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Nonlinear impurity in a square lattice
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We use the Green’s-function formalism for an exact, numerical calculation of the stationary states of an
electron propagating in a square lattice in the presence of a single, Holstein-type, impurity of arbitrary non-
linearity exponent. We find that two bound states exist above a certain exponent-dependent critical nonlinearity
strength. The localization length of the lowérghep energy bound state increas@ecreaseswith nonlin-
earity strength. The dynamics of an electron, initially placed on the impurity site, reveals a sharp, self-trapping
transition for any nonzero nonlinearity exponent: below a certain nonlinearity threshold, the electron escapes
from the impurity site ballistically; above the threshold, there is partial trapping at the impurity site while the
untrapped fraction escapes to infinity, also ballistically. The self-trapping features are sharper in time and space
than for its one-dimensional analogy&0163-182€09)07027-1

The effects of nonlinear impurities on the electronic prop-trapped fraction. The transmittance of plane waves through
erties of solids is an old topic in solid-state physics, whose¢he medium displayed power-law decayas a function of
importance has not diminished throughout the years. As isystem size.
well known? in one and two dimensions, a linear impurity ~ An interesting mathematical equivalence was found by
embedded in a lattice has always a bound state no matt&conomou and coworkéetsbetween the property that all
how small the strength of the impurity. When the lattice states are localized in a disorderdetdlimensional system
contains a finite fraction of thegénear impurities, distrib-  (whered=<2) and the property that a potential well always
uted randomly, it gives rise to the interesting phenomenon ofraps a particle ird dimensions(also ford<2). From this
“Anderson localization” where all the eigenstates are local-perspective, it is interesting to pursue the examination of
ized, no matter how weak the disorder is. This, in turn, prevarious types of impurity problems since they might ulti-
cludes any electronic transport. mately contain all the information needed to understand

Recently, attention has been given to the problemarf-  Anderson localization in several kind of disordered systems.
linear impurities. They appear in problems where strongFor the case of a single nonlinear impurity, we have exam-
electron-phonon interactions are considered. In that case, tlieed in previous works the one-dimensional case in detail.
lattice vibrations have the ability to adapt to the presence oBy using the Green’s-function formalism in a self-consistent
the electron and give rise to polaronic effects. Under certainvay, we obtained the stationary states analytically and ob-
assumptions, the “effective” equation for the electronic am-tained a phase diagram showing the number of bound states
plitude turns into that of an electron moving inside a latticeas a function of nonlinearity exponent and nonlinearity
that containsonlinear impurities, i.e., where the local site strength. We also examined the transmission of plane waves
energy at an impurity site depends on the electronic probabilacross the nonlinear impurity and the self-trapping dynamics
ity at that site. The electronic evolution equation, known asof an electron(or excitatior) initially located at the impurity
the discrete nonlinear Schitimger (DNLS) equation has the site>~’
form In the present paper, we extend these previous studies to

two dimensions and consider the stationary states and self-
trapping dynamics of a nonlinear impurity embedded in a
dc, " square lattice. A recent work considers the calculation of the
dt :V% Cimn—XnlCnl“Ch, (D) bound states for this problem by using an approximate
' Green’s-function approachWe will pursue the bound state
problem using the exact Green’s functions and will solve the
wheren is a site of ad-dimensional latticeV is the transfer- ~ relevant equations numerically. Then, we will examine the
matrix elementy,, is the nonlinearity parameter, ands the ~ Self-trapping properties of the impurity by following the time
nonlinearity exponent. The summation in E#) is restricted ~ evolution of an electrorior excitation initially located on
to nearest neighborén) only. In the conventionalDNLS  the nonlinear impurity.
case,a=2 and y is proportional to the square of the Bound Stated.et us consider the problem of determining
electron-phonon coupling at site(Ref. 2. A previous study the existence of bound states for an electfonan excita-
of Eq. (1) for the one-dimensional nonlinear random binarytion) moving on a square lattice that contains a single gen-
alloy,’ revealed marked deviations from Anderson localiza-eralized nonlinear impurity at the origin=0. The Hamil-
tion: it was found that the disorder is completely overcometonian is
by the presence of nonlinearity, leading to a partial trapping
of an initially localized electronfor nonlinearity above a
certain threshold and a ballistic propagation of the un- H=Hy+Hq, 2
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where 2.0
Ho=V>, (Jn)(m|+h.c) 3 16 *=9
n.n 1 /’Y
and 12 Tt ey
a=1
H1=x|Co/*[0)(D], 4) 0.8 =2
where the{|n)} represent Wannier electronic stat¥sis the
nearest-neighbor transfer-matrix element, gnié the non- 0.4 -
linearity parameter. Th¢C,} are the electronic probability =3 =4
amplitudes at siten and «>0 is the nonlinearity exponent. 00 ‘ ‘ ‘ ‘
The sum in Eq(3) is restricted to nearest neighbors only. 00 02 04 06 08 10

