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We consider a current-carrying, phase-coherent multiprobe conductor to which a small tunneling contact is
attached. We treat the conductor and the tunneling contact as a phase-coherent entity and use a Green’s
function formulation of the scattering approach. We show that the average current and the current fluctuations
at the tunneling contact are determined byeffiective local nonequilibrium distribution functiohhis function
characterizes the distribution of charge carri@rsquasiparticlesinside the conductor. It is an exact quantum-
mechanical expression and contains the phase coherence of the particles via local partial densities of states,
calledinjectivities The distribution function is analyzed for different systems in the zero-temperature limit as
well as at finite temperature. Furthermore, we investigate in detail the correlations of the currents measured at
two different contacts of a four-probe sample, where two of the probes are only weakly coupled contacts. In
particular, we show that the correlations of the currents are at zero temperature given by spatidithgonal
injectivities and emissivities. These nondiagonal densities are sensitive to correlations of wave functions and
the phase of the wave functions. We consider ballistic conductors and metallic diffusive conductors. We also
analyze the Aharonov-Bohm oscillations in the shot-noise correlations of a conductor which in the absence of
the nanocontacts exhibits no flux sensitivity in the conductai&@163-182¢09)11427-9

[. INTRODUCTION pret many of the features encountered in STM images. In
theory and experiment, the STM has most often been used in
To measure the properties of a system it is necessary t@ two-terminal configuration, the two terminals being the tip
couple a measurement apparatus to the system. To minimiZ# one side and the conductor on the other. The current at the
the effect that the presence of the measurement apparatus Hisis then determined by the two-terminal conductance be-
on the properties of the system, it is desirable to have théveen tip and surface, and is given by the Bardeen forhula,
coupling as weak as possible. We are interested in the prof3is= (87/h)4mvg|t|?v(x), with the LDOS »(x) of the

erties of a current-carrying, phase-coherent, multiprobe cors@mple vy, of the tunneling tip, and the coupling energy.
ductor. Weak coupling or noninvasive contacts on mesojl'he zero-bias conductance thus measures directly the LDOS

(x) on the surface of the conductor below the tip.

In this paper, we make theoretical predictions for mea-
gurements using on@r two) tunneling tips on mesoscopic

hase-coherent multiprobe conductors and analyze the volt-
current amplituded=® and not only as in the work of En- age and the current .fluctuations m_easured at suph a contact.

ist and And ' d related whik absolut | ¢ The proposed expgrlm_ental setup |s.shown in Figs. 1 and 2.

gquist ang Anderson and refated | absolute values ol - tna cyrrent at the tips is now determined by all conductances
current;. Nowadays, the scanning t“””e"”g m,'crOS%Opeoetween the tip and the massive contacts of the sample. Ap-
(STM) is a very powerful experimental realization of a ing 4 bias at the massive contacts of the multiprobe con-
weakly coupled contact. Due to the fact that the tunnelingyctor one can drive a current through it without the pres-
current to the tip originates only from an atomically small gnce of the tunneling contacts. This puts the conductor into a
area on the surface below the tip, it has become the standaghnequilibrium state. Here we are interested in the charac-
tool to measure the local electronic structure on the surfacgerization of the transport state. The STM is used to measure
of conductors. In experiment, it is possible to map the topog-
raphy of a surface with atomic resolutiéi.Standing elec-
tron wave patterns confined to quantum corf8lsyhich
were constructed by manipulation of single atoms, or on car-
bon nanotubes serving as a one-dimensional electroi box
are clearly visible using a low-temperature STM.

In the theoretical description, initially Tersoff and
Hamanri? used the Bardeen approach to tunnelfrig relate FIG. 1. Experimental setup to measure the effective local distri-
the tunneling conductance to the local density of stategytion function. The tip of an STM couples at a poinwith a
(LDOS) »(x) on the surface of the conductor. Recently, coupling strengttt to the surface of a multiterminal conductor. The
Bracheret al** arrived at the same result using a propagatorcontacts of the conductor are held at potentjajsand the tip at
theory where the tip was described as a localized source @otentialw,. This configuration can be used to measure the time-
sink of electrons. These approaches have been used to intelependent current or voltage at the tip.

scopic conductors were already used by Engquist and
Anderson to rederive Landauer's resistance fornfular a
small conductor with a scatterer. Here we are interested i
weak coupling contacts which are sensitive to the phase
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noise is via a fluctuation-dissipation theorem related to a
conductance and does not, therefore, contain more informa-
tion about the conductor than can be drawn from measuring
conductances. However, the shot noise, which is at zero tem-
perature the only source of fluctuations, can give more
_ _ information?° For instance, the shot-noise spectrum can be
FIG. 2. Experimental setup to measure current correlations. Twcﬂlsed to distinguish between different conductance mecha-

STM tips are coupled with strengtfat the positionscandx’tothe o oy 1ch as ballistic or diffusive conductait@he low-
surface of a small wire. The shaded region can be a metallic diffu-

sive or a perfect ballistic wire. freqL_Jency shot noise spectru_m hf’iS be_en used tq identify the
fractional charge of the quasiparticles in the fractional quan-
tum Hall regime?®?3 and, recently, van den Brom and van
the electronic structure on the surface of the current-carryinRuitenbeek* used combined conductance and shot noise
sample. We will see later that the average current and thmeasurements to determine the detailed mechanism of the
current fluctuation spectrum at a single tunneling tip are deelectrical conductance through atom-size metallic gold con-
termined by aneffective local nonequilibrium distribution tacts. Birket al?® measured the shot noise at an STM tip. Of
functionexpressed as a function of local partial densities Ofparticular interest are current-current cross correlatfmge’

states(LPDOS and the Fermi distribution functions in the due to their sensitivity to the statistics of the carriers. Spe-

lectron reservoirs. A m rement of h istribution, ... - .
electron reservoirs easurement of such a distributio ¢ific predictions have been made for current correlations of

averaged over a spatially wide area, has been performed b o o - 027 )
Pothieret al'® using a large superconducting tunneling con- .or'lductors n h'gf? quantlzmg mggnepc fiefds,*"for bal'
listic conductors® for metallic diffusive conductors with

tact on a metallic diffusive wire. We are interested in char- . t2cR30 for chaofi 02! and for hvbrid
acterizing the transport state not only locally but also by jtgMassive contacts,~lor chaotic cavities,and for nybri

spatial and temporal correlations. The measurement of th&ormal and superconducting systefhd/ery recently, mea-
correlations of the currents awo different tunneling tips is SuUrements of current cross-correlatigtie electric analog of
related to spatially nondiagonal densities of states and cafié Hanburry- Brown-Twiss experimeriave been reported
give information about correlations of wave functions andPy Hennyet al** for a Hall bar geometry, which permits the
the phase of the wave functions. separation of incident and reflected carrier streams as sug
Here, we use a fully phase-coherent theory of weak cougested in Ref. 26, and by Olivet al for a conductor that
pling contacts starting from the overall scattering matrixprobably exhibits elements both of ballistic electron motion
which includes the conductor and the tunneling contacts aand chaotic electron motion. More severe tests of our under-
one entity. A fully phase-coherent discussion of four-probestanding of fluctuations arise from probing exchange effects
resistances measured with weakly coupled contacts has begncorrelations due to the quantum-mechanical indistinguish-
presented in Ref. 4. In this work and in recent work by theability of identical particles. We will discuss exchange ef-
two of us such an approach has been used to investigate thfects below in some detail. Earlier discussions of exchange
local voltage measurements and phase-coherent resistanggects in cross correlations in mesoscopic conductors can be
measurements on mesoscopic wires. Of particular interest gund in Refs. 35,20,27 and 29-32. An experiment which
the relationship of the trar)smission probabilities to densitie$m,es»[iga»[eS exchange effects in the noise at a single contact
of states which characterize the conductor. In the transpogye to two incident carrier streams has been carried out by
problem of interest here it is shoﬁ/mh_at the densities of | j, et 5136 Therefore, we believe it to be justified to assume
states which appear are partial densities of states, cmik_ad that the shot-noise measurements at local tunneling contacts
Jectl\_/ltyfor transmission f_rom a contact of_the conductor into proposed in this work can in fact be done as well.
fche tip, and calle®missivityfor the transmision from the.tlp_ In order to be able to make statements about the local
into one of the contacts of the conductor. The transmission

