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Analytical reconstruction of momentum density from directional Compton profiles

J.-M. Gillet,* C. Fluteaux, and P. J. Becker
SPMS/Laboratoire Structures Electroniques et Modelisations, Ecole Centrale Paris, Grande Voie des Vignes,

92295 Chatenay-Malabry Cedex, France
~Received 11 January 1999!

An alternative method for reconstruction of three-dimensional momentum density from directional Compton
profiles is proposed and successfully applied to theoretical data on magnesium oxide~with a random noise
added!. The method consists of obtaining a compact analytical model for the reconstructedn(p) from the
least-squares fit directly on the directional profiles. The result is compared, together with a standard numerical-
based reconstruction, to the theoretical momentum density from which the profiles were calculated.
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I. INTRODUCTION

The refinement of a multipolar model of electron dens
from measured structure factors is now widely used and v
successful in providing accurate electron-density maps
can be analyzed in chemical terms and to which electr
density calculations can be compared with high reliabilit1

In momentum space there is no straightforward method
measure the densityn(p). Two experimental techniques ar
currently popular: positron annihilation and Compton sc
tering. It has been shown2–4 that Compton profiles, within
the impulse approximation, give representations of the e
tron density in momentum space projected onto the sca
ing vector directions. Ifui is a unit vector in this direction
the directional Compton profile~DCP! is then

J~q,ui !5E E E n~p!d~q2p•ui !dp. ~1!

The fact that the measurement is always a mere projectio
the desired quantityn(p) has long been considered as a m
jor obstacle to the optimal use of the information provid
by the Compton measurements: an accurate reconstructio
the momentum density would imply the measurement
Compton profiles in an infinite number of directions$ui%.

The most popular method of reconstruction of the thr
dimensional~3D! momentum density from a finite set o
Compton profiles is probably the method based on Bes
Fourier transformations.4 Its success greatly relies on the e
istence of the programRECONSTwritten by Hansen.4,5 This
program has been able to provide the community with
reliable, fast, and efficient reconstruction based on a num
cal approach of the problem. The reconstructed 3D mom
tum density from programs likeRECONSThas been shown to
be efficient in a simple comparison with calculated densiti6

and also as a basis for the refinement of model crystal w
functions.7

Since this pioneer work by Hansen, other methods h
been suggested either based on radon transform~RT! or the
maximum entropy principle~MEM!.8–10 Reconstructions
based on the MEM are still under development, with ve
encouraging first results, but suffer from an important co
putational cost.
PRB 600163-1829/99/60~4!/2345~5!/$15.00
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The aim of the present work is to give an analytical alt
native to the previous reconstruction programs with the f
lowing considerations.~i! avoiding artifacts generated by nu
merical derivatives ~the RT approach! or integrations
~RECONST!; ~ii ! Reconstructing the momentum density as
simple and compact analytical function, easy to calculate
any point in reciprocal space;~iii ! Taking full account of
experimental statistics in the reconstruction procedure;~iv!
Using a more useful quantity,p2n(p), to check the quality
of the reconstruction for the isotropic part.

II. FRAMEWORK OF THE ANALYTICAL
RECONSTRUCTION

A. Equations of the Bessel-Fourrier method

Our approach is based on the properties of the Four
Bessel transform. Let us summarize a few basic relati
used throughout the reconstruction process.

From Ref. 5 we write the autocorrelation function as

B~ t,u!5E E E n~p!e2 i tu•pdp

5E dqe2 iqtE E E n~p!d~q2p•u!dp

5E e2 iqtJ~q,u!dq. ~2!

It then follows that

n~p!5
1

~2p!3 E e2 iqteitu•pJ~q,u!t2dt dVudq, ~3!

wheredVu is the element solid angle in the direction point
by u. However, this last expression cannot be used in pr
tice since one can only measure a limited number of dir
tional Compton profiles. Nevertheless, making use of
crystal symmetry, it is always possible to expandJ(q,u) in
lattice harmonics,11

J~q,u!5(
L

gL~q!hL~u!. ~4!
2345 ©1999 The American Physical Society
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If a limited number of directional profiles is available, th
expansion is expected to be reasonably approximated
truncated sum, withgL(q) being fitted functions. Then usin
the well-known expansion of plane waves in spherical h
monics, one gets

n~p!5
4p

~2p!3 (
l 50

`

(
m52 l

l

i lE j l~pt!Ylm~Vp!e2 iqt

3E J~q,u!Ylm~Vu!dVut
2dt dq

5
4p

~2p!3 (
l 50

`

i lhl~Vp!E j l~pt!gl~q!e2 iqtt2 dt dq.

~5!