To get a preliminary feeling on our problem, let us con-
sider a simple estimate of the existence of bound states

ar%und a single getr:ecrjgllzdeq n;r:jl_lnear Ilmpulrllt.y of Sltrepgth FIG. 1. Solid lines: Real part of the right-hand side of EB)
and exponentr embedded in a-dimensional linear lattice, ., 4v/g, )2, for different  values. Dashed line: 3/ Intersec-

With.lattice s'pac.inga. If we assume an eIectrpnig bound Statetion(s) of these two curves outside the band determine the ener-
¥ with Iocallzzanondlengtm,.then on normalization grounds gy(ies) of the bound state).
we have|¥|[*~1/\° Now, in order to have a bound state,

(4VIEp)?

the decrease in potential energy must overcome the increase Ic |aG(0)G<o>
in kinetic energy due to localization. The decrease of poten- Gn=G9Y+ 70—”‘0(0)’ (10)
tial energy is, in magnitude 1-7|Co|“Gpo
whereG,,=(m|G|n). The energy of the bound sté&sg z,
szj ddrV(r)|\P(r)|2zf do x| (r)|*| ¥ (r)|? is obtained from the poles 06G,,, i.e., by solving 1
=y|CP|*GY. The bound state amplituded!® are ob-
xad tained from the residues @,,(z) atz=z,. In particular,
~ A - (5
N1+ (al2)] G (z,)
. . o . (b)j2_ _ _ 200 \4b)
While the increase in kinetic energy is ICo”I*=RedGoi(2)}r=2,= — o5~ (1D
Goo ' (Zp)

h? Inserting this in the bound state energy equation leads to
AK~ —. (6)
2m)\ (O)a+l
~ G (%) (12
Potential energy dominates over kinetic energy if [— G(')Bo)(zb)_]""z'
2 icas(0)() —

h N1+ (@l2)]-2 | 0 Now, for the_square Iat2t|ce£300 (z)—_(2/7r) YymK[m], wh_er(_e

2mya’ ' we have definedn=1/z= andK[m] is the complete elliptic

. integral of the first kindK[m]= J 7" 1—msir(¢)] Y ¢.
Now, if we let y—0, then we should have—. To be  |nserting this into Eq(12), and usingK’[m]=(1/2m)((1
consistent with Eq(7) we must have —m) ~*E[m]—K[m]) whereE[m] is the complete elliptical
integral of the second kind: E[m]=[7T1
d(2+a)<A4. ® msir?($)]¥?d ¢, we finally obtain the following nogllinear
For a two-dimensional latticed= 2), Eq.(8) predicts that as €quation for the bound state energies
soon ase>0, a minimum nonlinearity strength is needed to

create a bound state. The borderline case0, i.e., the lin- E: {(2/7’)\/5'([”1]}“1 (13)
ear impurity, is well known and always displays a bound Y m al2
state! (2/m)| 3 |Elm]