. ; . ~structure or wave-function correlations on the sample sur-
probabilities from the sample into the tip and from the tip ace, the contact between tip and sample should be local in
into the sample can be viewed as a generalization of th ' P P

well-known Bardeen expression for the two-terminal weak!n€ sense that tnneling occurs only over a region which is

coupling contact. The generalized densities of states, theSMall compared to the variation of the LDOS on the surface
injectivity and emissivity, play a fundamental role also in the ©f the conductor. In general, this length scale is given by the
dynamic conductance of mesoscopic systérifsand in the Fermi wavelength of the surface states. Moc_iern ST™M mea-
nonlinear conductance of mesoscopic syst&s. surements show clearly that atomic resolution on metallic

In the following, we use the same approach but extend th&urfaces can be achieved using sufficiently sharp tips. In ad-
discussion to treat temporal current and voltage fluctuationgition, STM tips have the advantage that they can be moved
and investigate the correlations of currents measured at twaround on a surface so that it is possible to draw entia@s
tunneling contacts. As we will show later, these measureof, e.g., the LDOS, and to study the spatial variation of the
ments can reveal more information about the electronidransport and noise properties. The theory we formulate be-
structure than can be found by pure conductance measurw, however, is also valid for spatially fixed contacts pro-
ments. At elevated temperature and with an applied bias theéided the contact is sufficiently small and in the regime of
fluctuations of the currents can be divided into two contribu-tunneling. Especially for the experiment with two tunneling
tions: the thermal noise, which is proportional to the tem-contacts, Fig. 2, it might practically be much easier to use a
perature; and an excess noise, called shot noise, which getup with one spatially fixed tunneling contact and one
only present when the system is biag&d* The thermal (movablé STM tip.
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We note that some of the results presented below havemall variationdu, of the electrochemical potential in a
already been published in a shortened version in Ref. 37. reservoira then injects at a positior inside the conductor
an additional charg® q(x) =ewv(x, ) du, . The proportion-

Il. HAMILTONIAN FORMULATION OF THE ality factor v(x,«) is a LPDOS and is called the injectivity

SCATTERING MATRIX AND THE L (P)DOS of contacta at the pointx. It can be expressed with the help

. . _of the scattering matrix 45
We are concerned with open mesoscopic systems consist-

ing of a finite part where electrons are scattered and to which -1 5554
N huge, macroscopic electron reservoirs are attached. The v(X,a)= >0 E Tr( s:ga .

. i “G edU(x)
phase-coherence length for the electrons is supposed to be

much longer than the spatial dimensions of the scatteringyere S5 denotes theN, X N, submatrix of the scattering
region. Then, inelastic scattering only takes place in the eleanatrix which describes the ‘scattering of electrons between
tron reservoirs. In each reservait the electrons are in equi- g|| channels of contacts and 8. With the Green’s function

librium and distributed according to a Fermi function char-gefined above, we have for the injectivity the expression
acterized by the electrochemical potential, and the

temperatureT ,. The finite scattering region is described by v(x,a)=(x|GI' ,G'|x), (8
a HamiltonianH - and the connection to the electron reser- ] o

voirs is modeled by semi-infinite ideal leads described by gvhere we introduced the abbreviation

Hamiltonian H, . As a basis of the Hamiltoniai. we N
chooseM localized stategx) (whereM is a very big num- N

ben $ > ( ybig FaZZ |X><X |mE=1 Wx,am\N:f‘am- 9)

)

x,x'

_ , Using the Lippmann-Schwinger equationi,,) = (1
HC_E, X Hor (X' @) —GW)|am) which relates the scattering stdig,,,) of the
o entire coupled system to the scattering stdtes) of the

The Hilbert space of the semi-infinite leads is spanned bysolated leads® one can express the injectivity in terms of
scattering statelsym) totally reflected at the boundary to the the scattering wave functions

scattering region. At an enerdy we have to sum over the

scattering states of all open channels in the leads, Ne 1 .
_— v @)= 2 oY) (10
Hi=2> X |am)E(am]. )] - | . N
a=1m=1 Here,v ,m=v2/m*(Eg— anm) is the velocity of an incoming

The indexa gives the number of the reservoir and the indexelec’ﬁrqn at the Eerml enerdye in chann_elm of contact
m is the channel number of the incoming electron. In reser®:M" is the effective electron mass aEdm Is the threshold

voir @ there areN,, open channels at the energy Finally, ~ €nergy of channei of contacte. o
we have to describe the coupling between the scatterin Related to the injectivity is another LPDOS, the emissiv-

states in the ideal leads and the conductor by a couplin§y ¥(8,X) of a pointxinto contacta, defined as
matrix,

0Sg,
Sho s ) (1)

—1
VBX)= 5 ; T Sa a0 (x)

N N,
WZE Zl mZ:l |X>Wx,am<am|- 3

and in terms of Green’s functions given by

The Hamiltonian of the entire system then reads
v(B,x)=(X|G'T zG|x). (12

H=H_+Hc+W+W", (4 _ o o
_ _ o If there is a magnetic field present, the injectivity and

The Green’s function between two pointandx’ inside the  emissivity obey the symmetH/
scattering region is then at the Fermi eneEy given by*®

X)=v_g(X,a). 13
G(x,x")=(X|(Er— He+i mWWH ~1|x"). (5) va(@X)=v-g(X,a) (13
The matrix elements of the scattering matsjx, g, which
describes the scattering of an incoming particle in channel
of contactg being scattered into chanmelof contacta, can
be written as

This means that reversing the magnetic field turns the injec-
tivity of a specific contact into its emissivity and vice versa.
As a special case, E@13) states that injectivity and emis-
sivity are the same if there is no magnetic field present. Fur-
thermore, the emissivity can, according to Ed€) and(13),
be expressed in terms of the scattering states of the Hamil-

Sam,gn= 5a55mn—21-ri2 W} amG (X, X" )Wy, g,.  (6)  tonian with the reversed magnetic field. The LD@&) is

xx! the sum of the injectivities of all contacts or the emissivities

The scattering matrix depends on the electrostatic potentidlf all contacts,
U(x) in the scattering region, which is included in the
HamiltonianH¢ . This potential has, in principle, to be cal- _ _
culated self-consistently for the system in equilibritfimA v ; v(x.a) % v(BX). a4
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The LDOS is therefore invariant under reversal of the mag-
netic field.

The form of Eqs(8) and(12) suggests that a nondiagonal
two-point injectivity be defined by

v(x',x,a)={(x'|GI' ,GT|x) (15
FIG. 3. Experimental setup to measure the voltage fluctuations
T 1 , N at the tip. The voltage is measured using an infinite impedance
= 2 hv - Bam(X") Pam(X)*, (16) voltmeter between contact 1 and the tip, and the current is measured
m=1 NV m . .
using a zero-impedance amperemeter between contacts 1 and 2.
and analogously a nondiagonal two-point emissivity by
where Al ,(t)=1,(t)—(l,). In the low-frequency limit,w
v(B,X",X)=(x"|G'T 4G|x). (17 -0, one gef®

In fact, we will see that it is exactly these spatially nondi- 22
agonal LPDOS which determine the correlation of the cur- (Al Algy=—+ > f dETHAs(@)A,o(B)1fs(1—1,).
rents at two tips. h %

(21
IIl. SCATTERING MATRIX FORMULATION For a= B this expression gives the low-frequency fluctuation
OF CURRENT AND NOISE spectrum of the current at the contact For a# B it gives

Our goal is to investigate the local electronic structure ofthe correlation spectrum of the currents in the two contacts

a mesoscopic phase-coherent multiprobe conductor usir@f’d/: In general, the current fluctuation or correlation spec-
one or several locally weakly coupled probes such as, e.gifum is @ mixture of thermal noise and, if the system is bi-
STM tips. One can think of transport experiments which@S€d, an excess noise called shot noise. At zero temperature
measure the average current determined by conductances @} fluctuations in the currents are due to the discreteness of
one can measure the fluctuations of the current away from it§1€ charge carriers. We are dealing with pure shot noise. Ata
average. The scattering matrix approach has proven to H#ven instant in time a carrier either arrives at a reservoir,
very useful in describing transport and noise measurements-» @ current is measured, or it does not. Successive carriers
at multiprobe conductor®. It provides us with formulas that are totally uncorrelated give the fulPoissoniah shot
which express the currents and the fluctuations of the cur?0iS€.Spoiss= 2€[(1)|. If successive carriers are correlated, as
rents at the contacts of a multiprobe conductor in terms of itdS the case for electrons due to Fermi statistics, the noise can
scattering matrix and the Fermi functiorig(T,E) of the D€ suppressed below this value. _
electron distribution in the reservoirs. The experimentally di- Equation(21) gives the fluctuation spectrum of the time-
rectly accessible parameters of the system are the tempergependent' currents in the contacts under t'he condition that
ture T and the electrochemical potentials, in the large the potentials at the reservoirs are held fixed and do not

electron reservoirs. fluctuate. This corresponds to the case where currents are
For a certain temperatufeand given potentials the aver- measured using a zero-impedance external circuit. _Alterr)a—
age current flowing from contaet into the conductor &2 tively, we could measure the voltages at the reservoirs using

ideal, infinite impedance voltmeters. The infinite impedance
external circuit then forces the currents to be zero at all

e
()= N > J’ dETrAgg(a)]f5(E), (18  times,I(t)=0. Fluctuations in the currents have therefore to
B be counterbalanced by fluctuations of the chemical potentials
with the current matrixA s (@) = 1,8, 584, N SE)Say(E). in the electron reservoirs. In linear response to the applied

