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Local densities, distribution functions, and wave-function correlations for spatially resolved shot
noise at nanocontacts

Thomas Gramespacher and Markus Bu¨ttiker
Département de Physique The´orique, Universite´ de Gene`ve, CH-1211, Gene`ve 4, Switzerland

~Received 16 February 1999!

We consider a current-carrying, phase-coherent multiprobe conductor to which a small tunneling contact is
attached. We treat the conductor and the tunneling contact as a phase-coherent entity and use a Green’s
function formulation of the scattering approach. We show that the average current and the current fluctuations
at the tunneling contact are determined by aneffective local nonequilibrium distribution function. This function
characterizes the distribution of charge carriers~or quasiparticles! inside the conductor. It is an exact quantum-
mechanical expression and contains the phase coherence of the particles via local partial densities of states,
called injectivities. The distribution function is analyzed for different systems in the zero-temperature limit as
well as at finite temperature. Furthermore, we investigate in detail the correlations of the currents measured at
two different contacts of a four-probe sample, where two of the probes are only weakly coupled contacts. In
particular, we show that the correlations of the currents are at zero temperature given by spatiallynondiagonal
injectivities and emissivities. These nondiagonal densities are sensitive to correlations of wave functions and
the phase of the wave functions. We consider ballistic conductors and metallic diffusive conductors. We also
analyze the Aharonov-Bohm oscillations in the shot-noise correlations of a conductor which in the absence of
the nanocontacts exhibits no flux sensitivity in the conductance.@S0163-1829~99!11427-9#
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I. INTRODUCTION

To measure the properties of a system it is necessar
couple a measurement apparatus to the system. To mini
the effect that the presence of the measurement apparatu
on the properties of the system, it is desirable to have
coupling as weak as possible. We are interested in the p
erties of a current-carrying, phase-coherent, multiprobe c
ductor. Weak coupling or noninvasive contacts on me
scopic conductors were already used by Engquist
Anderson1 to rederive Landauer’s resistance formula2 for a
small conductor with a scatterer. Here we are intereste
weak coupling contacts which are sensitive to the phas
current amplitudes,3–5 and not only as in the work of En
gquist and Anderson and related work6 to absolute values o
currents. Nowadays, the scanning tunneling microsco7

~STM! is a very powerful experimental realization of
weakly coupled contact. Due to the fact that the tunnel
current to the tip originates only from an atomically sm
area on the surface below the tip, it has become the stan
tool to measure the local electronic structure on the surf
of conductors. In experiment, it is possible to map the top
raphy of a surface with atomic resolution.8,9 Standing elec-
tron wave patterns confined to quantum corrals,10 which
were constructed by manipulation of single atoms, or on c
bon nanotubes serving as a one-dimensional electron b11

are clearly visible using a low-temperature STM.
In the theoretical description, initially Tersoff an

Hamann12 used the Bardeen approach to tunneling13 to relate
the tunneling conductance to the local density of sta
~LDOS! n(x) on the surface of the conductor. Recent
Bracheret al.14 arrived at the same result using a propaga
theory where the tip was described as a localized sourc
sink of electrons. These approaches have been used to
PRB 600163-1829/99/60~4!/2375~16!/$15.00
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pret many of the features encountered in STM images
theory and experiment, the STM has most often been use
a two-terminal configuration, the two terminals being the
on one side and the conductor on the other. The current a
tip is then determined by the two-terminal conductance
tween tip and surface, and is given by the Bardeen formul13

Gts5(e2/h)4p2n tiputu2n(x), with the LDOS n(x) of the
sample,n tip of the tunneling tip, and the coupling energyutu.
The zero-bias conductance thus measures directly the LD
n(x) on the surface of the conductor below the tip.

In this paper, we make theoretical predictions for me
surements using one~or two! tunneling tips on mesoscopi
phase-coherent multiprobe conductors and analyze the
age and the current fluctuations measured at such a con
The proposed experimental setup is shown in Figs. 1 an
The current at the tips is now determined by all conductan
between the tip and the massive contacts of the sample.
plying a bias at the massive contacts of the multiprobe c
ductor one can drive a current through it without the pr
ence of the tunneling contacts. This puts the conductor in
nonequilibrium state. Here we are interested in the cha
terization of the transport state. The STM is used to meas

FIG. 1. Experimental setup to measure the effective local dis
bution function. The tip of an STM couples at a pointx with a
coupling strengtht to the surface of a multiterminal conductor. Th
contacts of the conductor are held at potentialsma and the tip at
potentialm tip . This configuration can be used to measure the tim
dependent current or voltage at the tip.
2375 ©1999 The American Physical Society
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the electronic structure on the surface of the current-carry
sample. We will see later that the average current and
current fluctuation spectrum at a single tunneling tip are
termined by aneffective local nonequilibrium distribution
functionexpressed as a function of local partial densities
states~LPDOS! and the Fermi distribution functions in th
electron reservoirs. A measurement of such a distribut
averaged over a spatially wide area, has been performe
Pothieret al.15 using a large superconducting tunneling co
tact on a metallic diffusive wire. We are interested in ch
acterizing the transport state not only locally but also by
spatial and temporal correlations. The measurement of
correlations of the currents attwo different tunneling tips is
related to spatially nondiagonal densities of states and
give information about correlations of wave functions a
the phase of the wave functions.

Here, we use a fully phase-coherent theory of weak c
pling contacts starting from the overall scattering mat
which includes the conductor and the tunneling contacts
one entity. A fully phase-coherent discussion of four-pro
resistances measured with weakly coupled contacts has
presented in Ref. 4. In this work and in recent work by t
two of us5 such an approach has been used to investigate
local voltage measurements and phase-coherent resis
measurements on mesoscopic wires. Of particular intere
the relationship of the transmission probabilities to densi
of states which characterize the conductor. In the trans
problem of interest here it is shown5 that the densities o
states which appear are partial densities of states, callein-
jectivity for transmission from a contact of the conductor in
the tip, and calledemissivityfor the transmision from the tip
into one of the contacts of the conductor. The transmiss
probabilities from the sample into the tip and from the
into the sample can be viewed as a generalization of
well-known Bardeen expression for the two-terminal we
coupling contact.5 The generalized densities of states, t
injectivity and emissivity, play a fundamental role also in t
dynamic conductance of mesoscopic systems16,17 and in the
nonlinear conductance of mesoscopic systems.18,19

In the following, we use the same approach but extend
discussion to treat temporal current and voltage fluctuati
and investigate the correlations of currents measured at
tunneling contacts. As we will show later, these measu
ments can reveal more information about the electro
structure than can be found by pure conductance meas
ments. At elevated temperature and with an applied bias
fluctuations of the currents can be divided into two contrib
tions: the thermal noise, which is proportional to the te
perature; and an excess noise, called shot noise, whic
only present when the system is biased.20,21 The thermal

FIG. 2. Experimental setup to measure current correlations. T
STM tips are coupled with strengtht at the positionsx andx8 to the
surface of a small wire. The shaded region can be a metallic d
sive or a perfect ballistic wire.
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noise is via a fluctuation-dissipation theorem related to
conductance and does not, therefore, contain more infor
tion about the conductor than can be drawn from measu
conductances. However, the shot noise, which is at zero t
perature the only source of fluctuations, can give m
information.20 For instance, the shot-noise spectrum can
used to distinguish between different conductance mec
nisms, such as ballistic or diffusive conductance.21 The low-
frequency shot noise spectrum has been used to identify
fractional charge of the quasiparticles in the fractional qu
tum Hall regime,22,23 and, recently, van den Brom and va
Ruitenbeek24 used combined conductance and shot no
measurements to determine the detailed mechanism of
electrical conductance through atom-size metallic gold c
tacts. Birket al.25 measured the shot noise at an STM tip.

particular interest are current-current cross correlations26,20,27

due to their sensitivity to the statistics of the carriers. S
cific predictions have been made for current correlations
conductors in high quantizing magnetic fields,26,20,27for bal-
listic conductors,28 for metallic diffusive conductors with
massive contacts,29,30 for chaotic cavities,31 and for hybrid
normal and superconducting systems.32 Very recently, mea-
surements of current cross-correlations~the electric analog of
the Hanburry- Brown-Twiss experiment! have been reported
by Hennyet al.33 for a Hall bar geometry, which permits th
separation of incident and reflected carrier streams as
gested in Ref. 26, and by Oliveret al.34 for a conductor that
probably exhibits elements both of ballistic electron moti
and chaotic electron motion. More severe tests of our und
standing of fluctuations arise from probing exchange effe
in correlations due to the quantum-mechanical indistingui
ability of identical particles. We will discuss exchange e
fects below in some detail. Earlier discussions of excha
effects in cross correlations in mesoscopic conductors ca
found in Refs. 35,20,27 and 29–32. An experiment wh
investigates exchange effects in the noise at a single con
due to two incident carrier streams has been carried ou
Liu et al.36 Therefore, we believe it to be justified to assum
that the shot-noise measurements at local tunneling con
proposed in this work can in fact be done as well.

