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Concurrent coupling of length scales: Methodology and application
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A strategic objective of computational materials physics isabeuratedescription of specific materials on
length scales approaching the meso and macroscopic. We report on progress towards this goal by describing a
seamless coupling of continuum to statistical to quantum mechanics, involving an algorithm, implemented on
a parallel computer, for handshaking between finite elements, molecular dynamics, and semiempirical tight
binding. We illustrate and validate the methodology using the example of crack propagation in silicon.
[S0163-18299)01223-0

[. INTRODUCTION power that heretofore was lacking. The driver for attempting
now to do so has been the advent of parallel computers. By
Historically, there has been a rich tradition of attemptingdividing a problem into its natural components, each of
to couple length and time scales in serial fashion. By this wavhich may be addressed by one or more processors, CLS
mean that one set of calculations at a very fundamental levehecomes a more tractable proposition. The issue then be-
and of high-computational complexity, is used to evaluatecomes one of determining how to do the “handshaking”
constants for use in a more approximate or phenomenologbetween the different regions. This is not just an algorithmic
cal computational methodology at a longer length/time scaleissue but also one that requires physical insight.
A good example of this was the pioneering work of Clementi The reasons for wanting to couple length scales are not
and coworkers in the 1980's who used high-quality solely those predicted on computational power, however.
guantum-mechanical methods to evaluate the interaction dfhe most important is that there is a large class of problems
several water molecules. From this database, an empiricébr which the physics ignherently multiscale; that is the
potential was parametrized for use in molecular-dynamicslifferent scales interact strongly to produce the observed be-
(MD) atomistic simulation. Such simulation was then used tchavior. Turbulence and crack propagation are good ex-
evaluate the viscosity of water from the atomic autocorrelaamples. It is necessary to know what is happening simulta-
tion functions. Finally, the computed viscosity was employedneously in each region since one is strongly coupled to
in a computational fluid dynamics calculation to predict tidalanother. Another important realization is that once the issues
circulation in Buzzard’'s Bay, Massachusetts. This tour-deof interfacing between the different regions have been
force of computational physics was a powerful example ofsolved, the overall algorithm becomes computationally very
the sequential coupling of length and time scales: one seriefficient. The reason is that one is using the right “tool” for
of calculations is used as input to the next up the length/timehe right part of the system, that tool having been optimized,
scale heirarchy. Another good example is in atmospheric antistorically, to solve a particular problem. In our case, the
environmental scienéavhere chemists use methods of high- three regions of interest will be continuum mechanics, the
computational complexity to evaluate reaction barriers ofimplementation of which will be via finite element§E);
simple chemical reactions, which are then used in large ratatomistic statistical mechanics, implemented by molecular
equation coupled to spatial grid codes to determine and predynamics(MD); and mean-field quantum mechanics repre-
dict chemical meteorology. There are many other examplesented by semiempirical tight bindi@B). Since our inter-
in the literature. But what unifies all these schemes is that amst pertains mainly to the solid state, we will confine our
appropriate computational methodology is used for a giverdiscussion to implementation of elasticity theory via finite
scale or task, whether it be the accuracy of quantum mecharelements. But perhaps the most important result from this
ics at the shortest scales, or rate theory and/or fluid dynamiageneral approach is that once the handshakes are made
at longest scales. “seamless,” the algorithm is not only efficient, it is also
In contrast, there has been comparatively little effort de-very accurate “Accurate” implies that the dynamics of the
voted to the parallel coupling of different computational phenomenon under study are indistinguishable whether they
schemes for a simultaneous attack on a given problem; in ouve determined from a length-scale-coupled system or from
case, our interest dictates specific attention towards issues ane of the same size comprising TB atoordy. The many-
materials or solid-state physics. We will focus specifically onbody behavior of specific materials really can be addressed
the coupling of length scale€CLS). Perhaps such attention on structurally important length scales.
has been lacking because it necessitates significant computer Pioneering work on coupling atomistics to finite elements
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! Since the computational complexity of tight binding is
N high (see beloy, it is not possible to describe the entire
meso/macro system with such. It is important, however, that
the region of dynamical breaking bonds be embedded in the
@) correct atomistic statistical mechanical environment. Thus,
we surround the TB region with an MD region in which the
atoms interact with one another via a carefully parametrized
F.E. empirical potential for the system of interest. The system, on
L : ' Region this length scale, is less perturbed from equilibrium than the
T.B. Regions bond-ruptured region and we expect the empirical potential
ProcessarsN415 ««;N M to work well. This MD region is required because it correctly
FIG. 1. lllustration of domain decomposition of pseudo-1D Sys_captures the necessary thermal ﬂuctuations and t.he pressure
tem showing coupling of length scales. There may be more than on@2Ves emitted by the bond rupturing and/or defective region.
processor per TB region. The MD region may also contain those areas of the system
that are defective but for which the primary dynamics are no
has been performed by Tadmor, Ortiz, and Philfipehe  longer important. An example might be the surfaces of a
embryonic ideas in their work were initiated before the ad-crack entrained behind a propagating crack tip.
vent of really accessible parallel computer power. Their in- Lastly, although MD system sizes currently can run to
terest focussed upon how to embed a defective sygsech  hundreds of millions of atoms® when considering the meso
as a crack within a continuum, but without the usual as- and macro scales even these formidable calculations are un-
sumptions inherent in continuum codes in which a rathemble to represent properly the rest of the environment of the
ad-hoc criterion is used for failure in a given region of spacedynamical system. Here, the precise statistical mechanics is
In their formulation, the finite element mesh permeates thdess important than allowing the free passagéstially long
entire system, right down to atomic dimensions. An underwavelength energy into or out of the system. Such a cou-
lying atomistic Hamiltonian is used to determine the energypling to the rest of the universe is important when studying
density of the system; a separate atomistic calculation is rggroblems where much of the physics is invested with long-
quired for each cell in their finite element mesh. At presentrange interactions, such as a long-range elastic field. Ex-
their scheme is a zero temperatyi@ relaxation technique. amples include delamination of ceramic/insulator interfaces,
It is an adaptive methodology since mesh refinement occursrack propagation, and dynamical micro electro mechanical
when defects propagate. systems. It is here that use of the basic tool of engineers is
A complementary methodology has very recently beerappropriate, namely finite elements, to solve for the displace-
propounded by Rafii-Tabar and coworké&isinvolves a sto- ment field of the system. In this far-field region of our en-
chastic coupling of a molecular-dynamics region to a finitevisaged system it is appropriate to embed the MD region in a
element region. The system is propagated in time using aontinuum mechanical representation. Here, atoms are dis-
stochastic differential equation so as to produce somethinglaced only slightly from equilibrium and elasticity theory
resembling Langevin dynamics. The molecular-dynamics reshould work very well. Indeed, finite elements are the
gion involves a few thousand atoms and represents a smathethod of choice for this region. The FE algorithm is more
part of the computational complexity of the simulation. computationally efficient than the MD since it deals only
However, initial results on crack propagation in a two-with the minimal degrees of freedom necessary to describe
dimensional(2D) silver plate are encouraging. the correct physics. Consider, for a moment, large-scale
In contrast, in this paper, we will advocate a rather differ-simulations of crack propagation. Graphical representations
ent approach?® We will be specifically interested in solid of such systems focus mainly upon the high-energy parts of
systems at finite temperature in which the trajectories ar¢he system; namely the crack faces and emitted
dictated by classical mechanics and for which the dynamicatlislocations’® In the far-field regions, little of interest is
complexity of the system is of importance. The ensuing dishappening: many computer cycles are spent describing tra-
cussion centers on Fig. 1. We envisage a system in which thjectories of atoms that do very little apart from vibrating
dynamically crucial part comprises a relatively small subsefiround lattice sites. It is here that a mean-field approach is all
of all the atoms in the system. This part involves a disruptiorthat is required. Yet it is not appropriate to dispense with this
of the symmetry of the system. This is the region of brokenregion completely: again, atomistic simulations of crack
bonds, or at least that region where bonds are breaking amatopagation make the point. Large-scale MD simulation
which dictates the kinetics of the system. We imagine, forshows that long-wavelength pressure pulses radiate from the
example, such a region being typified by a propagating crackrack tipl° These propagate to the edge of the simulation,
tip. It is important to describe the energetics of this part ofbounce off the edges of the computational cell and reflect
the system very accurately. Since it is a region where bondsack towards the cell center thereby contaminating the very
are breaking it requires a quantum-mechanical descriptiorphenomenon under study. A FE region surrounding the MD
empirical interatomic potentials are prone to be untrustwor+egion allows such pressure waves to propagate harmlessly
thy in such cases. We chose to describe this part of the systo the continuum(the continuum region can be made
tem with a tight-binding Hamiltonian since this is one of the large). Note that although Fig. 1 shows FE regions at the
fastest quantum-mechanical algorithms that contains the baxtreme left- and right-hand ends of our pseudo-1D topology
sic physics of breaking bonds and from which it is simple to(actually, a 3D simulation will be performed as demonstra-
extract forces. tion) there is nothing to prevent decoration with FE regions
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on all sides of the central MD region. Such decoration deHamiltonians are possible in the quantum region, such as the
pends upon the physics of the system under study. moment methodgbond ordey advocated by Pettifor and

