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Hopping conduction in uniaxially stressed Si:B near the insulator-metal transition
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Using uniaxial stress to tune the critical density near that of the sample, we have studied in detail the
low-temperature conductivity gb-type Si:B in the insulating phase very near the metal-insulator transition.
For all values of temperature and stress, the conductivity collapses onto a single universalo¢6t\¥e,
=ATY?F[T*(S)/T]. For large values of the argument, the scaling functitfiT* (S)/T] is well fit by
exd —(T*/T)¥3], the exponentially activated form associated with variable-range hopping when electron-
electron interactions cause a soft Coulomb gap in the density of states at the Fermi energy. The temperature
dependence of the prefactor, corresponding toTthdependence of the critical curve, has been determined
reliably for this system, and isT%5 We show explicitly that neglecting the prefactor leads to substantial
errors in the determination of tHE*'s and the critical exponents derived from them. The conductivity is not
consistent with Mott variable-range hopping, ExgT*/T)*#], in the critical region, nor does it obey this form
for any range of the parameters. Instead, the conductivity of Si:B is well firBATY?exd — (T*/T)*] for
smaller argument of the scaling function, with=0.31 related to the critical exponents of the system at the
metal-insulator transitior{.S0163-182@09)15027-9

[. INTRODUCTION one-electron density of states at the Fermi level, resulting in
a depletion of low-lying excitations. This, in turn, leads to a
Hopping conductivity of localized electrons in disordered much lower conductivity at low temperatures of the form
insulators was a subject of considerable controversy two de-
cades ago. For noninteracting electrons, the problem was EyEnY,
first addressed by Mott? who showed that below any mi- oeexd —(To/ )™, @
croscopic energy scale, a tradeoff between the exponential

thermal activation due to the difference in energy between ere
the initial and final electron states on the one hand, and the
exponential factor associated with the spatial overlap be- To=e?/ea. (4)
tween the two(localized states on the other, leads to an
optimal conductivity at low temperatures of the form Heree is the electronic charge,is the dielectric constant of
the semiconductor, and is the linear size of the localized
oxao(T)exd — (To/T)™] (D electronic state.

Considerable activity on the issue ensued in the years fol-
lowing, during which various materials were shown to obey
Tox L[N(E;)a3]. ) either the Mott formEq. (1)] or the ES form[Eq. (3)]. A
crossover with decreasing temperature from Mott to ES
The prefactoroy(T) is a weak function of the temperature, variable-range hopping was observed in CdSéRef. 10
and is usually assumed constant. In the above equatiomnd CdTe:CH This was attributetf*? to hopping energies
N(E;) is the (constant one-electron density of states at the that were larger than the gap energy at high temperature
Fermi level, anda is the (linear size of the localized elec- (Mott hopping and smaller than the gap at Iow(ES hop-
tronic wave function. This expression, known as Mott's ping). A crossover with dopant concentration was found in
variable-range hoppin@/RH), was put on a rigorous footing n-GaAs (Ref. 13 and Si:P** where Mott hopping was
using a percolation formalisf> Many different materials claimed for samples near the metal-insulator transition when
appeared to agree well with the Mott form@laroviding  the Coulomb gap has a small energy width, and ES hopping
experimental confirmation of Mott's ideas. prevails deeper in the insulating phase where electron-
The applicability to real disordered insulators was, how-electron interactions are stronger and the hopping electrons
ever, challenged by a number of theorisf$yecause of the probe the gap. Although variable-range-hopping exponents
presence of Coulomb interactions between electrons. A kelilave been found that deviate from these values, it is found
step in understanding the role of electron interactions waghat strong electron interactions yield a hopping exponent of
put forward by Efros and ShklovskiES),? who showed that 1 while weak interactiongcompared with hopping energjes
a self-consistent Hartree treatment of the long-range) (1/ give rise to exponent. This has given rise to the expecta-
Coulomb interactions in an insulator leads to a soft gap in théion that Mott variable-range hopping will always be ob-

in three dimensions, where
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served near the metal-insulator transition as electron screen-
ing increases and the Coulomb gap collapses approaching
the metallic phas&>'®

In this paper we report measurements of the hopping con-
duction in insulating Si:B very near the transition to the me-
tallic phase. By applying a compressive uniaxial stress along
the [001] direction using a pressure cell described
elsewhere?® we have driven a sample of Si:B from the me-
tallic phase into the insulating phase, and mapped out the
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conductivity as a function of applied stress) (and tempera-
ture (T) in the range 0.05 K T<0.75K. We find” that the
conductivity over this entire temperature range for stress val-
ues varying by about 40% on either side of the critical stress
S. is described accurately by the scaling form

