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Analytical reconstruction of momentum density from directional Compton profiles
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An alternative method for reconstruction of three-dimensional momentum density from directional Compton
profiles is proposed and successfully applied to theoretical data on magnesiumwitida random noise
added. The method consists of obtaining a compact analytical model for the reconstn(gkdrom the
least-squares fit directly on the directional profiles. The result is compared, together with a standard numerical-
based reconstruction, to the theoretical momentum density from which the profiles were calculated.
[S0163-18209)07827-3

I. INTRODUCTION The aim of the present work is to give an analytical alter-
native to the previous reconstruction programs with the fol-
The refinement of a multipolar model of electron densitylowing considerationdi) avoiding artifacts generated by nu-

from measured structure factors is now widely used and verynerical derivatives (the RT approach or integrations
successful in providing accurate electron-density maps thaRECONST); (i) Reconstructing the momentum density as a
can be analyzed in chemical terms and to which electronsimple and compact analytical function, easy to calculate at
density calculations can be compared with high reliabflity. any point in reciprocal spacdiii) Taking full account of
In momentum space there is no straightforward method te@xperimental statistics in the reconstruction proced(ixe;
measure the density(p). Two experimental techniques are Using a more useful quantityy?n(p), to check the quality
currently popular: positron annihilation and Compton scat-of the reconstruction for the isotropic part.
tering. It has been show that Compton profiles, within

the impulse approximation, give representations of the elec- Il. FRAMEWORK OF THE ANALYTICAL
tron density in momentum space projected onto the scatter- RECONSTRUCTION

ing vector directions. I; is a unit vector in this direction,

the directional Compton profil€DCP) is then A. Equations of the Bessel-Fourrier method

Our approach is based on the properties of the Fourier-
3 N S(d—p-u)d 1 Bessel transform. Let us summarize a few basic relations
(q,u;) n(p)&(a=p-u)dp. (1) used throughout the reconstruction process.
From Ref. 5 we write the autocorrelation function as
The fact that the measurement is always a mere projection of
the desired quantityp(p) has long been considered as a ma- it
jor obstacle to the optimal use of the information provided B(t U)—f f f n(p Pdp
by the Compton measurements: an accurate reconstruction of
the momentum density would imply the measurement of :f q _imf JJ S(a— q
Compton profiles in an infinite number of directiofis}. q€e n(p)o(q—p-u)dp

The most popular method of reconstruction of the three-
dimensional(3D) momentum density from a finite set of :j e 194(q,u)dq. )
Compton profiles is probably the method based on Bessel-

Fourier transformation$lts success greatly relies on the ex-
istence of the prograrRECONSTwritten by Hansert:® This
program has been able to provide the community with a 1

reliable, fast, and efficient reconstruction based on a numeri- n(p)= _gf e iatgituPy(q,u)t2dt dQ dg,  (3)
cal approach of the problem. The reconstructed 3D momen-

tum density from programs likeReconsThas been shown to
be efficient in a simple comparison with calculated dengities
and also as a basis for the refinement of model crystal wav:
functions’

Since this pioneer work by Hansen, other methods hav
been suggested either based on radon trans(B or the
maximum entropy principle(MEM).8~1® Reconstructions
based on the MEM are still under development, with very
encouraging first results, but suffer from an important com- J(q, :2 gL(@)h, (). (4
putational cost.

It then follows that

whered(},, is the element solid angle in the direction pointed
gy u. However this last expression cannot be used in prac-
tice since one can only measure a limited number of direc-
tional Compton profiles. Nevertheless, making use of the
crystal symmetry, it is always possible to expal(d,u) in
lattice harmonics?!
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FIG. 1. Difference between the fitted Gaussians contraction and
the Hartree-Fock isotropic profile. The value 0.1%J¢0) is also
reported for comparison.

