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Concurrent coupling of length scales: Methodology and application
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A strategic objective of computational materials physics is theaccuratedescription of specific materials on
length scales approaching the meso and macroscopic. We report on progress towards this goal by describing a
seamless coupling of continuum to statistical to quantum mechanics, involving an algorithm, implemented on
a parallel computer, for handshaking between finite elements, molecular dynamics, and semiempirical tight
binding. We illustrate and validate the methodology using the example of crack propagation in silicon.
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I. INTRODUCTION

Historically, there has been a rich tradition of attempti
to couple length and time scales in serial fashion. By this
mean that one set of calculations at a very fundamental le
and of high-computational complexity, is used to evalu
constants for use in a more approximate or phenomenol
cal computational methodology at a longer length/time sc
A good example of this was the pioneering work of Cleme
and coworkers1 in the 1980’s who used high-qualit
quantum-mechanical methods to evaluate the interactio
several water molecules. From this database, an empi
potential was parametrized for use in molecular-dynam
~MD! atomistic simulation. Such simulation was then used
evaluate the viscosity of water from the atomic autocorre
tion functions. Finally, the computed viscosity was employ
in a computational fluid dynamics calculation to predict tid
circulation in Buzzard’s Bay, Massachusetts. This tour-
force of computational physics was a powerful example
the sequential coupling of length and time scales: one se
of calculations is used as input to the next up the length/t
scale heirarchy. Another good example is in atmospheric
environmental science2 where chemists use methods of hig
computational complexity to evaluate reaction barriers
simple chemical reactions, which are then used in large
equation coupled to spatial grid codes to determine and
dict chemical meteorology. There are many other examp
in the literature. But what unifies all these schemes is tha
appropriate computational methodology is used for a gi
scale or task, whether it be the accuracy of quantum mec
ics at the shortest scales, or rate theory and/or fluid dynam
at longest scales.

In contrast, there has been comparatively little effort d
voted to the parallel coupling of different computation
schemes for a simultaneous attack on a given problem; in
case, our interest dictates specific attention towards issu
materials or solid-state physics. We will focus specifically
the coupling of length scales~CLS!. Perhaps such attentio
has been lacking because it necessitates significant com
PRB 600163-1829/99/60~4!/2391~13!/$15.00
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power that heretofore was lacking. The driver for attempt
now to do so has been the advent of parallel computers.
dividing a problem into its natural components, each
which may be addressed by one or more processors,
becomes a more tractable proposition. The issue then
comes one of determining how to do the ‘‘handshakin
between the different regions. This is not just an algorithm
issue but also one that requires physical insight.

The reasons for wanting to couple length scales are
solely those predicted on computational power, howev
The most important is that there is a large class of proble
for which the physics isinherently multiscale; that is the
different scales interact strongly to produce the observed
havior. Turbulence and crack propagation are good
amples. It is necessary to know what is happening simu
neously in each region since one is strongly coupled
another. Another important realization is that once the iss
of interfacing between the different regions have be
solved, the overall algorithm becomes computationally v
efficient. The reason is that one is using the right ‘‘tool’’ fo
the right part of the system, that tool having been optimiz
historically, to solve a particular problem. In our case, t
three regions of interest will be continuum mechanics,
implementation of which will be via finite elements~FE!;
atomistic statistical mechanics, implemented by molecu
dynamics~MD!; and mean-field quantum mechanics rep
sented by semiempirical tight binding~TB!. Since our inter-
est pertains mainly to the solid state, we will confine o
discussion to implementation of elasticity theory via fin
elements. But perhaps the most important result from
general approach is that once the handshakes are m
‘‘seamless,’’ the algorithm is not only efficient, it is als
very accurate. ‘‘Accurate’’ implies that the dynamics of the
phenomenon under study are indistinguishable whether
be determined from a length-scale-coupled system or fr
one of the same size comprising TB atomsonly. The many-
body behavior of specific materials really can be addres
on structurally important length scales.

Pioneering work on coupling atomistics to finite elemen
2391 ©1999 The American Physical Society
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has been performed by Tadmor, Ortiz, and Phillips.3 The
embryonic ideas in their work were initiated before the a
vent of really accessible parallel computer power. Their
terest focussed upon how to embed a defective system~such
as a crack! within a continuum, but without the usual a
sumptions inherent in continuum codes in which a rat
ad-hoc criterion is used for failure in a given region of spa
In their formulation, the finite element mesh permeates
entire system, right down to atomic dimensions. An und
lying atomistic Hamiltonian is used to determine the ene
density of the system; a separate atomistic calculation is
quired for each cell in their finite element mesh. At prese
their scheme is a zero temperature~T! relaxation technique
It is an adaptive methodology since mesh refinement oc
when defects propagate.

A complementary methodology has very recently be
propounded by Rafii-Tabar and coworkers.4 It involves a sto-
chastic coupling of a molecular-dynamics region to a fin
element region. The system is propagated in time usin
stochastic differential equation so as to produce someth
resembling Langevin dynamics. The molecular-dynamics
gion involves a few thousand atoms and represents a s
part of the computational complexity of the simulatio
However, initial results on crack propagation in a tw
dimensional~2D! silver plate are encouraging.

In contrast, in this paper, we will advocate a rather diff
ent approach.5,6 We will be specifically interested in solid
systems at finite temperature in which the trajectories
dictated by classical mechanics and for which the dynam
complexity of the system is of importance. The ensuing d
cussion centers on Fig. 1. We envisage a system in which
dynamically crucial part comprises a relatively small sub
of all the atoms in the system. This part involves a disrupt
of the symmetry of the system. This is the region of brok
bonds, or at least that region where bonds are breaking
which dictates the kinetics of the system. We imagine,
example, such a region being typified by a propagating cr
tip. It is important to describe the energetics of this part
the system very accurately. Since it is a region where bo
are breaking it requires a quantum-mechanical descript
empirical interatomic potentials are prone to be untrustw
thy in such cases. We chose to describe this part of the
tem with a tight-binding Hamiltonian since this is one of t
fastest quantum-mechanical algorithms that contains the
sic physics of breaking bonds and from which it is simple
extract forces.

FIG. 1. Illustration of domain decomposition of pseudo-1D s
tem showing coupling of length scales. There may be more than
processor per TB region.
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Since the computational complexity of tight binding
high ~see below!, it is not possible to describe the entir
meso/macro system with such. It is important, however, t
the region of dynamical breaking bonds be embedded in
correct atomistic statistical mechanical environment. Th
we surround the TB region with an MD region in which th
atoms interact with one another via a carefully parametri
empirical potential for the system of interest. The system,
this length scale, is less perturbed from equilibrium than
bond-ruptured region and we expect the empirical poten
to work well. This MD region is required because it correc
captures the necessary thermal fluctuations and the pres
waves emitted by the bond rupturing and/or defective regi
The MD region may also contain those areas of the sys
that are defective but for which the primary dynamics are
longer important. An example might be the surfaces o
crack entrained behind a propagating crack tip.