B. Choice of the functionsgl„q…

Our main concern is here to retrieve a compact analyt
form for the momentum density. This can easily be done
an appropriate expression of the functionsgl(q) is chosen so
that the above double integral@Eq. ~5!# yields a simple, ana-
lytical form. We start by assuming that most Compton p
files have a rather similar shape. One common featur
especially obvious for metals in which the spectrum at v
low momentum is expected to resemble the inverse para
of free electrons. For insulators, the Compton profiles
known to follow a smooth, continuous, and ‘‘well-behaving’’
curve. For isolated atoms, if the electronic wave function
expanded in terms of Slater-type orbitals, one expects to
tain modified Lorentzian-like momentum densities. Th
similarity of behavior with the well known, and tabulate
atomic form factors12 pushes toward the expansion of th
radial partsgl(q) as Gaussian or Lorentzian contraction
The validity of these considerations is obviously restricted
monotonically decreasing profiles and a particular atten
should be paid if other profiles with subsidiary peaks
studied.

In the following examples, we choose a fit of the dire
tional Compton profiles using Gaussian contractions of
radial functions. This choice was conditioned by the follo
ing considerations: the isotropic part of the reconstruc
momentum density is expected to be used in further calc
tions involving integrals in which Gaussian functions a
known to be very convenient. For all the directional profil

FIG. 1. Difference between the fitted Gaussians contraction
the Hartree-Fock isotropic profile. The value 0.1% ofJ(0) is also
reported for comparison.
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~in the specific examples!, and for a fixed number of con
tracted functions, a reasonable quality of the fit was be
achieved with Gaussian-based functions. Owing to
unique definition ofn(0W ), the anisotropic components of th
reconstructed density should go to 0 at the origin of mom
tum space. Hence, we found it more judicious to multiply t
Gaussian contractions by a power ofp for all radial parts
associated with a nonzero angular momentum. It then tu
out that if gl(q) is written as

gl~q!5
i 2 l

2p (
j

al jAp/a l j

]

]ql $e2q2/4a l j %, ~6!

where the contraction coefficientsal j and extensionsa l j are
adjustable parameters, then the reconstructed density t
the simple form

n~p!5
1

~2p!3/2(
l 50

`

i lhl~up!pl(
j

al j

~2a l j !
l 13/2e2p2/4a l j .

~7!

Besides being compact and easy to evaluate at any poin
momentum space, this procedure avoids a fitting in dir
space on the autocorrelation function. As we will see in
next section, this last point allows for a total weightin
throughout the fitting process.

d
FIG. 2. Reconstructed isotropic momentum density. The do

line is our reference from the calculated wave function byCRYSTAL.
The squares represent the reconstruction usingRECONSTby Hansen.
The reconstructed density from our fitted isotropic profile is sho
by the solid line.~See text for comments.!

FIG. 3. Reconstructed radial momentum densities compare
the Hartree-Fock result. This work is the solid line; the Hans
reconstruction is represented by the squares. Our reference i
CRYSTAL output given by the dashed line.
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III. APPLICATION AND TEST OF THE METHOD

Though this method is obviously aimed at applications
experimental data, it must first be calibrated: this proced
implies a comparison with theoretical data. In that respect
have conducted a calculation for the cubic crystal of mag
sium oxide using theCRYSTAL code13,14 based on the self
consistent Hartree-Fock procedure. This calculation m
use of the same basis set as previous publications on
compound.15 The reason for using theCRYSTAL code is that
the calculations of momentum density and Compton profi
are standard features of the output of this program. It t
o
re
e
-

e
is

s
n

allows for a direct check of the quality of the reconstructio
Eight directional profiles were calculated with points sep
rated by 0.02 a.u., which is approximately what the act
experimental apparatus can routinely provide.

We have also computed an isotropic Compton profile
this cubic compound as

^J~q!&5$6J100~q!112J110~q!18J111~q!124J210~q!

124J211~q!124J221~q!124J310~q!

124J320~q!%/146.
the
FIG. 4. Fitted Compton anisotropies using Eq.~9! are shown by the solid line. The differences with the calculated anisotropies from
CRYSTAL output are magnified by a factor of 10 and plotted on the dotted lines.
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In the case of actual experimental profiles, it would be
visable that one always measures a crystal powder pro
The quality of the reconstructed momentum density
greatly conditioned by what one assumes to be the isotr
profile. In order to simulate a situation close to reconstr
tion from actual experimental data, a random noise w
added to each of the computed Compton profiles. It w
calculated, for each point of a given profile, using a pseu
random number generator in the range6AJ(q)/Nmax, Nmax
being the maximum expected number of counts in theq
50 channel. To reproduce the estimated noise from ac
experimental data, aNmax510 000 value was chosen. As
suming that one isotropic profile and a set of eight dir
tional profiles are thus available, our reconstruction is a t
step procedure.

A. Reconstruction of the isotropic density

The isotropic profile is fitted by seven Gaussians. In o
example ax2 of 231024 was reached. The differenc
Jiso

fit (q)2^J(q)&, after convergence, is plotted in Fig.
~Note that since the contraction coefficients and expone
are highly correlated, each additional Gaussian has to be
troduced with extreme care.! The isotropic part of the mo
mentum density is then readily derived@setting l 50 in Eq.
~6!# and can immediately be compared to the isotropic m
mentum density calculated withCRYSTAL ~Fig. 2!. In this
particular case, one can observe the discrepancies at low
mentum for the two reported reconstructions. It is now
well-known fact that reconstruction at low momentum is d
ficult in any case. Indeed, for the isotropic part, the stand
reconstruction formula is

niso
rec~p!5

21

2pp

]Jiso~p!

