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Analytical ground state for the three-band Hubbard model

C. Waidacher, J. Richter, R. E. Hetzel, and K. W. Becker
Institut für Theoretische Physik, Technische Universita¨t Dresden, D-01062 Dresden, Germany

~Received 26 January 1999!

For the calculation of charge excitations as those observed in, e.g., photoemission spectroscopy or in
electron-energy-loss spectroscopy, a correct description of ground-state charge properties is essential. In
strongly correlated systems like the undoped cuprates this is a highly nontrivial problem. In this paper we
derive a nonperturbative analytical approximation for the ground state of the three-band Hubbard model on an
infinite, half-filled CuO2 plane. By comparison with projector quantum Monte Carlo calculations it is shown
that the resulting expressions correctly describe the charge properties of the ground state. Relations to other
approaches are discussed. The analytical ground state preserves size consistency and can be generalized for
other geometries, while still being both easy to interpret and to evaluate.@S0163-1829~99!01628-8#
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I. INTRODUCTION

The interest devoted to the three-band Hubbard mode1 is
due to the fact that it describes the charge properties
CuO2 layer, like those found in the high-TC superconducting
cuprates, while still being comparatively simple.2 The basic
assumption that leads to the three-band Hubbard mod
that the only relevant orbitals are the Cu 3dx22y2 and the
O 2px and 2py orbitals. This granted, the CuO2 layer may be
described by a lattice with one Cu and two O sites per u
cell with hybridization between nearest-neighbor Cu-O pa
and O-O pairs. In the hole picture the three-band Hubb
Hamiltonian reads

H5H01H1 , ~1a!

H05D(
j ,s

nj s
p 1Ud(

i
ni↑

d ni↓
d , ~1b!

H15tpd (
^ i , j &s

fpd
i j ~pj s

† dis1H.c.!1tpp (
^ j , j 8&s

fpp
j j 8pj s

† pj 8s ,

~1c!

wheredis
† (pj s

† ) create a hole with spins in the i th Cu 3d
orbital (j th O 2p orbital!, while nis

d (nj s
p ) are the corre-

sponding number operators.H0 is the atomic part of the
Hamiltonian with the charge-transfer energyD and the on-
site Coulomb repulsionUd between Cu 3d holes.H1 repre-
sents the hybridization of Cu 3d and O 2p orbitals~hopping
strengthtpd) and of O 2p orbitals ~hopping strengthtpp).

The factorsfpd
i j andfpp

j j 8 give the correct sign for the hop
ping processes,2 and ^ i j & denotes the summation ove
nearest-neighbor pairs.

In Eq. ~1a! only the most important Coulomb repulsio
Ud is included, while O on-site and intersite Coulomb rep
sions have been neglected. For explicit calculations the
lowing typical set of values for the parameters involved
Eq. ~1a! will be used:3

D53.5 eV, Ud58.8 eV,

tpd51.3 eV, tpp50.65 eV. ~2!
PRB 600163-1829/99/60~4!/2255~7!/$15.00
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Strong correlations due toUd are the reason why ground
state properties of HamiltonianH can be calculated only ap
proximately and/or on finite clusters. Besides analytical
proaches like, e.g., different approximations for dynami
Green’s functions,4 mostly numerical simulations5 have been
applied to the three-band Hubbard model. The aim of
present work is to derive an analytical approximation for t
ground state of an infinite system at half-filling~i.e., one hole
per Cu site! that correctly describes charge properties and
still comparatively easy to evaluate. The resulting appro
mation does not only allow for a calculation of ground-sta
properties of the three-band model~1a!. It also provides a
framework for the investigation of excitations. Furthermo
the approach is sufficiently general to be applied not only
a CuO2 plane but also to different geometries like, e.g., th
of a CuO3 corner-sharing chain.6

Starting point of the approximation is a Ne´el-ordered
ground state of the atomic HamiltonianH0, which is denoted
by uc0&. Due to fluctuations induced byH1, this atomic
ground stateuc0& differs from the full ground stateuC& of
HamiltonianH. In Sec. III, it will be shown that a perturba
tive treatment of these fluctuations breaks down for para
eter values that are in the physically relevant range. The
fore, ground-state fluctuations have to be treated in
nonperturbative way. In the following, we will present a sy
tematic and nonperturbative scheme to introduce these
tuations on the background ofuc0&.