In order to be able to make statements about the lo
structure or wave-function correlations on the sample s
face, the contact between tip and sample should be loca
the sense that tunneling occurs only over a region which
small compared to the variation of the LDOS on the surfa
of the conductor. In general, this length scale is given by
Fermi wavelength of the surface states. Modern STM m
surements show clearly that atomic resolution on meta
surfaces can be achieved using sufficiently sharp tips. In
dition, STM tips have the advantage that they can be mo
around on a surface so that it is possible to draw entiremaps
of, e.g., the LDOS, and to study the spatial variation of t
transport and noise properties. The theory we formulate
low, however, is also valid for spatially fixed contacts pr
vided the contact is sufficiently small and in the regime
tunneling. Especially for the experiment with two tunnelin
contacts, Fig. 2, it might practically be much easier to us
setup with one spatially fixed tunneling contact and o
~movable! STM tip.
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We note that some of the results presented below h
already been published in a shortened version in Ref. 37

II. HAMILTONIAN FORMULATION OF THE
SCATTERING MATRIX AND THE L „P…DOS

We are concerned with open mesoscopic systems con
ing of a finite part where electrons are scattered and to wh
N huge, macroscopic electron reservoirs are attached.
phase-coherence length for the electrons is supposed t
much longer than the spatial dimensions of the scatte
region. Then, inelastic scattering only takes place in the e
tron reservoirs. In each reservoira, the electrons are in equi
librium and distributed according to a Fermi function cha
acterized by the electrochemical potentialma and the
temperatureTa . The finite scattering region is described b
a HamiltonianHC and the connection to the electron res
voirs is modeled by semi-infinite ideal leads described b
Hamiltonian HL . As a basis of the HamiltonianHC we
chooseM localized statesux& ~whereM is a very big num-
ber!,

HC5(
x,x8

ux&Hxx8^x8u. ~1!

The Hilbert space of the semi-infinite leads is spanned
scattering statesuam& totally reflected at the boundary to th
scattering region. At an energyE we have to sum over the
scattering states of all open channels in the leads,

HL5 (
a51

N

(
m51

Na

uam&E^amu. ~2!

The indexa gives the number of the reservoir and the ind
m is the channel number of the incoming electron. In res
voir a there areNa open channels at the energyE. Finally,
we have to describe the coupling between the scatte
states in the ideal leads and the conductor by a coup
matrix,

W5(
x

(
a51

N

(
m51

Na

ux&Wx,am^amu. ~3!

The Hamiltonian of the entire system then reads

H5HL1HC1W1W†. ~4!

The Green’s function between two pointsx andx8 inside the
scattering region is then at the Fermi energyEF given by38

G~x,x8!5^xu~EF2HC1 ipWW†!21ux8&. ~5!

The matrix elements of the scattering matrixsam,bn , which
describes the scattering of an incoming particle in channn
of contactb being scattered into channelm of contacta, can
be written as

sam,bn5dabdmn22p i (
x,x8

Wx,am* G~x,x8!Wx8,bn . ~6!

The scattering matrix depends on the electrostatic pote
U(x) in the scattering region, which is included in th
HamiltonianHC . This potential has, in principle, to be ca
culated self-consistently for the system in equilibrium.16 A
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small variationdma of the electrochemical potential in
reservoira then injects at a positionx inside the conductor
an additional charge39 q(x)5en(x,a)dma . The proportion-
ality factor n(x,a) is a LPDOS and is called the injectivit
of contacta at the pointx. It can be expressed with the he
of the scattering matrix as17

n~x,a!5
21

2p i (
b

TrS sba
† dsba

edU~x! D . ~7!

Here, sab denotes theNa3Nb submatrix of the scattering
matrix which describes the scattering of electrons betw
all channels of contactsa andb. With the Green’s function
defined above, we have for the injectivity the expression5

n~x,a!5^xuGGaG†ux&, ~8!

where we introduced the abbreviation

Ga5(
x,x8

ux&^x8u (
m51

Na

Wx,amWx8,am
* . ~9!

Using the Lippmann-Schwinger equationucam&5(1
2GW)uam& which relates the scattering stateucam& of the
entire coupled system to the scattering statesuam& of the
isolated leads,38 one can express the injectivity in terms
the scattering wave functions

n~x,a!5 (
m51

Na 1

hvam
ucam~x!u2. ~10!

Here,vam5A2/m!(EF2Eam
0 ) is the velocity of an incoming

electron at the Fermi energyEF in channelm of contact
a,m! is the effective electron mass andEam

0 is the threshold
energy of channelm of contacta.

Related to the injectivity is another LPDOS, the emiss
ity n(b,x) of a pointx into contacta, defined as

n~b,x!5
21

2p i (
a

TrS sba
† dsba

edU~x! D , ~11!

and in terms of Green’s functions given by

n~b,x!5^xuG†GbGux&. ~12!

If there is a magnetic fieldB present, the injectivity and
emissivity obey the symmetry17

nB~a,x!5n2B~x,a!. ~13!

This means that reversing the magnetic field turns the in
tivity of a specific contact into its emissivity and vice vers
As a special case, Eq.~13! states that injectivity and emis
sivity are the same if there is no magnetic field present. F
thermore, the emissivity can, according to Eqs.~10! and~13!,
be expressed in terms of the scattering states of the Ha
tonian with the reversed magnetic field. The LDOSn(x) is
the sum of the injectivities of all contacts or the emissiviti
of all contacts,

n~x!5(
a

n~x,a!5(
b

n~b,x!. ~14!
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The LDOS is therefore invariant under reversal of the m
netic field.

The form of Eqs.~8! and~12! suggests that a nondiagon
two-point injectivity be defined by

n~x8,x,a!5^x8uGGaG†ux& ~15!

5 (
m51

Na 1

hvam
cam~x8!cam~x!* , ~16!

and analogously a nondiagonal two-point emissivity by

n~b,x8,x!5^x8uG†GbGux&. ~17!

In fact, we will see that it is exactly these spatially nond
agonal LPDOS which determine the correlation of the c
rents at two tips.

III. SCATTERING MATRIX FORMULATION
OF CURRENT AND NOISE

Our goal is to investigate the local electronic structure
a mesoscopic phase-coherent multiprobe conductor u
one or several locally weakly coupled probes such as, e
STM tips. One can think of transport experiments whi
measure the average current determined by conductanc
one can measure the fluctuations of the current away from
average. The scattering matrix approach has proven to
very useful in describing transport and noise measurem
at multiprobe conductors.40 It provides us with formulas
which express the currents and the fluctuations of the
rents at the contacts of a multiprobe conductor in terms o
scattering matrix and the Fermi functionsf a(T,E) of the
electron distribution in the reservoirs. The experimentally
rectly accessible parameters of the system are the temp
ture T and the electrochemical potentialsma in the large
electron reservoirs.

For a certain temperatureT and given potentials the ave
age current flowing from contacta into the conductor is20

^I a&5
e

h (
b

E dE Tr@Abb~a!# f b~E!, ~18!

with the current matrixAdg(a)51adaddag2sad
† (E)sag(E).

The energy dependent transmission probability between
different contactsa and b is Tab52Tr@Abb(a)#. In the
limit of zero temperature and if we assume that the diff
ences of the applied potentials are so small that the scatte
matrix depends only very weakly on energy in the ene
interval of interest, formula~18! reduces to

^I a&5
e

h (
b

Tab~ma2mb!, ~19!

where the transmission probabilitiesTab have to be evalu-
ated at the Fermi energy.

The correlation spectrum̂DI aDI b& of the currents at two
contactsa and b is the Fourier transform of the curren
current correlator,21

^DI aDI b&5E dteivt^DI a~ t !DI b~ t1t0!&, ~20!
-
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where DI a(t)5I a(t)2^I a&. In the low-frequency limit,v
˜0, one gets20

^DI aDI b&5
2e2

h (
dg

E dE Tr@Adg~a!Agd~b!# f d~12 f g!.