Lastly, although MD system sizes currently can run
hundreds of millions of atoms,7,8 when considering the mes
and macro scales even these formidable calculations are
able to represent properly the rest of the environment of
dynamical system. Here, the precise statistical mechanic
less important than allowing the free passage of~usually long
wavelength! energy into or out of the system. Such a co
pling to the rest of the universe is important when study
problems where much of the physics is invested with lon
range interactions, such as a long-range elastic field.
amples include delamination of ceramic/insulator interfac
crack propagation, and dynamical micro electro mechan
systems. It is here that use of the basic tool of engineer
appropriate, namely finite elements, to solve for the displa
ment field of the system. In this far-field region of our e
visaged system it is appropriate to embed the MD region
continuum mechanical representation. Here, atoms are
placed only slightly from equilibrium and elasticity theor
should work very well. Indeed, finite elements are t
method of choice for this region. The FE algorithm is mo
computationally efficient than the MD since it deals on
with the minimal degrees of freedom necessary to desc
the correct physics. Consider, for a moment, large-sc
simulations of crack propagation. Graphical representati
of such systems focus mainly upon the high-energy part
the system; namely the crack faces and emit
dislocations.7,9 In the far-field regions, little of interest is
happening: many computer cycles are spent describing
jectories of atoms that do very little apart from vibratin
around lattice sites. It is here that a mean-field approach i
that is required. Yet it is not appropriate to dispense with t
region completely: again, atomistic simulations of cra
propagation make the point. Large-scale MD simulati
shows that long-wavelength pressure pulses radiate from
crack tip.10 These propagate to the edge of the simulati
bounce off the edges of the computational cell and refl
back towards the cell center thereby contaminating the v
phenomenon under study. A FE region surrounding the M
region allows such pressure waves to propagate harmle
into the continuum~the continuum region can be mad
large!. Note that although Fig. 1 shows FE regions at t
extreme left- and right-hand ends of our pseudo-1D topolo
~actually, a 3D simulation will be performed as demonst
tion! there is nothing to prevent decoration with FE regio
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on all sides of the central MD region. Such decoration
pends upon the physics of the system under study.

This approach should not be viewed as universal pana
It works well on a subset, albeit an important subset, of s
tems. These involve a central region that dictates the kin
cal behavior of the system surrounded by a region o
slightly perturbed from equilibrium. The MD region is cho
sen to be of sufficient size to allow all defects to form and
propagate. The trajectory of the region of breaking bond
tracked via a dynamical relocatable TB region. But once
defects reach the MD/FE interface, the algorithm, as p
pounded below, must terminate. A second restriction, u
which we have not yet touched, is that of timescale. As
illustrate below, the advent of parallel architecture machi
allows access to meso and macroscale system sizes, b
yet the total elapsed time of the simulation is, and theref
those phenomena that may be accessed are, restricted t
proximately one nanosecond. Time, unfortunately, is a
quential object and mere access to more processors doe
solve, in any paradigmatic way, the issue of timescale
dynamicsimulation. Progress in algorithms that address
timescale issue would revolutionize materials simulation.

Below, in Sec. II, we describe the principal compone
of our algorithm. Firstly, we outline the three independe
methodologies of TB, MD, and FE. Secondly, we descr
the handshaking between these regions, all of which m
proceed in lock step. Section III illustrates and validates
methodology with the important example of crack propa
tion in silicon. Finally, Sec. IV gives our conclusions to
gether with prognoses for implementations in other mater
systems.

II. COMPUTATIONAL METHODOLOGIES

Before proceeding with specifics, some general points
worth making. In this discussion, the long axis of Fig. 1 w
be designatedy; the other axis in the plane of the figure isx;
the axis into the paper will bez. The crux of this methodol-
ogy is to allow the study of equilibrium and nonequilibriu
dynamics of macroscale systems. In order to take meanin
ensemble averages, or in order to access timescales of u
is necessary to propagate the system through times of o
one nanosecond. A typical MD time step is, for chemica
bonded systems, approximately 10215s: thus, on~say! 50 to
100 processors, one time step is about one second of w
clock time. One million time steps may therefore
achieved in approximately ten days on a significant, but
unreasonable, fraction of a parallel machine.

The second point relates to the material with which
have chosen to illustrate our methodology: silicon. This i
material for which many very good empirical interatom
potentials11 already exist: we chose the Stillinger-Webe12

because of its computational simplicity. We chose silicon
other reasons too: its industrial importance for one, its loc
ity of bonding for another. The principles outlined belo
will work for metals, and are the subject of on-going wor

Thirdly, our choice of tight binding13 to illustrate
quantum-mechanical coupling is dictated mainly by the
quirement of computational speed: the need to propaga
nontrivial number of atoms under the influence of th
Hamiltonian within one second of wall-clock time. Oth
-
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Hamiltonians are possible in the quantum region, such as
moment methods~bond order! advocated by Pettifor and
coworkers.14,15 We chose TB for its simplicity and intuitive
appeal.

Lastly, our implementation of finite elements will be
the linear elastic level. Since FE is used only in the far-fie
region where atoms are perturbed only slightly from equil
rium, we view it as unnecessary to employ nonlinear elas
ity theory. Further, since the systems of primary interest
us involve plane strain, our implementation will be for a 2
system. A 3D far-field region would be a straightforwa
extension.

As the early part of Sec. I implies, and as Fig. 1 illu
trates, each of the three primary algorithms, and the reg
of space that they describe, are distributed to different p
cessors. The example of crack propagation in silicon was
on the IBM SP2 at the US Air Force High-Performan
Computing Center at Maui. Each FE region is handled b
different processor; the MD region is domain decompos
across several computer nodes and the TB region is likew
spread over several processors. The code was writte
FORTRAN with MPI for the message passing interfac
Such code ports to most parallel architecture machines.
advantage of a pseudo-1D topology is that much mess
passing can be performed using the ‘‘shift’’ operator. Fu
ther, only data within interaction range~defined by the
Hamiltonian! need be passed across boundaries~defined by
the domain decomposition! between processors.

