Eq.~4.12! for B(pn/d,pn8/d). As
the consequence,A;2(pn/d)2(pn8/d)2z6, while B
;(pn/d)2(pn8/d)2z4k22. Thus, uA/Bu;(kz)2!1, so that
the terms withA(pn/d,pn8/d) in g2

, can be neglected in
comparison with those containingB(pn/d,pn8/d). So, we
have

g2
,;2

k2

pn

1

Ln
(

n851

nz

BS pn

d
,
pn8

d D
;2

z4

pn

~pn/d!2

Ln
(

n851

nz S pn8

d D 2

;2
pn/d

Ln
z. ~5.7!

For the other subsumg2
. , the conditions~5.2! and n8

*nz yield (kzz)2!1&(pn8/d)2z25(qzz)2. This fact al-
lows to substitute a large-argument asymptotic
S(t1 ,t2 ;0) in Eqs.~4.11! and~4.12!. After expandingA and
B in a small parameter (kz /qz)

2 we obtain A;
il.

h
-

t-

l-

r

2(pn/d)2(pn8/d)24, B;(pn/d)2(pn8/d)22k22. So, uA/Bu
;(nd /n8)2&(nd /nz)

2;(kz)2!1. Thus, we can omit
A(pn/d,pn8/d) again:

g2
.;2

k2

pn

1

Ln
(

n85nz

`

BS pn

d
,
pn8

d D
;2

1

pn

~pn/d!2

Ln
(

n85nz

` S pn8

d D 22

;2
pn/d

Ln
z.

~5.8!

Combining the asymptotics~5.7! and~5.8!, we finally arrive
at the result

gn
(2)5g2

,1g2
.;2

pn/d

Ln
z. ~5.9!

We see thatgn
(2) exhibits a linear dependenceon the

roughness heightz. This surprising fact can be easily ex
plained and understood. Actually, from Eq.~5.7! it follows
that the subchannel contributiongnn8

(2) of an n8th waveguide
mode intogn

(2) increases asn82 for n8&nz . This increase
terminates atn8;nz and is displaced by a power decrea
n822 in accordance with Eq.~5.8!. Consequently, there ex
ists the maximum of the subchannel summands in the s
~5.6! that is located aroundn8;nz . This is exactly the re-
gion that is referred to by theresonant selection ruleas the
most effective for scattering. The subchannel contributio
decrease rather slowly towards the both sides of the m
mum. Therefore the number of the resonant modes is q
large, viz. of the order ofnz@nd>1, which gives rise to the
integral natureof the resonance. Although the probability o
scattering into each of the resonant modes is proportiona
z2 for n8;nz , their total numbernz;d/z makes their total
contribution linear inz, i.e., nonanalytic~square-root! in the
dispersionz2.

In a similar, but more cumbersome technically, manne
can be shown that the third termgn

(3) ~4.18! of Eq. ~4.15! is
also mainly formed by a vicinity of the resonance pointn8
5nz . This term is well described by the simple interpolatio
formula

gn
(3);

pn/d

Ln

zRc

z1Rc
. ~5.10!

From Eqs.~5.10! and~5.9! it follows thatgn
(3) is negligible in

comparison withgn
(2) if the surface roughness is sha

enough,z/Rc@1. On the other hand, for mildly sloping ir
regularities,z/Rc!1, the contributionsgn

(3) and gn
(2) are

comparable. So, if we want to deal with arbitrary values
the slope, we should keep the both terms in the sumgn

(2)

1gn
(3) . At the same time, it is easy to see that under

assumption~5.2! the termgn
(1) is always much less thangn

(3) .
Thus, the expression~4.15! for gn reduces to the following
asymptotic:

gn.gn
(2)1gn

(3);2
pn/d

Ln
S 121.7

Rc

z1Rc
D z. ~5.11!

Certainly, the numerical factor 1.7 in Eq.~5.11! cannot be
obtained by simple adding up Eqs.~5.9! and ~5.10!. This
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factor results from the comparison of Eq.~5.11! with the
numerical calculations based on the general formulas~4.15!–
~4.18!. The presence of that factor is very important, beca
it is responsible for the possibility forgn to change the sign

Obviously, a leading term of Eq.~5.11! is always linear in
z regardless of the ratioz/Rc , i.e.,gn}z. At the same time,
the inverse attenuation lengthLn

21 ~4.19! is proportional to
z2 under the condition~5.2!, Ln

21}z2. These two facts imply
that ugnu@(2Ln)21 and therefore the complex spectrum sh
dkn is nearly real,dkn.gn , for low boundary perturbations
~5.2!. This means that the low surface irregularities cau
much more intensive dephasing~chaotization! of the primary
wave than damping of its amplitude.