~21!

For a5b this expression gives the low-frequency fluctuati
spectrum of the current at the contacta. For aÞb it gives
the correlation spectrum of the currents in the two contacta
andb. In general, the current fluctuation or correlation spe
trum is a mixture of thermal noise and, if the system is
ased, an excess noise called shot noise. At zero temper
all fluctuations in the currents are due to the discretenes
the charge carriers. We are dealing with pure shot noise.
given instant in time a carrier either arrives at a reserv
i.e., a current is measured, or it does not. Successive car
that are totally uncorrelated give the full~Poissonian! shot
noise,SPoiss52eu^I &u. If successive carriers are correlated,
is the case for electrons due to Fermi statistics, the noise
be suppressed below this value.

Equation~21! gives the fluctuation spectrum of the time
dependent currents in the contacts under the condition
the potentials at the reservoirs are held fixed and do
fluctuate. This corresponds to the case where currents
measured using a zero-impedance external circuit. Alter
tively, we could measure the voltages at the reservoirs us
ideal, infinite impedance voltmeters. The infinite impedan
external circuit then forces the currents to be zero at
times,I (t)50. Fluctuations in the currents have therefore
be counterbalanced by fluctuations of the chemical poten
in the electron reservoirs. In linear response to the app
bias, current and potential are related by a conductance
trix Gab ,

I a~ t !5(
b

Gab@Vb1DVb~ t !#1DI a~ t !, ~22!

where theDI a(t) are now considered as Langevin forc
obeying the correlation spectra given in Eq.~21! and where
we allowed the potential at the reservoirs to be time dep
dent.

Let us now consider the experimental setup of Fig. 3. W
are interested in the fluctuations of the voltage at the
^(DVtip)

2& measured relative to the voltage at contact 1. T
current at the tip is always zero,I tip(t)50, whereas at the
contacts 1 and 2 the potentials are fixed,DV1(t)5DV2(t)
50. We measure all voltages relative to the potential at c
tact 1~freedom of the choice of gauge! so thatV150. Solv-
ing the system of Eq.~22! for DVtip(t) gives

FIG. 3. Experimental setup to measure the voltage fluctuati
at the tip. The voltage is measured using an infinite impeda
voltmeter between contact 1 and the tip, and the current is meas
using a zero-impedance amperemeter between contacts 1 and
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DVtip~ t !52
1

G311G32
DI tip~ t !, ~23!

and the fluctuation spectrum

^~DVtip!2&5S 1

G311G32
D 2

^~DI tip!2&. ~24!

Equations~18!, ~21!, and~24! are our starting points an
we apply them to systems consisting of a conductor with t
~or more! massive contacts and one or two weakly coup
contacts as depicted in Figs. 1 and 2. Our plan is to start w
the scattering matrix of the entire system~sample and tip!
and expand this scattering matrix in powers of the coupl
strengthutu of the tip to the conductor. In this way we ge
equations which contain the scattering matrices of the se
rated systems, one describing scattering only in the sam
and one describing the scattering in the tip.

Here, we use the Hamiltonian formulation to express
scattering matrix in terms of the Green’s function of the m
soscopic sample, Eq.~6!. Representing the scattering matr
in terms of Green’s functions is a comfortable way to ide
tify the ~nondiagonal! density operators, Eqs.~15! and ~17!,
in the expressions for the conductances and the curr
correlation spectra.

IV. THE SINGLE TIP CONFIGURATION

We consider a system consisting of a mesoscopic con
tor connected toN electron reservoirs and which has o
additional weakly coupling contact, the tunneling tip~see,
e.g., Fig. 1 whereN52). The coupling strength between th
tip and the conductor isutu and the coupling is local at a poin
x on the surface of the conductor.

A. Average current at the tip

The transmission probability at an energyE for an elec-
tron incoming from a massive contacta of the sample being
transmitted into the tip has been found to be proportiona
the injectivity of the contact at the coupling pointx of the
tip,5

Ttip,a54p2n tiputu2n~x,a!. ~25!

The transmission probability for an electron incoming fro
the tip being scattered into a massive contacta is propor-
tional to its emissivity,5

Ta,tip54p2n~a,x!utu2n tip . ~26!

Due to the symmetry of injectivity and emissivity, Eq.~13!,
these transmission probabilities manifestly obey
Onsager-Casimir symmetry,Ttip,a(B)5Ta,tip(2B), whereB
is the magnetic field. Using these energy resolved transm
sion probabilities in Eq.~18! we can express the averag
current flowing into the tip as

^I tip&5
e

hE dETts~x!$ f tip~E!2 f eff~x!%, ~27!

with the two-probe tip-to-sample transmissionTts(x)
54p2n tiputu2n(x) and theeffective local distribution func-
tion
o
d
th

g

a-
le

e
-

-

t-

c-

o

e

is-

f eff~x!5 (
a51

N
n~x,a!

n~x!
f a~E!. ~28!

This expression gives the local nonequilibrium distributi
of charge carriers at the pointx inside the conductor. Its
energy dependence comes from the Fermi functions
from a possible energy dependence of the L~P!DOS. We
evaluate the distribution function, Eq.~28!, for metallic dif-
fusive wires, measured by Pothieret al.,15 in Sec. IV D @see
Eq. ~48!#.

Equation~27! has the form of the current in a two-prob
system, one probe being the tip, where the electron distr
tion is described by the Fermi functionf tip(E) and the other
probe where the electron distribution is given by the effe
tive distribution functionf eff(x). This effective distribution
function does not account for any energy relaxation of
charge carriers inside the conductor. We assume
electron-electron and electron-phonon interactions can be
glected for the system in consideration and therefore the
ergy of the electrons is conserved. However, the distribut
function does contain via the L~P!DOS the quantum-
mechanical phase coherence of the electron wave func
throughout the system. Our effective distribution can be u
to describe the electron distribution in phase-coherent di
sive conductors, if energy relaxation and dephasing can
neglected. To describe transport and noise in diffusive c
ductors one can also use the semiclassical Boltzma
equation approach~see, e.g. Ref. 30!. There, one introduces
distribution function which does not contain the quantu
mechanical phase coherence but where energy relaxa
processes can be modeled quite easily. However, the d
bution function of this semiclassical approach cannot be u
for conductors where phase coherence is essential.

At zero temperature we can replace the Fermi function
Eq. ~27! by step functions and obtain, in linear response
the applied potentials

^I tip&5G~x!$Vtip2Veff~x!%, ~29!

where the conductanceG(x)5(e2/h)Tts(x) has to be taken
at the Fermi energy and

Veff~x!5(
a

n~x,a!

n~x!
Va . ~30!

The same formula for the average current is also true for
case of arbitrary temperature provided that the L~P!DOS,
n(x,a), are independent of the energy in an energy inter
DE'kT around the Fermi energy.

A particularly interesting setup is, when the tip is used
a voltage probe, i.e., we demand that on the average the
no net current flowing into the tip,̂I tip&50. Similar experi-
ments, also called scanning tunneling potentiometry, h
initially been performed by Muralt and Pohl41 and were later
continued and refined by several groups.42–44 From Eq.~29!
we find that at zero temperature the voltage one has to a
at the tip to achieve the zero-current condition is exactly
effective voltageVeff(x) defined in Eq.~30!. The measured
effective potentialVeff(x) should not be confused with th
actual electrostatic potentialU(x) inside the conductor. The
injectivities n(x,a) and the LDOSn(x) are determined by
the equilibrium electrostatic potentialUeq(x) in the sample16
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and, therefore, the measured effective potentialVeff(x) also
depends on the electrostatic potential. However, there is
direct relation between the measured potential and the ac
electrostatic potential in the sample.

B. Current fluctuations at the tip

We proceed by investigating the fluctuation spectrum
the current at the tip. From Eq.~21!, we get to the lowest
order in the coupling parameterutu,

^~DI tip!2&52E dEG~x!@ f eff~x!$12 f tip~E!%

1 f tip~E!$12 f eff~x!%#, ~31!

with the two-terminal conductanceG(x) and the effective
distribution functionf eff(x) as defined in Eq.~28!. The fluc-
tuations are, therefore, as was the average current, d
mined by the effective distribution function. If we adjust th
potential at the tip,Vtip , such that the average current at t
tip vanishes, we get for the fluctuations

^~DI tip!2&54E dEG~x!$12 f tip~E!% f eff~x!. ~32!

