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Current through a combined magnetostatic and electrostatic barrier system

C. Heide
University of Oxford, Department of Physics, Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom
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A device is proposed where a gated ferromagnetic strip is placed on top of a semiconductor heterostructure
to form a combined magnetostatic and electrostatic barrier. On the basis of a simple model which is of the
Landauer-Bttiker type, the current-voltage characteristics are studied, and it is shown that the electron motion
can be tuned between three different regimes: quasiclassical behavior, usual barrier tunneling, and resonant
tunneling.[S0163-182609)01728-2

[. INTRODUCTION ously varying magnetostatic potential the discrete and con-
tinuum energy spectra overlap so that the motion of the elec-
The Landau quantization of the electron motion by antron can be understood in terms of the classical cyclic,
external magnetic field can give much information about thediamagnetic motiof® A combination of such simple mag-
behavior of a homogeneous two-dimensional electron gas agetic structures leads to so-called magnetic superlattices
is particularly well demonstrated with the quantum Hall which show commensurability effects as their electrostatic
effect! Further interesting diamagnetic effects occur in mag-equivalents with the difference that now apart from the cy-
netotransport if the two-dimensional electron gas isclotron radius of the electrons the magnetic-field modulation
nonhomogeneousBy alternating either the magnetic field gives the characteristic length scAleComparing their ex-
or an electric field on mesoscopic length scales, it is possiblperimental results with these calculations of Peeters and
to achieve different kinds of modulations. Vasilopoulos, Yeet al. could further show that the magnetic
Recent work on nonhomogeneous two-dimensional elecstrip lattice leads to an additional weak strain-induced elec-
tron systems has been based on GaA&a]_,As hetero- trostatic potential modulation of the underlying electron §as.
junctions overlaid with patterned metallic gates, ferromag-The additional electrostatic potential modulation was also
netic metals, or superconducting materials. In the case of eeported by the group of Carmora al., who could separate
weak periodic one-dimensional electrostatic potential, Weisghe different contributions to the magnetoresistance as they
et al. observed oscillations in the magnetoresistance as thgtudied its temperature dependence above and below the
external magnetic field applied perpendicularly to the electransition temperature for superconductivity for the used lead
tron gas is varied continuousfylf the potential forms an or niobium grating:®
antidot array, Roukest al. could show that the Hall resis- This paper proposes a structure of the opposite limit: a
tivity becomes negative and quencHe@he effects of a combination of a strong magnetostatic and electrostatic po-
modulated magnetic field acting on a two-dimensional electential. The device consists of a GaAs/@b, _,As semicon-
tron gas have been reported by Carmaial®® and Ye ductor heterostructure, which forms a two-dimensional elec-
et al,” who used either patterned superconducting or ferrotron gas at the interface and a ferromagnetic strip placed on
magnetic gratings. The oscillations in the magnetoresistand®p with an easy axis of magnetization perpendicular to the
depend characteristically on the magnetization direction ofinderlying electron gas as shown in Fig. 1. In addition, the
these individual micromagnets as a function of the externalstrip is gated to form a combined magnetostatic and electro-
i.e., homogeneous, magnetic field. static barrier for the conduction electrons. On the basis of a
Since the oscillations in the magnetoresistance observesimple model, such a structure is shown to have three differ-
by Weisset al. show the interesting commensurability effect ent regimes of operation. Whereas for a certain regime elec-
of two different length scales—the period of the modulationtrons can move according to the classical diamagnetic mo-
potential and the cyclotron radius of the electrons at thedion, there is also the possibility to tune the device between
Fermi energy—analogies have been sought on a theoretice@sonant and nonresonant tunneling behavior. This property
level in a magnetostatical modulated two-dimensional eleceould be exploited in magnetic and magneto-optic devices to
tron gas prior to the experiments in Refs. 5-7.Iléy for  be used as digital logic circuits.
example, analyzed the effects of a magnetic field that varies In order to calculate the current-voltage characteristics of
linearly across the electron gas, and found that the electrorthe proposed structure, it is built on a slight modification of
can flow only in the direction perpendicular to the field the nonequilibrium coupling formalism developed by Caroli
gradient Different “magnetic” structures, such as a poten- et al'? and Feuchtwang® This leads to a simple extension
tial well or barrier created by a finite magnetic field, were of the Landauer-Bitiker formuld including now the effects
considered by Peeters and MatUlidgain the magnetostatic of the two-dimensional electron motion. Somewhat related to
potential influences the transmission as the wave vector ahis subject is the work of Guet et all* and Ramaglia
the electron wave function shows the two-dimensional naturet al,'® who investigated the effect of a transverse magnetic
of the electron motion. A similar problem was investigatedfield on the tunnel current through thick and low semicon-
independently by Calvo, who pointed out that in a continu-ductor barriers.
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FIG. 1. Schematic cross section of a semiconductor heterostruc-
ture segment with a gated ferromagnetic metal layer on top that
modulates the underlaying two-dimensional electron(@BEG ) to s
form a combined magnetostatic and electrostatic barrier potential. Ta
In particular, the ferromagnet has an easy axis perpendicular to the
electron gas, so that the magnetic field is directed either along the
positive or negative direction, and the gate voltagg controls the
depletion of the electron gas.