The energy dependent transmission probability between twBias; current and potential are related by a conductance ma-
different contactse and 8 is T,z=—Tr{Ags(a)]. In the X Gup
limit of zero temperature and if we assume that the differ-
ences of the applied potentials are so small that the scattering _
matrix depends only very weakly on energy in the energy I“(t)_zﬁ Capl Vit AVp(D]+AL(), 22
interval of interest, formul&18) reduces to

where theAl ,(t) are now considered as Langevin forces

e obeying the correlation spectra given in Eg1) and where
(la)= h 2/;4 Tap(tta= 1), 19 e allowed the potential at the reservoirs to be time depen-
dent.
where the transmission probabilitids,; have to be evalu- Let us now consider the experimental setup of Fig. 3. We
ated at the Fermi energy. are interested in the fluctuations of the voltage at the tip

The correlation spectrugi | ,Al 5) of the currents at two <(Avnp)2> measured relative to the voltage at contact 1. The
contactsa and 8 is the Fourier transform of the current- current at the tip is always zerdy,(t)=0, whereas at the
current correlatof? contacts 1 and 2 the potentials are fixédy/,(t)=AV,(t)

=0. We measure all voltages relative to the potential at con-
i tact 1(freedom of the choice of gaugso thatV,;=0. Solv-
— i wt 1
<AI“AI'3>_J dte“ (Al (1Al 4(t+10)), (20 ing the system of Eq(22) for AVy,(t) gives
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N
_ _ o Y(Xa)
AVip(1) =~ 55,2 (D), 23 feﬁ(x)_;l S0 (E): (29)
and the fluctuation spectrum This expression gives the local nonequilibrium distribution
2 of charge carriers at the point inside the conductor. Its
(AVip) 2= =—————| ((Aly,)?). (24) ~ energy dependence comes from the Fermi functions and
(Vi) Ga1+Gap ((Al)™) from a possible energy dependence of th®DOS. We

evaluate the distribution function, E8), for metallic dif-
fusive wires, measured by Pothier al.X® in Sec. IV D[see
g. (49)].
Equation(27) has the form of the current in a two-probe
stem, one probe being the tip, where the electron distribu-
and expand this scattering matrix in powers of the couplin fion is described by the Fermi functidy,(E) and the other
gprobe where the electron distribution is given by the effec-

strength|t] of the tip to the conductor. In this way we get " wcirib tion functionf4(x). This effective distribution

equations which contain the scattering matrices of the S€P3; hction does not account for any energy relaxation of the

rated systems, one descrlbmg_sca_ltterlng_only in the Samplc?harge carriers inside the conductor. We assume that
and one describing the scattering in the tip.

N . electron-electron and electron-phonon interactions can be ne-
Here, we use the Hamiltonian formulation to express the

scattering matrix in terms of the Green’s function of the me_glected for the system in consideration and therefore the en-

ng : . .~ ergy of the electrons is conserved. However, the distribution
SOscopic sample, EG6). Repre§ent|ng the scattering mgtnx function does contain via the (BDOS the quantum-
g}lﬁgg?nﬂnﬁifegnzlfggﬁgﬁnso'Se?afgr?fcgtaég \;V:g(tlonlden'mechanical phase coherence of the electron wave function
) 9 Y op . ’ hroughout the system. Our effective distribution can be used
in the expressions for the conductances and the curren

correlation spectra.

Equations(18), (21), and(24) are our starting points and
we apply them to systems consisting of a conductor with tw
(or more massive contacts and one or two weakly couple
contacts as depicted in Figs. 1 and 2. Our plan is to start witg
the scattering matrix of the entire systggample and tip Y

o describe the electron distribution in phase-coherent diffu-
sive conductors, if energy relaxation and dephasing can be
neglected. To describe transport and noise in diffusive con-
IV. THE SINGLE TIP CONFIGURATION ductors one can also use the semiclassical Boltzmann-

We consider a system consisting of a mesoscopic condu&duation approacfsee, e.g. Ref. 30There, one introduces a
tor connected tdN electron reservoirs and which has one distribution function which does not contain the quantum-
additional weakly coupling contact, the tunneling tipee, ~Mechanical phase coherence but where energy relaxation
e.g., Fig. 1 wherél=2). The coupling strength between the Processes can be modeled quite easily. However, the distri-

tip and the conductor i&| and the coupling is local at a point Pution function of this semiclassical approach cannot be used
x on the surface of the conductor. for conductors where phase coherence is essential.

At zero temperature we can replace the Fermi functions in
Eq. (27) by step functions and obtain, in linear response to

A. Average current at the tip the applied potentials

The transmission probability at an energyfor an elec-
tron incoming from a massive contaetof the sample being (lip) =G(X){Viip— Ver(X)}, (29

transmitted into the tip has been found to be proportional to 5
the injectivity of the contact at the coupling poixtof the where the conductand®(x)=(e*/h)Tis(x) has to be taken

tip.5 at the Fermi energy and

Tip,a= 47 viplt|?v(X, @). (25 Ver(X) = 2 vixal,, (30)

- . : . v(x)
The transmission probability for an electron incoming from “
the tip being scattered into a massive contacis propor- The same formula for the average current is also true for the

tional to its emissivity’ case of arbitrary temperature provided that thé@)DOS,
) ) v(X,«), are independent of the energy in an energy interval
T ip=4mv(a,X)|t|“vyp. (26)  AE~KT around the Fermi energy.

A particularly interesting setup is, when the tip is used as

Due to the symmetry of injectivity and emissivity, Ed.3), ) .
these transmission probabiliies manifestly obey thed Voltage probe, i.e., we demand that on the average there is

Onsager-Casimir symmetr¥p, o(B) =T, oo( — B), whereB no net current flowing into. the tig| tip}=0. Similgr experi-
is the magnetic field. Using these energy resolved transmidleNts; also called scanning tunneling potentiometry, have
sion probabilities in Eq(18) we can express the average |n|thlly been perfqrmed by Muralt and P_éﬂ\land were |ater
current flowing into the tip as continued and refined by several grodps* From Eq.(29)
we find that at zero temperature the voltage one has to apply
e at the tip to achieve the zero-current condition is exactly the
(lip) = f dET(){fip(E) = fer(X)}, (27)  effective voltageVx(x) defined in Eq.(30). The measured
effective potentialV¢4(x) should not be confused with the
with the two-probe tip-to-sample transmissiom(X) actual electrostatic potentiél(x) inside the conductor. The
=47r2vtip|t|2v(x) and theeffective local distribution func- injectivities v(x,a) and the LDOSy(x) are determined by
tion the equilibrium electrostatic potentibll.((x) in the sampl&®
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and, therefore, the measured effective potenfigx) also ~ Where we neglected corrections of ordeA{//kT)?. In this
depends on the electrostatic potential. However, there is nease the current fluctuations are due to thermal Johnson-
direct relation between the measured potential and the actublyquist noise and a small correction which depends on the
electrostatic potential in the sample. applied biasAV.

As a next step we restrict ourselves to the case of zero
temperature and sufficiently small differences in the applied
potentialsV, so that we are in the linear-response regime.

