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Current through a combined magnetostatic and electrostatic barrier system

C. Heide
University of Oxford, Department of Physics, Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom

~Received 4 January 1999!

A device is proposed where a gated ferromagnetic strip is placed on top of a semiconductor heterostructure
to form a combined magnetostatic and electrostatic barrier. On the basis of a simple model which is of the
Landauer-Bu¨ttiker type, the current-voltage characteristics are studied, and it is shown that the electron motion
can be tuned between three different regimes: quasiclassical behavior, usual barrier tunneling, and resonant
tunneling.@S0163-1829~99!01728-2#
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I. INTRODUCTION

The Landau quantization of the electron motion by
external magnetic field can give much information about
behavior of a homogeneous two-dimensional electron ga
is particularly well demonstrated with the quantum H
effect.1 Further interesting diamagnetic effects occur in ma
netotransport if the two-dimensional electron gas
nonhomogeneous.2 By alternating either the magnetic fiel
or an electric field on mesoscopic length scales, it is poss
to achieve different kinds of modulations.

Recent work on nonhomogeneous two-dimensional e
tron systems has been based on GaAs/AlxGa12xAs hetero-
junctions overlaid with patterned metallic gates, ferroma
netic metals, or superconducting materials. In the case
weak periodic one-dimensional electrostatic potential, We
et al. observed oscillations in the magnetoresistance as
external magnetic field applied perpendicularly to the el
tron gas is varied continuously.3 If the potential forms an
antidot array, Roukeset al. could show that the Hall resis
tivity becomes negative and quenched.4 The effects of a
modulated magnetic field acting on a two-dimensional el
tron gas have been reported by Carmonaet al.5,6 and Ye
et al.,7 who used either patterned superconducting or fe
magnetic gratings. The oscillations in the magnetoresista
depend characteristically on the magnetization direction
these individual micromagnets as a function of the exter
i.e., homogeneous, magnetic field.

Since the oscillations in the magnetoresistance obse
by Weisset al. show the interesting commensurability effe
of two different length scales—the period of the modulati
potential and the cyclotron radius of the electrons at
Fermi energy—analogies have been sought on a theore
level in a magnetostatical modulated two-dimensional e
tron gas prior to the experiments in Refs. 5–7. Mu¨ller, for
example, analyzed the effects of a magnetic field that va
linearly across the electron gas, and found that the elect
can flow only in the direction perpendicular to the fie
gradient.8 Different ‘‘magnetic’’ structures, such as a pote
tial well or barrier created by a finite magnetic field, we
considered by Peeters and Matulis.9 Again the magnetostatic
potential influences the transmission as the wave vecto
the electron wave function shows the two-dimensional na
of the electron motion. A similar problem was investigat
independently by Calvo, who pointed out that in a contin
PRB 600163-1829/99/60~4!/2571~8!/$15.00
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ously varying magnetostatic potential the discrete and c
tinuum energy spectra overlap so that the motion of the e
tron can be understood in terms of the classical cyc
diamagnetic motion.10 A combination of such simple mag
netic structures leads to so-called magnetic superlatt
which show commensurability effects as their electrosta
equivalents with the difference that now apart from the c
clotron radius of the electrons the magnetic-field modulat
gives the characteristic length scale.11 Comparing their ex-
perimental results with these calculations of Peeters
Vasilopoulos, Yeet al. could further show that the magnet
strip lattice leads to an additional weak strain-induced el
trostatic potential modulation of the underlying electron ga7

The additional electrostatic potential modulation was a
reported by the group of Carmonaet al., who could separate
the different contributions to the magnetoresistance as t
studied its temperature dependence above and below
transition temperature for superconductivity for the used le
or niobium grating.5,6

This paper proposes a structure of the opposite limit
combination of a strong magnetostatic and electrostatic
tential. The device consists of a GaAs/AlxGa12xAs semicon-
ductor heterostructure, which forms a two-dimensional el
tron gas at the interface and a ferromagnetic strip placed
top with an easy axis of magnetization perpendicular to
underlying electron gas as shown in Fig. 1. In addition,
strip is gated to form a combined magnetostatic and elec
static barrier for the conduction electrons. On the basis o
simple model, such a structure is shown to have three dif
ent regimes of operation. Whereas for a certain regime e
trons can move according to the classical diamagnetic
tion, there is also the possibility to tune the device betwe
resonant and nonresonant tunneling behavior. This prop
could be exploited in magnetic and magneto-optic device
be used as digital logic circuits.

