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Nonlinear impurity in a square lattice

M. I. Molina*
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~Received 11 January 1999!

We use the Green’s-function formalism for an exact, numerical calculation of the stationary states of an
electron propagating in a square lattice in the presence of a single, Holstein-type, impurity of arbitrary non-
linearity exponent. We find that two bound states exist above a certain exponent-dependent critical nonlinearity
strength. The localization length of the lower~higher! energy bound state increases~decreases! with nonlin-
earity strength. The dynamics of an electron, initially placed on the impurity site, reveals a sharp, self-trapping
transition for any nonzero nonlinearity exponent: below a certain nonlinearity threshold, the electron escapes
from the impurity site ballistically; above the threshold, there is partial trapping at the impurity site while the
untrapped fraction escapes to infinity, also ballistically. The self-trapping features are sharper in time and space
than for its one-dimensional analogue.@S0163-1829~99!07027-7#
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The effects of nonlinear impurities on the electronic pro
erties of solids is an old topic in solid-state physics, who
importance has not diminished throughout the years. A
well known,1 in one and two dimensions, a linear impuri
embedded in a lattice has always a bound state no m
how small the strength of the impurity. When the latti
contains a finite fraction of these~linear! impurities, distrib-
uted randomly, it gives rise to the interesting phenomenon
‘‘Anderson localization’’ where all the eigenstates are loc
ized, no matter how weak the disorder is. This, in turn, p
cludes any electronic transport.

Recently, attention has been given to the problem ofnon-
linear impurities. They appear in problems where stro
electron-phonon interactions are considered. In that case
lattice vibrations have the ability to adapt to the presence
the electron and give rise to polaronic effects. Under cer
assumptions, the ‘‘effective’’ equation for the electronic a
plitude turns into that of an electron moving inside a latt
that containsnonlinear impurities, i.e., where the local sit
energy at an impurity site depends on the electronic proba
ity at that site. The electronic evolution equation, known
the discrete nonlinear Schro¨dinger ~DNLS! equation has the
form

i
dCn

dt
5V(

n.n
Cm2xnuCnuaCn , ~1!

wheren is a site of ad-dimensional lattice,V is the transfer-
matrix element,xn is the nonlinearity parameter, anda is the
nonlinearity exponent. The summation in Eq.~1! is restricted
to nearest neighbors~nn! only. In the conventionalDNLS
case, a52 and x is proportional to the square of th
electron-phonon coupling at siten ~Ref. 2!. A previous study
of Eq. ~1! for the one-dimensional nonlinear random bina
alloy,3 revealed marked deviations from Anderson localiz
tion: it was found that the disorder is completely overco
by the presence of nonlinearity, leading to a partial trapp
of an initially localized electron~for nonlinearity above a
certain threshold! and a ballistic propagation of the un
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trapped fraction. The transmittance of plane waves thro
the medium displayed apower-law decayas a function of
system size.

An interesting mathematical equivalence was found
Economou and coworkers4 between the property that a
states are localized in a disorderedd-dimensional system
~whered<2! and the property that a potential well alway
traps a particle ind dimensions~also for d<2!. From this
perspective, it is interesting to pursue the examination
various types of impurity problems since they might ul
mately contain all the information needed to understa
Anderson localization in several kind of disordered system
For the case of a single nonlinear impurity, we have exa
ined in previous works the one-dimensional case in det
By using the Green’s-function formalism in a self-consiste
way, we obtained the stationary states analytically and
tained a phase diagram showing the number of bound st
as a function of nonlinearity exponent and nonlinear
strength. We also examined the transmission of plane wa
across the nonlinear impurity and the self-trapping dynam
of an electron~or excitation! initially located at the impurity
site.5–7

In the present paper, we extend these previous studie
two dimensions and consider the stationary states and
trapping dynamics of a nonlinear impurity embedded in
square lattice. A recent work considers the calculation of
bound states for this problem by using an approxim
Green’s-function approach.8 We will pursue the bound stat
problem using the exact Green’s functions and will solve
relevant equations numerically. Then, we will examine t
self-trapping properties of the impurity by following the tim
evolution of an electron~or excitation! initially located on
the nonlinear impurity.