In Eq. ~31! the integral over energy extends from the b
tom of the conduction band to infinity. At a temperatureT
and applied potential differencesDV, the relevant contribu-
tion to the current fluctuations comes from the integrat
over an energy range of aboutDE'max(eDV,kT) around the
Fermi energy. If the LPDOS are nearly independent of
ergy in this energy range, we can evaluate the integral o
products of Fermi functions and get for a potentialVtip at the
tip and potentialsVa at the massive contacts

^~DI tip!2&52eG~x! (
a51

N

uVa2Vtipu

3
n~x,a!

n~x!
cothS euVa2Vtipu

2kT D . ~33!

If we consider the case of a measurement on a wire with
contacts and chooseVtip5Veff such that on average there
no current flowing into the tip, we get

^~DI tip!2&52eG~x!DV
n~x,1!

n~x! S 12
n~x,1!

n~x! D
3 (

a51

2

cothS n~x,a!

n~x!

eDV

2kT D , ~34!

with DV5V12V2. In the limit eDV!kT this leads to

^~DI tip!2&'4G~x!kT1
1

3
eG~x!DV

eDV

kT

n~x,1!

n~x!

3S 12
n~x,1!

n~x! D , ~35!
o
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where we neglected corrections of order (eDV/kT)2. In this
case the current fluctuations are due to thermal John
Nyquist noise and a small correction which depends on
applied biasDV.

As a next step we restrict ourselves to the case of z
temperature and sufficiently small differences in the appl
potentialsVa so that we are in the linear-response regim
We are then dealing with pure shot noise which is co
pletely determined by the properties of the system~the scat-
tering matrix! at the Fermi energy. For arbitrary potentia
Va ~though always close to the equilibrium value! we get
from Eq. ~31! for the current fluctuations at the tip

^~DI tip!2&52eG~x!(
a

n~x,a!

n~x!
uVa2Vtipu. ~36!

The conductance, i.e., the densities of states and the cou
elementt contained in it, have to be taken at the Fermi e
ergy. This result shows that the fluctuations in the tip are j
the addition of the fluctuations proportional to the condu
tances between the tip and the two massive contacts of
wire. This is not surprising, since, as is well known, t
fluctuations of the current at a tunneling contact between
reservoirs are proportional to its conductance.21

Equation~36! is valid for arbitrary voltage configurations
Let us now choose the potential of the tip such that on av
age there is no net current flowing into the tip, i.e., we ha
to chooseVtip5Veff(x) according to Eq.~30!. Let us assume
that the applied potentials at the sample are arranged
way that Va,Vb , for a.b, and let n be such thatVa
.Veff for a<n, andVa,Veff for a>n11. The fluctuations
at the tip can then be written in the form

^~DI tip!2&54eG~x! (
a51

n
n~x,a!

n~x!
$Va2Veff~x!%

54eG~x! (
a5n11

N
n~x,a!

n~x!
$Veff~x!2Va%. ~37!

For the case of measurements on a two-terminal conducto
shown in Fig. 1, this formula reduces to

^~DI tip!2&54eG~x!DV
n~x,1!

n~x! S 12
n~x,1!

n~x! D , ~38!

with DV5V12V2. This shows that at zero temperatur
n(x,1)/n(x) plays the role of the nonequilibrium distributio
function.

C. Voltage fluctuations at the tip

In the previous section we discussed the fluctuation sp
trum of the current at the tip while we assumed that
potential at the tip is fixed and independent of time. Let
now investigate the experimental setup shown in Fig.
where the current at the tip is zero and we measure the fl
tuation spectrum of the voltage using an infinite impedan
voltmeter. If currents and voltages are related by the line
response formula, Eq.~22!, the voltage fluctuation spectrum
is directly related to the current fluctuation spectrum, E
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~24!. For the case of zero temperature, we can use the
ductances from Eqs.~25! and~26! to get the fluctuation spec
trum

^~DVtip!2&54eR~x!DV
n~x,1!

n~x! S 12
n~x,1!

n~x! D , ~39!

with R(x)5G(x)21. Results for the voltage and curre
fluctuations at finite temperature and in linear response to
applied potentials are presented in Appendix B. Next we w
illustrate the main results of the previous section on so
examples.

D. Examples

The most simple example is a perfect ballistic conduc
with one propagating channel. The local density of states
well as the injectivities are then independent of position. T
injectivities from the left and right contacts aren051/hv and
the LDOS is 2n0. At zero temperature, this gives the positio
independent effective voltageVeff5(V11V2)/2 and from
Eq. ~38! the fluctuation spectrum

^~DI tip!2&52eG0DV
1

2
, ~40!

with G05(e2/h)4p2n tiputu22n0 andDV5V12V2. Note that
a perfect conducting two-terminal conductor shows no fl
tuations of the currents at its contacts. The presence of th
introduces shot noise into the system because in the pres
of the tip, electrons entering the system from, say, contac
now have the possibility to go either to contact 2~what they
do most of the time! or to enter the tip~what they do with a
probability proportional toutu2). The fluctuations at the tip
also cause the current at the massive contacts to fluctuat
the massive contacts, however, there is a considerable a
age current of the order of one, while the fluctuations
only of the order ofutu2.

As a next step we introduce scattering in the wire. Let
assume that there is a scattering region described by a
tering matrix which leads to the transmission probabilityT
and reflection probabilityR512T for the electrons. To the
left of the scattering region the LDOS and the injectiviti
are45

n~x,1!5n0@22T12A12Tcos~2kx1f!#, ~41!

n~x,2!5n0T, ~42!

n~x!52n0@11A12Tcos~2kx1f!#, ~43!

wheref is the phase acquired by reflected particles. Putt
these densities into the fluctuation spectrum, Eq.~38!, leads
to

^~DI tip!2&52eG0DVTS 12
T

2

1

11AR cos~2kx1f!
D .

~44!

As a function of the positionx of the tip, the fluctuation
spectrum oscillates with a period of half a Fermi waveleng
If we average this position dependent spectrum over one
riod we get
n-

e
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^~DI tip!2&ave52eG0DVT~12AT/2!. ~45!

Averaging over the whole length of the conductor can me
to really move one single tip along the wire, always adjust
the electrochemical potential such that there is zero ave
current into the tip and measuring the fluctuation spectru
But it could also mean to attach very many tips~or electron
absorbers! all along the wire, each one with its electrochem
cal potential adjusted such that there is no net current fl
ing into it and neglecting the transmission of electrons fro
one tip to another (}utu4). It is interesting to compare Eq
~45! to the fluctuations measured at contact 1 of an isola
~no tip present! wire,21

^~DI 1!2&52e
e2

h
DVT~12T!. ~46!

Neglecting the interference of incoming and reflected wa
in the local densities, i.e., settingn(x,1)5n0(22T) and
n(x)52n0, one gets from Eq.~38!, ^(DI )2&}T(12T/2).

The voltage fluctuations, Eq.~39!, are in the phase-
sensitive case, Eqs.~41!–~43!, given by

^~DVtip!2&52eR0DV
T

11ARcos~2kx1f!

3S 12
T

2

1

11ARcos~2kx1f!
D , ~47!

with R05G0
21. The current and voltage fluctuations togeth

with the effective potentialVeff(x) are shown in Fig. 4.
An interesting system containing very many scatterers

metallic diffusive wire of lengthL and widthW which is at
its ends attached to two ideal leads. The elastic mean
path is l. We assume thatl !W!L so that the diffusion in
the wire can be treated to be effectively one-dimension
Furthermore, we assume that there is no inelastic scatte
inside the conductor. For a given wire, i.e., a given disor
configuration, the exact LPDOS are given in terms
Green’s functions by Eqs.~8! and ~12!. Here, we are only
interested in the quantities averaged over many different

FIG. 4. Fluctuation spectra and effective voltage measu
along a ballistic wire with ad barrier atx50 leading to a transmis-
sion probability T50.7. The solid line is (Veff2V2)/DV, the
dashed line gives the current fluctuations^(DI tip)

2& in units of
2eG0DV, and the dotted line shows the voltage fluctuatio
^(DVtip)

2& in units of 2eR0DV.
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order configurations. While the ballistic conductor with o
single barrier could serve as a model to illustrate wha
measured in the neighborhood of an impurity, the ensem
averaged quantities correspond to the average of many m
surements on a diffusive conductor at different locatio
over a spatial range of about an elastic mean free path
average expressions given as products of retarded and
vanced Green’s functions we use the diagram techniqu46

For the injectivities, we have to average the product of
tarded and advanced Green’s functions between the coup
point of the tunneling tip and two points on the surface b
tween the diffusive region and the ideal leads. For the av
aged quantities we get~see Appendix A for details!

n~x,1!5n0~L2x!/L and n~x,2!5n0x/L, ~48!

with the two-dimensional density of statesn05m!/2p\2.
Inserting the ensemble averaged injectivities into Eq.~28!
gives the~ensemble averaged! distribution function for a me-
tallic diffusive wire used by Nagaev47 and measured by
Pothieret al.15

At zero temperature, the effective voltage measured al
the wire gives, averaged over the ensemble, the classica
ear voltage drop,Veff(x)5V21DV(L2x)/L, and the para-
bolic behavior of the current fluctuation spectrum as a fu
tion of the tip position,

^~DI tip!2&52eG0DV
x~L2x!