In order to calculate the current-voltage characteristics
the proposed structure, it is built on a slight modification
the nonequilibrium coupling formalism developed by Car
et al.12 and Feuchtwang.13 This leads to a simple extensio
of the Landauer-Bu¨ttiker formula1 including now the effects
of the two-dimensional electron motion. Somewhat related
this subject is the work of Gue´ret et al.14 and Ramaglia
et al.,15 who investigated the effect of a transverse magne
field on the tunnel current through thick and low semico
ductor barriers.
2571 ©1999 The American Physical Society
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The remainder of the paper is structured as follows.
Sec. II the model of a combined magnetostatic and elec
static barrier system is introduced. Then in Sec. III, t
Landauer-type formula is derived for the essentially tw
dimensional electron motion. A numerical example is stu
ied in Sec. IV to show that tunneling through a combin
magnetostatic and electrostatic barrier can be tuned betw
resonant and nonresonant tunneling. In conclusion the re
are discussed and summarized in Sec. V.

II. MODEL OF A COMBINED MAGNETOSTATIC
AND ELECTROSTATIC BARRIER SYSTEM

In the following, a model description is given of the pr
posed structure shown in Fig. 1. The interface between G
and AlxGa12xAs is approximated in Fig. 2 by an infinit
two-dimensional electron gas occupying thexy plane in a
three-dimensional space. The overlying ferromagnetic m
strip is gated and creates ideally a square potential barrie
the heightV0 in the xy plane extending fromL52a to R
5a in the x direction. Further, the magnetization of the fe
romagnet is perpendicular to the two-dimensional elect
gas so that the magnetic fieldB is in the perpendicularz
direction on the same finite strip as the electrostatic poten

Bz~x!5B Q~x2L!Q~R2x!, ~1!

whereB52uBu is the uniform strength of the field. A simi
lar model has been used to approximate the tunne
through thick barrier diodes under the influence of a m
netic field, where it is assumed that for very thick barriers
broadening of the Landau levels on both sides is signific
enough to view them as a continuum of incoming and o
going states.14 Contrary to other popular two-dimension
electron-gas systems, such as a Hall bar, the proposed m
is not confined along thex direction. This yields a consider
able mathematical simplification and emphasizes tunne
rather than transport along the edges of the system. Sinc
field is applied within a finite strip, the system natura
separates into the leads on the left and right side of the

FIG. 1. Schematic cross section of a semiconductor heteros
ture segment with a gated ferromagnetic metal layer on top
modulates the underlaying two-dimensional electron gas~2DEG! to
form a combined magnetostatic and electrostatic barrier poten
In particular, the ferromagnet has an easy axis perpendicular to
electron gas, so that the magnetic field is directed either along
positive or negativez direction, and the gate voltageVg controls the
depletion of the electron gas.
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tential barrier in the intermediate region so that the Ham
tonian of the system is a sum of three independent parts

H5Q~L2x!HL1Q~x2L!Q~R2x!HI1Q~x2R!HR .
~2!

With this form of the Hamiltonian it is possible to derive
quantum-statistical formulation based on Green’s functio
rather than matching up wave functions as was shown
Caroli et al. and Feuchtwang.12,13 The Green’s functions of
the three uncoupled subspaces,L, I, and R, are then deter-
mined by

@\v2Hp#gp~r ,r 8;v!5d~r2r 8!, ~3!

with r ,r 8 defined in the respective subregionpP$L,I ,R%.
The Green’s functionG of the full system has an analogou
definition.