Bound States.Let us consider the problem of determinin
the existence of bound states for an electron~or an excita-
tion! moving on a square lattice that contains a single g
eralized nonlinear impurity at the originn50. The Hamil-
tonian is

H̃5H̃01H̃1 , ~2!
2276 ©1999 The American Physical Society
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where

H̃05V(
n.n

~ un&^mu1h.c.! ~3!

and

H̃15xuC0uau0&^0u, ~4!

where the$un&% represent Wannier electronic states,V is the
nearest-neighbor transfer-matrix element, andx is the non-
linearity parameter. The$Cn% are the electronic probability
amplitudes at siten and a.0 is the nonlinearity exponent
The sum in Eq.~3! is restricted to nearest neighbors only.

To get a preliminary feeling on our problem, let us co
sider a simple estimate of the existence of bound st
around a single generalized nonlinear impurity of strengtx
and exponenta embedded in ad-dimensional linear lattice
with lattice spacinga. If we assume an electronic bound sta
C with localization lengthl, then on normalization ground
we haveuCu2;1/ld. Now, in order to have a bound stat
the decrease in potential energy must overcome the incr
in kinetic energy due to localization. The decrease of pot
tial energy is, in magnitude

DV5E ddrV~r !uC~r !u25E ddrxuC~r !uauC~r !u2

;
xad

ld@11~a/2!#
. ~5!

While the increase in kinetic energy is

DK;
h2

2ml2 . ~6!

Potential energy dominates over kinetic energy if

h2

2mxad ld@11~a/2!#22,1. ~7!

Now, if we let x˜0, then we should havel˜`. To be
consistent with Eq.~7! we must have

d~21a!,4. ~8!

For a two-dimensional lattice (d52), Eq.~8! predicts that as
soon asa.0, a minimum nonlinearity strength is needed
create a bound state. The borderline casea50, i.e., the lin-
ear impurity, is well known and always displays a bou
state.1

The above prediction will be confirmed indeed by t
formal solution, based on lattice Green’s Functions. For c
venience, we normalize all energies to a half bandwidth,V

and define:z[E/4V, H[H̃/4V, andg[x/4V. The dimen-
sionless lattice Green’s functionG51/(z2H) can be for-
mally expanded as1

G5G~0!1G~0!H1G~0!1G~0!H1G~0!H1G~0!1¯ , ~9!

whereG(0) is the unperturbed (g50) Green’s function and
H15guC0uau0&^0u. The sum in Eq.~9! can be carried ou
exactly to yield
-
es

se
-

-

Gmn5Gmn
~0!1

guC0uaGm0
~0!G0n

~0!

12guC0uaG00
~0! , ~10!

whereGmn5^muGun&. The energy of the bound state~s!, zb
is obtained from the poles ofGmn , i.e., by solving 1
5guC0

(b)uaG00
(0) . The bound state amplitudesCn

(b) are ob-
tained from the residues ofGmn(z) at z5zb . In particular,

uC0
~b!u25Res$G00~z!%z5zb

52
G00

~0!2
~zb!

G008
~0!~zb!

. ~11!

Inserting this in the bound state energy equation leads to

15
gG00

~0!a11
~zb!

@2G008
~0!~zb!#a/2 . ~12!

Now, for the square lattice,G00
(0)(z)5(2/p)AmK@m#, where

we have definedm[1/z2 andK@m# is the complete elliptic
integral of the first kindK@m#5*0

p/2@12m sin2(f)#21/2df.
Inserting this into Eq.~12!, and usingK8@m#5(1/2m)((1
2m)21E@m#2K@m#) whereE@m# is the complete elliptical
integral of the second kind: E@m#5*0

p/2@1
2m sin2(f)#1/2df, we finally obtain the following nonlinear
equation for the bound state energies

1

g
5

$~2/p!AmK@m#%a11

H ~2/p!S m

12mDE@m#J a/2 . ~13!