X -a a
The remainder of the paper is structured as follows. In _
Sec. Il the model of a combined magnetostatic and electro- g'f? 2. Two penl‘ectly coqduc%r]lg Ier?dsand R_g(;g CO””eCtSd
static barrier system is introduced. Then in Sec. IlI, thel® different external reservoirs. They have partitiohs —a an
Landauer-type formula is derived for the essentially t\No-R:a’ respectively, with the combined magnetostatic and electro-
. . . . . static barrier potential in the intermediate region
dimensional electron motion. A numerical example is stud-
ied in Sec. IV to show that tunneling through a combined
magnetostatic and electrostatic barrier can be tuned betwe

resonant and nonresonant tunneling. In conclusion the resu

are discussed and summarized in Sec. V. H=0(L—x)H +O(x—L£)O(R—x)H,+ O (x—R)Hg.
2

With this form of the Hamiltonian it is possible to derive a

gquantum-statistical formulation based on Green'’s functions
In the following, a model description is given of the pro- rather than matching up wave functions as was shown by

posed structure shown in Fig. 1. The interface between GaAgaroli et al. and Feuchtwang** The Green’s functions of

and AlLGa,_,As is approximated in Fig. 2 by an infinite thg three uncoupled subspaces,|, andR, are then deter-

two-dimensional electron gas occupying tke plane in a  Mined by

three-dimensional space. The overlying ferromagnetic metal

strip is gated and creates ideally a square potential barrier of [ho=Hplgp(r,r';@)=6(r—r’), ©)

the heightV, in the xy plane extending fronC=—a to R

=a in the x direction. Further, the magnetization of the fer-

romagnet is perpendicular to the two-dimensional electro

gas so that the magnetic fiell is in the perpendicular

direction on the same finite strip as the electrostatic potentia|n

tenntial barrier in the intermediate region so that the Hamil-
ﬁgnian of the system is a sum of three independent parts,

Il. MODEL OF A COMBINED MAGNETOSTATIC
AND ELECTROSTATIC BARRIER SYSTEM

with r,r’ defined in the respective subregigre{L,l,R}.

The Green'’s functiors of the full system has an analogous
"Yefinition.