This approach should not be viewed as universal panaceaoworkers:**>We chose TB for its simplicity and intuitive
It works well on a subset, albeit an important subset, of sysappeal.
tems. These involve a central region that dictates the kineti- Lastly, our implementation of finite elements will be at
cal behavior of the system surrounded by a region onlythe linear elastic level. Since FE is used only in the far-field
slightly perturbed from equilibrium. The MD region is cho- region where atoms are perturbed only slightly from equilib-
sen to be of sufficient size to allow all defects to form and/orrium, we view it as unnecessary to employ nonlinear elastic-
propagate. The trajectory of the region of breaking bonds isty theory. Further, since the systems of primary interest to
tracked via a dynamical relocatable TB region. But once thais involve plane strain, our implementation will be for a 2D
defects reach the MD/FE interface, the algorithm, as prosystem. A 3D far-field region would be a straightforward
pounded below, must terminate. A second restriction, upomxtension.
which we have not yet touched, is that of timescale. As we As the early part of Sec. | implies, and as Fig. 1 illus-
illustrate below, the advent of parallel architecture machinesrates, each of the three primary algorithms, and the regions
allows access to meso and macroscale system sizes, but @fsspace that they describe, are distributed to different pro-
yet the total elapsed time of the simulation is, and thereforeessors. The example of crack propagation in silicon was run
those phenomena that may be accessed are, restricted to @o- the IBM SP2 at the US Air Force High-Performance
proximately one nanosecond. Time, unfortunately, is a se€omputing Center at Maui. Each FE region is handled by a
guential object and mere access to more processors does mhfferent processor; the MD region is domain decomposed
solve, in any paradigmatic way, the issue of timescale iracross several computer nodes and the TB region is likewise
dynamicsimulation. Progress in algorithms that address thespread over several processors. The code was written in
timescale issue would revolutionize materials simulation. FORTRAN with MPI for the message passing interface.

Below, in Sec. Il, we describe the principal componentsSuch code ports to most parallel architecture machines. The
of our algorithm. Firstly, we outline the three independentadvantage of a pseudo-1D topology is that much message
methodologies of TB, MD, and FE. Secondly, we describepassing can be performed using the “shift” operator. Fur-
the handshaking between these regions, all of which musher, only data within interaction rangédefined by the
proceed in lock step. Section Il illustrates and validates ouHamiltonian) need be passed across boundafiEfined by
methodology with the important example of crack propagathe domain decompositipribetween processors.
tion in silicon. Finally, Sec. IV gives our conclusions to-  The overarching theme is that a Hamiltonidr,, will be
gether with prognoses for implementations in other materialslefined for the entire system. Its degrees of freedom are
systems. atomic positiong and their velocitieg for the TB and MD

regions; and displacemenisand their time rates of change
for the FE regions(The velocities and conjugate momenta
Il. COMPUTATIONAL METHODOLOGIES are simply related Equations of motion for all the relevant