In order to connect the uncoupled regions of the system
in other words to couple the Green’s functionsgp to find G,
one has to be aware of the fact that in a quantum-mechan
formulation the vector potentialA is the fundamental physi
cal field rather than the magnetic fieldB, and that the vector
potential can be nonvanishing while at the same time
magnetic field is zero. Since the system~Fig. 2! is invariant
along they direction, a generalized Landau gaugeAy5Bx
1const is independent of they coordinate. Furthermore, th
vector potential is required to be continuous across the
titions, which in conjunction with Eq.~1! determinesA as

Ax~x,y,z!50,

Ay~x,y,z!5H BL if x<L
Bx if L<x<R
BR if R<x,

~4!

c-
at

l.
he
he

FIG. 2. Two perfectly conducting leadsL andR are connected
to different external reservoirs. They have partitionsL52a and
R5a, respectively, with the combined magnetostatic and elec
static barrier potential in the intermediate regionI.
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Az~x,y,z!50.

The effect of the magnetic field on the conduction elect
spin is small in typical heterostructures such as Ga
Al xGa12xAs so that it is neglected here.

Even without the magnetic field, the band structure is d
continuous at the interfacesL,R and the potential changes b
the amountV0. In equilibrium the barrier is considered to b
flat on top, while upon biasing the junction the potential
the barrier acquires a slope and the chemical potentialmR in
the right lead undergoes a shifteV with respect to the chemi
cal potential mL in the left lead. Simultaneously, th
conduction-band bottomV0

R in the right lead shifts byeV
with respect to the conduction-band bottomV0

L in the left
lead. The corresponding single-particle potential acquires
form

V0~x!5FV02eV
x2L
R2LGQ~x2L!Q~R2x!2eVQ~x2R!.

~5!

Here,e is the modulus of the elementary charge of the el
tron andV is the voltage drop across the barrier. This leads
the following model Hamiltonians of the subsystems:

HI5
1

2m S p1
e

c
AI D 2

1V0~x!, ~6!

Hp5
1

2m S p1
e

c
ApD 2

, ~7!

wherepP$L,R%. The vector potential in the correspondin
subspace is now denoted byAp ; p52 i /\¹ is the canonical
momentum. Choosing the gauge~4!, the HamiltonianHI of
the intermediate region~6! transforms into

HI52
\vc

2 FaB
2 D22i x]y2S x

aB
D 2

2
2

\vc
V0~x!G , ~8!

where the expression inside the square brackets is dim
sionless with the magnetic lengthaB5A\/(mvc), the cyclo-
tron frequencyvc5ueBu/(mc), the effective massm, and the
two-dimensional Laplace operatorD. By using this particular
gauge, the electron wave function separates into a produ
functions for the individual coordinates and the mathemat
model becomes translational invariant in they direction.
Therefore, all the Green’s functions can also be Fou
transformed in they coordinate,

gp~x,y,x8,y8;v!5E
2`

` dky

2p
eiky(y2y8)gp~x,x8;ky ;v!,

~9!

wheregp with pP$L,I ,R% is a Green’s function of the sub
parts andky is the electron wave vector in they direction.
According to Eq.~3!, the Green’s function of the intermed
ate regiongI fulfills the inhomogeneous differential equa
tion,

\vc

2 FaB
2 ]x

22S x2x0

aB
D 2

12n11GgI~x,x8;ky ;v!5d~x2x8!,

~10!
n
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where the following parameters were introduced for con
nience:

n5
1

\vc
S \v2V02eV

L2aB
2ky

R2L D
1S eV

\vc

aB

A2~R2L !
D 2

2
1

2
, ~11!

x05aB
2 S ky1

eV

\vc

1

R2L D . ~12!