In order to connect the uncoupled regions of the system or
other words to couple the Green’s functiggsto find G,

one has to be aware of the fact that in a quantum-mechanical

B.(x)=B O (x—L)O(R~-X), (1)  formulation the vector potentia is the fundamental physi-
cal field rather than the magnetic fieJ and that the vector
whereB= —|B| is the uniform strength of the field. A simi- potential can be nonvanishing while at the same time the

lar model has been used to approximate the tunnelingnagnetic field is zero. Since the systéhig. 2) is invariant
through thick barrier diodes under the influence of a magalong they direction, a generalized Landau gaugg=Bx
netic field, where it is assumed that for very thick barriers the+ const is independent of thecoordinate. Furthermore, the
broadening of the Landau levels on both sides is significantector potential is required to be continuous across the par-
enough to view them as a continuum of incoming and outtitions, which in conjunction with Eq(1) determinesA as
going states? Contrary to other popular two-dimensional

electron-gas systems, such as a Hall bar, the proposed model A (X,y,2)=0,
is not confined along the direction. This yields a consider-
able mathematical simplification and emphasizes tunneling BL if x<[

rather than transport along the edges of the system. Since the
field is applied within a finite strip, the system naturally
separates into the leads on the left and right side of the po- BR if R=sx,

A/(xy,z)=y BX if L<X<R (4
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where the following parameters were introduced for conve-
nience:

The effect of the magnetic field on the conduction electron

spin is small in typical heterostructures such as GaAs/

Al,Ga, _,As so that it is neglected here.

Even without the magnetic field, the band structure is dis-

continuous at the interfaces R and the potential changes by
the amoun¥/,. In equilibrium the barrier is considered to be

flat on top, while upon biasing the junction the potential of

the barrier acquires a slope and the chemical potenffah
the right lead undergoes a shift/ with respect to the chemi-
cal potential - in the left lead. Simultaneously, the
conduction-band bottonvg in the right lead shifts byeV
with respect to the conduction-band bottdrg in the left

lead. The corresponding single-particle potential acquires th§auation(10) vy 5 is known in for

form

v VX—[,
0 € L

Vo(X)= R—

O(X—L)O(R—x)—eVO(X—TR).
)

=

E—aZBky)

(ﬁw—VO—GVW

hwe

2
+ e_VL) _Z (12)
hwg \/E(R—L) 2’
o eV 1
Xp=2ag ky+h—wcm . (12

The solution of the homogeneous form of the differential
ms of parabolic cylinder
functions (see the Appendixv,=D,[(x—X,)2/ag] and
v,=D,[(Xo—X)v2/ag] so that with the help of Eq9) (Ref.

16) the Green'’s function of the intermediate regimncan be
constructed. Since in the leads the conduction electrons
travel freely and obey the dispersion lawe-(R)
zﬁzqf(R)/(Zm), the corresponding Green’s functions are

Here,e s the modulus of the elementary charge of the elecyygse of free waveb.The electron wave vectors include a
tron andV is the voltage drop across the barrier. This leads tQqnribution from the nonvanishing vector potential, i.e., in

the following model Hamiltonians of the subsystems:

2

1 e
H|:ﬁ p+ EA| +V0(X), (6)
1 e \?
Ho=om| PT e @)

wherepe{L,R}. The vector potential in the corresponding
subspace is now denoted By, ; p=—i/AV is the canonical
momentum. Choosing the gau@®, the HamiltonianH, of
the intermediate regiof6) transforms into

2 : X 2
aBA—ZIX&y— a_B - Vo(x)|, (8)

hwe

the left leadq,=2mw/f —(L/ag—ky)? whereas in the
right lead the shift due to the bias needs to be includgd,
=\2m(fhw+eV)/h?—(Rlag—k,)?.

In order to gain a better intuitive understanding of the
system, it is useful to discuss the classical analogy. Classi-
cally, electrons move when they are confined entirely within
the barrier strip on Larmor circles with radius,
= \/ZE/(mwcz), whereE is the classical energy of the elec-
tron. It is assumed for a moment they=0 and that an
electron coming from an area outside the barrier,lsag in
Fig. 2, is scattered by the magnetic sttipThere are two
conceivable ways in which the electron can be scattered. In
the first case, shown in the upper part of Fig. 2, if the mo-
mentum of the electron in the direction is so low that its
associated cyclotron radiug is smaller than half the width

where the expression inside the square brackets is dimewf I, the electron is reflected back into the region from where

sionless with the magnetic lengtia = V% /(mw,), the cyclo-
tron frequencyw.= |eB|/(mc), the effective mass, and the
two-dimensional Laplace operatar. By using this particular

it is incident. In the second case, shown in the lower part of
Fig. 2, if the momentum in th& direction is high enough so
that its cyclotron radius. is larger than half the width df,

gauge, the electron wave function separates into a product d¢iie electron can overcome the threshold imposed by the
functions for the individual coordinates and the mathematicamagnetic field and is scattered into the regi@n If the

model becomes translational invariant in tledirection.