Before proceeding with specifics, some general points ariariables in the system are obtained by taking the appropriate
worth making. In this discussion. the |Ong axis of F|g 1 will derivatives of this Hamiltonian. All variables can then be

be designateg:; the other axis in the plane of the figurexs ~ UPdated in lock step as a function of time using the same
the axis into the paper will be The crux of this methodol- mtegrator. Thus_, the en_tlre time hlstory_of the syst_em_ may be
ogy is to allow the study of equilibrium and nonequilibrium ©Ptained numerically given an appropriate set of initial con-
dynamics of macroscale systems. In order to take meaningfifitions. ConceptuallyH o, may be written

ensemble averages, or in order to access timescales of use, it . L

_ : _ : _ n

is necessary to propagate the system through times of order = ™ Hee({u, 0} € FB) + Hegmo({u,U.1,7} « FE/MD)

one nanosecond. A typical MD time step is, for chemically +Hpp({r,t} e MD)+Hpyprs({r,r} e MD/TB)
bonded systems, approximately £8s: thus, on(say) 50 to )
100 processors, one time step is about one second of wall- +Hre({r.f}eTB). @

clock time. One million time steps may therefore beryiq equation should be read as implying that there are three
achieved in apprOX|.mater ten days on a_S|gn|f|cant, but nogeparate Hamiltonians for each subsystem as well as Hamil-
unreasonable, fraction of a parallel machine. , tonians that dictate the dynamics of variables in the hand-
The second point relates to the material with which wegp 1o regions. “MD/TB” and “FE/MD” imply such hand-
have <_:hosen t0_|llustrate our methodology_: _5|I|C(_)n. This IS &hake regions. Following a trajectory dictated by this
material for which many very good empirical interatomic 4, mjjtonian will result in a conserved total energy. This is

potentials™ already exist: we chose the StlIIlnger—Weﬁer an important feature of our computational approach since it
because of its computgtlonal.smpllcny. We chose SI!ICOﬂ foransured numerical stability.
other reasons too: its industrial importance for one, its local-
ity of bonding for another. The principles outlined below
will work for metals, and are the subject of on-going work.
Thirdly, our choice of tight bindint to illustrate Molecular dynamics involves following the classical tra-
guantum-mechanical coupling is dictated mainly by the rejectories of atomic nuclei by integrating Newton’s laws of
quirement of computational speed: the need to propagate rmotion for the system. In the region labeled MD, the inter-
nontrivial number of atoms under the influence of thisatomic force law will be obtained from an empirical poten-
Hamiltonian within one second of wall-clock time. Other tial. In the region labeled TB, the force law will be extracted

A. Molecular dynamics
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from a quantum-mechanical Hamiltonian that solves thderms inherent in the eigenvalue sum are approximated by
mean-field equations for the electrons in the system. In outhe sum over all pairs of atoms of the repulsive interatomic

example, we studied silicon for which we chose to use thepotentialv"™P. The eigenvalue&} corresponding to the one-

Stillinger-Weber(SW) potential,Vg,,, which involves both
two-body and three-body interatomic terms

Vsw= E

i1<j

v+ 2 v@(r . 2
i,(j<k)

The sums are over atomic indicgk. The exact form of
these interactiony are given in Ref. 12. The sum in the
three-body term is written such thais the apex of the trip-
let.

Forcesf may be extracted frorfl g, by taking derivatives

electron states of a first principles Hartree-Fock or density-
functional calculation are obtained from a nonorthogonal
one-electron Hamiltonian

[H]W,=e,[S]V,

wn=i2 Cldbia, (5)

where the matrix elements withiid] and[S] are obtained
by reducing the equivalent integrals within an extensive da-

with respect to the atomic coordinates. In order to obtain aabase of first principles calculations to parametric form
trajectory through phase space for these atoms, we require an

integrator for Newton’s laws of motion. We chose the
velocity-Verlet algorithm since it is easily augmented to
handle multiple timescale ME. The following algorithm is
iterated:

At| At
t+ —fi(t)+ﬁ i(t),

fi

At
ri(t+At):ri(t)+Atri t+7 ,

fi(t+At)= m,
) ) At} At
ri(t+At):ri t+? +ﬁf|(t+At) (3)

At each iteration, each of the four steps is performed se
quentially for every atom in the system. After exiting the
last step, the simulation time is incrementedty For sili-
con, we used a time step of<5L0" ®s. The mass of the
silicon atomm is 4.6639% 10 ?°kg. Evaluation of the SW
energy and its attendant forces may be coded, by taking a

&

vantage of atomic neighbor tables, so that computer timg

Hia155<¢ia||:||¢j3>:ha,3(rij)
(6)
Siajp={Dial ;) =545(rij).

The one-electron wave functiog¥} are expanded as a lin-
ear combination of atomic basis functiofis;. n labels the
orbital number whilew and 8 label the basis function@n the
minimal basis of silicon, these representp,, p,, andp,
atomic orbitals. The size of thgH] and [S] matrices are
therefore (NX4N). Their matrix elements are param-
etrized in two center approximation by pairwise functidns
ands. These functions smoothly truncate to zero near 5 A,
which is between the third- and fourth-neighbor distances in
silicon. Note that since all integrals are represented by pair
functions(v"P, h, ands) the exact form of the basis functions
are not required: the one-electron staff#3 are represented
within this formalism only by the sets of coefficients in
their expansion. The functions®P, h, ands are obtained by
fitting to a database involving the experimental indirect band
gap of the diamond cubic structure and the total energies of
crystalline and defective diamond cubic aBedin silicon at
different densities. The parameters for this fit are given by
ernstein and Kaxirat. For most purposes, this nonself-
nsistent TB Hamiltonian describes bulk, amorphous, and
urfaces properties of silicon very well.

scales asO(N), whereN is the number of atoms in the — gqing for the coefficientéc} is a generalized eigenvalue
system. The two- and three-body terms truncate smoothly t8,ohem For given set of atomic coordinates, the coefficients
zero just before the second-neighbor distance in ze€rore found by diagonalization. One-electron states are occu-
pressure diamond cubic structure silicon. pied up to the Fermi level. A small amount of Fermi-level
broadening is used. Forces are then found from the deriva-
tive of the TB energy with respect to displacement of the
nuclei

B. Tight binding

Semiempirical tight binding involve@) anansatzfor the
total energy of the system aril) a parametrization of the

) ; . . N
integrals that occur in mean-field treatments of the electronic o IHigjp 3Si4ip
. . flB= _ E ch 2 ch —
structure of a system. The total energy of the system is writ- i e Ry B WS "o,
ten as
v (ri)
Noce - 2 (?—I'” (7)
Vig= > e+ >, VeR(ry). (4) 7 '
n=1 i<j