The above prediction will be confirmed indeed by the ) . .
formal solution, based on lattice Green’s Functions. For conAnalysis of Eq.(13) reveals that, fom=1 (i.e., outside the
venience, we normalize all energies to a half bandwidih, 4 band, its right-hand side is real and positive. Figure 1 shows
and definez=E/4V, H=F/4V, and y=y/4V. The dimen- the shape of the right-hand side of Ed3) for several dif-

sionless lattice Green’s functioB=1/(z—H) can be for- ferent « values. For a giverw>0, there exists a critical
mally expanded ds nonlinearity thresholdy. below which, there is no rodino

bound statg At y= vy, there is exactly one rodbne bound
G=G9+GOH,GO+GOH,GOH,G@+---, (9) statg, while above thresholdy>y., there are two roots
(two bound states The value ofy, increases with the non-
whereG(® is the unperturbed=0) Green’s function and linear exponenta. Figure 2 displays a phase diagram in
H,=y|C*|0)(0|. The sum in Eq.9) can be carried out nonlinearity strength—nonlinearity exponent space showing
exactly to yield the critical curve above which two bound states exist, while
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FIG. 2. Phase diagram showing the number of bound states as a

function of the normalized nonlinearity parameteand the expo- FIG. 4. Occupation probability of the nonlinear impurity site in
nenta. The solid line is the critical line where only one bound statethe bound statg) as a function of the normalized nonlinearity pa-
exists. rametery for different exponentsv.

none(one bound state exists beloyon) the critical curve.  gur case this impliea ~*~\/|z,]— 1. A similar feature was
For the conventionalDNLS) case wherex=2 the critical  also observed in the one-dimensional chd#e note, in
nonlinearity isy.=1.366, that isy./V=5.464, substantially passing, that Figs. 2 and 3 are very similar to the ones ob-
larger than for the one-dimensional caggAV=2).°In Fig.  tained if one uses a Hubbard-type Green’s function.

3, we show the normalized bound state energies as a function Self-trapping DynamicsVe place the electron at the im-
of normalized nonlinearity, for several values of the expo-purity site att=0 and observe its time evolutid&q. (1)] for
nent, ranging froma=0 (linear impurity up to a=4. By  relatively long times. The numerical scheme is that of a
denoting the solutiois) of Eqg. (13) by m,, the bound state fourth-order Runge-Kutta, where the accuracy is monitored

probability at the impurity site can be written as through total probability conservation. To avoid undesired
boundary effects, a self-expanding lattice is usda. ascer-
2= (E) (1—my)K[m,]? (14) tain the presence or absence of a self-trapping transition, we
0 E[my] compute the long-time average probability at the impurity

site, defined by

The electronic probability at the impurity site for the bound
statds), as a function of nonlinearity, is shown in Fig. 4, for T
several exponent values. For a given nonzero exponent, as Po= lim (1ff)f [Co(t)|2dt, |Cx(0)|=1. (15
nonlinearity is increased beyond threshold value, one of the T 0
bound states “shrinks” quickly around the impurity site, ] ) . ]
while the other “spreads” increasing its localization length. TO quantify the electronic propagation, we also examine the
This can be seen from the fact that in any dimensipthe =~ Mean-square displacement
bound state localization lengthfor |Ep|—ZV<ZV, obeys?

1 — . -
A V(|Ep|/V)—Z, whereZ is the coordination number. In (n2>=§ n2|C ()2 (16

3

where the normalizatioX ,|C,(t)]?=1 has been used. The
increase in the coordination number with respect to the one-
dimensional chain, makes the propagation time scale shorter:
In the absence of any impurityn?)=4(Vt)? whereas for
one dimension{n?)=2(V1t)2. The extra dimensionality also
has the effect of making any nontrapped wave-packet decay
faster in spacéas O(1/N)?). The square symmetry of this
one-impurity problem reduces the computational demands
considerably with respect to a case with say, many impurities
randomly distributed.
Figure 5 shows? versus the normalized nonlinearity pa-
0 1 5 3 rametery for several different nonlinearity exponerds As
y soon ase>0, we observe a self-trapping transition around a
specific y whose valugand the sharpness of the transijion
FIG. 3. Normalized bound state energyas a function of the increases withw. In particular, for the conventional DNLS
normalized nonlinearity parameter, for different values of the case @=2), the transition occurs at approximately
exponenta. ~1.69. This value is substantially higher than for the one-
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FIG. 5. Time-averaged probability at the nonlinear impurity site
as a function of the normalized nonlinearity strengtfor different FIG. 7. Electronic mean square displacement as a function of
exponentsy. time Vt for completely localized initial conditions and=2, and

for several nonlinearity parameter values.