present situation is described by quantum mechanics, the

Therefore, all the Green’s functions can also be Fourieproblem is somewhat analogous to that of electron reflection

transformed in the coordinate,

[N — ” % iky(y=y") Tk
gp(X,y, X",y @) e gp(X,X" 1Ky w),

9

whereg, with pe{L,l,R} is a Green’s function of the sub-
parts andk, is the electron wave vector in thedirection.
According to Eq.(3), the Green’s function of the intermedi-
ate regiong, fulfills the inhomogeneous differential equa-
tion,

2

hw
+2v+1

9i1(X,x" Ky ;@) = 8(x—=x"),
(10

at a potential step in the case of low momentum in xhe
direction of the incident conduction electron and to that of
electron transmission above a potential well for the high mo-
mentum case. Thus, this result leads to an electron motion
that varies only slightly from the classical caséhe effect
of the magnetostatic barrier is that of a momentum filter.

If an additional electrostatic barrier is includedy>0,
the system shows in a classical picture no substantial differ-
ence from the previous case. Quantum mechanically one
would, on the other hand, expect that due to the combined
electrostatic and magnetostatic potentials quasibound states
in the barrier regiorl can form and can give rise to a reso-
nant behavior in the transmission. For the same reasons as
given in the example earlier, it is possible to observe the
latter effect only for electron energies that exceed the barrier
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height of the magnetostatic potential. If, however, the ener- » dw « dk
gies and momenta of certain electrons correspond to the qua-(Z)=— ZGJ' E[n';(w)— nE(w)]f T;T(ky ),
sibound states in the barrier regionthese electrons can o o (15)
tunnel into the quasibound states and their transmission
through the barrier becomes strongly pronounced. The bagnd differs from the Landauer formula only in that the trans-
rier acts then as a momentum and energy filter. Therefore, mission coefficient through the intermediate region
should be interesting to analyze the current-voltage behavior o L ; L
for such a system in order to test if this quasi-resonant tun- T(ky, @) =A% GH(L,Rky;0)G'(R,L:ky ;)
neling Ieads_ to a current-voltage characteristic that shows XV (Ky;@)VR(Ky ;)
negative resistance.
depends explicity onk,. The quantities vy(k, ;)
=hq,/m are the electron velocities in the leads. Since the
IIl. CURRENT Green’s functions of the subregions are known, the full
The formulations by Landauer and @iker for currents Green’s functionG"’® can be obtained according to the
through a finite region of noninteracting electrons have con¢oupling formalism of Caroli and Feuchtwalfg'® The
tributed significantly to the clear understanding of mesos{ransmission coefficient then takes the form
copic transport as long as it is coherent across the device. In >
this section, it is shown that the two-dimensional motion of (ky, @)= AW qL9r ,
the glectro_n through the combined magne_tostauc and electro- y (Q+9.9rA)%+ (q Tr+grl)?
static barrier can also be understood within the framework of ) ) .
the Landauer-Biiker formalism. where the following notations have been introdu¢sek also
In the present case the conduction current operator can Ref. 16:
written as a sum of the volume density of the charge flux and
the diamagnetic contributiof=7"+7% where the indi-
vidual terms expressed through field operators in the notation
of second quantization read as

(16)

Fp=[Vi(X)V2(R) =V (X)V1(R) Ix—p, (173
Q=[vi(X)Va(X) =Vo(X)V1(X ) Ix= =z, (170)

A=Vv1(L)Vo(R)=Vo(L)Vi(R), (179

ieh
Idem[(V\IfT)\If—\IfT(V\If)], (139  andW is the Wronskian(see the Appendix The prime in-
dicates the derivative of the parabolic cylinder functions
v1(X) with respect to their argument Equation(15) shall
dia_ e? N now be used to analyze the current-voltage characteristics of
™= _R‘P AY. (13D the combined magnetostatic and electrostatic barrier poten-
tial.