The overarching theme is that a HamiltonianHTot will be
defined for the entire system. Its degrees of freedom
atomic positionsr and their velocitiesṙ for the TB and MD
regions; and displacementsu and their time rates of changeu̇
for the FE regions.~The velocities and conjugate momen
are simply related!. Equations of motion for all the relevan
variables in the system are obtained by taking the appropr
derivatives of this Hamiltonian. All variables can then b
updated in lock step as a function of time using the sa
integrator. Thus, the entire time history of the system may
obtained numerically given an appropriate set of initial co
ditions. Conceptually,HTot may be written

HTot5HFE~$u,u̇%PFE!1HFE/MD~$u,u̇,r , ṙ%PFE/MD!

1HMD~$r , ṙ%PMD!1HMD/TB~$r , ṙ%PMD/TB!

1HTB~$r , ṙ%PTB!. ~1!

This equation should be read as implying that there are th
separate Hamiltonians for each subsystem as well as Ha
tonians that dictate the dynamics of variables in the ha
shake regions. ‘‘MD/TB’’ and ‘‘FE/MD’’ imply such hand-
shake regions. Following a trajectory dictated by th
Hamiltonian will result in a conserved total energy. This
an important feature of our computational approach sinc
ensured numerical stability.

A. Molecular dynamics

Molecular dynamics involves following the classical tr
jectories of atomic nuclei by integrating Newton’s laws
motion for the system. In the region labeled MD, the inte
atomic force law will be obtained from an empirical pote
tial. In the region labeled TB, the force law will be extracte
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from a quantum-mechanical Hamiltonian that solves
mean-field equations for the electrons in the system. In
example, we studied silicon for which we chose to use
Stillinger-Weber~SW! potential,VSW, which involves both
two-body and three-body interatomic terms

VSW5(
i , j

v ~2!~r i j !1 (
i ,~ j ,k!

v ~3!~r i j ,r ik!. ~2!

The sums are over atomic indicesi,j,k. The exact form of
these interactionsv are given in Ref. 12. The sum in th
three-body term is written such thati is the apex of the trip-
let.

Forcesf may be extracted fromHSW by taking derivatives
with respect to the atomic coordinates. In order to obtai
trajectory through phase space for these atoms, we requi
integrator for Newton’s laws of motion. We chose th
velocity-Verlet algorithm since it is easily augmented
handle multiple timescale MD.16 The following algorithm is
iterated:

ṙ i S t1
Dt

2 D5 ṙ i~ t !1
Dt

2m
f i~ t !,

r i~ t1Dt !5r i~ t !1Dt ṙ i S t1
Dt

2 D ,

f i~ t1Dt !5
]VSW

]r i~ t1Dt !
,

ṙ i~ t1Dt !5 ṙ i S t1
Dt

2 D1
Dt

2m
f i~ t1Dt !. ~3!

At each iteration, each of the four steps is performed
quentially for every atomi in the system. After exiting the
last step, the simulation time is incremented byDt. For sili-
con, we used a time step of 5310216s. The mass of the
silicon atomm is 4.6639310226kg. Evaluation of the SW
energy and its attendant forces may be coded, by taking
vantage of atomic neighbor tables, so that computer t
scales asO(N), where N is the number of atoms in th
system. The two- and three-body terms truncate smoothl
zero just before the second-neighbor distance in ze
pressure diamond cubic structure silicon.

B. Tight binding

Semiempirical tight binding involves~a! anansatzfor the
total energy of the system and~b! a parametrization of the
integrals that occur in mean-field treatments of the electro
structure of a system. The total energy of the system is w
ten as

VTB5 (
n51

Nocc

«n1(
i , j

v rep~r i j !. ~4!

The sum is over all occupied statesNocc up to the Fermi
level. Foulkes and Haydock13 have provided sound justifica
tions for the form of this equation. It is similar in form to th
full density-functional expression for the total energy, but t
double counting of the Coulomb and exchange-correla
e
ur
e

a
an

-

d-
e

to
o-

ic
t-

e
n

terms inherent in the eigenvalue sum are approximated
the sum over all pairs of atoms of the repulsive interatom
potentialv rep. The eigenvalues$«% corresponding to the one
electron states of a first principles Hartree-Fock or dens
functional calculation are obtained from a nonorthogo
one-electron Hamiltonian

@H#Cn5«n@S#Cn

Cn5(
ia

cia
n f ıa , ~5!

where the matrix elements within@H# and @S# are obtained
by reducing the equivalent integrals within an extensive
tabase of first principles calculations to parametric form

Hia j b[^f iauĤuf j b&5hab~r i j !

~6!
Sia j b[^f iauf j b&5sab~r i j !.

The one-electron wave functions$C% are expanded as a lin
ear combination of atomic basis functions$f%. n labels the
orbital number whilea andb label the basis functions~in the
minimal basis of silicon, these represents, px , py , and pz
atomic orbitals!. The size of the@H# and @S# matrices are
therefore (4N34N). Their matrix elements are param
etrized in two center approximation by pairwise functionsh
and s. These functions smoothly truncate to zero near 5
which is between the third- and fourth-neighbor distances
silicon. Note that since all integrals are represented by p
functions~v rep, h, ands! the exact form of the basis function
are not required: the one-electron states$C% are represented
within this formalism only by the sets of coefficients$c% in
their expansion. The functionsv rep, h, ands are obtained by
fitting to a database involving the experimental indirect ba
gap of the diamond cubic structure and the total energie
crystalline and defective diamond cubic andb-tin silicon at
different densities. The parameters for this fit are given
Bernstein and Kaxiras.17 For most purposes, this nonsel
consistent TB Hamiltonian describes bulk, amorphous,
surfaces properties of silicon very well.

Solving for the coefficients$c% is a generalized eigenvalu
problem. For given set of atomic coordinates, the coefficie
are found by diagonalization. One-electron states are oc
pied up to the Fermi level. A small amount of Fermi-lev
broadening is used. Forces are then found from the der
tive of the TB energy with respect to displacement of t
nuclei

f i
TB52F (

n51

Nocc

(
a

cia
n (

j b
cj b

n S ]Hia j b

]r i
2«n

]Sia j b

]r i
D G

2(
j Þ i

]v rep~r i j !

]r i
. ~7!

Derivatives of the coefficients with repect to atomic po
tions do not occur. Such terms vanish identically by orth
normality. Knowing the forces, atomic coordinates may
advanced through time using exactly the same algorithm
that used for the SW system; namely that given by Eq.~3!.
The same time step may be used since Einstein frequen
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in both cases are very similar; indeed SW parameters c
be adjusted to ensure equality.