For rather smooth boundary inhomogeneities (z!Rc) the
both terms in Eq.~5.11! are equally significant and the re
spectrum shiftgn is positive. However, in the situation wit
extremely sharp surface defects (kRc!kz!1) the second
term in Eq. ~5.11! can be omitted and the quantitygn be-
comesnegative. This unusual effect can be interpreted as
increaseof the phase velocity of the primary wave.

The last step in analyzing the case~5.2! is to obtain the
explicit form of the weak-scattering conditions~1.1!. To this
end, we substitute the leading termz(pn/d)/Ln for udknu
into Eqs.~1.1! and apply the asymptoticR̃c.Rc that is valid
for (kz)2!1. As the result, Eqs.~1.1! can be rewritten as

~kzz!2.~n/nz!
2!min$1,~Ln /Rc!

2%. ~5.12!

This inequality is automatically satisfied within Eq.~5.2! if
successive reflections of annth mode from the rough bound
ary arenot correlated,1,4,5 i.e., if Rc!Ln . However, if the
correlations arestrong (Ln!Rc), then Eq.~5.12! supple-
ments Eq.~5.2! and may even become more restrictive. W
emphasize here once again that the roughness slopez/Rc
may far exceed unity within the domain of validity~5.2!,
~5.12! of our results.

B. High boundary perturbations

Within a limiting case ofhigh boundary perturbations,

~kz!2@1, ~5.13!

the resonant peakn8;nz lies among the propagating sca
tered modes, 1<n8;nz!nd . Since those modes contribu
to bothgn andLn

21 , it seems probable that the realgn and
imaginary (2Ln)21 parts may be equally important in form
ing dkn . This conclusion makes it necessary to analyze
whole set of equations~4.15!–~4.19! to understand the be
havior ofdkn . In addition to this, the Rayleigh parameter f
both falling (kzz)2 and propagating scattered (qzz)2 modes
can be now in an arbitrary proportion to unity. This sugge
a mostly numerical approach to the case~5.13! that is de-
scribed in the next subsection. In the rest of this subsec
we studyLn in strips withsmall-scaleboundary irregularities
(kRc!1), which is the only limit allowing relatively simple
analytical treatment within Eq.~5.13!.

It is erroneous to think of the limitkRc!1 as physically
trivial. Indeed, if the both inequalities~5.13! and kRc!1
hold simultaneously, then the roughness slopez/Rc and the
Fresnel parameterkz2/Rc turn out to be large. Thus, th
e

e

e

e

s

n

conditions kRc!1!(kz)2 define, beyond any doubt, th
most interesting and unexplored physical situation.

Let us subdivide the analysis of Eq.~4.19! into cases of
‘‘slipping,’’ ( kzz)2!1, and steeply falling, (kzz)2@1,
modes. For the former case one can derive the asymptoti
Ln in a similar manner as it was done above, i.e., by break
up the sum~4.19! into the subsums withn8&nz and n8
*nz . The subchannel contributionsLnn8

21 can be shown to
increase asn82 for n8&nz and decrease approximately a
n821 for nz&n8<nd . So, we have again the resonance pe
at n8;nz , and the total number of the contributive modes
be ;nz . Within the resonance domainn8;nz the subchan-
nel contributionsLnn8

21 are almost independent ofz. As the
result, the asymptotic forLn

21 exhibits an unconventiona
inversely proportionaldependence on the heightz. Under
the condition~5.13!, the inequality (kzz)2!1 is satisfied for
an anomalously small group of nearly ballistic modes w
(kz /k)2!(kz)22!1 only. Therefore the domain of realiza
tion for the asymptoticLn

21}z21 is quite narrow. The nu-
merical simulations confirm that this asymptotic is hard
observable and is quickly overpowered by the ‘‘steep-mod
asymptotic.

The analysis of the steeply falling modes, (kzz)2@1, is
basically the same as before: we break up the sum~4.19! into
two subsums and then treat them separately. The subcha
terms Lnn8

21 show the usual quadratic inn8 increase asn8
&nz . On reaching the resonance regionn8;nz!nd , the
increase is replaced by a rather slow decrease that cann
described by a simple power law. For a simpler treatmen
the regionn8*nz we assume thatkz;k. In contrast to the
previous case,Lnn8

21 exhibit a quadratic dependence onz
within the resonance intervaln8;nz . Hence, the integra
resonant effect results in a linear dependence ofLn

21 on z,

Ln
21;

~kz!~kRc!

Ln
for kRc!1!~kzz!2;~kz!2.