We proceed by investigating the fluctuation spectrum ofwe are then dealing with pure shot noise which is com-
the current at the tip. From E@21), we get to the lowest pletely determined by the properties of the sysi¢ne scat-
order in the coupling parametét, tering matriy at the Fermi energy. For arbitrary potentials
V, (though always close to the equilibrium vaJuee get
from Eq. (31) for the current fluctuations at the tip

B. Current fluctuations at the tip

(8197 =2 [ AEGT(X) {1~ op(E))

FHip(E)X{1—fer(x)}], (31 <(A|tip)2>:26G(X)2 v a)

V |V Vt|p| (36)
W.'th.the. two-terr_nlnal conductar}C@(X_) and the effective The conductance, i.e., the densities of states and the coupling
distribution functionf .4(x) as defined in Eq(28). The fluc-
elementt contained in it, have to be taken at the Fermi en-
tuations are, therefore, as was the average current, deter
ergy. This result shows that the fluctuations in the tip are just
mined by the effective distribution function. If we adjust the he addi f the f | h d
otential at the tipVy,, such that the average current at thet € addition of the qctuatlons proport|on§1 to the conduc-
P . *lip : tances between the tip and the two massive contacts of the
tip vanishes, we get for the fluctuations . o e . :
wire. This is not surprising, since, as is well known, the
fluctuations of the current at a tunneling contact between two
Ali)2 :4J dEGOHON L= fo (BN (X)) 32 reservoirs are propor_tlonal to its conductante. _ _
(A1) ONL= Fup(B)Hen(x). - (32) Equation(36) is valid for arbitrary voltage configurations.
Let us now choose the potential of the tip such that on aver-
In Eqg. (31) the integral over energy extends from the bot-age there is no net current flowing into the tip, i.e., we have
tom of the conduction band to infinity. At a temperatdre to chooseVj,= V() according to Eq(30). Let us assume
and applied potential differencesV, the relevant contribu- that the applied potentials at the sample are arranged in a
tion to the current fluctuations comes from the integrationway thatV,<Vg, for «>g, and letn be such that/,
over an energy range of abalNE~max@EAV,kT) around the >V, for a<n, andV,<V4 for a=n+ 1. The fluctuations
Fermi energy. If the LPDOS are nearly independent of enat the tip can then be written in the form
ergy in this energy range, we can evaluate the integral over
products of Fermi functions and get for a potentfg), at the

tip and potentiald/,, at the massive contacts ((Algp)?)=4eG(x) 2 {V —Ver(X)}
) N N (X, )
((Alp)2)=2eG(x) 2, V=V =4eG(x) > ——{Ver()—V,}. (3D
a=1 asn+1l Y(X)
v(X, a) e|Va_Vtip| 33) For the case of measurements on a two-terminal conductor as
v(x) = 2kT shown in Fig. 1, this formula reduces to

If we consider the case of a measurement on a wire with two ) v(x,1) v(x,1)
contacts and choosé;,= V. such that on average there is ((Algp) ") =4eG(x)AV 200\ YT o ) (38)

no current flowing into the tip, we get
with AV=V,;—V,. This shows that at zero temperature,

v(x,1) v(X,1) v(x,1)/v(x) plays the role of the nonequilibrium distribution
2 1
((Algp)%)=2eG(x)AV () ( ") function.
2
v(X,a) eAV C. Volta ) .
. ge fluctuations at the tip
X2 c 2(X) 2kT)’ (34

In the previous section we discussed the fluctuation spec-
trum of the current at the tip while we assumed that the
potential at the tip is fixed and independent of time. Let us
now investigate the experimental setup shown in Fig. 3,

with AV=V;—V,. In the limit eAV<KT this leads to

) 1 eAV v(x,1) where the current at the tip is zero and we measure the fluc-
((Alp)%)~4GOOKT+ 3 eG(x)AV KT v(x) tuation spectrum of the voltage using an infinite impedance
voltmeter. If currents and voltages are related by the linear-
( B v(X,l)) (35  response formula, Eq22), the voltage fluctuation spectrum
v(x) |’ is directly related to the current fluctuation spectrum, Eq.
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(24). For the case of zero temperature, we can use the con- 1.0
ductances from Eq$25) and(26) to get the fluctuation spec-
trum

v(X,1) ( 1- v(X,1) (39

v(X) v(X)

with R(x)=G(x) 1. Results for the voltage and current
fluctuations at finite temperature and in linear response to the
applied potentials are presented in Appendix B. Next we will
illustrate the main results of the previous section on some

examples. : : ' '
-1.0 -0.5 0.0 05 x/Ai. 1.0

((AVip)?)=4eRX)AV

D. Examples FIG. 4. Fluctuation spectra and effective voltage measured

The most simple example is a perfect ballistic conductoralong a ballistic wire with & barrier atx=0 leading to a transmis-
with one propagating channel. The local density of states asion probability T=0.7. The solid line is Ver—V,)/AV, the
well as the injectivities are then independent of position. Thedashed line gives the current fluctuatio(@|)?) in units of
injectivities from the left and right contacts arg=1/hv and 2eGoA\£, _and _the dotted line shows the voltage fluctuations
the LDOS is 2. At zero temperature, this gives the position ((AVip)“) in units of 22RAV.
independent effective voltag¥.=(V,+V,)/2 and from
Eq. (38) the fluctuation spectrum ((Alp)?)ave= 26 GoAVT(1— \T/2). (45)

1 Averaging over the whole length of the conductor can mean
((Altip)2>= 2eGOAV§, (40)  to really move one single tip along the wire, always adjusting
the electrochemical potential such that there is zero average
with Go= (e?/h)4m?v|t|>2v andAV=V,;—V,. Note that ~ current into the tip and measuring the fluctuation spectrum.
a perfect conducting two-terminal conductor shows no flucBut it could also mean to attach very many tijps electron
tuations of the currents at its contacts. The presence of the t@bsorbersall along the wire, each one with its electrochemi-
introduces shot noise into the system because in the presene@! potential adjusted such that there is no net current flow-
of the tip, electrons entering the system from, say, contact ling into it and neglecting the transmission of electrons from
now have the possibility to go either to contactvéhat they — one tip to another «|t[*). It is interesting to compare Eq.
do most of the timgor to enter the tigwhat they do with a  (45) to the fluctuations measured at contact 1 of an isolated
probability proportional tdt|?). The fluctuations at the tip (no tip presentwire,*
also cause the current at the massive contacts to fluctuate. At
the massive contacts, however, there is a considerable aver-
age current of the order of one, while the fluctuations are
only of the order of|t|2. _ . _ _
As a next step we introduce scattering in the wire. Let ud\eglecting the interference of incoming and reflected waves
assume that there is a scattering region described by a scdf- the local densities, i.e., setting(x,1)=vo(2—T) and
tering matrix which leads to the transmission probability »(X)=2v,, one gets from Eq(38), ((A1)?)=T(1-T/2).
and reflection probabilitR=1—T for the electrons. Tothe ~ The voltage fluctuations, Eq39), are in the phase-
Iefé1 5of the scattering region the LDOS and the injectivities Sensitive case, Eq$41)—(43), given by
ar

2

<(A|1)2>=2e%AVT(1—T). (46)

s 1) = vo[2—T+2yI—Tcog2kx+$)],  (41) ((AVip)*) =2eRAV — TRooa2knt @)
V(X,Z): VoT, (42) T 1
x|1- = (47
v(X)=2vo[ 1+ V1—Tcog 2kx+ ¢)], (43) 2 1+ JReog 2kx+ ¢)

where ¢ is the phase acquired by reflected particles. Puttingvith Ry=Gg *. The current and voltage fluctuations together
these densities into the fluctuation spectrum, B8), leads  with the effective potential/¢4(x) are shown in Fig. 4.
to An interesting system containing very many scatterers is a
metallic diffusive wire of lengthL and widthW which is at
1 its ends attached to two ideal leads. The elastic mean free
-5 : path isl. We assume thdt<W=<L so that the diffusion in
2 1+\/§cos{2kx+ ) the wire can be treated to be effectively one-dimensional.
(44) . . , ;
Furthermore, we assume that there is no inelastic scattering
As a function of the positiorx of the tip, the fluctuation inside the conductor. For a given wire, i.e., a given disorder
spectrum oscillates with a period of half a Fermi wavelengthconfiguration, the exact LPDOS are given in terms of
If we average this position dependent spectrum over one péreen’s functions by Eqg8) and (12). Here, we are only
riod we get interested in the quantities averaged over many different dis-

((Algp)®)=2eGeAVT| 1
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order configurations. While the ballistic conductor with one
single barrier could serve as a model to illustrate what is
measured in the neighborhood of an impurity, the ensemble
averaged quantities correspond to the average of many mea-
surements on a diffusive conductor at different locations
over a spatial range of about an elastic mean free path. To
average expressions given as products of retarded and ad-
vanced Green’s functions we use the diagram techrfijue.
For the injectivities, we have to average the product of re-
tarded and advanced Green'’s functions between the coupling .
point of the tunneling tip and two points on the surface be- 0.0 T
tween the diffusive region and the ideal leads. For the aver- 0.0 0.5 x¥L 1.0
aged quantities we gésee Appendix A for detai)s