Si:B

(S, T)=0(T)f[AST Y], (5)

where o(T) is the conductivity at the transitiodS=(S;
—9S) is the difference between the stress and its critical value
(i.e., the control parameterv is the critical exponent that
characterizes the divergence of the correlation length, FIG. 1. For two Si:B samples with different dopant concentra-
«(AS)~", andz is the dynamical exponent that describes thetions, as labeled, the resistivity at 4.2 K normalized to its zero-stress
divergence of the time scalex&”. By defining a stress- value is shown as a function of uniaxial stress along the directions
dependent temperature scal&«(AS)*”, and noting from indicated.

our previous work’ that o¢(T)= T2, we may rewrite the
above equation in the insulating phase as

0 1 2 3

S (10° bar)

4 5

(on top of the required Kramers or spin degeneyamfyan
effective-mass donor in Si has already been remdesén
in zero stressby the central-cell potential of the phosphorus
dopants® Such contrasting behavior is due in part to wave-

o(S,T)=ATYF[T*/T]. (6)

This equation fully describes the conductivity of Si:B on thef " isotrop}f and i t 1o d in th
insulating side in the vicinity of the metal-insulator transi- unction anisotropy” and in part o degeneracy in the pres-

tion. We present below a detailed analysis of the temperatur%nce Otf Ielectro_r(ljecce):jreflan?ﬁg,whose fEﬁ;?th. Qave bedeg
dependence of the conductivity of the insulating branch jpcParately consider or the case of efiective-mass donor

" . - systems.
the critical region near the transition. L .
g The conductivity is shown as a function of temperature on

a log-log scale in Fig. 2 for different uniaxial stresses for
Il. EXPERIMENTAL RESULTS AND DISCUSSION which the sample is in the insulating phase. Based on a de-

A bar-shaped 8.8 1.25x 0.3 mn? sample of Si:B was cut tailed analysis published elsewhéfethe critical stress for

with its long dimension along thg001] direction. The dop-

ant concentration, determined from the ratio of the
resistivities® at 300 K and 4.2 K, was 4.8410%cm 3.
Electrical contact was made along four thin boron-implanted
strips. Uniaxial compression was applied to the sample along
the long [001] direction using a pressure cell described
elsewheré® Four-terminal measurements were taken at 13
Hz (equivalent to dg for different fixed values of uniaxial
stress at temperatures between 0.05 and 0.75 K. Resistivities
were determined from the linear region of th&/ curves.

For two Si:B samples with different dopant concentra-
tions that are metallic in the absence of stress, Fig. 1 shows
the resistivity at 4.2 K normalized to its zero-stress value as
a function of uniaxial stress. With increasing stress, the re-
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sistivity initially increases rapidlyby several orders of mag-
nitude and then decreases gradually above several kilobar.
This is in marked contrast with Si:P, which exhibits little
change at small stress values, and then shows a similar de-
crease in resistivity at larger stresses. This can be understood
as follows. The acceptor state in Si:B has a fourfold degen-
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eracy in the unstressed cubic phase which is lifted by rela- F|G. 2. The conductivity as a function of temperature on a

tively small uniaxial stress into two doubleigach retaining  double logarithmic scale for various values of uniaxial stress that
only the Kramers degeneragyhis initially drives Si:B to be  place the sample on the insulating side of the metal-insulator tran-
more insulating. By contrast, the sixfold valley degeneracysition. The critical stressS;, is 613 bar.
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FIG. 3. On a log-log scale, the normalized conductivity¢ . , b°
as a function of the scaling variab[gAS)/S.]/T*?*, with zv ~
=3.2. HereAS=(S—S;), whereS, is the critical stress. © o4}

this sample was determined to Bg=613bar. The critical
curve is a straight line on this scale, with the conductivity
o.—0 atT—0, following a power law g o T%°,

The conductivitya(S,T) normalized by the critical con- 0.2
ductivity o(T) is shown in Fig. 3 as a function of the scal- 0
ing variable,AS/TY?", wherezr=3.2 has been chosen so
that the data for all values of stress and all measured tem-
peratures collapse onto a single universal curve, as predicted FIG. 4. (a) The normalized conductivityg/o, on a logarith-
by Eq.(1). The resulting scaling function fully describes the mic scale as a function of T¢/T)"% here T*«<(AS)*"; (b) the
temperature dependence of the conductivity in the insulatingformalized conductivitys/o., on a log scale as a function of
phase in the vicinity of the transition. (T*/T),