Derivatives of the coefficients with repect to atomic posi-
The sum is over all occupied statdg.. up to the Fermi tions do not occur. Such terms vanish identically by ortho-
level. Foulkes and Haydotkhave provided sound justifica- normality. Knowing the forces, atomic coordinates may be
tions for the form of this equation. It is similar in form to the advanced through time using exactly the same algorithm as
full density-functional expression for the total energy, but thethat used for the SW system; namely that given by @4
double counting of the Coulomb and exchange-correlatioThe same time step may be used since Einstein frequencies
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in both cases are very similar; indeed SW parameters coulfices. We will confine the rest of the description therefore to

be adjusted to ensure equality. triangular cells. Equatio(8) can now be approximated by
The above describes a(N®) algorithm: brute force di-

agonalization i©O(N?%), which parallelizes poorly. This scal- q Neen 6

ing may be improved somewhat by implementing a fictitious HFE=§ §m: p;l [u?Kg‘qug‘nL Ug‘M pmqug‘], (10

Lagrangiafh® but this at best i©O(N?). There is much dis-

cussion in the literature abo@(N) schemes for electronic

structure'®=22 We chose not to implement such yet in our Where[K] and[M] are local stiffness and mass matrices,
CLS aigorithm Sincda) such methods often have probiems I‘eSpeCtively. The diSplacementS and their time rates of
with situations in which states wander across the Fermi levefhange are now only defined at the apices of each triangle.
and(b) the crossover of improved efficiency from tﬁEN:g) The cell index is denoted byl The total number of FE cells

to the O(N) schemes occurs at system sizes above severs Ncei- The(p,0) sum runs over the (8 2) Cartesian direc-
hundred atom&® Diagonalization wins at the lower atom tions associated with the apices of a 2D triangular cell. Thus,
numbers. Our stipulation of one second of wall-clock timethe total FE energy is given as a sum of products of local
per time step places our choice firmly in tBg¢N3) system-  Matrices. The stiffness matrix is given by

size regime. A©D(N) schemes improve, this choice is likely

to change. For the present, then, we use the diagonalization oL T "
route since it is “black box” and robust. [K] :W[B J[ciBl™, (11)
C. Finite elements where A" is the area of themth triangle and[C] is the

Since finite elements will be used to describe the far-fieldeduced (3<3) elastic constant matrix ari@] is the matrix
region of the simulation, linear elasticity theory will be used of coordinate differences of the apices of the FE medhis
to develop the FE equations of motion. The total elastic enthe thickness of the material in the third dimension. The

ergy of a solid, in the absence of tractions and body forces, i¥alues of the elements ¢€] depend upon the orientation of
then given by the system; they are functions of the three fundamental elas-

tic constants of silicon, namelg,,, C,,, andCy,,, which
Hee=Veet+ Keg, are given for zero-temperature SW silicon by Balamane

, et al?® and by Ray?’ We employed the mean of their results.

1 A, L, and[B] are time independent
Vg [d0| S e Cumeann]. ©
m,v,N,o=1
b" 0 af
KFE=3id9p(r)uz(r). 0 ay by
2
b 0 aJ
Here, () is the volume of the system antkg is the Hookian [BT]M= 0 am b7l (12
potential energy term. It involves the symmetric strain tensor a D2
€ quadratically multiplying the elastic constant ten€bfThe T 0 aj
subscriptsu, v, A, o denote Cartesian directions. The second 0 a pT
term, the kinetic energyKgg, involves the time rate of 3 73
change of the displacement fieldand the mass density.
The strains and displacements are simply related where
m m m
€uv= (;l:“ + % ) (9) b =Y 17 Vi 13
v "
They are viewed as being continuous variables and so the a'=x" =X -

total energy of the system is an integral of these quantities

over the volume of the sample. The FE algorithm involvesHere, 1 denotes the cyclic apex index, running from 1 to 3,
dividing the volume into cells: often tetrahedra in 3D andandx andy denote the 2D FE mesh coordinates. Displace-
triangles in 2D?* An exhaustive literature exists on how to ments{u} are defined with respect to these coordinates.
choose these cells including automatic mesh generation and The mass matriYM] is handled rather differently. In
adaptive meshing® We will describe our mesh in the next principle the kinetic energy density varies across any given
subsection. If the values of the displacements and their timeell. However, to anticipate the next subsection, it will be
derivatives are known at the vertices of these cells, then innecessary to reduce the FE mesh in the FE/MD handshake
terpolation functions may be used to determine the values afegion to coincide with the perfect atomic lattice. At the
these variables everywhere within each cell. A commoratomic level each atom has kinetic energy and is apportioned
choice, made because of computational simplicity, is lineaaccordingly. Thus for our FE mesh, we chose to use the
interpolation inside each cell. The result is that the displace“*lumped-mass” approximation, which reduces for the
ment fields are represented in piecewise smooth fashion. Ismallest mesh size to the atomic limit. One third of the mass
our example of crack propagation, we will be interested inin each cell is apportioned to each apex. The kinetic energy
plane strain situations for which a 2D far-field region suf-is thus given by
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Nmesh
K pe= M'[ ut 2,
re= 2, MUY * ®
Neell 3 A
Mi=pL 3 3 St (14) . .
m=1i=1 '3
wheret labels the FE mesh points, of which there Akg.q, Y »
total, andm, labels the mesh point index at each of the three
apices of celm. The{u} are vectors of length two since they
relate to a mesh point. ® ®
Forces for the displacement degrees of freedom in Eq. ® ® ®

(10) are obtained by taking positional derivatives. Displace-

ments and their time rate of change may be obtained as a FIG. 2. Triangulation of 2D unit cell. Unit cell denoted by
function of time, for given boundary conditions, using the dashed lines. Triangles marked with continuous lines. Note continu-
same update algorithm, E@), and time step as that used for ous lines on left and right but not top and bottom of unit cell
the MD and TB. The force due to theth cell is boundary. Eight mesh points and 16 triangles per unit cell.

M=K ]™u™, (15) exactly the same way as the MD. For a periodiq system,
FE there are twice as many cells as there are mesh points. Away
In keeping with Eq(10), the vectors in Eq(15) are of length ~ from the handshake region and into the FE region, we ex-
six. The total force associated with a mesh point is then thgganded the mesh along one dimensitre long axis in Fig.
sum of the contributions from each of the cells with apices inl) while keeping the mesh spacing constant in the second.

common with that point. Finally The function chosen for this expansion was of hyperbolic
tangent form. Thus near the handshake region there is no
fre=M'0t, (16 expansion of the atomic mesh and far away from the hand-

shake region the spacing asymptotes to a constant multiple of
. the atomic lattice parameter. In the crack propagation ex-
D. Handshaking FE/MD ample below, this pmultiple was ten. The transition region

The two principal issues for handshaking between FE andpanned a couple of hundred Angstroms.
MD regions are(@) the overlap of the mesh with the atoms  Turning now to the form of the handshake Hamiltonian,
and (b) the form of the Hamiltonian. where we differ from the prior work of Kohlhoff and