~5.14!

This asymptotic is rather typical of the high boundary defe
~5.13! and clearly seen in the numerical calculations.

C. Numerical results

We start with the attenuation lengthLn ~4.19!. Figure 1
demonstrates the behavior ofLn/2Ln as a function ofkz for
several fixed values ofkRc . The thicker curves represent th
general formula~4.19!, while the thinner curves correspon
to the perturbative result~5.4! of the earlier works.1,4,5 We
see that all the thicker curves almost coincide with the c
responding thinner curves forkz&0.2, while for the larger
values of kz the distinctive divergence for all the curve
appears. Consequently the perturbative expression~5.4! ap-
plies as long askz is not exceeding the ‘‘threshold’’ value o
about 0.2.

It is worth mentioning that the curve withkRc55 inter-
sects those corresponding to the smaller values ofkRc . This
is a manifestation of the surprising effect ofreentrant trans-
parencythat will be discussed below.

It is indicated in Fig. 1 that the curves withkRc&0.1 are
governed by the linear inz asymptotic~5.14! within a range
of large enough values ofkz. However, this range is
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bounded above with the weak-scattering conditionLn/2Ln
!1 and for, e.g.,kRc50.1 is not very wide, viz. 3.9&kz
&8.5.

Now we turn to the numerical analysis of the real sp
trum shift gn ~4.15!–~4.18!. In Fig. 2 we present the graph
of gnLn vs kz for some fixed values ofkRc . The behavior
of gn in the domain of low irregularities~5.2! is well de-
scribed by the asymptotical result~5.11!. Therefore we pro-
ceed directly to the much more diverse and complicated c
of high surface defects~5.13!.

The numerical study reveals that, in full accordance w
the resonant selection rule, the main contribution togn for
(kz)2@1 is given by terms withn8;nz!nd , i.e., by the
relatively small subsums ofgn

(1) ~4.16! andgn
(2) ~4.17!. The

evanescent scattered modes are not resonant and the
can be neglected.

In Fig. 2 we see a different behavior of the curves cor
sponding to smallkRc&1 and largekRc@1. The most strik-
ing feature of this difference is the fast increase ofgn with
the increase ofkz for kRc&1 andkz*1, in contrast to the
slow decrease forkRc@1 and kz*1. Due to this gradua
decrease, the curves ofgn intersect the axisgnLn50 andgn

FIG. 1. Ln/2Ln vs kz ~log-log scale! for several fixed values o
kRc and fixedkd/p55.5, n53. The thicker curves represent th
general Eq.~4.19! for Ln , while the thinner curves depict the pe
turbative result~5.4! of the earlier papers. All the curves to the le
of the dash-dot line are proportional toz2, Ln

21}z2.

FIG. 2. gnLn vs kz ~semi-log scale! for kd/p510.5, n55 and
few fixed values ofkRc .
-

se

h

fore

-

reverses the sign into negative. This effect occurs at so
threshold values ofkz'1.5–2.5 that are slightly depende
on kRc . Thus, the high boundary irregularities~5.13!, as
well as low sharp perturbations (kRc!kz!1), may not only
decrease but also increase the phase velocity of a propa
ing wave.

Finally, we present Fig. 3 to illustrate where the real a
imaginary parts of the complex spectrum deviationdkn may
compete and what is the domain of validity of our theo
We note that the second of the weak-scattering conditi
~1.1! is not so restrictive as the first one forkRc&100 and
therefore it is not displayed in Fig. 3.

From Fig. 3 it follows thatdkn is nearly real,dkn.gn , in
those regions of thekz-kRc plane, where one~or both! of the
parameterskz or kRc are small enough. So, e.g., ifkz is
fixed at a value less than 0.14, thengn always dominates
over (2Ln)21, no matter how large iskRc ~at least, up to
several hundred!. If we fix kRc&0.2 instead, then the spec
trum shift remains almost real up tokz'2, after which the
weak-scattering condition fails. In contrast, the imagina
part ofdkn is dominant for a rather corrupted boundary wi
high and long irregularities simultaneously.

The curveudknuLn51 never enters the region of mode
ate boundary inhomogeneities, wherekz&2. Thus, such a
type of defects automatically ensures weak wave-surf
scattering. Besides, it is seen that either of the widely u
inequalitiesz/Rc,1 or kz2/Rc,1 is sufficient for the ful-
fillment of the weak-scattering requirements~1.1!.