The paper is organized as follows. In Sec. II, the gene
formalism is presented. As an illustration in Sec. III, th
formalism is applied to the~exactly solvable! problem of a
single CuO4 plaquette. The approximative ground state of
infinite, half-filled CuO2 plane is developed in Sec. IV, an
ground-state expectation values are evaluated in Sec. V
Sec. VI, the results of the analytical approach are compa
to projector quantum Monte Carlo simulations. The conc
sions are presented in Sec. VII. Finally, a more detailed j
tification of the approach together with a discussion of
relationship to the cumulant formalism7 is given in the Ap-
pendix.

II. GENERAL FORMALISM

The basic idea is to start with a stateuc0& that is a first
approximation to the full ground stateuC&. In the present
2255 ©1999 The American Physical Society
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2256 PRB 60WAIDACHER, RICHTER, HETZEL, AND BECKER
case, we will chooseuc0& to be a Ne´el-ordered ground stat
of the atomic HamiltonianH0, Eq. ~1b!. In uc0&, every Cu
site is singly occupied and all O sites are empty. Next, fl
tuations on the background ofuc0& are introduced. These
ground-state fluctuations are described by fluctuation op
torsFa ~introduced below in more detail! that approximately
transform stateuc0& into the full ground stateuC&. Under
quite general conditions it can be shown8 that the transfor-
mation leading fromuc0& to uC& has to be of exponentia
form

uC&5expS (
a

laFaD uc0&. ~3!

The parametersla are fluctuation strengths of the fluctuatio
operatorsFa . They are determined using the set of equatio

05^Cu@H,Fa
† #uC&, a51,2, . . . . ~4!

Equation~4! follows from the condition thatuC& is an eigen-
state of the full HamiltonianH, Eq. ~1a!. From Eq.~3! all
ground-state properties can be evaluated using

^A&5
^CuAuC&

^CuC&
. ~5!

The ground-state energy, for instance, is calculated from
~5! with A5H. Equations~3! and ~4!, together with an ap-
propriate choice of fluctuation operatorsFa , constitute the
formal framework to be used in the remainder of this wo
The above formalism will be applied to an exactly solvab
problem in Sec. III. This serves both as an illustration of
approach and as an indication to which extent a perturba
treatment of ground-state fluctuations is possible.

We finally remark that Eqs.~3! and~4! are closely related
to the cumulant formalism~see the Appendix!. Therefore,
the approach presented in this work preserves size co
tency. Thus, for instance, the approximated ground-state
ergy remains an extensive quantity.

III. APPLICATION TO A SINGLE PLAQUETTE

As an example, the method presented in the last sectio
now used to find an approximate expression for the gro
state of Hamiltonian~1a! for the case of a single CuO4
plaquette occupied by a single hole. In this case, the un
turbed ground stateuc0& of H0 is a state in which the Cu sit
is singly occupied while the four O sites are empty. F
reasons of symmetry we may use a single fluctuation op
tor F1, which describes fluctuations of the hole from the C
site to the four surrounding O sitesj, i.e.,

F152(
j ,s

fpd
j pj s

† ds , ~6!

wherefpd
j are the phase factors introduced in Eq.~1c!. Ac-

cording to Eq.~3!, the full ground state of a hole on a sing
plaquette is expressed by

uC&5exp~l1F1!uc0&. ~7!

The norm of this state is

^CuC&5114l1
2 . ~8!
-

a-
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The fluctuation strengthl1 in Eq. ~7! is determined from
condition ~4!,

05^Cu@H,F1
†#uC&. ~9!

Nonvanishing contributions in Eq.~9! arise only from terms
up to orderl1

2. The following quadratic equation forl1 is
obtained:

054tpd24~D22tpp!l1216tpdl1
2 . ~10!