As discussed earlier, the conductivity in the insulating
phase is expected to exhibit variable-range hopping at low To test if the scaling description contains either form of
temperature of the form hopping conduction, we plot the conductivity normalized to
the conductivity of the critical curver/o;, on a log scale as
a function of (T*/T)¥? in Fig. 4a) and as a function of
(T*/T)¥*in Fig. 4b). As can be clearly seen in Fig(a}, the
experimental data forT*/T)¥?>2.8 (T*/T>8) lie on a
straight line passing through the origin, indicating that the
conductivity crosses over to an ES-VRH form within the
scaling region at large but experimentally accessible values
of the argument of the scaling function, with a temperature-
dependent prefactor given by the critical curve, namely

(T/1T)"*

o(ST)xao(T)exd —(T*/T)*], (@)

with @=% when the density of states is a slowly varying

function of energy{Mott-VRH (Refs. 1 and 7], anda= 3
[ES-VRH (Ref. 9] when hopping energies are comparable
with or smaller than electron interactions, forming a soft
“Coulomb” gap at the Fermi level. While these analyses
have been done for the strongly localized regiieep in the
insulating phase arguments have been advancess to why
such behavior persists in the insulating phase even close to
the transition, provided the temperature is low enough that
the localized character of the phase becomes evident.
However, it is not clear whether the hopping conduction
is included in the scaling part of the conductivity near the Deviations are evident for*/T=<8. For such small argu-
metal-insulator transition. It has been sugge<téat this is  ments of the exponential factor, it has been argued for the
the case for a quantum Hall transition in two-dimensionalinsulator that hopping energies may be comparable to or
electron gases in the presence of a strong perpendicular magrger than the energy width of the Coulomb gap; in this
netic field, but the experimental evidence for this is not un-regime a crossover has been observed in some systems, al-
ambiguous. For the metal-insulator transition in three dimenbeit within a limited rangé®'*to Mott VRH with an expo-
sions, it is clear from Eq4) that for VRH to be part of the nent; rather thani. However, it is clear from the consis-
scaling description, we must havery(T)=oxT? tently downward curving plot in Fig.#) and the fact that
f[T*/T]ecexd —(To/T)*], and T* « Tyoc (AS) . the curve must pass through the upper left corner that Mott

o(T)xTY?exd — (T*/T)*2]. 8
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hopping does not provide an adequate description of the con- [
ductivity of uncompensated Si:B in the critical region for any I . 0
range of T*/T. I o
What, then, is the form of the scaling function fof /T .
<87 In a scaling description of a continuous phase transi- ;g3
tion, the singular behavior of the system in the vicinity of the
transition is embodied in nontrivial but universal exponents, R R
as well as ratios and combinations of variables which have ]
nonanalytic form at the approach to the transition, but with
scaling functions that are themselves analytic functions of
these ratios or combinations. Consequently, we would expect
the scaling functiorf in Eq. (5) to be analytic in its argument
around the origin. Given thdt(0)=1, and that we expect it
to decrease monotonically to its asymptotic vafifer) =0 1k
on the insulating side, a reasonable choiceyfar0 is f(y)

1/2

=exp(—y), suggesting that '%
o(T)xTY2exd — (T*/T)¥2], 9
i.e., the normalized conductivity/ o should yield a straight 0.1}

line when plotted on a semilogarithmic scale versus
(T*/T)*?”. That this is the case is shown in Fig. 5. Attempts
to fit the scaling function by a power-law form yield a rea-
sonable fit over a much smaller range of the parameters. This
suggests that the scaling function is better described by an
exponential than any single power law; indeed, it fits over
much of the range of the argument of the scaling function T2 (K%

before it crosses over to ES-VRIFig. 4(a)]. By combining B .

data for the temperature-dependent conductivity for a num-_FlG: 6- (& The conductivityo on a log scale as a function of
ber of values of uniaxial stress, we have thus been able t ; the inset shpwﬁ'o derived from the slopes in the main f|ggre
map the scaling function for a large range of its argument.ploned.as a function of stresgh) On a log scale, the conductivity
We have established that for Si:B, the conductivity in thenormﬁllzed by the. temp_elr/glture dependence of the prefactor,
. ; : . ) a/T?), as a function off =12,

insulating phase in the scaling region appears to be equal

a prefactor given by the power-law behavior of the critical When analyzing the conductivity of the insulator in the
conductivity, multiplied by an exponential function of VRH regime, the temperature-dependent prefactor is very
(T*/T) raised to a power which equals v for small  often omitted because its wedgower-law dependence is
argument and; for large values of the argument, corre- negligible compared to the strong temperature dependence of
sponding to ES-VRH. the exponential term. This is certainly justified deep in the