<(AI>/26GAV

=3
N
I
N\
V4

FIG. 5. The current fluctuation spectrum along a diffusive wire
p(x,1)=vo(L—X)/L and v(x,2)=vex/L, (48) from O toL for diff(_arent temperatures. The temperature rak@es
from O to 0.2AV in steps of 0.2AV. Lower temperatures corre-
with the two-dimensional density of stateg=m*/2x#2. spond to lower curves.
Inserting the ensemble averaged injectivities into EXp)
gives the(ensemble averaggdistribution function for a me-
tallic diffusive wire used by Naga&( and measured by
Pothieret al*®
At zero temperature, the effective voltage measured alon

This crossover is shown in Fig. 5. In Fig. 6, we plot for fixed
temperatureT the voltage dependence of the fluctuation
pectrum if the tip is placed at different positions along the

the wire gives, averaged over the ensemble, the classical li yIre.
ear voltage dropV.4(x)=V,+AV(L—Xx)/L, and the para-
bolic behavior of the current fluctuation spectrum as a func-
tion of the tip position, V. CURRENT CORRELATIONS AT TWO TUNNELING
PROBES
) X(L—=x)
((Algp)7) =2eGoAV L2 (49) In this section we make predictions for the cross correla-

. o _ . tion of the currents at two contacts. Recently, two groups
As in the case of the ballistic conductor with barner, we Cansucceeded in measuring the correlation Spectrum of the cur-
average the fluctuation spectrum over the hole length of thgant at two different contacts of a multiprobe saniig*We

diffusive region and get consider a mesoscopic wire with two tips weakly coupled at
1 pointsx andx’ as shown in Fig. 2. For the following discus-
<(A|ﬁp)2>=2eGOAV6. (500  sion, we consider the zero-temperature limit and the linear-

response regime with respect to the applied potentials. Ac-
This is exactly 1/3 of the fluctuations that would be mea-cording to Eq.(21) the correlation of the currents at the two
sured at a tip probing a perfect ballistic conductor, &f).  tips (Al;p;Algp,) is @ function of all possible voltage differ-
It is very well known, that the fluctuations measured at aences|V,—V|. Using the two-point density of states, Eq.
contact of a diffusive wire are suppressed by a factor of 1/315), we find
with respect to full shot noiséesee, e.g., Refs. 47,48 and)30
Therefore, it is tempting to say that the fluctuations at the tip
reflect the fluctuations of the current inside the isolated
(without the tip wire. Nevertheless, the presence of the tip
does change the system since it offers the electrons another
possibility (even though a very weak one, proportional to y
[t|?) where to travel. Therefore the tip introduces additional -
fluctuations in the system, as we saw, for example, when the :
tip couples to a perfect ballistic conductor.

If we neglect the energy dependence of the injectivities,
Eq. (48), (temperature and applied bids/=V,;—V, suffi-
ciently smal) we can use Eq.34) to illustrate the crossover
from the position dependent shot noise at zero temperature to
the position independent thermal noise at elevated tempera-
tures. For the metallic diffusive wire we get

<(AD*>/4G kT
N (]
1 |
\
\
\

\
v

(L—x)x L—x eAV 0 10 eAV/AT 20
<(A|tip)2>=2eGoAV—[Cot ——)

L? L 2kT FIG. 6. Voltage dependence of the current fluctuation spectrum
for fixed temperature. The three curves correspond to different po-
+cot){§ ‘EA_V)} (51) sitions of the tip. The tip is placed at=0 (solid line), x=L/4

L 2kT (dashed ling andx=L/2 (dotted ling.
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e2
<A|nplA|ﬁp2>=2eF4w2vtiplynp2|t|4[2 Re2mv(x,x",1)27v(X,%,2)}|V1—V,|— 2 R§G(x,x")G(x",x)}
X|Vz=Va|+ > 2Im{27u(x,x",8)G(X" )} Va— Vs + > 2 Im{2mv(x’,x,8)G(x,x")}
6=1,2 6=1,2

><|v4—v5|}. (52)

We now want to illustrate this result for some specific volt- SI=|v(x,x',2)|?, (55)
age configurations. One particularly interesting case is the
exchange experiment proposed in Ref. 20 for arbitrary four-

terminal conductors. Such an experiment has been performedn—_~_ |G (x,x’) - GT(x,x')|2=|v(x,x",1) + v(x,X’,2)|2
recently by Liuet al.®® on a ballistic conductor. Theoretical 4772

predictions have been made by Blanter andtiRer*® and by m o em ) ,

Sukhorukov and Los8 for metallic diffusive conductors and =Sa+Sg+ 2 Rew(X,x", ) v(X’ x,2)}. (56)

31 _ e )
by van Langen and Em_ker? fo_r chaot|c_ cavities. To iden- The current correlations are for all three experiments deter-
tify the exchange contribution in the noise spectrum one Perrined by the spatially non diagonal injectivities, Ha5),

forms three successive experiments. In the first two experi- hich are also given as products of wave functions. Equa-

ments, called experiments A and B, current is injected INQions which express the current correlations in terms of wave

tEe shyséem through 0n|)|/| %ne single con(t:act, respectively. I(1unctions can be found in Ref. 37, Eq®)—(11). It is not
the third experiment, called experiment C, current is injecteq . iqing that the result for experiment A with current in-

through both contacts simultaneously. The correlation spe acted through contact 1 depends only on thendiagonal

trum is alw_ays measured at the_ same two tgrmmals '.n.ainjectivity of contact 1, while experiment B with the current
three experiments. The current injection is achieved by risingie cted through contact 2 depends only on hendiagonal

the potential of the respective contact to the elevated Val“ﬁ‘ujectivity of contact 2. One sees also at once, that the result

Vh. k‘?ep'”g th? other ones at the eqwhbnqm vaMg In for experiment C is in general not only the addition of ex-
principle, one is free to choose through which contacts cur-

rent should be injected and at which two contacts the corre‘—)ermemS A and B but contains tieachangeterm
lations should be measured. In our sys_tem we have an obvi- SP=gI— S'— S"=2 R p(x,x', ) ¥(x' ,x,2}.  (57)

ous asymmetry between the two massive contacts 1 and 2 of

the wire and the two tunneling contacts 3 and 4. In &§) This exchange term is due to the quantum-mechaimckds-

we decided to look at the current correlations at the twainguishability of the charge carriers. In the following we
tunneling tips. The current correlations at the two massivénvestigate for which systems or under which conditions this
contacts will be discussed later. Still, we can decide througherm vanishes or becomes important. The question if phase
which contacts we want to inject the current, either throughcoherence is necessary for the existence of the exchange
the massive contacts or through the tunneling contacts. Exerm will also be addressed below.

perimentally, the first casgontacts for current measurement
and current injection differeptshould be easier to achieve.

: . B. Examples
For both cases we can rewrite E§2) in the form

We investigate Eqs(54)—(56) in more detail for three
e? . examples. The most simple system one can think of is a
(Al Al ) = _49F167T4Vtip1’/tipz|t|4V5'/11,'B,c- (53)  perfect ballistic one channel conductor. The two scattering
states at the Fermi energy are then simple plane waves so
Here, the upper indem indicates that the current is injected that the nondiagonal injectivities at the Fermi energy are
through the massive contacts whereas the iriderans that

current is injected through the tips. The lower indices distin- ) 1. —
guish the three experiments aNe=V,— V. v(xx' @)= e : (58)
A. Current injection through the massive contacts with ki=-k,=m*v/A and the Fermi velocity v

e . . . .
First we consider the case of current injection through the 2Eg/m. T_h|s means that the cor_relauons n (?xpenments
and B are independent of the distandex—x' of the

massive contacts. Performing the three above-mentioned eg‘- <. However. the correlations of experiment C and therefore
periments leads to the following voltage configurations: for IpS. HOWEVer, : Xperi

cxpetment A,V fo experment B,y and for  he E1ange contbulon, 57, depend on e tance
experiment CV,;=V,=V,,. All other potentials are held at y P gth,