The above describes anO(N3) algorithm: brute force di-
agonalization isO(N3), which parallelizes poorly. This sca
ing may be improved somewhat by implementing a fictitio
Lagrangian18 but this at best isO(N2). There is much dis-
cussion in the literature aboutO(N) schemes for electronic
structure.19–22 We chose not to implement such yet in o
CLS algorithm since~a! such methods often have problem
with situations in which states wander across the Fermi le
and~b! the crossover of improved efficiency from theO(N3)
to the O(N) schemes occurs at system sizes above sev
hundred atoms.23 Diagonalization wins at the lower atom
numbers. Our stipulation of one second of wall-clock tim
per time step places our choice firmly in theO(N3) system-
size regime. AsO(N) schemes improve, this choice is like
to change. For the present, then, we use the diagonaliza
route since it is ‘‘black box’’ and robust.

C. Finite elements

Since finite elements will be used to describe the far-fi
region of the simulation, linear elasticity theory will be us
to develop the FE equations of motion. The total elastic
ergy of a solid, in the absence of tractions and body force
then given by

HFE5VFE1KFE,

VFE5
1

2 E dVF (
m,n,l,s51

3

emn~r !Cmnlsels~r !G , ~8!

KFE5
1

2 E dVr~r !u̇2~r !.

Here,V is the volume of the system andVFE is the Hookian
potential energy term. It involves the symmetric strain ten
e quadratically multiplying the elastic constant tensorC. The
subscripts,m, n, l, s denote Cartesian directions. The seco
term, the kinetic energy,KFE, involves the time rate of
change of the displacement fieldu̇ and the mass densityr.
The strains and displacements are simply related

emn5F]um

]r n
1

]un

]r m
G . ~9!

They are viewed as being continuous variables and so
total energy of the system is an integral of these quanti
over the volume of the sample. The FE algorithm involv
dividing the volume into cells: often tetrahedra in 3D a
triangles in 2D.24 An exhaustive literature exists on how
choose these cells including automatic mesh generation
adaptive meshing.25 We will describe our mesh in the nex
subsection. If the values of the displacements and their t
derivatives are known at the vertices of these cells, then
terpolation functions may be used to determine the value
these variables everywhere within each cell. A comm
choice, made because of computational simplicity, is lin
interpolation inside each cell. The result is that the displa
ment fields are represented in piecewise smooth fashion
our example of crack propagation, we will be interested
plane strain situations for which a 2D far-field region su
ld
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fices. We will confine the rest of the description therefore
triangular cells. Equation~8! can now be approximated by

HFE5
1

2 (
m

Ncell

(
p,q51

6

@up
mKpq

m uq
m1u̇p

mM pq
m u̇q

m#, ~10!

where @K # and @M # are local stiffness and mass matrice
respectively. The displacements and their time rates
change are now only defined at the apices of each trian
The cell index is denoted bym. The total number of FE cells
is Ncell . The~p,q! sum runs over the (332) Cartesian direc-
tions associated with the apices of a 2D triangular cell. Th
the total FE energy is given as a sum of products of lo
matrices. The stiffness matrix is given by

@K #m5
L

4Am
@BT#@C#@B#m, ~11!

where Am is the area of themth triangle and@C# is the
reduced (333) elastic constant matrix and@B# is the matrix
of coordinate differences of the apices of the FE mesh.L is
the thickness of the material in the third dimension. T
values of the elements of@C# depend upon the orientation o
the system; they are functions of the three fundamental e
tic constants of silicon, namelyC11, C12, andC44, which
are given for zero-temperature SW silicon by Balama
et al.26 and by Ray.27 We employed the mean of their result
A, L, and@B# are time independent

@BT#m5S b1
m 0 a1

m

0 a1
m b1

m

b2
m 0 a2

m

0 a2
m b2

m

b3
m 0 a3

m

0 a3
m b3

m

D , ~12!

where

bl
m5yl 11

m 2yl 12
m

~13!

al
m5xl 12

m 2xl 11
m .

Here, 1 denotes the cyclic apex index, running from 1 to
and x and y denote the 2D FE mesh coordinates. Displa
ments$u% are defined with respect to these coordinates.

The mass matrix@M # is handled rather differently. In
principle the kinetic energy density varies across any giv
cell. However, to anticipate the next subsection, it will
necessary to reduce the FE mesh in the FE/MD handsh
region to coincide with the perfect atomic lattice. At th
atomic level each atom has kinetic energy and is apportio
accordingly. Thus for our FE mesh, we chose to use
‘‘lumped-mass’’ approximation, which reduces for th
smallest mesh size to the atomic limit. One third of the m
in each cell is apportioned to each apex. The kinetic ene
is thus given by
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KFE5 (
t51

Nmesh

Mt~ u̇t!2,

Mt5rL (
m51

Ncell

(
l 51

3

d tml

Am

3
, ~14!

wheret labels the FE mesh points, of which there areNmesh
total, andml labels the mesh point index at each of the th
apices of cellm. The$u̇% are vectors of length two since the
relate to a mesh point.

Forces for the displacement degrees of freedom in
~10! are obtained by taking positional derivatives. Displac
ments and their time rate of change may be obtained a
function of time, for given boundary conditions, using t
same update algorithm, Eq.~3!, and time step as that used fo
the MD and TB. The force due to themth cell is

f FE
m 5@K #mum. ~15!

In keeping with Eq.~10!, the vectors in Eq.~15! are of length
six. The total force associated with a mesh point is then
sum of the contributions from each of the cells with apices
common with that point. Finally

f FE
t 5Mtüt. ~16!

D. Handshaking FE/MD

The two principal issues for handshaking between FE
MD regions are~a! the overlap of the mesh with the atom
and ~b! the form of the Hamiltonian.

In the first case, we generalize an idea due to Kohlh
and coworkers.28 An imaginary surface is drawn between th
FE and MD regions. Within the range of the MD interatom
potential from this surface, FE mesh points are located
ideal lattice sites. As long as there is no diffusion, atoms
mesh points remain on either side of this interface. Howe
the distinction between the two becomes academic: ato
motion may be viewed as displacement around a lat
~mesh! site, and the displacement field may be viewed
motion of an atom away from its perfect site. This metho
ology would work also for amorphous systems; all that
required is a one-to-one mapping of a mesh point to an a
site. Moving away from the handshake region into the
region, the mesh spacing may be made larger. This is
principal reason that the FE algorithm is computationa
efficient. The largest spacing depends upon the physics
we wish to capture; for example the largest spacing de
mines the shortest wavelength phonons that we wish
propagate unimpeded though the FE region.