In the first case, we generalize an idea due to Kohlhofico-workeré®is in the dynamics of the handshake region. We
and coworker$® An imaginary surface is drawn between the found it very important to define a conservative Hamiltonian
FE and MD regions. Within the range of the MD interatomic so as to ensure symplectic time evolution of the atomic and
potential from this surface, FE mesh points are located aflisplacement trajectories within the handshake region. This
ideal lattice sites. As long as there is no diffusion, atoms olis key to the successful implementation of theamiccou-
mesh points remain on either side of this interface. Howeverpling of length scales. We note that it is academic whether to
the distinction between the two becomes academic: atomisay either that atom sites propagate into the FE region or that
motion may be viewed as displacement around a latticéE mesh points propagate into the MD region. The discus-
(mesh site, and the displacement field may be viewed assion is best understood with reference to Fig. 3. In concep-
motion of an atom away from its perfect site. This method-tualizing this Hamiltonian, we imagine that two different ma-
ology would work also for amorphous systems; all that isterials sit on either side of an interface; in one case it is FE
required is a one-to-one mapping of a mesh point to an atorsilicon and in the other it is SW silicon. The cross ter(ins.,
site. Moving away from the handshake region into the FEthe handshake Hamiltoniaro first order can be approxi-
region, the mesh spacing may be made larger. This is thmated by a mean of the two descriptions. All FE triangles
principal reason that the FE algorithm is computationallythat cross the interface contribute half their weight to the
efficient. The largest spacing depends upon the physics th&tamiltonian. Any triangle that is fully in the MD region
we wish to capture; for example the largest spacing detereontributes zero weight. Similarly, any SW interactigwo
mines the shortest wavelength phonons that we wish thody or three bodywhich crosses the interface contributes
propagate unimpeded though the FE region. half its usual weight. Any SW interaction between mesh

In our illustration of the CLS method, we chose to exam-points, all of which are fully on the FE side of the interface,
ine brittle fracture in silicon; specifically we oriented our contributes zero weight. The SW energy formulation that
rectilinear system such that it h&s00) faces on all sides. concentrates upon atomic coordinafesand the FE energy
The FE region is represented as a 2D system, which nevefermulation that concentrates upon displaceméunisan be
thless handles the third dimension in plane strain; @4) used throughout the interface because of the indistinguish-
has the parametérto represent the thickness of the sample.ability of what are atoms or mesh points. The one-to-one
Thus, the projection of a diamond cubic lattice ontGl@0)  mapping of atoms to nodes is not required at distances
plane is required to generate the 2D mesh. Figure 2 showgreater than twice the SW pair cutoff away from the interface
this, as well as the triangulation we used for the FE cells. Ain the FE region. This is the distance of greatest three-body
the edges of the computational cell, the triangulation is ableange. Figure 3 indicates diagramatically those interactions
to wrap around; i.e., the FE region can be made periodic inhat contribute to the handshake Hamiltonian. Thus
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FE Region MD Region density, we now use the SW energy densgige Eq.(14)].

As before, this scheme ensures the correct limiting behavior
as the mesh spacing is reduced to atomic dimensions. For
atoms in the handshake region, for systems with unusual
orientation where the offset is nontrivial to estimate atom by
atom, aT=0 calculation with zero strain for the coupled
FE/MD system can be performed. The offset may thereby be
calculated to maintain the energy/atom constant through the
interface. This is easily achieved by virtue of periodicity and
symmetry.

Turning now to the thermal energy, the work of Rudd and
Broughtorf® indicates that the square of the time rate of
change of the displacements in the FE region are related to
the temperature. In coarsening the FE grid upon moving
away from the handshake region, atomic degrees of freedom
are lost: the FE algorithm involves an average over these.
Thus, to bring the atomic and continuum thermal energies
onto an equivalent footing, the total FE thermal energy may

(half weigh) represented by light lines. Two and three-body terms . . )
(dotted lineg of SW interaction that cross boundary also carry half be yvrltten again by means_of an offset. These corrected en
ergies are denoted by a prime

weight. Continuous lines represent unit weight SW interactions.
Representative examples in each case.

FIG. 3. lllustration of FE/MD handshake Hamiltonian. FE
cells contributing fully to overall Hamiltoniatunit weigh) marked
with heavy lines. FE cells contributing to handshake Hamiltonian

KI,:E: %(Natom_ Nmesr) kBT+ KFE+ %NmeslkBTv

#cross 6
1 oo 1 (18)
— 2
Veemp=7 lz pqE:1 Up KpgUg +5 -2| v (r i o, .
m=1% (< Vee= 3 (Natom™ NimeshKg T+ Vet 53 NiesiKa T
Gy, ) . . - .
+[i (J2<k)]' v (r<'l>"r<'k)')} 17) N.iom IS the number of atoms contained within an equivalent

3D volume. kg is Boltzmann’s constant. Equipartition has
been invoked. We further assume that the background tem-
Here, the superscrigtimplies those interactions that cross perature does not vary during the simulation. The first term
the FE/MD boundary. IndeedVrgmp is only defined for therefore accounts for the missing degrees of atomic freedom
interactions that cross the boundary. Otherwise, the othewhile the last term augments the 2D FE plane-strain simula-
terms in Eq.(1) define the forces at mesh points and atomstion for the missing third dimension in its degrees of free-
The formalism in Eq.(17) is meant to imply thainy one  dom. As before, these offsets do not affect the dynamics of
atom of the triplet in the three-body terms can be on arthe system and the thermal corrections can be apportioned to
opposite side of the interface to the other two. each mesh point in like manner to that described above for

In the present implementation of the CLS algorithm, thethe zero-temperature FE potential energy. For finite tempera-
FE is 2D and the MD is 3D. As we have said, the third ture simulations, théu} degrees of freedom are thermalized
dimension of the FE region is treated in mean field. Thus, into a Maxwellian distribution. Also, the appropriate elastic
Veemp, X andy displacements of atoms on the MD side of constants for that temperature should be used in the FE equa-
the FE/MD boundary that contribute to the elastic energy ar¢ions of motion so as to make the MD and FE regions seam-
obtained by averaging over all equivalent atoms in the deptless and compatible. Further, since this methodology requires
z In similar fashion, in determining the SW energy contri- a continuation of ideal lattice sites into the FE/MD hand-
bution to the handshake Hamiltonian, we replicatexalhdy  shake region so as to determine mesh coordinates, the appro-
displacements in the third dimension on the FE side of thepriate lattice parameter for given temperature should be used.
boundary by assuming that atoms sit at ideal lattice sites in Lastly, in this subsection, we discuss the issue of dissipa-
that dimension. The overall Hamiltonian remains conservation in the FE region. The continuum representation of mat-
tive. ter used here involves linear elasticity theory. This is a har-