Since the system is assumed to be in steady state and trans-

lationally invariant along the direction, the current can be IV. NUMERICAL RESULTS AND DISCUSSION

Fourier transformed with respect to these quantities. Furth_er, In this section, Eq(15) is evaluated numerically as a
only conduction electrons that cross the barrier are COﬂSIdf-

I ) unction of the applied bias at zero temperature. In order to
ered so t_hat the current due to the contributigh yields obtain a better estimate of the physical quantities involved,
when taking the average

an explicit model of the GaAs/AGa, _,As semiconductor
heterostructure with a ferromagnetic strip placed on top as

dk, (* do eh ie? introduced in Fig. 1 is considered. According to Crowell
<I>=azﬁ w27 .27 I,|m ﬁ(‘?X’_axH RAX et al,'® it is possible to grow ferromagnetic films on semi-
—X conductor heterostructures where the magnetic field inside
XGT(x,x";ky s 0), (14)  the structure can approximately be ulBe5 kG. Here, it is

assumed that the field felt by the two-dimensional electron

where the average over the field operators is written in term§as will beB=1 kG. The magnetic lengthg is then ap-
of the Keldysh Green's function G<(x,x’;ky;w) proximately 80 nm so that the barrier width o
:i<qf’r(x';ky;w)qf(x;ky;w)>_ The curren(14) may be cal- =6.CaB/\/§, used in the numerical example, corresponds to
culated at any point in the system, for example at one of th&oughly 350 nm. An effective mass ofi=0.07m, and an
partitions Pe {£,R}, since in a steady state the continuity €lectron density ofng=5x10"cn? for GaAs lead to a
equationV(Z)=0 holds. Fermi energyEr=16.5 meV orEg/(fiw.)~1.

A further significant simplification is obtained by the form  Figure 3 shows the curre(V,) = —(Z)/2 as a function
of the gauge in Eq4). As A,=0, the magnetic-field depen- of the normalized voltag¥ [ e V/If w.]. The barrier in Fig. 3
dence of Eq(14) is only contained implicitly througlk, . has a width ofs=6.0az/2 and a height at zero magnetic
Therefore the currentl4) takes the same form as in usual field and zero bias oJ=1.50, U=1.75, U=2.00, andU
electrostatic barrier tunneling of noninteracting electrons=2.25 for the different plots, respectively, wherd
Meir and Wingreen have shown that in such a case the usua Vy/Eg . The fact that no current flows for voltages below
two-terminal Landauer formula is retainedEmploying this  3x16.5 mV = 49.5 mV is due to a threshold of the com-
result, the current is given by bined barrier system and shall be discussed in detail below.
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FIG. 3. Current-voltage characteristics for barrier width sof o o )
=6.0g/2 and different potential heights =V, /Er. The cur- ~ FIG. 4. Trar_lsmlssmn_ coefficients as a fun_ctlon_ &f
rentC(V,) = —(Z)/2 is given as a function of the normalized volt- ~7@/(fw) for differentk=agk, through a barrier with widtts
ageV,[eViiw,]. =6.0ag/+/2, heightU=1.50 depicted by the dash-dotted line, and

applied bias of 58 mV.