In our illustration of the CLS method, we chose to exa
ine brittle fracture in silicon; specifically we oriented o
rectilinear system such that it has~100! faces on all sides
The FE region is represented as a 2D system, which ne
thless handles the third dimension in plane strain; Eq.~11!
has the parameterL to represent the thickness of the samp
Thus, the projection of a diamond cubic lattice onto a~100!
plane is required to generate the 2D mesh. Figure 2 sh
this, as well as the triangulation we used for the FE cells.
the edges of the computational cell, the triangulation is a
to wrap around; i.e., the FE region can be made periodi
e
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exactly the same way as the MD. For a periodic syste
there are twice as many cells as there are mesh points. A
from the handshake region and into the FE region, we
panded the mesh along one dimension~the long axis in Fig.
1! while keeping the mesh spacing constant in the seco
The function chosen for this expansion was of hyperbo
tangent form. Thus near the handshake region there is
expansion of the atomic mesh and far away from the ha
shake region the spacing asymptotes to a constant multip
the atomic lattice parameter. In the crack propagation
ample below, this multiple was ten. The transition regi
spanned a couple of hundred Angstroms.

Turning now to the form of the handshake Hamiltonia
where we differ from the prior work of Kohlhoff and
co-workers28 is in the dynamics of the handshake region. W
found it very important to define a conservative Hamiltoni
so as to ensure symplectic time evolution of the atomic a
displacement trajectories within the handshake region. T
is key to the successful implementation of thedynamiccou-
pling of length scales. We note that it is academic whethe
say either that atom sites propagate into the FE region or
FE mesh points propagate into the MD region. The disc
sion is best understood with reference to Fig. 3. In conc
tualizing this Hamiltonian, we imagine that two different m
terials sit on either side of an interface; in one case it is
silicon and in the other it is SW silicon. The cross terms~i.e.,
the handshake Hamiltonian! to first order can be approxi
mated by a mean of the two descriptions. All FE triang
that cross the interface contribute half their weight to t
Hamiltonian. Any triangle that is fully in the MD region
contributes zero weight. Similarly, any SW interaction~two
body or three body! which crosses the interface contribut
half its usual weight. Any SW interaction between me
points, all of which are fully on the FE side of the interfac
contributes zero weight. The SW energy formulation th
concentrates upon atomic coordinates$r % and the FE energy
formulation that concentrates upon displacements$u% can be
used throughout the interface because of the indistingu
ability of what are atoms or mesh points. The one-to-o
mapping of atoms to nodes is not required at distan
greater than twice the SW pair cutoff away from the interfa
in the FE region. This is the distance of greatest three-b
range. Figure 3 indicates diagramatically those interacti
that contribute to the handshake Hamiltonian. Thus

FIG. 2. Triangulation of 2D unit cell. Unit cell denoted b
dashed lines. Triangles marked with continuous lines. Note cont
ous lines on left and right but not top and bottom of unit c
boundary. Eight mesh points and 16 triangles per unit cell.
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VFE/MD5
1

4 (
mI51

#cross

(
p,q51

6

up
mI

Kpq
mI

uq
mI

1
1

2 F (
~ i , j !I

v ~2!~r ~ i j !I !

1 (
@ i ,~ j ,k!# I

v ~3!~r ~ i j !I,r ~ ik !I !G . ~17!

Here, the superscriptI implies those interactions that cros
the FE/MD boundary. Indeed,VFE/MD is only defined for
interactions that cross the boundary. Otherwise, the o
terms in Eq.~1! define the forces at mesh points and atom
The formalism in Eq.~17! is meant to imply thatany one
atom of the triplet in the three-body terms can be on
opposite side of the interface to the other two.

In the present implementation of the CLS algorithm, t
FE is 2D and the MD is 3D. As we have said, the th
dimension of the FE region is treated in mean field. Thus
VFE/MD, x andy displacements of atoms on the MD side
the FE/MD boundary that contribute to the elastic energy
obtained by averaging over all equivalent atoms in the de
z. In similar fashion, in determining the SW energy cont
bution to the handshake Hamiltonian, we replicate allx andy
displacements in the third dimension on the FE side of
boundary by assuming that atoms sit at ideal lattice site
that dimension. The overall Hamiltonian remains conser
tive.

In making the FE/MD interface seamless, two other iss
confront the definition of energy. They both involve refe
ence state; one is potential energy, the other is thermal
ergy. The SW potential is referenced to infinitely separa
atoms. The FE potential is referenced to aT50 unstrained
lattice. For the purposes of graphical analysis, therefor
constant offset energy that does not affect the dynamic
added to each FE mesh point. TheT50 energy density for
SW silicon at zero pressure is24.33 444 eV/atom. The off-
set energy is computed for every FE point using an equa
entirely analogous to that used to compute mass in
‘‘lumped-mass’’ approximation except that instead of a m

FIG. 3. Illustration of FE/MD handshake Hamiltonian. F
cells contributing fully to overall Hamiltonian~unit weight! marked
with heavy lines. FE cells contributing to handshake Hamilton
~half weight! represented by light lines. Two and three-body ter
~dotted lines! of SW interaction that cross boundary also carry h
weight. Continuous lines represent unit weight SW interactio
Representative examples in each case.
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density, we now use the SW energy density@see Eq.~14!#.
As before, this scheme ensures the correct limiting beha
as the mesh spacing is reduced to atomic dimensions.
atoms in the handshake region, for systems with unus
orientation where the offset is nontrivial to estimate atom
atom, aT50 calculation with zero strain for the couple
FE/MD system can be performed. The offset may thereby
calculated to maintain the energy/atom constant through
interface. This is easily achieved by virtue of periodicity a
symmetry.