In making the FE/MD interface seamless, two other issuesnonic theory. Thus, vibrational modes of giveik,w}
confront the definition of energy. They both involve refer- relationship, which depend upon the long-wavelength elastic
ence state; one is potential energy, the other is thermal emonstants of the medium, propagate undamped. In order to
ergy. The SW potential is referenced to infinitely separatedhermalize short-wavelength phonons propagating through
atoms. The FE potential is referenced td &0 unstrained regions where the mesh spacing changes and also to allow
lattice. For the purposes of graphical analysis, therefore, anergy to be dissipated in the FE region, the FE degrees of
constant offset energy that does not affect the dynamics ifeedom are weakly coupled to a Brownian heat bath whose
added to each FE mesh point. The-0 energy density for dynamics are set to the temperature at which the simulation
SW silicon at zero pressure is4.33 444 eV/atom. The off- is being performed. In effect, this couples the phonon modes
set energy is computed for every FE point using an equatioof the FE region. The force used in the third step of the
entirely analogous to that used to compute mass in thegelocity Verlet algorithn{see Eq(3)] now includes random
“lumped-mass” approximation except that instead of a massnd dissipative terms
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N ,
fre=—ur +%(TY) —E(IMEL, (19

M.D. Region T.B. Region

wherep® is a Gaussian random variable a&ds a friction
coefficient. The two are related by the fluctuation dissipation
theorem. Specifically the varianae® of the Gaussian is

given by:
2éMkgT
G_ /25 BT
o A (20

In order to perturb the dynamics of the active zdhe., MD
and TB minimally, £ was made a function of th@ime in-
varian) FE meshy coordinate. ¢ was linearly ramped from
zero in the handshake region to finite values chose 0.1 for
the crack propagation stugyat the extremal outer edge of Last plane of Silogens  Last plane of Silicons
the FE regions.

FIG. 4. lllustration of MD/TB handshake Hamiltonian. Outer
perimeter of TB region terminated with monovalent silogésee
text) constrained to sit at silicon sites. TB Hamiltonian diagonal-

In contradistinction to the FE/MD handshake algorithm,ized for sum of light plus dark gray regions: Si-Si matrix elements
where a planebetweenrows of atoms was defined, the employed in light gray area, Si-Silogen matrix elements used in
MD/TB handshaking takes place conceptually across a plangark gray region. Two- and three-body SW interactions contribut-
consistingof atoms. This different approach is necessitatedng to handshake Hamiltonian designated by full lines. Broken lines
because it is difficult to apportiofiocalize) energy in a com-  represent noncontributing SW three-body term. Only representative
putationally efficient way to specific bonds in an electronicSW examples are shown.
structure calculation. The total energy is a property of the
entire system. Attempts to define a 50/50 Hamiltonian, such In Fig. 4, matrix elements that couple atoms across the
as was used for the FE/MD interface, run into issues of ortight gray region are of Si-Si form. Atoms coupled across the
thonormality such that Eq7) is no longer sufficient: deriva- dark gray region use Si-Silogen matrix elements. Parameters
tives of the electronic coefficients with respect to the atomicof the former are given by Bernstein and Kaxit4sThe
coordinates are required and these must be computed nlatter, using the same formalism, are
merically.

The ensuing description of the handshake Hamiltonian is
best understood with reference to Fig. 4. A principal reason
for choosing a semiconductor like silicon to demonstrate the

E. Handshaking MD/TB

€= —7.661518V,

CLS algorithm is that covalent bonds are local objects. Veo,= — 1.6967418Y,

“Dangling” bonds may be “tied off” with univalent atoms. (21)
Simply put, the region chosen for TB description is termi-

nated with univalent atoms. We call these “silogens” to rep- Vspo=3.8704886€V,

resent the fact that they behave like monovalget, hydro-

genig silicon atoms. ThdH] and[S] matrix elements and (1) = V380, (1))

the repulsive pair potentialP that couple these atoms to the Sy(ri )= Sseo (I spo 17

silicon atoms within the interior of the TB region were cho- J 2

sen to(a) maintain electroneutralityas measured by Mul-

liken chargep on both the silogens and silicondy) locate  Bernstein and Kaxird$ provide a prescription for relating
the silogen potential energy minimum at a Si-Si distamo¢,  the S overlap and the/ terms above. The TBH] and[S]

a Si-H distancegc) provide a bond energy equal to a single generalized eigenvalue problem is solved for the entire sili-
Si-Si bond and(d) provide a longitudinal force constant con plus silogen system. Forces are extracted as defined by
equal to that of silicon. At the perimeter of the TB region, Eq. (7).

the silogens are constrained to sit at the silicon sites of the All that remains is to determine which SW two- and
MD region. In many cases, this means that more than onthree-body terms are required to couple the silogen atoms to
silogen sits at a given siteAt a Si(100) surface, terminating the MD region. Examples are shown in Fig. 4. Since silogens
dangling bonds with silogens necessitates placing two aire not coupled to one another in the TB region, SW terms
each empty silicon sit¢Thus, there are no matrix elements that account for such are required. All SW pair terms be-
nor v'®P terms that couplany of the silogens to one another. tween a silogen-silicon and either a silicon atom in the MD
Operationally, a circle is drawn around an inner set of atomstegion or another silogen-silicon are included. All SW trip-
these are designated TB silicons. Then any atom outside thiets that include at least one MD silicon to one silogen-
circle, but within range of an inner atom, is designated as a&ilicon pair are also included. The forces that arise on the
silogen. The range criterion used was the mean of the firsilogen-silicons from these terms are added to the forces aris-
(ro) and second neighbdr/(8/3)ry] distances of the equi- ing from the TB Hamiltonian on these atoms. Thus, EQg.
librium silicon lattice. should more correctly be written
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Outer Perimeter value; where a silogen of one TB region overlaps a silicon of
of Silicons M.D. Region another, use the silicon value. The number of atoms that are
propagated using TB forces is therefore less than the total
number within all the “clover-leaf” regions. These rules are
intuitive and although it is not now possible to write an over-
all conservative Hamiltonian for the entire system, we have
found from experience that the atomic trajectorias mea-
sured by the lack of anomalies in local kinetic energa®
well behaved. For a system without periodicity, such as the
decoration of TB regions around a void, the “clover-leaf”
metaphor can easily be generalized to something akin to a
“raspberry.”
Finally in this subsection, the allocation algorithm is de-
scribed: that is the algorithm whereby the TB “clover leaf”
is made to track a region of breaking bonds. The energy and
Outer Perimeter of Silogens force algorithmas implementedh the MD and TB regions
proceeds by calculating the SW energy & atoms in the
MD processors. TB processors calculate not only TB ener-
gies and forces but also those SW forces that must be sub-
tracted from those double counted in the MD processors. The
result is that SW energies, by suitable apportioning of two-
H1o=Hee({u,U} € FE) + Hegup({u, U, 1,7} € FE/MD) and three-body terms, are available for all atoms. These are
. . then used to discriminate different regions. The apex of a
+Hwo({r.f} €MD) +Hyprs(ir.i} e MD/TB) crack is found, for example, by locating the atom, with a
+Hg({r,i}e MD/TB), (220  potential energy greatémore positivg than 60% of the bulk
cohesive potential energy, furthest to the left or right of the