Analysis of Eq.~13! reveals that, form<1 ~i.e., outside the
band!, its right-hand side is real and positive. Figure 1 sho
the shape of the right-hand side of Eq.~13! for several dif-
ferent a values. For a givena.0, there exists a critica
nonlinearity thresholdgc below which, there is no root~no
bound state!. At g5gc there is exactly one root~one bound
state!, while above threshold,g.gc , there are two roots
~two bound states!. The value ofgc increases with the non
linear exponent,a. Figure 2 displays a phase diagram
nonlinearity strength—nonlinearity exponent space show
the critical curve above which two bound states exist, wh

FIG. 1. Solid lines: Real part of the right-hand side of Eq.~13!
vz(4V/Eb)2, for different a values. Dashed line: 1/g. Intersec-
tion~s! of these two curves outside the band determine the e
gy~ies! of the bound state~s!.
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none~one! bound state exists below~on! the critical curve.
For the conventional~DNLS! case wherea52 the critical
nonlinearity isgc51.366, that is,xc /V55.464, substantially
larger than for the one-dimensional case (xc /V52).5 In Fig.
3, we show the normalized bound state energies as a func
of normalized nonlinearity, for several values of the exp
nent, ranging froma50 ~linear impurity! up to a54. By
denoting the solution~s! of Eq. ~13! by mb , the bound state
probability at the impurity site can be written as

uC0
~b!u25S 2

p D ~12mb!K@mb#2

E@mb#
. ~14!

The electronic probability at the impurity site for the bou
state~s!, as a function of nonlinearity, is shown in Fig. 4, fo
several exponent values. For a given nonzero exponen
nonlinearity is increased beyond threshold value, one of
bound states ‘‘shrinks’’ quickly around the impurity sit
while the other ‘‘spreads’’ increasing its localization lengt
This can be seen from the fact that in any dimensiond, the
bound state localization lengthl for uEbu2ZV!ZV, obeys:4

l21'A(uEbu/V)2Z, whereZ is the coordination number. In

FIG. 2. Phase diagram showing the number of bound states
function of the normalized nonlinearity parameterg and the expo-
nenta. The solid line is the critical line where only one bound sta
exists.

FIG. 3. Normalized bound state energyzb as a function of the
normalized nonlinearity parameterg, for different values of the
exponenta.
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e
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our case this impliesl21'Auzbu21. A similar feature was
also observed in the one-dimensional case.6 We note, in
passing, that Figs. 2 and 3 are very similar to the ones
tained if one uses a Hubbard-type Green’s function.8

Self-trapping Dynamics.We place the electron at the im
purity site att50 and observe its time evolution@Eq. ~1!# for
relatively long times. The numerical scheme is that of
fourth-order Runge-Kutta, where the accuracy is monito
through total probability conservation. To avoid undesir
boundary effects, a self-expanding lattice is used.3 To ascer-
tain the presence or absence of a self-trapping transition
compute the long-time average probability at the impur
site, defined by

P05 lim
T˜`

~1/T!E
0

T

uC0~ t !u2dt, uC0~0!u51. ~15!

To quantify the electronic propagation, we also examine
mean-square displacement

^n2&5(
n

n2uCn~ t !u2, ~16!

where the normalization(nuCn(t)u251 has been used. Th
increase in the coordination number with respect to the o
dimensional chain, makes the propagation time scale sho
In the absence of any impurity,^n2&54(Vt)2 whereas for
one dimension,̂n2&52(Vt)2. The extra dimensionality also
has the effect of making any nontrapped wave-packet de
faster in space~as O(1/N)2!. The square symmetry of thi
one-impurity problem reduces the computational dema
considerably with respect to a case with say, many impuri
randomly distributed.

Figure 5 showsP0 versus the normalized nonlinearity pa
rameterg for several different nonlinearity exponentsa. As
soon asa.0, we observe a self-trapping transition around
specificg whose value~and the sharpness of the transitio!
increases witha. In particular, for the conventional DNLS
case (a52), the transition occurs at approximatelyg
'1.69. This value is substantially higher than for the on

s a
FIG. 4. Occupation probability of the nonlinear impurity site

the bound state~s! as a function of the normalized nonlinearity p
rameterg for different exponentsa.



a

th
s
o

h
m
a
e
i

ar
na
te

ap
th
ri
th

ed
os-

te
nd

nd
in a
er-
at
nd
tion
t. A
ear
a

ite
of

PRB 60 2279NONLINEAR IMPURITY IN A SQUARE LATTICE
dimensional case (g'0.8) and was first estimated using
different approach, by Dunlap, Kenkre, and Reineker.9