Turning now to the thermal energy, the work of Rudd a
Broughton29 indicates that the square of the time rate
change of the displacements in the FE region are relate
the temperature. In coarsening the FE grid upon mov
away from the handshake region, atomic degrees of freed
are lost: the FE algorithm involves an average over the
Thus, to bring the atomic and continuum thermal energ
onto an equivalent footing, the total FE thermal energy m
be written again by means of an offset. These corrected
ergies are denoted by a prime

KFE8 5 3
2 ~Natom2Nmesh!kBT1KFE1 1

2 NmeshkBT,
~18!

VFE8 5 3
2 ~Natom2Nmesh!kBT1VFE1 1

2 NmeshkBT.

Natom is the number of atoms contained within an equivale
3D volume. kB is Boltzmann’s constant. Equipartition ha
been invoked. We further assume that the background t
perature does not vary during the simulation. The first te
therefore accounts for the missing degrees of atomic freed
while the last term augments the 2D FE plane-strain simu
tion for the missing third dimension in its degrees of fre
dom. As before, these offsets do not affect the dynamics
the system and the thermal corrections can be apportione
each mesh point in like manner to that described above
the zero-temperature FE potential energy. For finite temp
ture simulations, the$u̇% degrees of freedom are thermalize
to a Maxwellian distribution. Also, the appropriate elas
constants for that temperature should be used in the FE e
tions of motion so as to make the MD and FE regions sea
less and compatible. Further, since this methodology requ
a continuation of ideal lattice sites into the FE/MD han
shake region so as to determine mesh coordinates, the ap
priate lattice parameter for given temperature should be u

Lastly, in this subsection, we discuss the issue of diss
tion in the FE region. The continuum representation of m
ter used here involves linear elasticity theory. This is a h
monic theory. Thus, vibrational modes of given$k,v%
relationship, which depend upon the long-wavelength ela
constants of the medium, propagate undamped. In orde
thermalize short-wavelength phonons propagating thro
regions where the mesh spacing changes and also to a
energy to be dissipated in the FE region, the FE degree
freedom are weakly coupled to a Brownian heat bath wh
dynamics are set to the temperature at which the simula
is being performed. In effect, this couples the phonon mo
of the FE region. The force used in the third step of t
velocity Verlet algorithm@see Eq.~3!# now includes random
and dissipative terms

n
s
f
.
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f FE
t 5

]VFE

]ut 1rG~T,yt!2j~yt!Mtu̇t, ~19!

whererG is a Gaussian random variable andj is a friction
coefficient. The two are related by the fluctuation dissipat
theorem. Specifically the variancesG of the Gaussian is
given by:

sG5A2jMtkBT

Dt
. ~20!

In order to perturb the dynamics of the active zone~i.e., MD
and TB! minimally, j was made a function of the~time in-
variant! FE meshy coordinate. j was linearly ramped from
zero in the handshake region to finite value~we chose 0.1 for
the crack propagation study! at the extremal outer edge o
the FE regions.

E. Handshaking MD/TB

In contradistinction to the FE/MD handshake algorith
where a planebetweenrows of atoms was defined, th
MD/TB handshaking takes place conceptually across a p
consistingof atoms. This different approach is necessita
because it is difficult to apportion~localize! energy in a com-
putationally efficient way to specific bonds in an electron
structure calculation. The total energy is a property of
entire system. Attempts to define a 50/50 Hamiltonian, s
as was used for the FE/MD interface, run into issues of
thonormality such that Eq.~7! is no longer sufficient: deriva
tives of the electronic coefficients with respect to the atom
coordinates are required and these must be computed
merically.

The ensuing description of the handshake Hamiltonia
best understood with reference to Fig. 4. A principal rea
for choosing a semiconductor like silicon to demonstrate
CLS algorithm is that covalent bonds are local objec
‘‘Dangling’’ bonds may be ‘‘tied off’’ with univalent atoms.
Simply put, the region chosen for TB description is term
nated with univalent atoms. We call these ‘‘silogens’’ to re
resent the fact that they behave like monovalent~i.e., hydro-
genic! silicon atoms. The@H# and @S# matrix elements and
the repulsive pair potentialv rep that couple these atoms to th
silicon atoms within the interior of the TB region were ch
sen to~a! maintain electroneutrality~as measured by Mul
liken charges! on both the silogens and silicons,~b! locate
the silogen potential energy minimum at a Si-Si distance,not
a Si-H distance~c! provide a bond energy equal to a sing
Si-Si bond and~d! provide a longitudinal force constan
equal to that of silicon. At the perimeter of the TB regio
the silogens are constrained to sit at the silicon sites of
MD region. In many cases, this means that more than
silogen sits at a given site.@At a Si~100! surface, terminating
dangling bonds with silogens necessitates placing two
each empty silicon site.# Thus, there are no matrix elemen
nor v rep terms that coupleanyof the silogens to one anothe
Operationally, a circle is drawn around an inner set of ato
these are designated TB silicons. Then any atom outside
circle, but within range of an inner atom, is designated a
silogen. The range criterion used was the mean of the
(r 0) and second neighbor@A(8/3)r 0# distances of the equi
librium silicon lattice.
n
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In Fig. 4, matrix elements that couple atoms across
light gray region are of Si-Si form. Atoms coupled across t
dark gray region use Si-Silogen matrix elements. Parame
of the former are given by Bernstein and Kaxiras.17 The
latter, using the same formalism, are

es527.661518eV,

Vsss521.6967418eV,
~21!

Vsps53.8704886eV,

S2~r i j !5
Ssss~r i j !2)ssps~r i j !

2
.

Bernstein and Kaxiras17 provide a prescription for relating
the S overlap and theV terms above. The TB@H# and @S#
generalized eigenvalue problem is solved for the entire s
con plus silogen system. Forces are extracted as define
Eq. ~7!.

All that remains is to determine which SW two- an
three-body terms are required to couple the silogen atom
the MD region. Examples are shown in Fig. 4. Since siloge
are not coupled to one another in the TB region, SW ter
that account for such are required. All SW pair terms b
tween a silogen-silicon and either a silicon atom in the M
region or another silogen-silicon are included. All SW tri
lets that include at least one MD silicon to one siloge
silicon pair are also included. The forces that arise on
silogen-silicons from these terms are added to the forces
ing from the TB Hamiltonian on these atoms. Thus, Eq.~1!
should more correctly be written

FIG. 4. Illustration of MD/TB handshake Hamiltonian. Oute
perimeter of TB region terminated with monovalent silogens~see
text! constrained to sit at silicon sites. TB Hamiltonian diagon
ized for sum of light plus dark gray regions: Si-Si matrix eleme
employed in light gray area, Si-Silogen matrix elements used
dark gray region. Two- and three-body SW interactions contrib
ing to handshake Hamiltonian designated by full lines. Broken lin
represent noncontributing SW three-body term. Only representa
SW examples are shown.



n
tio

t
ng
ti

,
on
k

ish
ar
la
er
u

le
r T
c
ca

in
n
ck
re
e
g.
he
p
o
d
n
rla
T
a

of
are
otal
re
r-
ve

the
f’’
to a

e-
f’’
and

er-
sub-
The
o-
are
f a
a

he

e-
in

ion
gion
ine
lse-
is
ulk

nts
, a
e
uce
ion

.
le-

icon
cil-
s-
s

stic
cal.
but

ven

n
xial

PRB 60 2399CONCURRENT COUPLING OF LENGTH SCALES: . . .
HTot5HFE~$u,u̇%PFE!1HFE/MD~$u,u̇,r , ṙ%PFE/MD!