]p
. ~8!

Hence a small uncertainty in the calculation of the derivat
can be tremendously amplified in the low momentum regi
In that respect, we have checked that with such small s
~0.02 a.u.! reducing the noise improves the quality of th
reconstructed density with a particularly large effect on
RECONSTresults. However, one should not focus too mu
on this particular region of the spectrum. The isotropic m
mentum density is seldom used on its own, a more us
and relevant quantity being the radial distributionp2n(p),
i.e., p2n(p)dp is the number of electrons with the modulu
of its momentum betweenp and p1dp. We have reported
this last quantity in Fig. 3. The result of our reconstructi
shows no significant discrepancy and appears much m
reliable than the numerical method at higher momentu
This last point, together with the Gaussian-contraction
pression of the reconstructed isotropic density, should pr
to be of great utility in the calculations of properties like t
kinetic energy.

B. Reconstruction of the anisotropic part of the density

The set of eight Compton anisotropies, defined
DJ(q,uj )5J(q,uj )2^J(q)&, are fitted with the following
expression:
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DJfit~q,u!5
1

2p F H 1
16 (

j 51

10

a4 jAp/a4 j
9 ~q4112a4 j

2

212q2a4 j !e
2q2/4a4 jJ h4~u!

1H 1
64 (

j 51

10

a6 jAp/a6 j
13~2q6130q4a6 j

2180q2a6 j
2 1120a6 j

3 !e2q2/4a6 jJ h6~u!

1H 1
256 (

j 51

10

a8 jAp/a8 j
17~q8256q6a8 j

1840q4a8 j
2 23360q2a8 j

3

11680a8 j
4 !e2q2/4a8 jJ h8~u!G . ~9!

Further harmonics could be added but were not found to
essential to our demonstration. The quality of the fit can
checked in Fig. 4 for each direction. The overallx2 ~includ-
ing the eight directions! is close to 7.631023.

FIG. 5. Reconstructed anisotropic part of the momentum den
in the three principal directions. The dotted square is the result f
RECONST. The Hartree-Fock reference is given by the dotted l
and our reconstruction is shown by the solid line.
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Using expression~7!, the anisotropic part of the recon
structed momentum density is then easy to calculate an
plotted for three main directions on Fig. 5. Once again
low momentum part shows the limited flexibility of our an
lytical model. However, the overall agreement is satisfact
and does not exhibit the large discrepencies generate
numerical artifacts of theRECONSTprocedure.

IV. POSSIBLE EXTENSIONS OF THE METHOD

Our reconstruction method is based on the fit of an a
lytical model for the functionJ(q,u) from which the mo-
mentum density is immediately accessible. It is thus poss
to introduce any sort of weights in the least-squares tr
ment. One obvious possibility is, of course, to use the e
mated variance for each data point.16 This weighting was
much more difficult for previous reconstruction procedu
based on autocorrelation functions. In the above-mentio
example several weighting schemes were tried. Conside
our remarks on the importance of the quantityp2n(p), we
found that a possible choice of weight, leading to satisfac
results, was

wn5
qn

2p

I ~qn21!2I ~qn11!

qn112qn21
,

whereI (qn) is the total number of counts in the channelqn .
A more classical choice, likewn5I (qn), would of course
give more importance to data points in the low moment
region but should yield a more direct estimate of the varia
of contraction and extension refined parameters.

The above-described example was chosen from our
rent interest field.17 The generalization to noncubic system
is straightforward and only necessitates other symme
adapted harmonics. The present method is, of course, lim
to monotonically decreasing DCP’s. In the cases of crys
for which Compton profiles exhibit singularities or for th
analysis of magnetic Compton profiles, the fit should be c
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ried out by using other types of functions: in particular, t
model should incorporate the physical origin of those sin
larities. However, we expect the momentum density result
from such a fit to be not as easy to manipulate as the exp
sion obtained with Eq.~7!. In these particular cases, th
numerical-based programRECONST by Hansen is probably
the most versatile and can still be considered as a refere

V. CONCLUSION

On the basis of the previous work by Hansen, we ha
established a new reconstruction procedure yielding a c
pact and efficient representation ofn(p) in the case of mono-
tonically decreasing Compton profiles. Besides the appea
final result, the method has the main advantage of workin
the unique reciprocal space with no explicit use of the au
correlation function. The consequence is the possibility
using the mean variance associated with each data point
weight in the fitting process.

The results obtained in the particular case of fcc mag
sium oxide show the great stability of the reconstructi
even when noise is introduced. Numerical artifacts
avoided, yielding a much more reliable result in the hi
momentum range. Further tests should be carried out
other compounds. Especially, we expect that functions o
than Gaussians should be used for metals in order to avo
smoothing of the Fermi break. A general reconstruction p
gram based on our analytical approach is expected to
available shortly.
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