When the positive solution forl1 is used in Eq.~7!, one
obtains the exact ground state. The ground-state energyEG is
calculated using Eq.~5!,

EG524tpdl15
1

2
@D22tpp2A~D22tpp!

21~4tpd!
2 #.

~11!

For parameter set~2!, a value ofl150.33 results. Notice tha
Eq. ~11! contains only a reduced effective charge-trans
energy D22tpp . The Cu occupation number̂ nCu&
5^CunduC&^CuC&21 is given by

^nCu&5
^c0uexp~l1F1

†!nd exp~l1F1!uc0&

^CuC&

5
^c0u~11l1F1

†!nd~11l1F1!uc0&

^CuC&

5
1

114l1
2

. ~12!

From this result one may conclude that a perturbative tre
ment of F1 fluctuations~i.e., an expansion inl1, see the
Appendix!, also in infinite systems, is in general not po
sible. Typically,l1 is of the order 1/2. An expansion of Eq
~12! in l1, however, diverges forl1>0.5. Conditionl1
50.5 is equivalent to a vanishing effective charge-trans
energyD22tpp50 and to a Cu occupation number of 1/
At this point, stateuc0& ceases to be a good approximation
the exact ground stateuC&. This divergence has been ob
served previously,9 although its origin was unclear at tha
time.

IV. APPLICATION TO AN INFINITE CuO 2 PLANE

We now apply the formalism presented in Sec. II to t
geometry of an infinite CuO2 plane. Stateuc0& is again the
Néel-ordered ground state of the atomic HamiltonianH0, Eq.
~1b!. Let us introduce appropriate fluctuation operatorsFa .
First, operatorF1 from Eq. ~6! is generalized to allN Cu
sitesi,

Fi ,152(
j ,s

fpd
i j ,pj s

† dis ,

where the sum is over the four O sitesj that surround Cu site
i. The remaining operators are constructed in accorda
with the following principles:~i! All operators describe de
localizations of a hole initially located at Cu sitei. ~ii ! The
final site in the process is reached via the shortest path
cessible by Cu-O hopping processes.~iii ! A summation over
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PRB 60 2257ANALYTICAL GROUND STATE FOR THE THREE-BAND . . .
all equivalent final sites is taken.~iv! The signs of the hop-
ping processes are chosen to be the negative of the ph
fpd

i j in Hamiltonian~1c! ~which guarantees non-negative va
ues for the fluctuation strengthsla).

Figure 1 shows final sites reached by fluctuation opera
Fi ,a , a51, . . . ,4. Forreasons of symmetry only a quart
of the allowed fluctuation range is shown. FluctuationFi ,2 ,
for instance, describes the hopping of the hole from Cu sii,
via O sitej, to the four nearest-neighbor Cu sitesk,

Fi ,252 (
j ,k,s

~12nj s
p !dks

† dis .

Final states with singly or doubly occupied Cu sites differ
the Coulomb energyUd . SinceUd is large, we have to dis
tinguish between these two cases. Therefore, we splitFi ,2
into two operators that describe a process leading to a si
or doubly occupied Cu site, respectively,

Fi ,2s52 (
j ,k,s

~12nks̄
d

!~12nj s
p !dks

† dis ,

Fi ,2d52 (
j ,k,s

nks̄
d

~12nj s
p !dks

† dis .

Note that it is not necessary to introduce a fluctuation ope
tor, which leads to the nearest-neighbor Cu sites in diago
direction ~e.g., the Cu site without a label in Fig. 1!. Due to
the Pauli principle, fluctuations to these sites are largely
cluded because of antiferromagnetic order. The neglec
fluctuations leading beyond the range shown in Fig. 1 will
justified a posteriori. It will be shown that the fluctuation
strengthsla decrease rapidly with increasing length of t
fluctuation processes.