1HMD~$r , ṙ%PMD!1HMD/TB~$r , ṙ%PMD/TB!

1HTB~$r , ṙ%PMD/TB!, ~22!

where the penultimate term involves only SW interactio
crossing the boundary and the last involves a TB calcula
for the combined silicon plus silogen system.

In the absence of a dynamic allocation of the TB region
those parts of the system where bonds are breaking duri
simulation, the above prescription produces a conserva
Hamiltonian. Unfortunately, for many systems~such as the
crack propagation example below!, the hundred or so atoms
whose forces may currently be updated using a n
orthogonal TB Hamiltonian in one second of wall-cloc
time, do not comprise as large a region as we might w
Part of the problem may be solved using periodic bound
conditions. Our example of crack propagation used a s
two unit cells deep; thus, the TB region is actually a cylind
There may be other systems, such as a void within the b
of a material, where periodicity is not appropriate and
spherical region must be used. Another part of the prob
can be ameliorated by using more than one processor pe
region to perform the diagonalization, but unfortunately su
algorithms presently are not efficient on coarse-grained s
able architecture computers.

Instead, we chose to represent the region of break
bonds by a ‘‘clover leaf’’ of TB regions. Figure 5 gives a
illustration of three overlapping TB regions. In the cra
propagation simulation, described later, eight overlapping
gions were used. Each of these regions is diagonalized s
rately. Each is handled by a separate processor. As in Fi
the inner TB couplings are denoted by light gray while t
matrix elements coupling TB silicons to TB silogens are re
resented by dark gray. After forces on each atom are
tained for each TB region separately, the force to be use
the velocity Verlet@see Eq.~3!# update, is obtained via a
average over the different regions: where there is no ove
of TB regions, use the same prescription as for a single
region; where light gray silicons overlap, use the me

FIG. 5. Illustration of ‘‘clover-leaf’’ overlapping TB regions
embedded in MD region. Atomic force is function of overlap~see
text!.
s
n

o
a

ve

-

.
y
b
.
lk
a
m
B

h
l-

g

-
pa-
4,

-
b-
in

p
B
n

value; where a silogen of one TB region overlaps a silicon
another, use the silicon value. The number of atoms that
propagated using TB forces is therefore less than the t
number within all the ‘‘clover-leaf’’ regions. These rules a
intuitive and although it is not now possible to write an ove
all conservative Hamiltonian for the entire system, we ha
found from experience that the atomic trajectories~as mea-
sured by the lack of anomalies in local kinetic energies! are
well behaved. For a system without periodicity, such as
decoration of TB regions around a void, the ‘‘clover-lea
metaphor can easily be generalized to something akin
‘‘raspberry.’’

Finally in this subsection, the allocation algorithm is d
scribed: that is the algorithm whereby the TB ‘‘clover lea
is made to track a region of breaking bonds. The energy
force algorithmas implementedin the MD and TB regions
proceeds by calculating the SW energy forall atoms in the
MD processors. TB processors calculate not only TB en
gies and forces but also those SW forces that must be
tracted from those double counted in the MD processors.
result is that SW energies, by suitable apportioning of tw
and three-body terms, are available for all atoms. These
then used to discriminate different regions. The apex o
crack is found, for example, by locating the atom, with
potential energy greater~more positive! than 60% of the bulk
cohesive potential energy, furthest to the left or right of t
center of the system~see Fig. 6!. The central TB region of
the ‘‘clover leaf’’ is then placed at that atom. Such plac
ment does not have to be performed at every time step—
our implementation, it is done every ten steps.

F. Seamless FE/MD/TB

The foregoing discussion indicates how the simulat
can be made seamless. The TB region, since it is the re
described at the most microscopic level, should determ
the elastic constants and the atomic force fields used e
where in the system. Thus, firstly, a pure TB simulation
performed for a small number of atoms representing the b
system~at given temperature and pressure!. By appropriate
deformation of the computational cell, the elastic consta
are extracted. By movement of one atom within the cell
local ‘‘Einstein oscillator’’ force constant can be found. Th
SW parameters for silicon may then be adjusted to reprod
the same quantities. The elastic constants from the TB reg
are also used for the@K # stiffness matrix of the FE region
Lastly, the parameters used for the Si-Silogen matrix e
ments are adjusted so that displacement of a silogen-sil
in the coupled system gives rise to the same ‘‘Einstein os
lator’’ force constant of the pure bulk system. Work is pre
ently proceeding to fulfill this prescription for full seamles
integration.

In the crack propagation example given below the ela
constants of the SW and FE region are made indenti
However, the SW and TB elastic constants are close
slightly different. Nevertheless, the results indicate that e
here, the seamless objective is close to reality.

III. RESULTS

Our application is the rapid brittle fracture of a silico
slab flawed by a microcrack at its center and under unia
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FIG. 6. ~Color! The geometrical decomposition of the silicon slab into the five different dynamic regions of the simulation: the con
finite-element region~FE!; the atomistic molecular-dynamics region~MD!; the quantum tight-binding region~TB!; the FE-MD ‘‘handshak-
ing’’ region; and the MD-TB ‘‘handshaking’’ region. The image is the simulated silicon slab, with expanded views of the FE-MD~orange
nodes-blue atoms! interface and the TB~yellow atoms! region surrounded by MD~blue! atoms. Note that the TB region surrounds the cra
tip with broken-bond MD atoms trailing behind this region. The acronym, MAAD, implies ‘‘macroatomisticab initio dynamics.’’
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tension. This example was chosen to both illustrate and v
date our CLS scheme. Figure 6 shows the geometrical
composition of the silicon slab into the five different d
namic regions of the simulation. The MD region w
spatially domain decomposed onto 24 processors. Each
region was handled by its own processor. We tracked
path of the crack and placed the center of the TB region
the apex of the crack. This is where bond breaking occur
is the region that is crucial to determining the kinetics of t
crack propagation process. For the extended regions of b
rupture~see Fig. 6!, we used a ‘‘clover leaf’’ of eight over-
lapping TB regions, each being cylindrical and distributed
a different processor. The exposed notch faces werex-z
planes with~100! faces, with the notch pointed in the^010&
direction. There were 258 048 mesh points in each FE
gion, 1 032 192 atoms in the MD region, and around 2
unique atoms in the TB region. Each of the eight TB regio
is a cylinder with radius of 5.43 Å in theyz plane. The
lengths of the MD region were 10.9 Å~the slab thickness
and periodic!, 521 Å ~before the pull, in the direction o
pull!, and 3,649 Å~the primary direction of propagation an
periodic!. The full pull length of the FE1MD system was
li-
e-