L2
. ~49!

As in the case of the ballistic conductor with barrier, we c
average the fluctuation spectrum over the hole length of
diffusive region and get

^~DI tip!2&52eG0DV
1

6
. ~50!

This is exactly 1/3 of the fluctuations that would be me
sured at a tip probing a perfect ballistic conductor, Eq.~40!.
It is very well known, that the fluctuations measured a
contact of a diffusive wire are suppressed by a factor of
with respect to full shot noise~see, e.g., Refs. 47,48 and 30!.
Therefore, it is tempting to say that the fluctuations at the
reflect the fluctuations of the current inside the isola
~without the tip! wire. Nevertheless, the presence of the
does change the system since it offers the electrons ano
possibility ~even though a very weak one, proportional
utu2) where to travel. Therefore the tip introduces addition
fluctuations in the system, as we saw, for example, when
tip couples to a perfect ballistic conductor.

If we neglect the energy dependence of the injectiviti
Eq. ~48!, ~temperature and applied biasDV5V12V2 suffi-
ciently small! we can use Eq.~34! to illustrate the crossove
from the position dependent shot noise at zero temperatu
the position independent thermal noise at elevated temp
tures. For the metallic diffusive wire we get

^~DI tip!2&52eG0DV
~L2x!x

L2 H cothS L2x

L

eDV

2kT D
1cothS x

L

eDV

2kT D J . ~51!
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This crossover is shown in Fig. 5. In Fig. 6, we plot for fixe
temperatureT the voltage dependence of the fluctuati
spectrum if the tip is placed at different positions along t
wire.

V. CURRENT CORRELATIONS AT TWO TUNNELING
PROBES

In this section we make predictions for the cross corre
tion of the currents at two contacts. Recently, two grou
succeeded in measuring the correlation spectrum of the
rent at two different contacts of a multiprobe sample.33,34We
consider a mesoscopic wire with two tips weakly coupled
pointsx andx8 as shown in Fig. 2. For the following discus
sion, we consider the zero-temperature limit and the line
response regime with respect to the applied potentials.
cording to Eq.~21! the correlation of the currents at the tw
tips ^DI tip1DI tip2& is a function of all possible voltage differ
encesuVa2Vbu. Using the two-point density of states, E
~15!, we find

FIG. 5. The current fluctuation spectrum along a diffusive w
from 0 toL for different temperatures. The temperature rangekT is
from 0 to 0.5eDV in steps of 0.1eDV. Lower temperatures corre
spond to lower curves.

FIG. 6. Voltage dependence of the current fluctuation spect
for fixed temperature. The three curves correspond to different
sitions of the tip. The tip is placed atx50 ~solid line!, x5L/4
~dashed line!, andx5L/2 ~dotted line!.
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^DI tip1DI tip2&52e
e2

h
4p2n tip1n tip2utu4F2 Re$2pn~x,x8,1!2pn~x8,x,2!%uV12V2u22 Re$G~x,x8!G~x8,x!%

3uV32V4u1 (
d51,2

2 Im$2pn~x,x8,d!G~x8,x!%uV32Vdu1 (
d51,2

2 Im$2pn~x8,x,d!G~x,x8!%

3uV42VduG . ~52!
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We now want to illustrate this result for some specific vo
age configurations. One particularly interesting case is
exchange experiment proposed in Ref. 20 for arbitrary fo
terminal conductors. Such an experiment has been perfor
recently by Liuet al.36 on a ballistic conductor. Theoretica
predictions have been made by Blanter and Bu¨ttiker29 and by
Sukhorukov and Loss30 for metallic diffusive conductors and
by van Langen and Bu¨ttiker31 for chaotic cavities. To iden-
tify the exchange contribution in the noise spectrum one p
forms three successive experiments. In the first two exp
ments, called experiments A and B, current is injected i
the system through only one single contact, respectively
the third experiment, called experiment C, current is injec
through both contacts simultaneously. The correlation sp
trum is always measured at the same two terminals in
three experiments. The current injection is achieved by ris
the potential of the respective contact to the elevated va
Vh keeping the other ones at the equilibrium valueV0. In
principle, one is free to choose through which contacts c
rent should be injected and at which two contacts the co
lations should be measured. In our system we have an o
ous asymmetry between the two massive contacts 1 and
the wire and the two tunneling contacts 3 and 4. In Eq.~52!
we decided to look at the current correlations at the t
tunneling tips. The current correlations at the two mass
contacts will be discussed later. Still, we can decide thro
which contacts we want to inject the current, either throu
the massive contacts or through the tunneling contacts.
perimentally, the first case~contacts for current measureme
and current injection different! should be easier to achieve
For both cases we can rewrite Eq.~52! in the form

^DI tip1DI tip2&524e
e2

h
16p4n tip1n tip2utu4VSA,B,C

m,t . ~53!

Here, the upper indexm indicates that the current is injecte
through the massive contacts whereas the indext means that
current is injected through the tips. The lower indices dist
guish the three experiments andV5Vh2V0.

A. Current injection through the massive contacts

First we consider the case of current injection through
massive contacts. Performing the three above-mentioned
periments leads to the following voltage configurations:
experiment A,V15Vh , for experiment B,V25Vh , and for
experiment C,V15V25Vh . All other potentials are held a
the equilibrium valueV0. We get

SA
m5un~x,x8,1!u2, ~54!
e
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SB
m5un~x,x8,2!u2, ~55!

SC
m5

1

4p2
uG~x,x8!2G†~x,x8!u25un~x,x8,1!1n~x,x8,2!u2

5SA
m1SB

m12 Re$n~x,x8,1!n~x8,x,2!%. ~56!

The current correlations are for all three experiments de
mined by the spatially non diagonal injectivities, Eq.~15!,
which are also given as products of wave functions. Eq
tions which express the current correlations in terms of w
functions can be found in Ref. 37, Eqs.~8!–~11!. It is not
surprising that the result for experiment A with current i
jected through contact 1 depends only on the~nondiagonal!
injectivity of contact 1, while experiment B with the curren
injected through contact 2 depends only on the~nondiagonal!
injectivity of contact 2. One sees also at once, that the re
for experiment C is in general not only the addition of e
periments A and B but contains theexchangeterm

SX
m5SC

m2SA
m2SB

m52 Re$n~x,x8,1!n~x8,x,2!%. ~57!

This exchange term is due to the quantum-mechanicalindis-
tinguishability of the charge carriers. In the following w
investigate for which systems or under which conditions t
term vanishes or becomes important. The question if ph
coherence is necessary for the existence of the excha
term will also be addressed below.

B. Examples

We investigate Eqs.~54!–~56! in more detail for three
examples. The most simple system one can think of i
perfect ballistic one channel conductor. The two scatter
states at the Fermi energy are then simple plane wave
that the nondiagonal injectivities at the Fermi energy are

n~x,x8,a!5
1

hv
eika(x2x8), ~58!

with k152k25m!v/\ and the Fermi velocity v
5A2EF /m!. This means that the correlations in experime
A and B are independent of the distanced5x2x8 of the
tips. However, the correlations of experiment C and theref
the exchange contribution, Eq.~57!, depend on this distance
They oscillate with the period of half a Fermi wavelength

SC
m54

1

h2v2
cos2~kd!. ~59!
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Moving one of the tips over the distance of half a Fer
wavelength and averaging the results, gives the avera
spectrum

^SC
m&52

1

h2v2
5SA1SB , ~60!

which is again independent of the distance between the
The exchange term averages to zero. Moving the tips al
the wire means in this case averaging over the phase o
wave function. Therefore, for this type of conductor~and
also for perfect ballistic multichannel conductors! phase co-
herence is crucial for the existence of an exchange term
perfect ballistic~multichannel! conductor exhibits no fluc-
tuations at zero temperature, and thus the result found ab
might represent a very particular situation. Thus, now
introduce scattering in the wire, i.e., we introduce a barrie
transmission probabilityT in the middle of the wire. This
changes the noise properties of the wire in a qualitative w
due to the possibility of backscattering the current in
massive contact of the wire already fluctuates without a
being present. Now, we place tip 1 to the left of the barr
and tip 2 to the right of the barrier. We assume one pro
gating channel on each side of the barrier so that the ba
is described by a 232 matrix, which determines the scatte
ing states on the two sides. We find

SA
m52n0

2T@12T/22a~2kx2f!#, ~61!