The solution of the homogeneous form of the different
equation~10! v1,2 is known in forms of parabolic cylinde
functions ~see the Appendix! v15Dn@(x2x0)A2/aB# and
v25Dn@(x02x)A2/aB# so that with the help of Eq.~9! ~Ref.
16! the Green’s function of the intermediate regiongI can be
constructed. Since in the leads the conduction electr
travel freely and obey the dispersion laweL(R)

5\2qL(R)
2 /(2m), the corresponding Green’s functions a

those of free waves.1 The electron wave vectors include
contribution from the nonvanishing vector potential, i.e.,
the left leadqL5A2m v/\2(L/aB

22ky)
2 whereas in the

right lead the shift due to the bias needs to be included,qR

5A2m(\v1eV)/\22(R/aB
22ky)

2.
In order to gain a better intuitive understanding of t

system, it is useful to discuss the classical analogy. Cla
cally, electrons move when they are confined entirely with
the barrier strip on Larmor circles with radiusr c

5A2E/(mvc
2), whereE is the classical energy of the elec

tron. It is assumed for a moment thatV050 and that an
electron coming from an area outside the barrier, sayL as in
Fig. 2, is scattered by the magnetic stripI. There are two
conceivable ways in which the electron can be scattered
the first case, shown in the upper part of Fig. 2, if the m
mentum of the electron in thex direction is so low that its
associated cyclotron radiusr c is smaller than half the width
of I, the electron is reflected back into the region from whe
it is incident. In the second case, shown in the lower par
Fig. 2, if the momentum in thex direction is high enough so
that its cyclotron radiusr c is larger than half the width ofI,
the electron can overcome the threshold imposed by
magnetic field and is scattered into the regionR. If the
present situation is described by quantum mechanics,
problem is somewhat analogous to that of electron reflec
at a potential step in the case of low momentum in thex
direction of the incident conduction electron and to that
electron transmission above a potential well for the high m
mentum case. Thus, this result leads to an electron mo
that varies only slightly from the classical case.9 The effect
of the magnetostatic barrier is that of a momentum filter.

If an additional electrostatic barrier is included,V0.0,
the system shows in a classical picture no substantial dif
ence from the previous case. Quantum mechanically
would, on the other hand, expect that due to the combi
electrostatic and magnetostatic potentials quasibound s
in the barrier regionI can form and can give rise to a res
nant behavior in the transmission. For the same reason
given in the example earlier, it is possible to observe
latter effect only for electron energies that exceed the bar
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2574 PRB 60C. HEIDE
height of the magnetostatic potential. If, however, the en
gies and momenta of certain electrons correspond to the
sibound states in the barrier regionI, these electrons ca
tunnel into the quasibound states and their transmis
through the barrier becomes strongly pronounced. The
rier acts then as a momentum and energy filter. Therefor
should be interesting to analyze the current-voltage beha
for such a system in order to test if this quasi-resonant t
neling leads to a current-voltage characteristic that sh
negative resistance.

III. CURRENT

The formulations by Landauer and Bu¨ttiker for currents
through a finite region of noninteracting electrons have c
tributed significantly to the clear understanding of mes
copic transport as long as it is coherent across the devic
this section, it is shown that the two-dimensional motion
the electron through the combined magnetostatic and ele
static barrier can also be understood within the framework
the Landauer-Bu¨ttiker formalism.

In the present case the conduction current operator ca
written as a sum of the volume density of the charge flux a
the diamagnetic contributionI5I vd1I dia, where the indi-
vidual terms expressed through field operators in the nota
of second quantization read as

I vd5
ie\

2m
@~¹C†!C2C†~¹C!#, ~13a!

I dia52
e2

mc
C†AC. ~13b!

Since the system is assumed to be in steady state and t
lationally invariant along they direction, the current can b
Fourier transformed with respect to these quantities. Furt
only conduction electrons that cross the barrier are con
ered so that the current due to the contributions~13! yields
when taking the average

^I&5(
ab

E
2`

` dky

2p E
2`

` dv

2p
lim

x8˜x

F e\

2m
~]x82]x!1

ie2

mc
AxG

3G,~x,x8;ky ;v!, ~14!

where the average over the field operators is written in te
of the Keldysh Green’s function G,(x,x8;ky ;v)
5 i ^C†(x8;ky ;v)C(x;ky ;v)&. The current~14! may be cal-
culated at any point in the system, for example at one of
partitionsPP$L,R%, since in a steady state the continui
equation¹^I&50 holds.