According to Eq.~3!, the ground state has the form

uC&5expS (
i ,a

laFiaD uc0&, ~13!

where a denotes the five fluctuation operators describ
above. Because of translational symmetry, the parameterla

FIG. 1. Final sites of the fluctuation operatorsFi ,a . Cu and O
sites are symbolized by squares and circles, respectively. Arr
show spin orientation and position of the holes in the atomic gro
state. The fluctuationsFi ,a start from Cu sitei and lead to the final
sites labeled bya51, . . . ,4. Thearea shown is a quarter of the fu
area accessible to the fluctuations.
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do not depend on the Cu site indexi. To simplify Eq. ~13!,
we approximately factorize the exponential function with r
spect to the fluctuationsFi ,1 ,

uC&5expS (
i ,a.1

laFiaDexpS (
i 8

l1Fi 8,1D uc0&. ~14!

This approximation amounts to the assumption that f
reaching fluctuationsFi ,a.1 occur on the background ofFi ,1
fluctuations that in turn are influenced only indirectly~i.e.,
via l1) by the former. The second exponential function
Eq. ~14! exactly factorizes with respect toi 8,

uC&5expS (
i ,a.1

laFiaD)
i 8

~11l1Fi 8,1!uc0&. ~15!

In Eq. ~15! every hole may fluctuate over a total range of fi
plaquettes each. Notice that all holes fluctuate simu
neously. This leads to a multitude of many-body effects, i
the fluctuation of a hole depends on the configuration
other holes. Basically there are three types of many-b
effects that are exemplified in Fig. 2. First, due to the Pa
principle, the fluctuation of a hole may be blocked by t
presence of other holes with the same spin, as in the fluc
tion process labeled~a! in Fig. 2. Second, there are process
in which holes with the same spin change place, as in p
cess~b!. In the following we will call these processessite-
changing processes. Third, there are strong correlations du
to the HubbardUd on doubly occupied Cu sites, as in pro
cess~c!. One common feature of all these many-body effe
is that they suppress fluctuations.

This multitude of many-body effects makes an exa
evaluation of expectation values using Eq.~15! impossible.
Further approximations are, therefore, necessary. Let us
sider processes in which two or more holes simultaneou
leave their original plaquette. The fluctuation strengthsla
for such far-reaching fluctuations turn out to be small co
pared tol1. Therefore, it should be possible to neglect t
many-body effects arising in these processes~except for site-
changing processes in diagonal direction, see below!. In the

s
d

FIG. 2. Examples for many-body effects. There are three ty
of effects:~a! processes which are excluded by the Pauli princip
~b! site-changing processes, and~c! correlations due to the Hubbar
Ud on doubly occupied Cu sites. The approach presented in
work accounts for all effects shown here.
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2258 PRB 60WAIDACHER, RICHTER, HETZEL, AND BECKER
case ofFi ,2d fluctuations, for example, we neglect the pos
bility that the O sitej between the Cu starting and final site
i and k, may already be occupied by a hole with the sa
spin. This amounts to the simplification

Fi ,2d52 (
j ,k,s

nks̄
d

dks
† dis .

In this way, all of the aforementioned processes are includ
some of them, however, only in a simplified way~i.e., by
neglecting many-body effects!.

In addition to all many-body effects that are due to p
cesses where only one hole leaves its original plaquette
furthermore take account of all site-changing processe
diagonal direction, see Fig. 2~b!. The suppression of charg
fluctuations due to the diagonal sites turns out to be of g
importance. On the other hand, site-changing processe
volving next-nearest Cu neighbors in horizontal or verti
direction can be neglected for the following reason: Dur
these processes the paths of the holes have to cross a
intermediate O sites~i.e., sites 1 and 4 in Fig. 1!. However,
since the holes have the same spin, they have to avoid
other due to the Pauli principle. Site-changing processe
horizontal or vertical direction are, therefore, unlikely.