FIG. 2. Reconstructed isotropic momentum density. The dotted
line is our reference from the calculated wave functiorchysSTAL.
The squares represent the reconstruction usEtpNsTby Hansen.
If a limited number of directional profiles is available, this The reconstructed density from our fitted isotropic profile is shown
expansion is expected to be reasonably approximated by ky the solid line.(See text for comments.
truncated sum, witlg, (q) being fitted functions. Then using
the well-known expansion of plane waves in spherical har{in the specific examplg¢sand for a fixed number of con-
monics, one gets tracted functions, a reasonable quality of the fit was better
achieved with Gaussian-based functions. Owing to the

unique definition oh(ﬁ), the anisotropic components of the
reconstructed density should go to 0 at the origin of momen-
tum space. Hence, we found it more judicious to multiply the
Gaussian contractions by a power pffor all radial parts
associated with a nonzero angular momentum. It then turns
out that ifg;(q) is written as

)= )32 Z fj. (POY)n(Qp)e o
xf J(q,u)Y,m(Q,)dQ t2dt dq

4T < " : ~igty2
= G, Q) | iiphai(@)e 2 dtda - P
gi(a)= 2—2 ajjVmla a_r{e_q faj}, (6)
(5) T q
where the contraction coefficiends; and extensiong; are
adjustable parameters, then the reconstructed density takes

Our main concern is here to retrieve a compact analyticain® simple form
form for the momentum density. This can easily be done if

B. Choice of the functionsg,(q)

©

an appropriate expression of the functign&) is chosen so 1 Pl
that the above double integrfdq. (5)] yields a simple, ana- n(p)= (277)372E i'hi(up)p! 2 —l+_31?e v
lytical form. We start by assuming that most Compton pro- @)

files have a rather similar shape. One common feature is

especially obvious for metals in which the spectrum at veryBesides being compact and easy to evaluate at any point in
low momentum is expected to resemble the inverse parabol@omentum space, this procedure avoids a fitting in direct
of free electrons. For insulators, the Compton profiles argpace on the autocorrelation function. As we will see in the
known to follow a smooth, continuous, anavell-behaving  next section, this last point allows for a total weighting
curve. For isolated atoms, if the electronic wave function isthroughout the fitting process.

expanded in terms of Slater-type orbitals, one expects to ob-

tain modified Lorentzian-like momentum densities. This 2
similarity of behavior with the well known, and tabulated, pn(p)
atomic form factor¥ pushes toward the expansion of the
radial partsg,(q) as Gaussian or Lorentzian contractions. 04
The validity of these considerations is obviously restricted to 03
monotonically decreasing profiles and a particular attention
should be paid if other profiles with subsidiary peaks are 0.2
studied.

In the following examples, we choose a fit of the direc- o1
tional Compton profiles using Gaussian contractions of the

i q(au)

1 2 3

radial functions. This choice was conditioned by the follow-
ing considerations: the isotropic part of the reconstructed FiG. 3. Reconstructed radial momentum densities compared to
momentum density is expected to be used in further calculahe Hartree-Fock result. This work is the solid line; the Hansen

tions involving integrals in which Gaussian functions arereconstruction is represented by the squares. Our reference is the
known to be very convenient. For all the directional profilescrysTaL output given by the dashed line.
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lll. APPLICATION AND TEST OF THE METHOD allows for a direct check of the quality of the reconstruction.

Thouah this method is obviously aimed at apolications toEight directional profiles were calculated with points sepa-
oug . : y ai ) bp rated by 0.02 a.u., which is approximately what the actual
experimental data, it must first be calibrated: this procedur

N ; ; ; %xperimental apparatus can routinely provide.
implies a comparison with theoretical data. In that respect we We have also computed an isotropic Compton brofile for
have conducted a calculation for the cubic crystal of magne; P P pron p

sium oxide using therysTAL codé>!* based on the self- this cubic compound as

consistent Hartree-Fock procedure. This calculation made
use of the same basis set as previous publications on this (I(®))={6J10dq)+12J110(q) +8J111(q) + 243214 q)