SB
m52n0

2T@12T/21a~2kx81f!#, ~62!

SC
m52n0

2T32 cos2$k~x2x8!2f%

52n0
2T22n0

2T cos$2k~x2x8!22f%, ~63!

with a(z)5A12Tsin(z2fa). Here,n051/hv is the density
of scattering states,f is the phase acquired by an electr
traveling through the barrier, andfa is the phase which take
into account a possible asymmetry of the barrier.45 The spec-
trum of experiments A and B in which current is injecte
only through one single contact depends only on the posi
of the tip at that side of the barrier where current is inject
Comparison of the spectrum of experiment C for the p
ballistic wire Eq. ~59!, with that for a wire with a barrier
shows that these spectra differ only in that the spectrum
the wire with a scatterer is multiplied by the transmissi
probabilityT and in that it depends onf, the phase acquired
by transmitted electrons. Again, we find a nonvanishing
change termSX

m5SC
m2SA

m2SB
m . Moving the tips on both

sides of the barrier over a Fermi wavelength does not ca
the exchange term to vanish, but leads to

SX
m522n0

2T~12T!. ~64!

Thus, elastic scattering has established a correlation in
exchange term which does not vanish upon averaging.

It is an interesting question whether an exchange te
exists also for measurements on diffusive conductors or
Starting from exact quantum-mechanical expressions for
correlation spectrum and performing a disorder avera
Blanter and Bu¨ttiker29 found a nonvanishing exchange ter
for cross shaped diffusive conductors. An exchange term
i
ed
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diffusive four-terminal conductors of arbitrary shape w
found by Sukhorukov and Loss30 using a semiclassica
Maxwell-Boltzmann equation approach which does not c
tain the quantum-mechanical phase coherence of the sys
In our approach, we start with the quantum-mechanical
pressions for the nondiagonal injectivities, Eq.~15!, and av-
erage these quantities over many different disorder confi
rations. We assume the conductor to be a long and nar
strip as discussed in Sec. IV, and, similarly to Ref. 29 use
diagram technique to average products of Green’s functio
Performing the averages leads to the following expressi
for the noise spectra37 ~details see Appendix A!:

SA
m5

SC

2

~L2x!21~L2x8!21p~x,x8!

L2
, ~65!

SB
m5

SC

2

x21~x8!21p~x,x8!

L2
, ~66!

SC
m5

~m!!2

~p\!2N

L

l

x~L2x8!

L2
, ~67!

wherep(x,x8)51/3@(x2x8)222x8(L2x)#. From these re-
sults we can extract the relative strength of the excha
term SX

m to be

SX
m

SC
m

5
1

L2
@x~L2x!1x8~L2x8!2p~x,x8!#. ~68!

The exchange term always has the same sign as the sp
SA

m andSB
m , i.e., it enhances the correlation spectrumSC

m over
the pure additionSA

m1SB
m . An enhancement of the curren

correlations due to the exchange term was also predicted
a chaotic cavity with four tunneling contacts.31 To illustrate
the exchange term further, we assume a specific config
tion of the two tips: we place the two tips symmetrical
around the centerL/2 of the wire. One is placed a distanc
d/2 to the left of the center, the other one the same dista
d/2 to the right. The strength of the exchange term a
function of the distanced between the tips is then

SX
m

SC
m

5
1

3 F21
d

L
22S d

L D 2G . ~69!

This function reaches its maximum not when the tips
closest~a limit where our approximations for the disord
average are not anymore valid!, but at the finite distanced
5L/4. It’s maximal value is (SX

m/SC
m)max517/24. At first

sight, it might seem quite surprising to have the maxim
correlations when the tips are separated byd5L/4. This can
be understood if one considers that the strength of the co
lations is determined by scattering between all four conta
and, therefore, not only the distance in between the
counts, but also the distances from the coupling points of
tips to the massive contacts of the wire. Moving the ti
away from the center of the wire increases the distance
between them, but decreases the distances to the ma
contacts. The correlations are then determined by an in
play of contributions from the differing types of possib
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electron paths. This example again demonstrates that in
presence of elastic scattering, the exchange contribution
vives ensemble averaging. This is consistent with the res
of Refs. 29 and 30.

Let us consider as a last example a system consisting
quantum dot in the quantum Hall regime, to which two lea
are attached via quantum point contacts, see Fig. 7.

A very similar geometry was investigated in Ref. 27. W
reconsider this example since the two-point injectivity E
~15! provides a particularly clear formulation and also to u
this opportunity to correct an algebraic mistake in one of
results of Ref. 27. The sample is penetrated by a quanti
magnetic field which leads to the formation of edge ch
nels. The voltages at the gates forming the two point cont
are chosen such that there is exactly one propagating
channel which is perfectly transmitted through the sam
whereas all other edge channels are completely reflecte
the point contacts. In addition to the strong magnetic fi
there is an additional field present only in the center of
dot. The additional field is characterized by its fluxF
through the dot. Since there is no backscattering at al
electrons in the propagating edge channel, the transmis
probability of the system is independent of the fluxF. For
the same reason, transmission from one tip to the other o
the massive contacts is also independent ofF. Without back-
scattering there is no closed electron path encircling the fl
Now we place two tunneling tips in the middle of the tw
point contacts 1 and 2. There, the tips should couple equ
well to the left-hand and the right-hand edge channel. We
interested if the correlation of the currents at the two t
depends onF. To answer this question we only need
know the scattering wave functions at the two coupli
points. Let us denote the amplitude of the scattering s
incoming from the left contact at the left point contact
c1(1) and the one incoming from the right contact at t
right point contact byc2(2). Theelectron statec1 now ac-
quires on its way from the left to the right point contact
additional phasef1 due to its propagation and the presen
of the background quantizing magnetic field. In addition,
phase is changed byu/2 due to the fluxF. Therefore, we
have c1(2)5c1(1)eif1eiu/2. Similarly, we have c2(1)
5c2(2)eif2eiu/2. As before,f2 is the phase acquired due
propagation and the presence of the quantizing field andu/2
is due to the fluxF. For all closed paths encircling the flu
one must have

FIG. 7. Mesoscopic ring in the quantum Hall regime with o
propagating edge channel. An additional magnetic flux penetr
the center of the ring which is not accessible to the electrons. T
tunneling tips are placed at the center of the point contacts w
connect the ring to two electron reservoirs.
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5u. ~70!

We chose a gauge such that the phaseu is divided into equal
parts on the upper and the lower half circle along the edg
the dot. Putting these wave functions into the expression
the current correlations at the tips, Eq.~56!, yields

SC
m}212cos$~f11f2!1u%, ~71!

i.e., the exchange term isSX
m52 cos$(f11f2)1u%. @We have

used uc1(1)u25uc2(2)u251#. We see that the correlatio
spectrum in fact depends periodically on the flux and
period isF0. The measurement of the correlation spectru
thus makes it possible to get information about the fluxF0.
This result corrects Eq.~15! of Ref. 27 where the periodicity
of the correlation spectrum was found to be onlyF0/2. We
remark that the exchange term depends on the phasesf1 and
f2 in a similar simple way as the exchange term of the p
ballistic wire. Again, moving the tips by the distance of
Fermi wavelength will lead to a vanishing exchange ter
Furthermore, this example shows that a cross correlation
be sensitive to an Aharonov-Bohm flux even for a conduc
~which in the absence of the tips! exhibits no Aharonov-
Bohm effect. However, the situation discussed here and
Ref. 27 does not conclusively show that Aharonov-Boh
effects in second-order correlations are possible even if th
is no second-order Aharonov-Bohm effect. If the condu
tance is measured in the presence of the two tips, then
weak scattering caused by the tips, which must after
couple to both edge states, leads to an Aharonov-Bohm
fect, which is of the same magnitude~fourth order in the
tunneling amplitudes! as the fourth-order interference effe
given by the current-current correlation.