Figure 6 shows electronic probability snapshots for
conventional (a52) DNLS case for three different time
and for two different nonlinearity parameter values. One c
responds to the linear impurity case (g50); the other to a
nonlinear strength slightly larger than the critical one. In t
first case, the probability profile spreads quickly away fro
the impurity site; in the second case, there is partial selftr
ping at the impurity, while the untrapped fraction escap
away ballistically. This propagation feature is most prom
nent in Fig. 7, where we plot the electronic mean-squ
displacement as a function of time, for the conventio
DNLS case and for several different nonlinearity parame
values. After a very short transient, the propagation
proaches a ballistic behavior in all cases. The ‘‘speed’’ of
propagation gets substantially smaller past the nonlinea
threshold for selftrapping: the onset of trapping reduces

FIG. 5. Time-averaged probability at the nonlinear impurity s
as a function of the normalized nonlinearity strengthg for different
exponentsa.
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total probability wave that can escape to infinity. The trapp
electronic fraction at the impurity site displays persistent
cillations ~not shown!, with amplitude~frequency! that de-
creases~increases! with nonlinearity strength. We associa
this oscillations with the breather mode proved by Aubry a
MacKay to exist in the largeg limit.10

Discussion. We have examined the problem of the bou
states for a rather general nonlinear impurity embedded
~linear! square lattice, by means of a straightforward gen
alization of the Green’s-functions formalism. We found th
a nonlinearity threshold exists beyond which, two bou
states are possible. One of them increases its localiza
length upon increasing nonlinearity; the other decreases i
quantum-mechanical argument shows that, for the nonlin
impurity, the marginal dimension for the existence of
bound state decreases with respect to the case of alinear
impurity; in particular, for the conventional (a52) DNLS

FIG. 7. Electronic mean square displacement as a function
time Vt for completely localized initial conditions anda52, and
for several nonlinearity parameter values.
r
en
FIG. 6. Electronic probability density snapshots for an electron initially located on a single site~‘‘site zero’’! of a square lattice. Uppe
row: g50 ~linear impurity!. From left to rightVt52, 4, and 6. Lower row: Same as before but forg51.75. The center peak, which has be
truncated for visualization, extends up to a height of approximately 0.7.
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2280 PRB 60M. I. MOLINA
impurity it is equal to one, whereas for the linear case
marginal dimension is equal to two. It would seem that
nonlinear character of the impurity has somehow produce
sort of ‘‘dimensional reduction.’’ If one were to apply th
potential well analogy of Economouet al., it could be pre-
dicted that a two-dimensional nonlinear random binary al
would not have all of its eigenstates localized. This is re
forced by the observation that one needs a minimum amo
of nonlinearity to dynamically selftrap an initially localize
electron around a nonlinear impurity. However, the use
ness of this is severely limited when it comes to predict
consequences for transport, given that, in the nonlinear
tem the eigenstates constitute just particular solutions
cannot be superposed to construct the time-dependent w
function.

The dynamics of an electron, initially localized on th
impurity site, revealed the existence of an expone
dependent self-trapping transition at a certain nonlinea
strength. The situation is qualitatively similar to the on
dimensional case, although the transition is, in gene
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sharper and requires higher nonlinearity strength. This
namical self-trapping transition has a higher threshold th
that for the appearance of a bound~s! state~s!, suggesting that
the onset of a bound state is in a sense, a precursor for
onset of dynamical self-trapping. Unlike the case of alinear
impurity though,1 the exact connection between stationa
and dynamical quantities is unknown due to the lack of t
superposition principle, as noted above. After a short tr
sient, the mean-square displacement assumes a bal
form, with a ‘‘speed’’ that decreases significatively beyon
the threshold for self-trapping. We expect these features
persist in the case of a two-dimensional nonlinear rand
binary alloy, where due to the increased dimensionality a
on normalization grounds, one would expect nonlinear
fects to be strictly local. The propagation of an initially lo
calized excitation would be affected only by the local env
ronment close to the initial site, with the rest of th
impurities playing no role. They might affect though, th
propagation of an extended excitation as they do in the
dimensional case.3
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