The current-voltage characteristics fdd=1.50 and U . . . .
=1.75 show more or less typical single barrier tunnelingrnISSIOn coeﬁlc_lent have a _f|n|te value b?"OW the_: Fermi en-
behavior in the voltage range calculated. Eb+=2.00 and ergy Ee. In .th's range, It is a monotonic .functlon .O.f the
U=2.25, however, the functions plotted in Fig. 3 behave€neray and is tantamount to the transmission coefficient for
very différently. In barticular, folJ =2.00 peaks occur in the typical single-barrier tunneling. In order.to see Wh.y this _fre-
current-voltage characteristic at 61 mV and 82 mV, wherea uency CUtOff. oceurs, t'he cqrrespondlng one-dimensional
for U=2.25 at 70 mV, 79 mV, and 95 mV, respectively. arrier potential IS depicted in Fig. 5. In the graph f(.)r
This kind of behavior is similar to resonant tunneling k=0.00,' only the nght lead can have propagative states, i.e.,
through a double-barrier structure. only gr is -real, and in the graph fde=—1.00 only the left

In the following it shall be explained how the three dif- lead can, i.e., only, is real, Whergas fok=—0.78 bOthq.L ,
ferent regimes in the structure occur. The existence of 41d dr are real such that tunneling through the barrier is

threshold voltagd/,, can be deduced from the nonvanishing made possible bgtween allowed states. Nevertheless, there is
no apparent configuration where an energy level of the well

vector potentialA in the leads which complicates the wave- ' ~. i ith . ide the barfi
vector dependence of the current in the direction parallel tgoinciaes with a propagative state outside the barrier.

the interfaces, expressed lgy. In order for a current to Finally, to understanc_j _th‘? resonant behavior of the
flow, both wave vectors in the leads andqg have to be current-voltage charactensqc in Fig. 3 far=2.00 andU

real so that an electron can propagate from the left to the 2'25’_ one has ﬁufo_ t_urr%akgalnst_o Flhe wa\ée}vectqr—dlze_perédent
right side of the barrier. This leads to the requirement for théransmlssmp coetticient (. y). Similar to elore, n Fg.

the transmission coefficient fod=2.00 is shown fork

wave vectors to be real =0.00, k=—0.78, andk=—1.00 at an applied bias of 58
Er 1 S mV. Again only for the second valuk=—0.78 is there
T o (Lagky)" (18 transmission at the Fermi enerBy . This time the transmis-
¢ sion coefficient, however, shows a sharp peak. The peak does

not quite reach unity due to the asymmetry in the potential as

1 1
ﬁ—(E,:+eV)> E(72—a§ky)2_ (19 illustrated fork=—0.78 in Fig. 7. Further, one can see that
@We the Fermi energy in the lead corresponds to a state at ap-

Using Eq.(18) to obtain a condition fok, and inserting the

result into Eq.(19), one finds a threshold voltage above E E E
which a current starts to flow, 3 ° 25
2
Vo _ L rlye— /R Rl 20 N 2
hwc - 2( ) ﬁwc( ) ( ) 1 4 —
In the numerical exampl¥y, is 49.5 mV. 5 2 AR 5
Next the wave-vector dependence of the transmission co: -
efficient T(k,) shall be discussed in the regime where tun- 3 2 - 1% 3 82 1% 3
neling is comparable to single barrier tunneling. In Fig. 4 the k=0.00 k=078 o
transmission coefficient is shown fd=0.00, k= —0.78, FIG. 5. One-dimensional barrier potential for different values of

and k=—1.00 at an applied bias of 58 mV, wheke  k=agk, corresponding to Fig. 4. The abscissa is given in terms of
=agky . Only for the second valule= —0.78 does the trans- x,=x/ag and the ordinate cE=% w/(fw,).
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1.0 the barrier well and therefore the resonances do not become
significantly smeared out in the current-voltage characteris-
tics. The effect of this wave-vector-dependent tunneling is

08 that the current-voltage characteristics very much attain a
one-dimensional character, i.e., most of the tunneling occurs
in a narrow region ok, and close to the Fermi level of the

06 - left lead. Therefore, the current is reduced when the bias is

- increased after crossing a resonance level before a new one is
encountered.