FE
e

at
it

nd

o

e-
0
s

5,602 Å. The entire system including the FE represen
11 093 376 atoms. The time for a TB force update was 1.
that for the MD update was 1.8 s and that of the FE was
s. We could, thus, afford to double the size of the FE reg
in order to accomplish complete computational load bala
ing but without any sacrifice of wall-clock time. The TB

FIG. 7. The distance versus time history of the two crack ti
one having TB atoms always centered at the immediate failure
gion. The distance is in Angstroms, and the time is in picosecon
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FIG. 8. ~Color! Stress waves propagating through the slab using a finely tuned potential energy color scale at a point in time
asymptotic crack speed has been achieved. Blue represents high stress; red represents low stress. Yellow is intermediate.
ul

-

o
ar
r,
ch
li
b

ns
im
y
h

d
ar
te
m
e
-
M

ne
in

n to
r-
n

tinui-
ue
the
per,

les
llel
a-

be
s an
till

h
As

her
ass
be

rfor-
ical
ost

rgy
ed

h

region was relocated every 10 time steps.
The rectilinear computational cell comprised~100! faces

on all sides. The reduced elastic constant matrix@see Eq.
~11!# for this geometry was obtained by averaging the res
of Balamane, Halieioglu, and Tiker26 and Ray27 for the zero-
temperatureC11, C12, andC44 elastic constants of SW sili
con

@C#5S 1.5783106 0.79303106 0.0

0.79303106 1.5783106 0.0

0.0 0.0 0.63653106
D ,

~23!

where the units are megabar.
The slab was initialized at zero temperature, and a c

stant strain rate was imposed on the outermost FE bound
defining the opposing horizontal faces of the slab. Furthe
linear velocity gradient was applied within the slab, whi
resulted in an increasing internal strain with time. The so
failed at the notch tip when the solid had been stretched
;1.5%. The imposed strain rate was set to zero at the o
of crack motion. Figure 7 presents the distance versus t
history of the two crack tips, one having the TB atoms d
namically centered at the immediate failure region. T
propagating cracks rapidly achieved a limiting speed~2770
m/s! equal to 85% of the Rayleigh speed, the sound spee
the solid silicon surface. The two distance-time histories
very similar. In hindsight, this might have been expec
since the elastic modulus of silicon calculated from the e
pirical SW potential and from TB are very similar up to th
mechanical stability limit of the bulk solid. More impor
tantly, this indicates that the handshaking between the
region and the TB region was reliable.
ts
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A more powerful signature of seamless coupling, o
which represents a validation of the method, is depicted
Fig. 8. We note that stress waves pass from the MD regio
the FE regions with no visible reflection at the FE/MD inte
face; i.e., the coupling of the MD region to the FE regio
appears seamless. Further, there are no obvious discon
ties at the MD/TB interface; this observation remains tr
even at higher spatial magnifications. A discussion of
fracture physics, outside the purpose of the present pa
has been presented in an earlier publication.5,6

IV. CONCLUSIONS

We have described an algorithm that successfully coup
length scales. It is a finite temperature, dynamic, para
algorithm. The general approach is applicable to many m
terial types. The applications of such a methodology will
many and varied. The work described above represent
illustration of what is possible, but developmental work s
remains which we now briefly discuss:

More thought will be required for treating metals since~a!
bonds are less localized than in silicon and~b! termination of
the surface ‘‘dangling bonds’’ of the active TB region wit
monovalent species is no longer a good approximation.
we have said, this methodology is not wedded to TB: ot
fast quantum mechanical formulations, as long as they p
the one second of wall-clock time per time step test, may
more appropriate. Indeed, as computational hardware pe
mance improves, the choice of which quantum-mechan
scheme to place at the heart of this CLS scheme will alm
certainly change. An example might be the kinetic ene
functional31 local-density approximation methods advocat
by Carter, Madden, and co-workers,30 which require no di-
agonalization and which parallelize efficiently. Suc
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schemes would require no ‘‘clover-leaf’’ overlapping
quantum mechanical regions as we have, out of neces
implemented here. A further difficulty for metals involve
thermal conductivity and dissipation through mixing of ele
tronic states at the Fermi level; something that an empir
potential cannot capture. Perhaps the empirical potentia
gion will have to be augmented with auxiliary degrees
freedom to enable correct handshaking conditions for
added level of complexity.

The handshaking between each neighboring region wo
well under the conditions of our example. We expect lon
wavelength phonons to propagate with minimal back scat
ing through the MD/FE interface. However, in system
where significant short-wavelength energy is emitted fr
the central region, we expect that the present handsha
methodology will have to be augmented. The reason is
the shorter wavelength, high-frequency vibrations canno
supported by the larger mesh spacings inherent in the o
part of the FE region and will be scattered back into the M
region. Such may be mitigated by adding a random and
sipative heat bath to the FE degrees of freedom. O
schemes29,32 to mitigate these effects including adding Nos
Hoover chain thermostats33 to the FE mesh and developing
coarse grained MD formulation for the handshake region,
being pursued. Indeed, such coarse graining32 can be made to
go beyond linear elasticity so that~a! dissipation occurs natu
rally and~b! constant pressure algorithms in the far-field
gions are viable.

The present algorithm dynamically tracks the crack
with a TB region. Our example of brittle fracture in silicon
appropriate for demonstration purposes since it is c
where the TB region should be placed. In the case of di
cation generation at the tip, indicative of ductility and typic
tte
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in metals, a dynamic allocation of processors as and w
required to focus on these areas will be required. This is
subject of on-going work.

Turning now to long term goals, in our present formul
tion we require an MD/FE handshake region in which the
is no diffusion and in which no defects propagate. It m
well be that, as research on CLS gains momentum, a hy
of the present formulation and the adaptive grid work
Tadmor, Ortiz, and Phillips3 ~discussed in the introduction!
will evolve. Such would be a powerful computational too

Finally, as a philosophical observation, we note that
algorithm we have espoused links not only length scales
also disciplines. The TB region was employed to stu
breaking bonds; that is the realm of chemistry. The MD
gion was implemented to describe the statistical mecha
of the system; this is the forte of physics. And the FE reg
that was used to couple the atomistics to the rest of the
verse is the traditional methodology of engineers. This m
riage of disciplines and its concommitant negation of tra
tonal barriers may well prove to be the true power of th
approach. This formalism represents the beginnings of c
putational atomistic engineering.
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