where the penultimate term involves only SW interactionsSeNter of the systensee Fig. 6 The central TB region of

crossing the boundary and the last involves a TB calculatiorj;nhe clover leaf” is then placed at that atom. S.UCh place—_

for the combined silicon plus silogen system. ment does not have fo be performed at every time step—in
In the absence of a dynamic allocation of the TB region toPUr implementation, it is done every ten steps.

those parts of the system where bonds are breaking during a

simulation, the above prescription produces a conservative F. Seamless FE/MD/TB

Hamiltonian. Unfortunately, for many systerfsuch as the The foregoing discussion indicates how the simulation
crack propagation example belpvthe hundred or so atoms, can be made seamless. The TB region, since it is the region
whose forces may currently be updated using a nongescribed at the most microscopic level, should determine
orthogonal TB Hamiltonian in one second of wall-clock the elastic constants and the atomic force fields used else-
time, do not comprise as large a region as we might wishwhere in the system. Thus, firstly, a pure TB simulation is
Part of the problem may be solved using periodic boundarigerformed for a small number of atoms representing the bulk
conditions. Our example of crack propagation used a slaBystem(at given temperature and pressurBy appropriate
two unit cells deep; thus, the TB region is actually a cylinder.deformation of the computational cell, the elastic constants
There may be other systems, such as a void within the bull§re extracted. By movement of one atom within the cell, a
of a material, where periodicity is not appropriate and ajpcal “Einstein oscillator” force constant can be found. The
spherical region must be used. Another part of the problen\y parameters for silicon may then be adjusted to reproduce
can be ameliorated by using more than one processor per Tfge same quantities. The elastic constants from the TB region
region to perform the diagonalization, but unfortunately suchyre also used for thE ] stiffness matrix of the FE region.
algorithms presently are not efficient on coarse-grained scatasﬂy’ the parameters used for the Si-Silogen matrix ele-
able architecture computers. ments are adjusted so that displacement of a silogen-silicon
Instead, we chose to represent the region of breakingy the coupled system gives rise to the same “Einstein oscil-
bonds by a “clover leaf” of TB regions. Figure 5 gives an |ator” force constant of the pure bulk system. Work is pres-
illustration of three overlapping TB regions. In the crack ently proceeding to fulfill this prescription for full seamless
propagation simulation, described later, eight overlapping rémtegration.
gions were used. Each of these regions is diagonalized sepa- |n the crack propagation example given below the elastic
rately. Each is handled by a separate processor. As in Fig. 4¢onstants of the SW and FE region are made indentical.
the inner TB couplings are denoted by light gray while theqowever, the SW and TB elastic constants are close but
matrix elements coupling TB silicons to TB silogens are rep-s|ightly different. Nevertheless, the results indicate that even

resented by dark gray. After forces on each atom are obhere, the seamless objective is close to reality.
tained for each TB region separately, the force to be used in

the velocity Verlet[see Eq.(3)] update, is obtained via an
average over the different regions: where there is no overlap
of TB regions, use the same prescription as for a single TB Our application is the rapid brittle fracture of a silicon
region; where light gray silicons overlap, use the mearslab flawed by a microcrack at its center and under uniaxial

FIG. 5. lllustration of “clover-leaf” overlapping TB regions
embedded in MD region. Atomic force is function of overlgee
text).

Ill. RESULTS
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FIG. 6. (Color) The geometrical decomposition of the silicon slab into the five different dynamic regions of the simulation: the continuum
finite-element regioFE); the atomistic molecular-dynamics regi@vD); the quantum tight-binding regiofTB); the FE-MD “handshak-
ing” region; and the MD-TB “handshaking” region. The image is the simulated silicon slab, with expanded views of the R&rdfige
nodes-blue atomsnterface and the TRByellow atomg region surrounded by MIblue) atoms. Note that the TB region surrounds the crack
tip with broken-bond MD atoms trailing behind this region. The acronym, MAAD, implies “macroatonaktinitio dynamics.”

tension. This example was chosen to both illustrate and valis,602 A. The entire system including the FE represented
date our CLS scheme. Figure 6 shows the geometrical det1 093 376 atoms. The time for a TB force update was 1.5 s,
composition of the silicon slab into the five different dy- that for the MD update was 1.8 s and that of the FE was 0.7
namic regions of the simulation. The MD region wass. We could, thus, afford to double the size of the FE region
spatially domain decomposed onto 24 processors. Each HE order to accomplish complete computational load balanc-
region was handled by its own processor. We tracked théng but without any sacrifice of wall-clock time. The TB

path of the crack and placed the center of the TB region at
the apex of the crack. This is where bond breaking occurs; it 750
is the region that is crucial to determining the kinetics of the

crack propagation process. For the extended regions of bond 0 FE+MD+TB
rupture(see Fig. 6, we used a “clover leaf” of eight over- ~ 550 |

lapping TB regions, each being cylindrical and distributed to

a different processor. The exposed notch faces were

planes with(100) faces, with the notch pointed in t610 e 350 |

direction. There were 258 048 mesh points in each FE re-
gion, 1032192 atoms in the MD region, and around 280
unique atoms in the TB region. Each of the eight TB regions
is a cylinder with radius of 5.43 A in thgz plane. The Y
lengths of the MD region were 10.9 Ahe slab thickness

and periodi¢, 521 A (before the pull, in the direction of FIG. 7. The distance versus time history of the two crack tips,
pull), and 3,649 Althe primary direction of propagation and one having TB atoms always centered at the immediate failure re-
periodig. The full pull length of the FEEMD system was gion. The distance is in Angstroms, and the time is in picoseconds.