the equilibrium valuev,. We get

!
Sa=[vxx' 1% (54) S¢=4; cos(kd). (59
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Moving one of the tips over the distance of half a Fermidiffusive four-terminal conductors of arbitrary shape was
wavelength and averaging the results, gives the averagddund by Sukhorukov and Lo¥5 using a semiclassical
spectrum Maxwell-Boltzmann equation approach which does not con-
tain the quantum-mechanical phase coherence of the system.
m In our approach, we start with the quantum-mechanical ex-
<SC>:2W:SA+ Sg, (60 pressions for the nondiagonal injectivities, Efj5), and av-

v erage these quantities over many different disorder configu-
which is again independent of the distance between the tipgations. We assume the conductor to be a long and narrow
The exchange term averages to zero. Moving the tips alongtrip as discussed in Sec. IV, and, similarly to Ref. 29 use the
the wire means in this case averaging over the phase of trdagram technique to average products of Green’s functions.
wave function. Therefore, for this type of conduct@nd Performing the averages leads to the following expressions

also for perfect ballistic multichannel conductophase co-  for the noise spectfa (details see Appendix A
herence is crucial for the existence of an exchange term. A

perfect ballistic(multichannel conductor exhibits no fluc- Sc (L=x)?+(L—x")2+p(x,x")
tuations at zero temperature, and thus the result found above Sa=> 2 , (65
might represent a very particular situation. Thus, now we L
introduce scattering in the wire, i.e., we introduce a barrier of 5 5
transmission probabilityT in the middle of the wire. This Sm—SC X+ (X")“+p(x,x")
. . . . . . . B~ A~ ' (66)
changes the noise properties of the wire in a qualitative way: 2 L2
due to the possibility of backscattering the current in the
massive contact of the wire already fluctuates without a tip (M2 L x(L—x")
being present. Now, we place tip 1 to the left of the barrier o= — , (67)
and tip 2 to the right of the barrier. We assume one propa- (mh)2N 1 L2

gating channel on each side of the barrier so that the barrier

. i ) ) : i Wherep(x,x')=1/3 (x—x")?—2x’(L—x)]. From these re-
IS described by a 22 matrlx, Wh'c.h determines the scatter sults we can extract the relative strength of the exchange
ing states on the two sides. We find

term Sy to be

Sy=212T[1—T/2—a(2kx— ¢)], (61) $ 1
— =—[x(L—x)+x'(L—x")— 1.
SD=202T[1-T/2+a(2kx' + ¢)], 62 s 2B 0L XD mpioA)] (68
S@=2v§T><2 co2{k(x—x')— ¢} Tme excgar?ge 'Ferm always has the same sign as the spectra
Sy andSg, i.e., it enhances the correlation spectr8ghover
=2v2T— 23T cog 2k(x—x') — 24}, (63)  the pure additiorSf+SE. An enhancement of the current

. _ . _ . , correlations due to the exchange term was also predicted for
with a(z) = y1—Tsin@— ¢,). Here,vo=1/v is the density 5 chaotic cavity with four tunneling contadsTo illustrate

of scattering statesp is the phase acquired by an electron he exchange term further, we assume a specific configura-
traveling through the barrier, angl, is the phase which takes tjon of the two tips: we place the two tips symmetrically
into account a possible asymmetry of the bar’f?eThe SPEC-  around the centel/2 of the wire. One is placed a distance
trum of experiments A and B in which current is injected /5 (g the left of the center, the other one the same distance

only through one single contact depends only on the positioRy/> 5 the right. The strength of the exchange term as a
of the tip at that side of the barrier where current is injecteds,tion of the distance between the tips is then

Comparison of the spectrum of experiment C for the pure

ballistic wire Eq.(59), with that for a wire with a barrier ST d d\2
shows that these spectra differ only in that the spectrum of —=—[2+ ——2(—> ) (69
the wire with a scatterer is multiplied by the transmission Se 3 L L

probability T and in that it depends od#, the phase acquired : . . . .
by transmitted electrons. Again, we find a nonvanishing ex-ThIS functl_on_ reaches its maximum not when the tps are
closest(a limit where our approximations for the disorder

m_cM_ cm__ am : ;
change termsS,=Sc—S,—Sg . Moving the tips on both average are not anymore validut at the finite distancd
sides of the barrier over a Fermi wavelength does not cause

o 1 H H m m — ]
the exchange term to vanish, but leads to B L/4. . Its.maX|maI valge IS SX{SC)maX—17/24. At f'rSt.
sight, it might seem quite surprising to have the maximal

Sr—— 2v(2)T(1—T). (64) correlations wh_en the tips are separateddbyl./4. This can
be understood if one considers that the strength of the corre-
Thus, elastic scattering has established a correlation in thiations is determined by scattering between all four contacts
exchange term which does not vanish upon averaging. and, therefore, not only the distance in between the tips
It is an interesting question whether an exchange terntounts, but also the distances from the coupling points of the
exists also for measurements on diffusive conductors or notips to the massive contacts of the wire. Moving the tips
Starting from exact quantum-mechanical expressions for thaway from the center of the wire increases the distance in
correlation spectrum and performing a disorder averagehetween them, but decreases the distances to the massive
Blanter and Bitiker?® found a nonvanishing exchange term contacts. The correlations are then determined by an inter-
for cross shaped diffusive conductors. An exchange term foplay of contributions from the differing types of possible
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P
jEAds:zw—za. (70)
s Do

We chose a gauge such that the ph@sedivided into equal
parts on the upper and the lower half circle along the edge of
the dot. Putting these wave functions into the expression for
the current correlations at the tips, E§6), yields

FIG. 7. Mesoscopic ring in the quantum Hall regime with one
propagating edge channel. An additional magnetic flux penetrates Sg“2+2(305{(¢1+ ¢o)+ 6}, (71)
the center of the ring which is not accessible to the electrons. Two
tunneling tips are placed at the center of the point contacts whiclie., the exchange term 32:2 cog{(¢1+ ¢2)+0}_ [We have
connect the ring to two electron reservoirs. used |41 (1)|2=|¥,(2)|>=1]. We see that the correlation
spectrum in fact depends periodically on the flux and the

electron paths. This example again demonstrates that in tHeeriod is®. The measurement of the correlation spectrum
presence of elastic scattering, the exchange contribution sufus makes it possible to get information about the flux
vives ensemble averaging. This is consistent with the result§NiS result corrects Ed15) of Ref. 27 where the periodicity
of Refs. 29 and 30. of the correlation spectrum was found to be odily/2. We

Let us consider as a last example a system consisting of §Mark that the exchange term depends on the phisead
quantum dot in the quantum Hall regime, to which two leads®2 I @ similar simple way as the exchange term of the pure
are attached via quantum point contacts, see Fig. 7. ballistic wire. Again, moving the tips by the distance of a

A very similar geometry was investigated in Ref. 27. We Fermi Wavelength will lead to a vanishing exchange_term.
i . . ST Furthermore, this example shows that a cross correlation can
reconsider this example since the two-point injectivity Eq.

(15 id ticularly clear f lati d also t be sensitive to an Aharonov-Bohm flux even for a conductor
provides a particularly clear formulation and aiso to use(Which in the absence of the tipgxhibits no Aharonov-

this opportunity to correct an algebraic mistake in one of theBohm effect. However, the situation discussed here and in
results of Ref. 27. The sample is penetrated by a quantizinget 7 goes not conclusively show that Aharonov-Bohm
magnetic field which leads to the formation of edge chansffects in second-order correlations are possible even if there
nels. The voltages at the gates forming the two point contactg no second-order Aharonov-Bohm effect. If the conduc-
are chosen such that there is exactly one propagating edggnce is measured in the presence of the two tips, then the
channel which is perfectly transmitted through the sampleyeak scattering caused by the tips, which must after all
whereas all other edge channels are completely reflected abuple to both edge states, leads to an Aharonov-Bohm ef-
the point contacts. In addition to the strong magnetic fieldfect, which is of the same magnitudéourth order in the
there is an additional field present only in the center of theunneling amplitudesas the fourth-order interference effect
dot. The additional field is characterized by its fldx  given by the current-current correlation.

through the dot. Since there is no backscattering at all of
electrons in the propagating edge channel, the transmission
probability of the system is independent of the fix For ) ] B )
the same reason, transmission from one tip to the other or to W& now consider slightly modified arrangements: instead
the massive contacts is also independeribotVithout back- of injecting the current through the massive contacts, we

scattering there is no closed electron path encircling the fluxnect the current through the tips and measure simulta-

Now we place two tunneling tips in the middle of the two neously the correlations of the currents at the tips. The volt-

point contacts 1 and 2. There, the tips should couple equallf}hge conflgurano_ns for the th_ree experlments_, of this type are,