A further significant simplification is obtained by the for
of the gauge in Eq.~4!. As Ax50, the magnetic-field depen
dence of Eq.~14! is only contained implicitly throughky .
Therefore the current~14! takes the same form as in usu
electrostatic barrier tunneling of noninteracting electro
Meir and Wingreen have shown that in such a case the u
two-terminal Landauer formula is retained.17 Employing this
result, the current is given by
r-
a-

n
r-
it

or
-
s

-
-
In
f
o-
f

be
d

n

ns-

r,
d-

s

e

.
al

^I&522eE
2`

` dv

2p
@nF

L~v!2nF
R~v!#E

2`

` dky

2p
T~ky ,v!,

~15!

and differs from the Landauer formula only in that the tran
mission coefficient through the intermediate region

T~ky ,v!5\2 Ga~L,R;ky ;v!Gr~R,L;ky ;v!

3vL~ky ;v!vR~ky ;v!

depends explicitly on ky . The quantities vp(ky ;v)
5\qp /m are the electron velocities in the leads. Since
Green’s functions of the subregions are known, the f
Green’s functionG(r /a) can be obtained according to th
coupling formalism of Caroli and Feuchtwang.12,13 The
transmission coefficient then takes the form

T~ky ,v!5
4W2qLqR

~V1qLqRL!21~qLGR1qRGL!2
, ~16!

where the following notations have been introduced~see also
Ref. 16!:

Gp5@v18~x!v2~R!2v28~x!v1~R!#x5P , ~17a!

V5@v18~x!v28~x8!2v28~x!v18~x8!#x5L,x85R , ~17b!

L5v1~L!v2~R!2v2~L!v1~R!, ~17c!

and W is the Wronskian~see the Appendix!. The prime in-
dicates the derivative of the parabolic cylinder functio
v1,2(x) with respect to their argumentx. Equation~15! shall
now be used to analyze the current-voltage characteristic
the combined magnetostatic and electrostatic barrier po
tial.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, Eq.~15! is evaluated numerically as
function of the applied bias at zero temperature. In orde
obtain a better estimate of the physical quantities involv
an explicit model of the GaAs/AlxGa12xAs semiconductor
heterostructure with a ferromagnetic strip placed on top
introduced in Fig. 1 is considered. According to Crow
et al.,18 it is possible to grow ferromagnetic films on sem
conductor heterostructures where the magnetic field ins
the structure can approximately be up toB55 kG. Here, it is
assumed that the field felt by the two-dimensional elect
gas will be B51 kG. The magnetic lengthaB is then ap-
proximately 80 nm so that the barrier width ofs
56.0aB /A2, used in the numerical example, corresponds
roughly 350 nm. An effective mass ofm50.07me and an
electron density ofns5531011/cm2 for GaAs lead to a
Fermi energyEF516.5 meV orEF /(\vc)'1.

Figure 3 shows the currentC(Vn)52^I&/2 as a function
of the normalized voltageVn@eV/\vc#. The barrier in Fig. 3
has a width ofs56.0aB /A2 and a height at zero magnet
field and zero bias ofU51.50, U51.75, U52.00, andU
52.25 for the different plots, respectively, whereU
5V0 /EF . The fact that no current flows for voltages belo
3316.5 mV 5 49.5 mV is due to a threshold of the com
bined barrier system and shall be discussed in detail be
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The current-voltage characteristics forU51.50 and U
51.75 show more or less typical single barrier tunneli
behavior in the voltage range calculated. ForU52.00 and
U52.25, however, the functions plotted in Fig. 3 beha
very differently. In particular, forU52.00 peaks occur in the
current-voltage characteristic at 61 mV and 82 mV, wher
for U52.25 at 70 mV, 79 mV, and 95 mV, respectivel
This kind of behavior is similar to resonant tunnelin
through a double-barrier structure.