10
TIME (PS)
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FIG. 8. (Color Stress waves propagating through the slab using a finely tuned potential energy color scale at a point in time after the
asymptotic crack speed has been achieved. Blue represents high stress; red represents low stress. Yellow is intermediate.

region was relocated every 10 time steps. A more powerful signature of seamless coupling, one
The rectilinear computational cell compris€tD0 faces  which represents a validation of the method, is depicted in
on all sides. The reduced elastic constant mdtsike Eq. Fig. 8. We note that stress waves pass from the MD region to
(11)] for this geometry was obtained by averaging the resultshe FE regions with no visible reflection at the FE/MD inter-
of Balamane, Halieioglu, and Tik&and Ray’ for the zero-  face; i.e., the coupling of the MD region to the FE region
temperatureC,;, C4,, andCy, elastic constants of SW sili- appears seamless. Further, there are no obvious discontinui-

con ties at the MD/TB interface; this observation remains true
even at higher spatial magnifications. A discussion of the
1.578<10° 0.7930x 1C° 0.0 fracture physics, outside the purpose of éhe present paper,
has been presented in an earlier publicatibn.
[C]=| 0.7930<10F 1.578<1C° 00 | P P
0.0 0.0 0.636% 10° IV. CONCLUSIONS

(23)
We have described an algorithm that successfully couples

where the units are megabar. length scales. It is a finite temperature, dynamic, parallel

The slab was initialized at zero temperature, and a conalgorithm. The general approach is applicable to many ma-
stant strain rate was imposed on the outermost FE boundariésrial types. The applications of such a methodology will be
defining the opposing horizontal faces of the slab. Further, amany and varied. The work described above represents an
linear velocity gradient was applied within the slab, whichillustration of what is possible, but developmental work still
resulted in an increasing internal strain with time. The solidremains which we now briefly discuss:
failed at the notch tip when the solid had been stretched by More thought will be required for treating metals sir{eg
~1.5%. The imposed strain rate was set to zero at the onsebnds are less localized than in silicon dbgitermination of
of crack motion. Figure 7 presents the distance versus timghe surface “dangling bonds” of the active TB region with
history of the two crack tips, one having the TB atoms dy-monovalent species is no longer a good approximation. As
namically centered at the immediate failure region. Thewe have said, this methodology is not wedded to TB: other
propagating cracks rapidly achieved a limiting spéRd70 fast quantum mechanical formulations, as long as they pass
m/s) equal to 85% of the Rayleigh speed, the sound speed dghe one second of wall-clock time per time step test, may be
the solid silicon surface. The two distance-time histories arenore appropriate. Indeed, as computational hardware perfor-
very similar. In hindsight, this might have been expectedmance improves, the choice of which quantum-mechanical
since the elastic modulus of silicon calculated from the emscheme to place at the heart of this CLS scheme will almost
pirical SW potential and from TB are very similar up to the certainly change. An example might be the kinetic energy
mechanical stability limit of the bulk solid. More impor- functionaf! local-density approximation methods advocated
tantly, this indicates that the handshaking between the MIby Carter, Madden, and co-workefswhich require no di-
region and the TB region was reliable. agonalization and which parallelize efficiently. Such
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schemes would require no ‘“clover-leaf” overlapping of in metals, a dynamic allocation of processors as and when
guantum mechanical regions as we have, out of necessityequired to focus on these areas will be required. This is the
implemented here. A further difficulty for metals involves subject of on-going work.
thermal conductivity and dissipation through mixing of elec-  Turning now to long term goals, in our present formula-
tronic states at the Fermi level; something that an empirication we require an MD/FE handshake region in which there
potential cannot capture. Perhaps the empirical potential ras no diffusion and in which no defects propagate. It may
gion will have to be augmented with auxiliary degrees ofwell be that, as research on CLS gains momentum, a hybrid
freedom to enable correct handshaking conditions for thi®f the present formulation and the adaptive grid work of
added level of complexity. Tadmor, Ortiz, and Phillips(discussed in the introduction
The handshaking between each neighboring region workwill evolve. Such would be a powerful computational tool.
well under the conditions of our example. We expect long- Finally, as a philosophical observation, we note that the
wavelength phonons to propagate with minimal back scatteralgorithm we have espoused links not only length scales but
ing through the MD/FE interface. However, in systemsalso disciplines. The TB region was employed to study
where significant short-wavelength energy is emitted frombreaking bonds; that is the realm of chemistry. The MD re-
the central region, we expect that the present handshakirgion was implemented to describe the statistical mechanics
methodology will have to be augmented. The reason is thatf the system; this is the forte of physics. And the FE region
the shorter wavelength, high-frequency vibrations cannot béhat was used to couple the atomistics to the rest of the uni-
supported by the larger mesh spacings inherent in the outererse is the traditional methodology of engineers. This mar-
part of the FE region and will be scattered back into the MDriage of disciplines and its concommitant negation of tradi-
region. Such may be mitigated by adding a random and distonal barriers may well prove to be the true power of this
sipative heat bath to the FE degrees of freedom. Othempproach. This formalism represents the beginnings of com-
scheme®+32to mitigate these effects including adding Nose- putational atomistic engineering.
Hoover chain thermostatsto the FE mesh and developing a
coarse grained MD formulation for the handshake region, are
being pursued. Indeed, such coarse graitfingn be made to
go beyond linear elasticity so th@) dissipation occurs natu- We acknowledge support from the USAF Maui High-
rally and(b) constant pressure algorithms in the far-field re-Performance Computing Center, which is administered by
gions are viable. the University of New Mexico. F.F.A. thanks H. Gao and
The present algorithm dynamically tracks the crack tipJ.Q.B. thanks R. E. Rudd for discussions. J.Q.B. wishes to
with a TB region. Our example of brittle fracture in silicon is acknowledge support of the ONR and DARPA and to thank
appropriate for demonstration purposes since it is cleaDOD’s HPCMO for a support. Lastly, we all wish to thank
where the TB region should be placed. In the case of disloNSP and the ITP at Santa Barbara for support and hospitality
cation generation at the tip, indicative of ductility and typical during the spring of 1997.
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