; en, for experiment AV3;=V,, for experiment B,V,
well to the left-hand and the right-hand edge channel. We are \," and for experiment Oy3=V,=V, . All other poten-
interested if the correlation of the currents at the two tips,;_,." 3 T4 th

q ds ond. T hi . | d tials are held at the equilibrium valué,. The correlation
epends onb. To answer this question we only need 10 gnecirym for experiment C is the same as the spectrum of

know the scattering wave functions at the two couplingeyneriment C with the current injected through the massive
points. Let us denote the amplitude of the scattering statgoniacts since the spectrum depends only on the absolute
incoming from the left contact at the left point contact by yajye of voltage differences and not on the sign. Experiments
#1(1) and the one incoming from the right contact at thea and B are, however, different from the respective experi-
right point contact by/,(2). Theelectron statey; now ac-  ments with current injection through the massive contacts.
quires on its way from the left to the right point contact anThe quantitieSStAYB‘C which have to be used in E¢53) are
additional phaseb; due to its propagation and the presence

of the background quantizing magnetic field. In addition, its

phase is changed bg/2 due to the fluxd. Therefore, we S‘A=L|G(x’,x)|2, (72)

have ,(2)=,(1)e'%1e'?2. Similarly, we have (1) 2

= ,(2)e'2e'%2 As before ¢, is the phase acquired due to
propagation and the presence of the quantizing field ad 1
is due to the fluxp. For all closed paths encircling the flux Sh=—o
one must have 4772

C. Current injection through the tips

|G(x,x")[?, (73
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1 relation spectra. Emissivity and injectivity are related to each
Se=——G(x,x") =G (x,x")|>=Sp+ Sy other by the symmetry relation, E(L3). The correlations of

A the currents at the tips were determined by the transport

1 properties of electrons injected through the massive contacts

_ Re[G(x,x")G(x',X)}, (74) _ar_1d t_ra_n_smltted to the tips. Therefore, only the _nondlagonal

w? injectivities of the massive contacts appeared in the equa-
. . . ions for the current correlations at the tips. If one investi-

Since the potentials of both massive contacts are always hethieq the correlation spectrum at the massive contacts one
atlth.e same potc(ajntlal, thﬁ equnlbr(ljum pgtenu@l, thebcgr *  expects that it depends on the nondiagonal emissivities of
relation spectra do not show any dependence orirtbedi-  yhese contacts. Clearly, if we also inject the current through
agona] Injectivities Of_ these two pontacts separately. Thethe massive contacts, the correlation of the current in the
wire acts as an effective one-terminal conductor and all thafassjye contacts is to first order only determined by the wire

enters in Eqs(72)—(74) is the Green's function of the wire ish jts two contacts and the presence of the two tips does
representing the totahondiagonal density of states of the ot piay a role at all. In this case, the correlation/fluctuation
wire. But as in the experiments discussed in the previoug

; ) , ) gectra are just the ones known for two-probe conduéfors.
section an exchange term appears in general. To investigat

. X Consider the case when current is injected through the
this exchange term further we evaluate it for the exampletipS We investigate experiment M=V, B: V,=V;: and
systems used before. ' s 4

L . o . C: V3=V,=V,. All other potentials are, as before, kept at
For a ballistic wire the result is qualitatively similar to the 3 4 n b P

L . V,. The correlations can then be written in the form
one found by current injection through the tunneling con-
tacts. A qualitative change occurs for the wire with a barrier e?
and in the case of a metallic diffusive wire. Let us first con- (Al1Al,)= —ZeF
sider the ballistic wire with the barrier. In contrast to the
experiments where current is injected through the massivgiip
contacts, the averaged exchange term does vanish when cur-

167%t|*eVSigc, (75)

rent is injected through the tips. Averaging means to move Sa=v(1X)v(2X) ,,tZipl, (76)
both tips over distances longer than a Fermi wavelength and
average the measured spectra. For a metallic diffusive con- Sp= V(l,X’)V(Z,X’)vtzipz, 77

ductor it is easily seen that the exchange term vanishes. The
average over disorder of a product of two retarded Green’s

_ 2 ’ "2
functions is exponentially small. This is in remarkable con- Sc=v(1X)V(2X) Vi + v(1XT) v(2X") vy,

trast to the behavior of the exchange term in the experiments +2 REV(1X,X ) (2X" )} Vioa Viina (78)
with current injection through the massive contacts. It is due pe
to the fact that the spectrum of experiments A and B changed _ / /
. . - S =Sat St 2v4p1 Vi .
while experiment C is the same for current injection through St Se+ 2vip1vipe REV(IXX)V(2XT X)) (79)
massive contacts. The expressions for experiments A and B are products of the

We can draw the following conclusions from this section:transmission probabilities from tip 1 and tip 2, respectively
For all the situations investigated here, we could identify annto the two massive contacts of the wire, e.g., the transmis-
exchange contribution to the cross correlation. In the case afion probability from tip 1 into contact 1 of the wire is
a pure ballistic wire, the exchange contribution is a purelyTl,tiplz47727/(1’X)|t|2Vtip1 according to Eq.(26). The two
quantum-mechanical effect which vanishes when averagingpectra where current is only injected into the system
is performed(by moving the tip and averaging the resilts through one single contact do not at all depend on the pres-
As soon as some elastic scattering is present, as in the wigce of the second tip. They depend only on the local emis-
with a barrier, or in a metallic diffusive wire, the exchange sjvities of the massive contacts at the coupling point of the
term, in addition to a purely quantum-mechanical contribu+ip through which the current is injected. The correlation
tion, also contains a “classical” contribution which survives spectrum of experiment C where current is injected through
ensemble averaging. This situation is thus reminiscent of thgoth tips is sensitive to the nondiagonal emissivities of the

conductance of a mesoscopic sample which consists of @assive contacts. In fact, the exchange contribution is
classical(Drude-like conductance and a of a small quantum-

mechanical sample-s_pecific contribution known as universal Sx= 2wy Viip2 R V(1 X,X ) v(2X %)} (80)
conductance fluctuation.
This result again demonstrates the key role played by the
VI. CURRENT CORRELATION AT THE MASSIVE two-point injectivity in cross-correlation spectra.
CONTACTS

. . . . VII. DISCUSSION
Until now we were only interested in the correlation of

the currents at the tunneling tips. We saw that in the case of We have shown that the current fluctuation and correla-
current injection through the massive contacts the correlation spectra measured at tunneling contacts on multiprobe
tions depend on nondiagonal partial densities of statessonductors are related to local partial densities of states and
namely the nondiagonal injectivities of the massive contactsto spatially nondiagonaltwo-point densities of states. The
There is still another partial density of states, the emissivigeneral expressions are illustrated for various examples, like
ties, which did not yet appear in the expressions for the corperfect ballistic conductors, ballistic conductors with a bar-
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rier, metallic diffusive wires; and mesoscopic rings in a mag- APPENDIX A: ENSEMBLE AVERAGES FOR DIFFUSIVE
netic field. WIRES

In particular, we found that the current fluctuations at a
single tunneling tip are determined by afifective local dis-
tribution function f,#(x). This distribution function is given
in terms of local partial densities of states, the injectivities of
the contacts of the samplg(X) =2 [ v(X, @)/ v(X)]f (E).
It gives the local nonequilibrium distribution of charge car-
riers in a conductor. In the semiclassical Boltzmann equation
approach one relates the current fluctuations to local distri- 1. Ensemble averaged injectivity

bution functions. These distribution functions are solutions \ye gre looking for the disorder average of the injectivity
to the Boltzmann equation with proper boundary conditions ot contacta at a pointr = (x,y) inside the diffusive region,
They do not contain the quantum-mechanical phase coheEq_ (8). We have to find the average of

ence of an electron state entering through contaand trav-

eling to the pointx in the conductor, whereas this informa-

tion is included via the densities of states in our distribution V(r,a)=f dy,dy,G(r,r )T o(y1,Y2)GT(rp,r).
function f .4(x). Our discussion bridges, therefore, at least to Sa

some extent, the gap between quantum-mechanical discus- (A1)

sions of shot noise and purely classical treatments of curreq e the integrals are over the surface between contact
fluctuations. The effects of the phase coherence on the ﬂu%{nd 'Ehe diffusive region. The coupling matrx,(y,y’) is

t_uation spectrum Is iIIustr_ated fqr measurements on a baIIiSTndependent of the disorder configuration inside the wire.
tic conductor with a barrier. This example is also useful tOThe disorder average of EGAL) is then

get a qualitative impression on what the noise spectrum
looks like in the neighborhood of an impurity. We evaluate
the general formula for the fluctuations at the tip also for the<y(r,a)>:f dyldyzra()ﬁ,yz)f draS(r,r ){G(ra,ry))
case of measurements on a metallic diffusive wire in the Sa
ensemble average. T

The second part of this work treats the current correla- X(G(r2,ra)). (A2)
tions in two tunneling contacts. The correlations are deterpe integral over the intermediate pomtis over the entire
mined by newly defined spatially nondiagonal and nonlocalifsive region. The propagator
densities of states. We used the exchange experifhent
investigate the magnitude of the exchange term in a four-

We consider a two-dimensional metallic diffusive wire of
lengthL and widthW with L>W. The elastic mean free path
is |<W. Then the diffusion can be treated to be effectively
one-dimensional. The diffusive wire is at its ends connected
via a coupling matrix’, to two semi-infinite ideal leads.