C. Current injection through the tips

We now consider slightly modified arrangements: inste
of injecting the current through the massive contacts,
inject the current through the tips and measure simu
neously the correlations of the currents at the tips. The v
age configurations for the three experiments of this type
then, for experiment A,V35Vh , for experiment B,V4
5Vh, and for experiment C,V35V45Vh . All other poten-
tials are held at the equilibrium valueV0. The correlation
spectrum for experiment C is the same as the spectrum
experiment C with the current injected through the mass
contacts since the spectrum depends only on the abso
value of voltage differences and not on the sign. Experime
A and B are, however, different from the respective expe
ments with current injection through the massive conta
The quantitiesSA,B,C

t which have to be used in Eq.~53! are

SA
t 5

1

4p2
uG~x8,x!u2, ~72!

SB
t 5

1

4p2
uG~x,x8!u2, ~73!
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SC
t 5

1

4p2
uG~x,x8!2G†~x,x8!u25SA

t 1SB
t

2
1

2p2
Re$G~x,x8!G~x8,x!%, ~74!

Since the potentials of both massive contacts are always
at the same potential, the equilibrium potentialV0, the cor-
relation spectra do not show any dependence on the~nondi-
agonal! injectivities of these two contacts separately. T
wire acts as an effective one-terminal conductor and all
enters in Eqs.~72!–~74! is the Green’s function of the wire
representing the total~nondiagonal! density of states of the
wire. But as in the experiments discussed in the previ
section an exchange term appears in general. To invest
this exchange term further we evaluate it for the exam
systems used before.

For a ballistic wire the result is qualitatively similar to th
one found by current injection through the tunneling co
tacts. A qualitative change occurs for the wire with a barr
and in the case of a metallic diffusive wire. Let us first co
sider the ballistic wire with the barrier. In contrast to th
experiments where current is injected through the mas
contacts, the averaged exchange term does vanish when
rent is injected through the tips. Averaging means to mo
both tips over distances longer than a Fermi wavelength
average the measured spectra. For a metallic diffusive c
ductor it is easily seen that the exchange term vanishes.
average over disorder of a product of two retarded Gree
functions is exponentially small. This is in remarkable co
trast to the behavior of the exchange term in the experim
with current injection through the massive contacts. It is d
to the fact that the spectrum of experiments A and B chan
while experiment C is the same for current injection throu
massive contacts.

We can draw the following conclusions from this sectio
For all the situations investigated here, we could identify
exchange contribution to the cross correlation. In the cas
a pure ballistic wire, the exchange contribution is a pur
quantum-mechanical effect which vanishes when averag
is performed~by moving the tip and averaging the results!.
As soon as some elastic scattering is present, as in the
with a barrier, or in a metallic diffusive wire, the exchan
term, in addition to a purely quantum-mechanical contrib
tion, also contains a ‘‘classical’’ contribution which survive
ensemble averaging. This situation is thus reminiscent of
conductance of a mesoscopic sample which consists
classical~Drude-like! conductance and a of a small quantu
mechanical sample-specific contribution known as unive
conductance fluctuation.

VI. CURRENT CORRELATION AT THE MASSIVE
CONTACTS

Until now we were only interested in the correlation
the currents at the tunneling tips. We saw that in the cas
current injection through the massive contacts the corr
tions depend on nondiagonal partial densities of sta
namely the nondiagonal injectivities of the massive conta
There is still another partial density of states, the emiss
ties, which did not yet appear in the expressions for the c
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relation spectra. Emissivity and injectivity are related to ea
other by the symmetry relation, Eq.~13!. The correlations of
the currents at the tips were determined by the trans
properties of electrons injected through the massive cont
and transmitted to the tips. Therefore, only the nondiago
injectivities of the massive contacts appeared in the eq
tions for the current correlations at the tips. If one inves
gates the correlation spectrum at the massive contacts
expects that it depends on the nondiagonal emissivities
these contacts. Clearly, if we also inject the current throu
the massive contacts, the correlation of the current in
massive contacts is to first order only determined by the w
with its two contacts and the presence of the two tips d
not play a role at all. In this case, the correlation/fluctuat
spectra are just the ones known for two-probe conductor21

Consider the case when current is injected through
tips. We investigate experiment A:V35Vh ; B: V45Vh ; and
C: V35V45Vh . All other potentials are, as before, kept
V0. The correlations can then be written in the form

^DI 1DI 2&522e
e2

h
16p4utu4eVSA,B,C , ~75!

with

SA5n~1,x!n~2,x!n tip1
2 , ~76!

SB5n~1,x8!n~2,x8!n tip2
2 , ~77!

SC5n~1,x!n~2,x!n tip1
2 1n~1,x8!n~2,x8!n tip2

2

12 Re$n~1,x,x8!n~2,x8,x!%n tip1n tip2 , ~78!

5SA1SB12n tip1n tip2 Re$n~1,x,x8!n~2,x8,x!%. ~79!

The expressions for experiments A and B are products of
transmission probabilities from tip 1 and tip 2, respective
into the two massive contacts of the wire, e.g., the transm
sion probability from tip 1 into contact 1 of the wire i
T1,tip154p2n(1,x)utu2n tip1 according to Eq.~26!. The two
spectra where current is only injected into the syst
through one single contact do not at all depend on the p
ence of the second tip. They depend only on the local em
sivities of the massive contacts at the coupling point of
tip through which the current is injected. The correlati
spectrum of experiment C where current is injected throu
both tips is sensitive to the nondiagonal emissivities of
massive contacts. In fact, the exchange contribution is

SX52n tip1n tip2 Re$n~1,x,x8!n~2,x8,x!%. ~80!

This result again demonstrates the key role played by
two-point injectivity in cross-correlation spectra.

VII. DISCUSSION

We have shown that the current fluctuation and corre
tion spectra measured at tunneling contacts on multipr
conductors are related to local partial densities of states
to spatially nondiagonal~two-point! densities of states. The
general expressions are illustrated for various examples,
perfect ballistic conductors, ballistic conductors with a b
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rier, metallic diffusive wires; and mesoscopic rings in a ma
netic field.

In particular, we found that the current fluctuations a
single tunneling tip are determined by aneffective local dis-
tribution function feff(x). This distribution function is given
in terms of local partial densities of states, the injectivities
the contacts of the sample,f eff(x)5(a@n(x,a)/n(x)# f a(E).
It gives the local nonequilibrium distribution of charge ca
riers in a conductor. In the semiclassical Boltzmann equa
approach one relates the current fluctuations to local di
bution functions. These distribution functions are solutio
to the Boltzmann equation with proper boundary conditio
They do not contain the quantum-mechanical phase co
ence of an electron state entering through contacta and trav-
eling to the pointx in the conductor, whereas this informa
tion is included via the densities of states in our distribut
function f eff(x). Our discussion bridges, therefore, at least
some extent, the gap between quantum-mechanical dis
sions of shot noise and purely classical treatments of cur
fluctuations. The effects of the phase coherence on the
tuation spectrum is illustrated for measurements on a ba
tic conductor with a barrier. This example is also useful
get a qualitative impression on what the noise spectr
looks like in the neighborhood of an impurity. We evalua
the general formula for the fluctuations at the tip also for
case of measurements on a metallic diffusive wire in
ensemble average.

The second part of this work treats the current corre
tions in two tunneling contacts. The correlations are de
mined by newly defined spatially nondiagonal and nonlo
densities of states. We used the exchange experiment20 to
investigate the magnitude of the exchange term in a fo
terminal configuration containing two tunneling tips. If cu
rent is injected through the massive contacts of the sam
the correlation spectrum at the tips is given by the spati
nondiagonal injectivitiesn(x,x8,a). If current is injected
through the tips, the correlation spectrum at the massive c
tacts is given by the nondiagonal emissivitiesn(a,x,x8). An
exchange term with a magnitude of the order of the to
correlations was found for ballistic conductors and ballis
conductors with a barrier. The correlations are always ne
tive while the exchange term can have either sign, depen
on the positions of the tips. This can lead to a compl
suppression of the correlations for certain tip positions. E
for the case of measurements on metallic diffusive cond
tors an exchange term exists, and its magnitude can b
high as 70% of the total correlations. In the average over
disorder configurations, the exchange term is always ne
tive and therefore enhances the correlations. For the exam
of a mesoscopic ring penetrated by a magnetic flux,
showed that the current correlations measured in the tips
show a flux dependence even though the conducta
through the ring do not depend on the flux.