5 - .
mpound:®> The r n for usin RYSTAL is th
compou dl_ e reason for using th_te STAL code is t at +241514(0) + 241 501(q) + 241314 Q)
the calculations of momentum density and Compton profiles
are standard features of the output of this program. It then +2433,4q)}/146.
o1 6J100 and 10xA(6T10) ol 6J110 and 10xA(ST119)
0.075 0.075
0.05 0.05
0.025 0.025
== " . q(ua)
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01 (5]211 and 10XA(§J211) 0.1 5]221 and IOXA((SJZZI)
0.075 0.075
0.05 A 0.05 |
~ J 5
0025 % F 0.025 "
. : > q(ua.)
-0.025 -0.025
-0.05 -0.05
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FIG. 4. Fitted Compton anisotropies using E®). are shown by the solid line. The differences with the calculated anisotropies from the
CRYSTAL output are magnified by a factor of 10 and plotted on the dotted lines.
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In the case of actual experimental profiles, it would be ad- 6n(<100>.p)
visable that one always measures a crystal powder profile. 0.04
The quality of the reconstructed momentum density is

greatly conditioned by what one assumes to be the isotropic 002

profile. In order to simulate a situation close to reconstruc-
tion from actual experimental data, a random noise was
added to each of the computed Compton profiles. It was
calculated, for each point of a given profile, using a pseudo-

: q(a.u.)

-0.02

random number generator in the rantje/J(q)/Nmax Nmax —0.04
being the maximum expected number of counts in the

=0 channel. To reproduce the estimated noise from actual n(<110>,p)
experimental data, &,,,=10000 value was chosen. As-

suming that one isotropic profile and a set of eight direc- 0.01

tional profiles are thus available, our reconstruction is a two
step procedure.

-0.01

A. Reconstruction of the isotropic density —002

The isotropic profile is fitted by seven Gaussians. In our
example ax® of 2x10 * was reached. The difference
Jif'sto(q)—(J(q)>, after convergence, is plotted in Fig. 1.
(Note that since the contraction coefficients and exponents
are highly correlated, each additional Gaussian has to be in-
troduced with extreme capeThe isotropic part of the mo- 0.02
mentum density is then readily derivésettingl =0 in Eq.
(6)] and can immediately be compared to the isotropic mo- 001
mentum density calculated witbRYSTAL (Fig. 2. In this
particular case, one can observe the discrepancies at low mo-
mentum for the two reported reconstructions. It is now a -0.01
well-known fact that reconstruction at low momentum is dif-
ficult in any case. Indeed, for the isotropic part, the standard
reconstruction formula is

-0.03

én(<111>,p)
0.03

(au.)
4 afas

FIG. 5. Reconstructed anisotropic part of the momentum density
in the three principal directions. The dotted square is the result from
RECONST The Hartree-Fock reference is given by the dotted line
-1 3Jiso(p) and our reconstruction is shown by the solid line.

Niso(P) = 270 op (8)

Hence a small uncertainty in the calculation of the derivative
can be tremendously amplified in the low momentum region.
In that respect, we have checked that with such small steps ) e

(0.02 a.u) reducing the noise improves the quality of the —120%ay;)e” 94 (hy(u)
reconstructed density with a particularly large effect on the

RECONSTresults. However, one should not focus too much

on this particular region of the spectrum. The isotropic mo- +
mentum density is seldom used on its own, a more useful

and relevant quantity being the radial distributipfn(p),

i.e., p?n(p)dp is the number of electrons with the modulus —18012a§j+ 12&121-)6(12/4(16]] he(u)
of its momentum betweep and p+dp. We have reported

this last quantity in Fig. 3. The result of our reconstruction 10

shows no significant discrepancy and appears much more +[2A562 ag; \/T%l]?(qs_%q%gj
reliable than the numerical method at higher momentum. i=1

This last point, together with the Gaussian-contraction ex-
pression of the reconstructed isotropic density, should prove
to be of great utility in the calculations of properties like the
kinetic energy. + 168(bfgj)e_q2/4018j} hg(u)