0.4

V. CONCLUSION
2+
° A current or conductance measurement on devices where
: transport is ballistic usually faces problems when dealing
00, with a strong bias where the system cannot be assumed to be

near equilibrium. In the present case this situation is compli-
cated by the presence of an inhomogeneous magnetic field.
FIG. 6. Transmission coefficients as a functon &  To date, both problems have been overcome only by a qua-
=hwl(fiw,) for differentk=agk, through a barrier with widtts ~ siequilibrium approximatioll or other phenomenological
=6.0ag/+/2, heightU=2.00 depicted by the dash-dotted line, and approaches such as a combination of the Boltzmann and
applied bias of 58 mV. Schralinger equatioff or the transfer Hamiltonian
formalism? In Sec. Ill an explicit formula for the current of
proximately 2w /2 in the barrier well measured from the a two-dimensional electron gas in a nonhomogeneous exter-
bottom of the well. In a free-electron gas subjected to a honal magnetic field was derived from first principles on the
mogeneous magnetic fiellw /2 would be the energy of the basis of the nonequilibrium coupling theories of Casilil.
first Landau level. Thus the peak in the transmission througland Feuchtwand?'2 However, it turned out that Eq15) is
the barrier is created by tunneling through a quasibound statantamount to the usual two-terminal Landauer formula and

of the barrier well. thus illustrates well the universal character of Landauer’s
This leads to the following interpretation of the current- scattering approach to transport in the ballistic regime.
voltage characteristics in the cases fdr=2.00 and U Further, in Sec. IV numerical results of the current-

=2.25. Below the threshold voltagé;, no current can flow voltage characteristics were obtained and showed that the
since there is no transmission through the barrier. Abdye electrons can in fact tunnel resonantly through a combined
tunneling through the structure is still reduced, because thelectrostatic and magnetostatic barrier potential in a two-
tunneling length must extend over the entire width of thedimensional electron gas. Although it is possible to trans-
barrier as is the case for single-barrier tunneling. When théorm the problem such that its mathematical formulation be-
bias is further increased, the well formed by the magneticomes one-dimensional, the tunneling probability still
field is pulled down to lower energies until the well level depends on the electron wave vedtgr i.e., on the momen-
becomes degenerate with the Fermi energy for ceftgin tum parallel to the barrier. The motion is essentially two-
values of the conduction electrons incident from the left leaddimensional as would be expected from the classical anal-
This leads to resonant tunneling through the quasibound statey. Studying the current-voltage behavior, three regimes
of the well. Increasing the bias even further, so that the welivere found. The first, for biases below the threshold voltage
level drops sufficiently below the Fermi level but not neces-Vy,, corresponds to the classical reflection of electrons from
sarily below the conduction-band edge, the current flow ighe barrier. The other two regimes, which arise at biases
strongly reduced again, leading to a negative differentiapboveVy,, can only be understood on a quantum level. De-
conductivity. Although thek,-wave-vector dependence in pending on the ratio between electrostatic barrier height
the quasi-one-dimensional potential leads to a cutoff in thend Fermi energy in the left leaBg, either resonant or
integration in Eq.(15), it does not shift the energy levels in nonresonant tunneling occurs. Further, due to the narrow
range of possible values for the wave veclkgrto show

E E E resonant tunneling behavior, the motion of the conduction
. 3 electrons becomes essentially one-dimensional in this regime
and the combined barrier acts as a momentum and energy

filter.
The fact that the tunneling behavior is tunable as a func-
— tion of the electrostatic barrier heighty and dependent on

PRI RS N R the magnetic field makes the proposed structure an inter-
-1 esting candidate for future applications in digital logic cir-
k0,00 3 32 1 1% 3 cuits. However, to make reliable predictions on the device

performance, it is necessary to take into account, for ex-
FIG. 7. One-dimensional barrier potential for different values ofample, the edge effects of the magnetic fielahd the stress

k=agk, corresponding to Fig. 6. The abscissa is given in terms ofof the ferromagnetic film on the two-dimensional electron