dimensional casey~=0.8) and was first estimated using a
different approach, by Dunlap, Kenkre, and Reineker. total probability wave that can escape to infinity. The trapped

Figure 6 shows electronic probability snapshots for theelectronic fraction at the impurity site displays persistent os-
conventional ¢=2) DNLS case for three different times cillations (not shown, with amplitude (frequency that de-
and for two different nonlinearity parameter values. One cor<reasegincreaseswith nonlinearity strength. We associate
responds to the linear impurity casg@=0); the other to a this oscillations with the breather mode proved by Aubry and
nonlinear strength slightly larger than the critical one. In theMacKay to exist in the large limit. 10
first case, the probability profile spreads quickly away from Discussion We have examined the problem of the bound
the impurity site; in the second case, there is partial selftrapstates for a rather general nonlinear impurity embedded in a
ping at the impurity, while the untrapped fraction escapeglinearn square lattice, by means of a straightforward gener-
away ballistically. This propagation feature is most promi-alization of the Green’s-functions formalism. We found that
nent in Fig. 7, where we plot the electronic mean-squarex nonlinearity threshold exists beyond which, two bound
displacement as a function of time, for the conventionalstates are possible. One of them increases its localization
DNLS case and for several different nonlinearity parametetength upon increasing nonlinearity; the other decreases it. A
values. After a very short transient, the propagation apguantum-mechanical argument shows that, for the nonlinear
proaches a ballistic behavior in all cases. The “speed” of thempurity, the marginal dimension for the existence of a
propagation gets substantially smaller past the nonlinearitpound state decreases with respect to the case liofear
threshold for selftrapping: the onset of trapping reduces thénpurity; in particular, for the conventionaly=2) DNLS
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FIG. 6. Electronic probability density snapshots for an electron initially located on a singlésteezero™) of a square lattice. Upper
row: y=0 (linear impurity). From left to rightVt=2, 4, and 6. Lower row: Same as before butfer 1.75. The center peak, which has been
truncated for visualization, extends up to a height of approximately 0.7.
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impurity it is equal to one, whereas for the linear case thesharper and requires higher nonlinearity strength. This dy-
marginal dimension is equal to two. It would seem that thenamical self-trapping transition has a higher threshold than
nonlinear character of the impurity has somehow produced that for the appearance of a bous)cstates), suggesting that
sort of “dimensional reduction.” If one were to apply the the onset of a bound state is in a sense, a precursor for the
potential well analogy of Economoet al, it could be pre- onset of dynamical self-trapping. Unlike the case dihaar
dicted that a two-dimensional nonlinear random binary alloyimpurity though! the exact connection between stationary
would not have all of its eigenstates localized. This is rein-and dynamical quantities is unknown due to the lack of the
forced by the observation that one needs a minimum amourguperposition principle, as noted above. After a short tran-
of nonlinearity to dynamically selftrap an initially localized sient, the mean-square displacement assumes a ballistic
electron around a nonlinear impurity. However, the usefulform, with a “speed” that decreases significatively beyond
ness of this is severely limited when it comes to predict thehe threshold for self-trapping. We expect these features to
consequences for transport, given that, in the nonlinear sygersist in the case of a two-dimensional nonlinear random
tem the eigenstates constitute just particular solutions anldinary alloy, where due to the increased dimensionality and
cannot be superposed to construct the time-dependent waea normalization grounds, one would expect nonlinear ef-
function. fects to be strictly local. The propagation of an initially lo-

The dynamics of an electron, initially localized on the calized excitation would be affected only by the local envi-
impurity site, revealed the existence of an exponentfronment close to the initial site, with the rest of the
dependent self-trapping transition at a certain nonlinearitympurities playing no role. They might affect though, the
strength. The situation is qualitatively similar to the one-propagation of an extended excitation as they do in the one
dimensional case, although the transition is, in generatlimensional cas@.
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