10
, 1
AJflt(q,u): E|i| %;1 a4] \ W/a?“(q4+ 12“421]

10
6%,]}_)1 agj Nl ag(— q°+ 300" ay;

+8400° ag; — 33607 ar;

. 9

B. Reconsiruction of the anisotropic part of the density Further harmonics could be added but were not found to be

The set of eight Compton anisotropies, defined asessential to our demonstration. The quality of the fit can be
AJ(q,u;)=J3(q,u;) —(J(q)), are fitted with the following checked in Fig. 4 for each direction. The overgl (includ-
expression: ing the eight directionsis close to 7.6 10 3.
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Using expressior(7), the anisotropic part of the recon- ried out by using other types of functions: in particular, the
structed momentum density is then easy to calculate and imodel should incorporate the physical origin of those singu-
plotted for three main directions on Fig. 5. Once again thdarities. However, we expect the momentum density resulting
low momentum part shows the limited flexibility of our ana- from such a fit to be not as easy to manipulate as the expres-
lytical model. However, the overall agreement is satisfactorysion obtained with Eq(7). In these particular cases, the
and does not exhibit the large discrepencies generated byumerical-based programReECONST by Hansen is probably
numerical artifacts of th@ecoNsTprocedure. the most versatile and can still be considered as a reference.

IV. POSSIBLE EXTENSIONS OF THE METHOD V. CONCLUSION
| _Oulr recijor;sftrucﬂonfmethortlj] IS basfed on thhehf'thOf an ana- o the basis of the previous work by Hansen, we have
ytica m(()j el for the un((j:_tlo I(q,U) ro_Lnl WI Ic rt] € mo- _blestablished a new reconstruction procedure yielding a com-
me.ntungj ensity is |mm? |at(_a)r/]acpesrs1| F' tis thus possi tf)act and efficient representationr(fp) in the case of mono-
fo introduce any sort of weignts in the least-squares trealg, -y decreasing Compton profiles. Besides the appealing

menta One. ObV'O;JS possk:btljllty Is,o?itﬁ ﬁ%grse, t.ohu.se the estifinal result, the method has the main advantage of working in
mated variance for each data pointThis weighting was ¢ unique reciprocal space with no explicit use of the auto-

much more difficult for previous reconstruction procedures,, o |ation function. The consequence is the possibility of
based on autocorrelation functions. In the above-mentione

N X .-~ ~using the mean variance associated with each data point as a
example several weighting schemes were tried. Consideri

K he i £ 1th , "Geight in the fitting process.
our remarks on the importance of the quantin(p), we The results obtained in the particular case of fcc magne-

found that a possible choice of weight, leading to satisfactory; , ., oxide show the great stability of the reconstruction
results, was even when noise is introduced. Numerical artifacts are
G 100 1) —1(qps ) avoided, yielding a much more reliable result in. the high
= , momentum range. Further tests should be carried out on
27 On+17On-1 other compounds. Especially, we expect that functions other
wherel(q,) is the total number of counts in the changgl than Gaussians should be used for metals in order to avoid a
A more classical choice, likev,=1(q,), would of course smoothing of the Fermi break. A general reconstruction pro-
give more importance to data points in the low momentumgram based on our analytical approach is expected to be
region but should yield a more direct estimate of the varianc@vailable shortly.
of contraction and extension refined parameters.

The above-described example was chosen from our cur-
rent interest field’ The generalization to noncubic systems
is straightforward and only necessitates other symmetry- We are greatly indebted to Niels Hansen for giving us the
adapted harmonics. The present method is, of course, limitedpportunity to freely use his program. Robert Papoular is to
to monotonically decreasing DCP’s. In the cases of crystalbe thanked for reviving this longtime problem. We thank
for which Compton profiles exhibit singularities or for the Pietro Cortona, Abhay Shukla, and Thomas Buslaps for their
analysis of magnetic Compton profiles, the fit should be carhelp, advice, and fruitful discussions.
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