In the following it shall be explained how the three d
ferent regimes in the structure occur. The existence o
threshold voltageVth can be deduced from the nonvanishi
vector potentialA in the leads which complicates the wav
vector dependence of the current in the direction paralle
the interfaces, expressed byky . In order for a current to
flow, both wave vectors in the leadsqL and qR have to be
real so that an electron can propagate from the left to
right side of the barrier. This leads to the requirement for
wave vectors to be real,

EF

\vc
>

1

2
~L2aB

2ky!2, ~18!

1

\vc
~EF1eV!>

1

2
~R2aB

2ky!2. ~19!

Using Eq.~18! to obtain a condition forky and inserting the
result into Eq.~19!, one finds a threshold voltage abov
which a current starts to flow,15

eVth

\vc
5

1

2
~R2L !22A2EF

\vc
~R2L !. ~20!

In the numerical exampleVth is 49.5 mV.
Next the wave-vector dependence of the transmission

efficient T(ky) shall be discussed in the regime where tu
neling is comparable to single barrier tunneling. In Fig. 4
transmission coefficient is shown fork50.00, k520.78,
and k521.00 at an applied bias of 58 mV, wherek
5aBky . Only for the second valuek520.78 does the trans

FIG. 3. Current-voltage characteristics for barrier width ofs
56.0aB /A2 and different potential heightsU5V0 /EF . The cur-
rent C(Vn)52^I&/2 is given as a function of the normalized vol
ageVn@eV/\vc#.
s

a

o

e
e

o-
-
e

mission coefficient have a finite value below the Fermi e
ergy EF . In this range, it is a monotonic function of th
energy and is tantamount to the transmission coefficient
typical single-barrier tunneling. In order to see why this fr
quency cutoff occurs, the corresponding one-dimensio
barrier potential is depicted in Fig. 5. In the graph f
k50.00, only the right lead can have propagative states,
only qR is real, and in the graph fork521.00 only the left
lead can, i.e., onlyqL is real, whereas fork520.78 bothqL
and qR are real such that tunneling through the barrier
made possible between allowed states. Nevertheless, the
no apparent configuration where an energy level of the w
coincides with a propagative state outside the barrier.

Finally, to understand the resonant behavior of t
current-voltage characteristic in Fig. 3 forU52.00 andU
52.25, one has to turn again to the wave-vector-depend
transmission coefficientT(ky). Similar to before, in Fig. 6
the transmission coefficient forU52.00 is shown fork
50.00, k520.78, andk521.00 at an applied bias of 58
mV. Again only for the second valuek520.78 is there
transmission at the Fermi energyEF . This time the transmis-
sion coefficient, however, shows a sharp peak. The peak d
not quite reach unity due to the asymmetry in the potentia
illustrated fork520.78 in Fig. 7. Further, one can see th
the Fermi energy in the lead corresponds to a state at

FIG. 4. Transmission coefficients as a function ofE
5\v/(\vc) for different k5aBky through a barrier with widths
56.0aB /A2, heightU51.50 depicted by the dash-dotted line, a
applied bias of 58 mV.

FIG. 5. One-dimensional barrier potential for different values
k5aBky corresponding to Fig. 4. The abscissa is given in terms
xn5x/aB and the ordinate ofE5\v/(\vc).
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2576 PRB 60C. HEIDE
proximately \vc/2 in the barrier well measured from th
bottom of the well. In a free-electron gas subjected to a
mogeneous magnetic field,\vc/2 would be the energy of the
first Landau level. Thus the peak in the transmission thro
the barrier is created by tunneling through a quasibound s
of the barrier well.