1 1.5 2 2.5 3 3.5 4
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insulator; however, its neglect is questionable in the criticakimple expectation that=2v. Similar behavior has been
regime, where fits to the ES-VRH form have been used taeported in CdSe:IiRef. 10 as well as some diluted mag-
extract critical exponents pertaining to the insulator-metahetic semiconductors.
transition. We now show explicitly that omission of this term
near the transition in our data leads to significant errors in the IIl. SUMMARY
determination ofT* =T, and the critical exponents derived  To summarize, we have shown that scaling provides an
from them. excellent description of the conductivity near the metal-

Applying the usual analysis for ES hopping which as-jnsulator transition in uniaxially stressed Si:B. Based on data
sumes a constant, temperature-independent prefactor, Vg many values of stress and temperature, the scaling func-
plot o on a log scale versus™ "Zin Fig. 6(a). A reasonably  tion in the insulating phase yields particularly reliable deter-
good fit(i.e., straight ling is obtained for the higher values minations of the conductivity in the critical region. It is
of stress; not unexpectedly, deviations become progressivebpund that the conductivity expected for variable-range hop-
more pronounced as the transition is approached. Excepfing in the presence of Coulomb interactions, in the form
very near the transition, the conductivity appears to be wellpredicted by Efros and Shklovskii, is part of the scaling de-
described by ES-VRH, for which scription in the insulating phase for large values of the scal-

, " ing argument(i.e., temperature§ an order of magnitude
Tox1(€£)>(A9)". (0 jower than the characteristic temperatii?e). For lower val-

Here ¢ is the correlation length which diverges with expo- Ues, a clear deviation is seen, and seems to be well fit by an
nentr, ande is the dielectric constant which diverges with exponentially activated form with an exponentil/ which
exponent/, so thata= £+ ¢. The inset to Fig. @) shows a is found to be 0.31 for Si:B. It would be of interest to see if
p|ot of T(’) derived from this ana|ysis versi® y|e|d|ng a Slmllar behaVIOI’ is found in Othgr SyStemS near the metal-
=2.8. Sincex plays the same role as/, which was found to  insulator transition, and to check if some of the earlier cross-
equal 3.2 in the earlier analysis, neglect of the temperatur@Vers seen from ES to Mott VRH could be manifestations of
dependence of the prefactor gives rise to an error on th§1€ same effect. We have also examined the errors associated
order of 15% in the determination of the critical exponents With analysis of conductivity data based on individual curves
For comparison and completeness, we plot in Figp) 6he  a@nd neglecting the temperature dependence of the prefactor.
correct form,o/ T2 versusT ~*2. Inclusion of the prefactor,
as in Fig. §b), provides a much better fit over a wider range
to ES-VRH than does the neglect of the prefactor, as in Fig. We thank L. Walkowicz for her valuable experimental
6(a). Moreover, it yields a different value for the critical contributions. We are grateful to G. A. Thomas for his gen-
exponent Zv. We caution, however, that comparison with erous support and expert advice, help and interest throughout
the full scaling curve of Fig. 3 reveals thegmalle) devia-  this project. We thank T. F. Rosenbaum, M. A. Paalanen, E.
tions occur here due to departures from the ES hopping forngmith, and S. Han for valuable experimental tips and infor-
as the transition is approached. We suggest that a reliabl@ation, G. A. Thomas and T. F. Rosenbaum for the loan of
determination oflj and of the critical exponent requires a  equipment, F. Pollak for useful suggestions and some
full scaling analysis of the conductivity, and cannot be ob-samples, and D. A. Huse for a discussion on scaling func-
tained from the individual curves. tions. This work was supported by the U.S. Department of

Given our findings thata=zv=3.2=(v+{) and u Energy Grant No. DE-FG02-84ER45153. R.N.B. was sup-
=1.6, and assuming again that=u, we obtain {=v  ported by NSF Grant No. DMR-9400362, and thanks the
=1.6. This implies that the correlation length and the dielec-AAspen Center for Physics for hospitality while this paper was
tric constant diverge with the same exponent, contrary to théeing written.
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