: . ) - o 1 x'(L—x) x>x'
terminal configuration containing two tunneling tips. If cur- S(r,r')= ) ) (A3)
rent is injected through the massive contacts of the sample, DTWL [ x(L=X") x<x

the correlation spectrum at the tips is given by the spatially o o o
nondiagonal injectivitiesv(x,x’,a). If current is injected with the diffusion coefficienD =v¢l/2 and the elastic life-

through the tips, the correlation spectrum at the massive corfime 7=1/vg describes the diffusion from the pointto r’.
tacts is given by the nondiagonal emissivitigsy,x,x’). An m par'ucula_r, this propaglatlon IS mdepender_n of ;heoor_-
exchange term with a magnitude of the order of the totadinate provided thartx—>§ |>1. The exponentially decaying
correlations was found for ballistic conductors and ballistic2veraged Green’s functions can be approximated as
conductors with a barrier. The correlations are always nega- -
tive while the exchange term can have either sign, depending (G(r,r))=— ﬂex;{ ( ipe— i)
on the positions of the tips. This can lead to a complete ' hpe Fooal
suppression of the correlations for certain tip positions. Even
for the case of measurements on metallic diffusive conduc-
tors an exchange term exists, and its magnitude can be &grforming the integrals and using'dy,I'o(Y.,Ya)
high as 70% of the total correlations. In the average over th& VeN/4m (N, =KW is the number of open channels in
disorder configurations, the exchange term is always neg&ontacta) then gives
tive and therefore enhances the correlations. For the example
of a mesoscopic ring penetrated by a magnetic flux, we
showed that the current correlations measured in the tips can (v(r,1))= Po (AS)
show a flux dependence even though the conductances
through the ring do not depend on the flux. and

Clearly, the experiments proposed here, if carried out,
would permit a detailed microscopic view of shot noise in

Xx=x"||8(y—=y").

X
mesoscopic conductors. (v(r,2)= Vo - (AB)
ACKNOWLEDGMENT Here, we used the two-dimensional density of staigs
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a) y diagram with four diffusons and are therefore neglected.
1

/‘era> From the diagram with four diffusion propagators we get
T
Ya A

e @)= | ay,dysdysdyal o (yn.y2 Ty

¥3 R 3
>r’ xf dradrydredrgdredrS(r,ra)S(r',rp)
¥, A

a XP(re,rg)P(re,ri)(G(rq.rq))
b) yl IcL, R X<GT(r21rd)><G(rf1r3)>
- r X(GT(rg,re))F(rp,re.ra.re)- (A8)
A A

i Here, the averaged Green’s functions and the propagator
N S(r,r') are given by Eqs(A3) and(A4), and

y3 I il
it r 1 x(L—x") x<x’ °
P "N — — . A
%2 A ) sm 2w X (L—x) x=x A9
o

F(r1,r2,rs,r,) is the short-ranged Hikami bdkand in Fou-
c) ¥ ke Lo rier space is given

c R I
j:_j%’t‘f>'r F(d1,02,93,04) = —M*(/h)°v(2m)?8(0y + o+ 03+ qg)
Yo A

T H X[2(9103+09204) +(d1+03)(d21+04) ]
|

¥ | R r (A10)
'l b . . .
H r Performing all the integrals then gives the result
¥, A ,
m* 1 1 x(L-x")
o rr’ )3 =2 — T p(x,x’
<|V( ’ 1 )| > 277ﬁ2 kFI WL L2 p( 1 )
FIG. 8. Diagrams for the average of the four Green’s functions
using(a) two diffusions,(b) three diffusons, an¢) four diffusons. V% x(L—x")
A single dashed line indicates the propagation with the propagator =— —4p(x,x’), (Al11)
S(r,r") and two neighboring dashed lines indicate propagation with 9 L

P(r.r). with the abbreviationp(x,x’)=(L—x)2+(L—x")%+ 3(x
—x")2—2x'(L—x). In the last step we used the Drude con-
ductanceg=kgWI/2L. The results for{|v(r,r’,2)|?) and

In Sec. V we found that the current correlations were{»(r,r’,1)v(r’,r,2)) are obtained using the same procedure.
proportional to absolute squares of nondiagonal injectivities,

2. Ensemble averaged nondiagonal injectivity

APPENDIX B: FINITE TEMPERATURE
LINEAR-RESPONSE RESULTS

v(r,r',a) 2=f dy dy,dysdy.l ,(y1,Y2)T o (Y3,Ya) ] ) . .
| | Sa Yadyaysdyal olys ¥2)T ol¥s s For the configuration of Fig. 1, E¢R7) gives the average

, , current at the tip at fixed temperature and for given potentials

XG(r )G (ra,r)G(r',r3)Gl(ra,n). i, at the massive contacts apg, at the tip. In this section
(A7)  we are interested in the case of finite temperafuaad small

applied bias such th&T> A w. In this limit we can approxi-

Now, we are interested in the average of this quantity ovefate the Fermi functions,(E) in the reservoirs of the mas-

many different disordered wires. Again, thés are indepen- ~ Sive contacta of the sample with the help of the Fermi

dent of the impurity configuration inside the wire, so thatfunction in the reservoir of the tip,

what remains is to find the average of the product of four y

Green'’s functions. The averaged quantity has contributions . _ “ltip _

from diagrams with two, three, and four diffusion propaga- Fo(B)=Tup(B) = ZE" (Ka™ tip). (B1)

tors, as shown in Fig. 8. It is interesting to compare these | ) o

diagrams for the two-point injectivity with the ones given by USing this expansion in Eq27) we get

Blanter and one of the authéfsvhich apply in a discussion

of the shot noise at the contacts of metallic diffusive conduc- (i) = e E f dET (x)( B &_f) V(X,a)( )

tors. It turns out that diagrams with two and three diffusons ™ h < *© JE| Tw(x) He M

are as small agL, and (/L)?, respectively, compared to the (B2)
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with the Fermi functionf(E) describing the distribution of )
electrons in the reservoir of the tip held at a potenigy. I~ ((Al¢p) >:4J dEGX)| — -
we want to use the STM as a voltage probe we can easily

solve the equatiofl 4,) =0 for u, and find

XAKT+F(E) 2 ’%‘;‘)wa—unp) . (B

where w, is adjusted according to E4B3) such that the
E dET (%) - ﬂ V(X a) average current at the tip vanishes. The current fluctuations
~ (X JE] w(X) Ha are the addition of pure thermal, Johnson-Nyquist noise,

pr (B3)  ((Alyip)*herm=4Ger(X)KT with the effective conductance
deTtS(x)(—_) Gei(X)=fdEG(X)(— df/JE) and an excess noise propor-

JE tional to the applied bias. Using an infinite impedance exter-
nal circuit to measure the voltage at the tip, E2¢), gives
the voltage fluctuation spectrum

Mtip=

If one can take the fraction(x,a)/v(x) to be(nearly inde- of
pendeng of energy in an interval of sik@ arm_md the Fermi <(Avtip)2>:4Reﬁ(x)kT+ 4Reﬁ(x)zf dEG(X)| — E) f(E)
energy?® Eq. (B3) reduces to the result valid at zero tem-
perature, Eq(30). (X, @)
To find the finite temperature linear-response current fluc- X 2 e (Mo— Miip) (B5)
tuation spectrum at the tip we have to insert the expansion “«
(B1) into Eq.(32). This gives with the effective resistancBeu(X) =[ Gen(X)] 1.
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