X,=x/ag and the ordinate cE=%w/(%w,). gas?! Further, inelastic-scattering effects are of importance
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in a realistic description of transport, as has been shown foio take care of the range of the argument under which the
double-barrier tunneling by Wingreest al?? It is question-  function has a certain series expansion, and one finds for
able in the case of electron-phonon scattering whether or ngthase anglekp| < 3/4m, wherez=|z|exp(¢), the following
sidebands would blur the transmission to a degree wherasymptotic expansion:

resonances would no longer fade out before a new one oc-

curs so that the effect of negative resistance would be sup- (12 v(v—1)
pressed D,(2)~e 77| 1-
. 222
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stein, Dr. N. F. Schwabe, and Dr. G. Bruun for making use-. . .
ful suggestions. To obtain now the asymptotic form for values #fnot com-

prised in the above range, one uses the linear reléf8nin
_ order to be able to assign values to the phase iafa dif-
APPENDIX: PARABOLIC CYLINDER FUNCTIONS ferent range, e.g., 5#> ¢>1/4m. Since the phase of z

The parabolic cylinder functions are defined in the follow-and —iz is now ¢— m and ¢— 1/2, this leads to
ing through Kummers's functiorfs:

1 D (z)~e‘<1/4>zsz( My
v 2
= 2z
D, (£12)=2"% €72 —<2) o[ -2 ¢
v 1-v 2'2° L HE=2)=3)
M= 8z*
T _E) n vam i T+ 1) g(UA)Z2 5~ =1 1+(V+1)(V+2)
) 2 o 1-v 3 2 (A1) I(-v) 27
v 2 2 '
=3 (v+1)(v+2)(v+3)(v+4) )
+ 2 4+ ..
where 8z
r = T . Each of these terms has an unavoidable error since the series
c a+tn) z i i i
B(a.c.7)= (c) D ( )__ (Az) 1S only asympiotically correct. Ifgp is zero, Eq. (A4)
I'(a) n=o0 I'(c+n) n! applies—which is just the first term of the above

5 ) ) expansion—and the second term is smaller than the unavoid-
Both ®(—/2,1/2£7), and § ®(1—v/2,3/2£7) are linearly  gpje error in the first term so that it should not be included.
independent solutions of Kummer’s differential equation inyowever if¢ is equal torr, the roles are exchanged: the first
the neighborhood af=0 with ZE§\E and thus represent a term is now smaller than the unavoidable error in the second
series expansion for the parabolic cylinder functions aroungerm and should not be included. This phenomenon is known

z=0. The function (2) andD ,(~2) are not the only sét 55 the Stokes’ phenomendhTherefore, for the limit asz|
of possible independent solutions to the harmonic-oscillator , »c the parabolic cylinder functions behave as
differential equation. As can be seen from the differential

equation,D _,_4(iz) andD_,_4(—iz) can also form a set DV(|z|)we‘(1’4)Zz|z|”,

of linear independent solutions from which any two combi- (A5)
nations are essentially connected via a linear reldtion,

\/277 2 o
DV(—|Z|)“me(l/4)Z|Z| vl

) N2 .
EEPNE % _ i(m/2)(v+1) i
D.(2)=€""D.(=2)+ F(—v)e D_,-1(=i2). The asymptotic expansions of the parabolic cylinder func-
(A3) tions (A5) prove useful to evaluate the Wronskian,

It is now possible to represent the parabolic cylinder func- 1 27
tions for noninteger values of by an asymptotic expansion D,(2)d,D,(—2z)—D,(—2)d,D V(z)—>z m

in terms of a power series inZlin the neighborhood of

=, However, the asymptotic expansion fér,(z) will v+l v 2
change drastically in its behavior if the argument changes X zZm——~ E)amzw, (AB6)

sign. In other words, a phase change in the argument leads to
a discontinuity at certain phase angles which results from thas well as to calculate the parabolic cylinder functions for
fact that asymptotic series are not unique. Therefore, one hdarge arguments numerically.
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