This leads to the following interpretation of the curren
voltage characteristics in the cases forU52.00 and U
52.25. Below the threshold voltageVth no current can flow
since there is no transmission through the barrier. AboveVth
tunneling through the structure is still reduced, because
tunneling length must extend over the entire width of t
barrier as is the case for single-barrier tunneling. When
bias is further increased, the well formed by the magne
field is pulled down to lower energies until the well lev
becomes degenerate with the Fermi energy for certainky
values of the conduction electrons incident from the left le
This leads to resonant tunneling through the quasibound s
of the well. Increasing the bias even further, so that the w
level drops sufficiently below the Fermi level but not nece
sarily below the conduction-band edge, the current flow
strongly reduced again, leading to a negative differen
conductivity. Although theky-wave-vector dependence i
the quasi-one-dimensional potential leads to a cutoff in
integration in Eq.~15!, it does not shift the energy levels i

FIG. 6. Transmission coefficients as a function ofE
5\v/(\vc) for different k5aBky through a barrier with widths
56.0aB /A2, heightU52.00 depicted by the dash-dotted line, a
applied bias of 58 mV.

FIG. 7. One-dimensional barrier potential for different values
k5aBky corresponding to Fig. 6. The abscissa is given in terms
xn5x/aB and the ordinate ofE5\v/(\vc).
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the barrier well and therefore the resonances do not bec
significantly smeared out in the current-voltage characte
tics. The effect of this wave-vector-dependent tunneling
that the current-voltage characteristics very much attai
one-dimensional character, i.e., most of the tunneling occ
in a narrow region ofky and close to the Fermi level of th
left lead. Therefore, the current is reduced when the bia
increased after crossing a resonance level before a new o
encountered.

V. CONCLUSION

A current or conductance measurement on devices wh
transport is ballistic usually faces problems when deal
with a strong bias where the system cannot be assumed
near equilibrium. In the present case this situation is com
cated by the presence of an inhomogeneous magnetic fi
To date, both problems have been overcome only by a q
siequilibrium approximation19 or other phenomenologica
approaches such as a combination of the Boltzmann
Schrödinger equation20 or the transfer Hamiltonian
formalism.2 In Sec. III an explicit formula for the current o
a two-dimensional electron gas in a nonhomogeneous ex
nal magnetic field was derived from first principles on t
basis of the nonequilibrium coupling theories of Caroliet al.
and Feuchtwang.12,13 However, it turned out that Eq.~15! is
tantamount to the usual two-terminal Landauer formula a
thus illustrates well the universal character of Landaue
scattering approach to transport in the ballistic regime.

Further, in Sec. IV numerical results of the curren
voltage characteristics were obtained and showed that
electrons can in fact tunnel resonantly through a combi
electrostatic and magnetostatic barrier potential in a tw
dimensional electron gas. Although it is possible to tra
form the problem such that its mathematical formulation b
comes one-dimensional, the tunneling probability s
depends on the electron wave vectorky , i.e., on the momen-
tum parallel to the barrier. The motion is essentially tw
dimensional as would be expected from the classical a
ogy. Studying the current-voltage behavior, three regim
were found. The first, for biases below the threshold volta
Vth , corresponds to the classical reflection of electrons fr
the barrier. The other two regimes, which arise at bia
aboveVth , can only be understood on a quantum level. D
pending on the ratio between electrostatic barrier heightV0
and Fermi energy in the left leadEF , either resonant or
nonresonant tunneling occurs. Further, due to the nar
range of possible values for the wave vectorky to show
resonant tunneling behavior, the motion of the conduct
electrons becomes essentially one-dimensional in this reg
and the combined barrier acts as a momentum and en
filter.