Our theory predicts the effect ofreentrant transparency
which can be easily introduced and explained with the h
of Fig. 3. Let us start off from a point, say,kz52.1 on thekz
axis vertically upward along thekRc axis. We first pass the
region where the spectrum shift is nearly real and the bou
ary scattering is still weak. Then we cross the cur
udknuLn51 and get into the domain where a waveguide ty
of propagation is no longer possible~i.e., the scattering is no
weak!. If we keep moving, then we finally cross the curv
udknuLn51 again, which means that the weak-scatter
conditions~1.1! have been restored, i.e., we havereentered

FIG. 3. The planekz-kRc ~log-log scale! divided into the re-
gions where the entire spectrum shiftdkn is nearly real, ugnu
.(2Ln)21, or nearly imaginary,ugnu,(2Ln)21. The regions where
udknuLn,1 ~weak-scattering regime! and udknuLn.1 ~no wave-
guide propagation! are shown. The figure corresponds to fixed v
ues ofkd/p55.5 andn53.
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the regime of waveguide propagation. However, we are n
in a region where the spectrum shiftdkn is not real, but close
to imaginary. The origin of the reentrant transparency lies
an unconventional nonmonotonic dependence of bothgn

~4.15!–~4.18! andLn
21 ~4.19! on kRc for large enough values

of kz*1.

VI. CONCLUSION

In concluding, we list the most important consequence
the exact~nonperturbative! scattering operator approach pr
sented in this paper:

~1! It has been believed that the ‘‘absolutely soft’’ boun
ary condition ~2.3! can be treated perturbatively whenev
the surface deviationsj(x) are small enough~see, e.g., Refs
1,2,4–7,15,16,18,20–22!. Under the perturbative approac
the exactboundary condition~2.3! is expanded into powe
series inj(x) up to linear term inclusive. As the result, on
obtains theimpedanceboundary condition formulated on th
unperturbed planez50,

G~x,x8;z50,z8!1j~x!
]

]zU
z50

G~x,x8;z,z8!50. ~6.1!

The relief j(x) of the rough wall enters Eq.~6.1! as the
impedance. Theresonant selection rule, which has been in-
troduced in this paper, proves that the reduction of Eq.~2.3!
to Eq.~6.1! is groundless, no matter how low are the surfa
irregularities. The main contribution to the complex spe
trum shiftdkn ~1.2! is always given by theresonantscattered
modes with (pn8/d)21;z. This suggests that it is incorrec
to apply a perturbative approach inz even if z is much
smaller than the wavelength of the falling wave,z
!(pn/d)21. In other words, a problem of wave propagati
through a strip with absolutely soft randomly rough boun
aries is, in general,irreducible to a simpler problem with the
smoothed random-impedance boundary.

~2! Along with the resonance character of formingdkn ,
we discovered theintegral natureof this resonance. Namely
the resonant peak is always smooth enough, so that it
y

a-
w

in

of

-
r

e
-

-

in-

cludes;nz@1 modes with comparable amplitudes@see Eq.
~5.1!#. Due to this, a few interesting and unexpected effe
can be observed. So, e.g., for low boundary perturbati
~5.2! the integral resonance principle results in a linear
pendence of the real spectrum shiftgn ~4.15! on z, while the
inverse attenuation lengthLn

21 ~4.19! shows the standard
quadratic law1,4,5 Ln

21}z2. As the consequence, it turns o
that ugnu@Ln

21 and therefore the entire spectrum deviati
dkn is nearly real, i.e.,dkn.gn . This leads to much faste
dephasing~chaotization! of the propagating signal in com
parison with damping of its amplitude. From the asymptot
dkn.gn and gn}z it follows that dkn is a nonanalytic
~square-root! function of the dispersionz2, or of the binary
correlator~2.1!: dkn}Az2.

~3! It is found that the real spectrum shiftgn may reverse
the signfrom positive to negative in some domains of th
external parameters. In particular, this occurs in the low p
turbation limit ~5.2! when the parameterkRc is decreased
below kz, i.e., when the boundary irregularities are e
tremely sharp,kRc!kz!1. This effect can be interpreted a
the roughness-induced increase of the phase velocity of
primary wave.

~4! Theexact scattering operator approach, which we put
forward in this paper, made it possible to analyze~at least,
numerically! a quite complicated and practically importa
situation with high boundary inhomogeneities~5.13!. It has
been proved thatdkn exhibits a surprisingnonmonotonicde-
pendence on the parameterkRc with the maximum being
located aroundkRc;1. Basing on this fact, we predicte
reentrant transparency: when kRc is increased from small
kRc!1, up to large,kRc@1, values, the weak-scatterin
conditions~1.1! are first violated atkRc&1 and then restored
again after passing a finite ‘‘dark’’ region.
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