Clearly, the experiments proposed here, if carried o
would permit a detailed microscopic view of shot noise
mesoscopic conductors.

ACKNOWLEDGMENT

This work was supported by the Swiss National Scien
Foundation.
-

f

n
i-
s
.
r-

o
us-
nt
c-
s-

m

e
e

-
r-
l

r-

le,
y

n-

l

a-
ng
e
n
c-
as
e
a-
ple
e
an
es

t,

e

APPENDIX A: ENSEMBLE AVERAGES FOR DIFFUSIVE
WIRES

We consider a two-dimensional metallic diffusive wire
lengthL and widthW with L@W. The elastic mean free pat
is l !W. Then the diffusion can be treated to be effective
one-dimensional. The diffusive wire is at its ends connec
via a coupling matrixGa to two semi-infinite ideal leads.

1. Ensemble averaged injectivity

We are looking for the disorder average of the injectiv
of contacta at a pointr 5(x,y) inside the diffusive region,
Eq. ~8!. We have to find the average of

n~r ,a!5E
Sa

dy1dy2G~r ,r 1!Ga~y1 ,y2!G†~r 2 ,r !.

~A1!

Here, the integrals are over the surface between contaa
and the diffusive region. The coupling matrixGa(y,y8) is
independent of the disorder configuration inside the w
The disorder average of Eq.~A1! is then

^n~r ,a!&5E
Sa

dy1dy2Ga~y1 ,y2!E draS~r ,r a!^G~r a ,r 1!&

3^G†~r 2 ,r a!&. ~A2!

The integral over the intermediate pointr a is over the entire
diffusive region. The propagator

S~r ,r 8!5
1

DtWL H x8~L2x! x.x8

x~L2x8! x,x8
~A3!

with the diffusion coefficientD5vFl /2 and the elastic life-
time t5 l /vF describes the diffusion from the pointr to r 8.
In particular, this propagation is independent of they coor-
dinate provided thatux2x8u@ l . The exponentially decaying
averaged Green’s functions can be approximated as

^G~r ,r 8!&52
im!

\pF
expF S ipF2

1

2l D Ux2x8UGd~y2y8!.

~A4!

Performing the integrals and using*dyaGa(ya ,ya)
5vFNa/4p (Na5kFW is the number of open channels
contacta) then gives

^n~r ,1!&5n0

L2x

L
, ~A5!

and

^n~r ,2!&5n0

x

L
. ~A6!

Here, we used the two-dimensional density of statesn0
5m!/2p\2. The injectivities are linearly decaying an
growing as functions of the positionx along the wire, respec
tively. They are independent of the transverse coordinatey.
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2. Ensemble averaged nondiagonal injectivity

In Sec. V we found that the current correlations we
proportional to absolute squares of nondiagonal injectivit

un~r ,r 8,a!u25E
Sa

dy1dy2dy3dy4Ga~y1 ,y2!Ga~y3 ,y4!

3G~r ,r 1!G†~r 2 ,r 8!G~r 8,r 3!G†~r 4 ,r !.

~A7!

Now, we are interested in the average of this quantity o
many different disordered wires. Again, theG ’s are indepen-
dent of the impurity configuration inside the wire, so th
what remains is to find the average of the product of fo
Green’s functions. The averaged quantity has contributi
from diagrams with two, three, and four diffusion propag
tors, as shown in Fig. 8. It is interesting to compare th
diagrams for the two-point injectivity with the ones given b
Blanter and one of the authors29 which apply in a discussion
of the shot noise at the contacts of metallic diffusive cond
tors. It turns out that diagrams with two and three diffuso
are as small asl /L, and (l /L)2, respectively, compared to th

FIG. 8. Diagrams for the average of the four Green’s functio
using~a! two diffusions,~b! three diffusons, and~c! four diffusons.
A single dashed line indicates the propagation with the propag
S(r ,r 8) and two neighboring dashed lines indicate propagation w
P(r ,r 8).
s,

r

t
r
s

-
e

-
s

diagram with four diffusons and are therefore neglect
From the diagram with four diffusion propagators we get

^un~r ,r 8,a!u2&5E
Sa

dy1dy2dy3dy4Ga~y1 ,y2!Ga~y3 ,y4!

3E dradrbdrcdrddredr fS~r ,r a!S~r 8,r b!

3P~r c ,r d!P~r e ,r f !^G~r d ,r 1!&

3^G†~r 2 ,r d!&^G~r f ,r 3!&

3^G†~r 4 ,r f !&F~r b ,r c ,r a ,r e!. ~A8!

Here, the averaged Green’s functions and the propag
S(r ,r 8) are given by Eqs.~A3! and ~A4!, and

P~r ,r 8!5
1

\3m!Dt2WL
H x~L2x8! x,x8

x8~L2x! x.x8
. ~A9!

F(r 1 ,r 2 ,r 3 ,r 4) is the short-ranged Hikami box50 and in Fou-
rier space is given by29

F~q1 ,q2 ,q3 ,q4!52m!~t/\!5vF
5~2p!2d~q11q21q31q4!

3@2~q1q31q2q4!1~q11q3!~q21q4!#.

~A10!

Performing all the integrals then gives the result

^un~r ,r 8,1!u2&52S m!

2p\2D 2
1

kFl

1

WL

x~L2x8!

L2
p~x,x8!

5
n0

2

g

x~L2x8!

L4
p~x,x8!, ~A11!

with the abbreviationp(x,x8)5(L2x)21(L2x8)21 1
3 (x

2x8)22 2
3 x8(L2x). In the last step we used the Drude co

ductanceg5kFWl/2L. The results for^un(r ,r 8,2)u2& and
^n(r ,r 8,1)n(r 8,r ,2)& are obtained using the same procedu

APPENDIX B: FINITE TEMPERATURE
LINEAR-RESPONSE RESULTS

For the configuration of Fig. 1, Eq.~27! gives the average
current at the tip at fixed temperature and for given potent
ma at the massive contacts andm tip at the tip. In this section
we are interested in the case of finite temperatureT and small
applied bias such thatkT@Dm. In this limit we can approxi-
mate the Fermi functionsf a(E) in the reservoirs of the mas
sive contacta of the sample with the help of the Ferm
function in the reservoir of the tip,

f a~E!' f tip~E!2
] f tip

]E
~ma2m tip!. ~B1!

Using this expansion in Eq.~27! we get

^I tip&5
e

h (
a

E dETts~x!S 2
] f

]ED n~x,a!

n~x!
~ma2m tip!

~B2!

s
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h
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with the Fermi functionf (E) describing the distribution o
electrons in the reservoir of the tip held at a potentialm tip . If
we want to use the STM as a voltage probe we can ea
solve the equation̂I tip&50 for m tip and find

m tip5

(
a

E dETts~x!S 2
] f

]ED n~x,a!

n~x!
ma

E dETts~x!S 2
] f

]ED . ~B3!

If one can take the fractionn(x,a)/n(x) to be~nearly! inde-
pendent of energy in an interval of sizekT around the Fermi
energy,49 Eq. ~B3! reduces to the result valid at zero tem
perature, Eq.~30!.

To find the finite temperature linear-response current fl
tuation spectrum at the tip we have to insert the expans
~B1! into Eq. ~32!. This gives
e
.

tt

i-

.J
nd

t,

-

ily

-
n

^~DI tip!2&54E dEG~x!S 2
] f

]ED
3H kT1 f ~E!(

a

n~x,a!

n~x!
~ma2m tip!J , ~B4!

where m tip is adjusted according to Eq.~B3! such that the
average current at the tip vanishes. The current fluctuat
are the addition of pure thermal, Johnson-Nyquist no
^(DI tip)

2& therm54Geff(x)kT with the effective conductance
Geff(x)5*dEG(x)(2] f /]E) and an excess noise propo
tional to the applied bias. Using an infinite impedance ext
nal circuit to measure the voltage at the tip, Eq.~24!, gives
the voltage fluctuation spectrum

^~DVtip!2&54Reff~x!kT14Reff~x!2E dEG~x!S 2
] f

]ED f ~E!

3(
a

n~x,a!

n~x!
~ma2m tip! ~B5!

with the effective resistanceReff(x)5@Geff(x)#21.
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