The fact that the tunneling behavior is tunable as a fu
tion of the electrostatic barrier heightV0 and dependent on
the magnetic fieldB makes the proposed structure an inte
esting candidate for future applications in digital logic c
cuits. However, to make reliable predictions on the dev
performance, it is necessary to take into account, for
ample, the edge effects of the magnetic field18 and the stress
of the ferromagnetic film on the two-dimensional electr
gas.21 Further, inelastic-scattering effects are of importan
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in a realistic description of transport, as has been shown
double-barrier tunneling by Wingreenet al.22 It is question-
able in the case of electron-phonon scattering whether or
sidebands would blur the transmission to a degree wh
resonances would no longer fade out before a new one
curs so that the effect of negative resistance would be s
pressed.
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APPENDIX: PARABOLIC CYLINDER FUNCTIONS

The parabolic cylinder functions are defined in the follo
ing through Kummers’s functions:23

Dn~jA2!52n/2e2j2/2F GS 1

2D
GS 12n

2 D FS 2
n

2
,
1

2
,j2D

1

GS 2
1

2D
GS 2

n

2D j FS 12n

2
,
3

2
,j2D G , ~A1!

where

F~a,c,z!5
G~c!

G~a! (
n50

`
G~a1n!

G~c1n!

zn

n!
. ~A2!

Both F(2n/2,1/2,j2), and j F(12n/2,3/2,j2) are linearly
independent solutions of Kummer’s differential equation
the neighborhood ofz50 with z[jA2 and thus represent
series expansion for the parabolic cylinder functions aro
z50. The functionsDn(z) andDn(2z) are not the only se
of possible independent solutions to the harmonic-oscilla
differential equation. As can be seen from the differen
equation,D2n21( iz) and D2n21(2 iz) can also form a se
of linear independent solutions from which any two com
nations are essentially connected via a linear relation,23

Dn~z!5eipnDn~2z!1
A2p

G~2n!
ei (p/2)(n11)D2n21~2 iz!.

~A3!

It is now possible to represent the parabolic cylinder fu
tions for noninteger values ofn by an asymptotic expansio
in terms of a power series in 1/z in the neighborhood ofz
5`. However, the asymptotic expansion forDn(z) will
change drastically in its behavior if the argument chan
sign. In other words, a phase change in the argument lea
a discontinuity at certain phase angles which results from
fact that asymptotic series are not unique. Therefore, one
or

ot
re
c-
p-

-

d

r
l

-

-

s
to
e
as

to take care of the range of the argument under which
function has a certain series expansion, and one finds
phase anglesufu,3/4p, wherez5uzuexp(if), the following
asymptotic expansion:

Dn~z!'e2(1/4)z2
znS 12

n~n21!

2z2

1
n~n21!~n22!~n23!

8z4
2••• D . ~A4!

To obtain now the asymptotic form for values off not com-
prised in the above range, one uses the linear relation~A3! in
order to be able to assign values to the phase ofz in a dif-
ferent range, e.g., 5/4p.f.1/4p. Since the phase of2z
and2 iz is now f2p andf21/2p, this leads to

Dn~z!'e2(1/4)z2
znS 12

n~n21!

2z2

1
n~n21!~n22!~n23!

8z4
2••• D

1
A2p

G~2n!
eip(n11)e(1/4)z2

z2n21S 11
~n11!~n12!

2z2

1
~n11!~n12!~n13!~n14!

8z4
1••• D .

Each of these terms has an unavoidable error since the s
is only asymptotically correct. Iff is zero, Eq. ~A4!
applies—which is just the first term of the abov
expansion—and the second term is smaller than the unav
able error in the first term so that it should not be include
However, iff is equal top, the roles are exchanged: the fir
term is now smaller than the unavoidable error in the sec
term and should not be included. This phenomenon is kno
as the Stokes’ phenomenon.24 Therefore, for the limit asuzu
˜` the parabolic cylinder functions behave as

Dn~ uzu!'e2(1/4)z2
uzun,

~A5!

Dn~2uzu!'
A2p

G~2n!
e(1/4)z2

uzu2n21.

The asymptotic expansions of the parabolic cylinder fu
tions ~A5! prove useful to evaluate the Wronskian,

Dn~z!]zDn~2z!2Dn~2z!]zDn~z!˜
1

z

A2p

G~2n!

3S z2
n11

z
2

n

2D˜ A2p

G~2n!
5W, ~A6!

as well as to calculate the parabolic cylinder functions
large arguments numerically.
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