V. EVALUATION OF EXPECTATION VALUES

We now evaluate expectation values with state~15!. Us-
ing the above approximations the norm of this state
^CuC&5nN, whereN is the number of Cu sites and, in ge
eralization of Eq.~8!,

n511(
a

zapala
2 . ~16!

za is the number of equivalent final sites of the given proc
~e.g.,z2s54), andpa is the probability that the configuratio
of the other holes makes the process possible. This prob
ity is defined by

pa5
^CuPi ,auC&

^CuC&
, ~17!

wherePi ,a is a projection operator on all configurations th
allow for processa. For example,Pi ,2s projects on states in
which the target Cu site of fluctuationFi ,2s is empty, whereas
Pi ,2d is the projector on states with a singly occupied fin
site. Due to translational symmetry, the probabilitiespa do
not depend on the site indexi. Obviously, Eqs.~16! and~17!
have to be solved self-consistently sinceuC& in Eq. ~17!
depends on the parametersla . In the case ofp2s , for in-
stance, we obtain by explicit calculation

p2s5
^CuPi ,2suC&

nN
5

1

n (
a

zapala
25121/n.

In an analogous way, one finds

p151, p2s5121/n, p2d51/n,

p35122l1
2/n, p4512l1

2/n. ~18!
-
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The interpretation of Eq.~18! is straightforward.p151 holds
since we assume that far-reaching fluctuations occur on
background ofFi ,1 fluctuations. 1/n is the probability to find
a given hole at its original Cu site.p2d is, therefore, the
probability that a target Cu site is singly occupied. This is
necessary prerequisite for the fluctuation processF2d , which
leads to a double occupancy, cf. Fig. 2~c!. p2s , on the other
hand, is the probability that a target Cu site is empty,
required for fluctuation processF2s . The probability to find
a given hole at a specific O site on its original plaquette
l1

2/n. Thus, p4 is the probability that the target O site o
fluctuationF4 is not blocked by the hole of the same sp
that resides on the neighboring Cu site, cf. Fig. 2~a!. Analo-
gously,p3 is the probability that the target O site of fluctu
tion F3 is not blocked. The additional factor 2 inp3 ~as
compared top4) is due to site-changing processes, cf. F
2~b!.

The fluctuation strengthsla are calculated using Eq.~4!
for an arbitrary sitei 50,

05^Cu@H,F0,a
† #uC&. ~19!

One obtains the following nonlinear system of equations

05~EG2D12tpp!l11tpd1tpdl2sp2s

1tpdl2dp2d12tppl3p322tppl1
2l3 /n, ~20!

05EGl2s14tpdl2dl1 /n1tpdl1p2s

12tpdl3p3p2s1tpdl4p4p2s , ~21!

05~2EG2Udd!l2d14tpdl2sl11tpdl1

12tpdl3p31tpdl4p4 , ~22!

05~EG2D1tpp!l3p31tppl1p31tpdl2sp2sp3

1tpdl2dp2dp31tppl4p32~ tpd12tppl1!l1l3 /n,

~23!

05~EG2D!l4p41tpdl2sp2sp41tpdl2dp2dp4

12tppl3p32~ tpd12tppl1!l1l4 /n, ~24!

whereEG524tpdl1 is the ground-state energy per Cu s
@see Eq.~25!#. This system of equations, together with Eq
~16! and~18!, can be solved self-consistently for allla , pa
and forn. The solution with the lowest value ofEG is then
used in Eq.~15!. In the case ofla50 for all a.1, Eq.~20!
reduces to Eq.~10! for the single plaquette.

Figure 3 shows the delocalization probabilitypala
2/n of a

given hole summed over equivalent final sites as a func
of fluctuation length for parameter set~2!. In order to dem-
onstrate the convergence of the results, additional fluc
tions have been introduced that lead beyond the fluctua
range shown in Fig. 1. The contribution of these additio
fluctuations to the ground-state energy amounts to less
0.1 percent. No significant delocalization beyond the near
neighbor plaquette occurs. A similar observation is ma
when other model-parameter values are chosen within
range, which is relevant for cuprate compounds. These
sults retrospectively justify the neglect of far-reaching flu



th
a
e
lu
te

ly
te
d

ill
r
v
et
av
ole
n

e-

,
a

sults
s-

een
f 4
t
g
ext

und

re-
e

s for

of
e

ns.
hus

n.

f

d
, es-

n
tha
s
T
io
Th

t to

of
e
se

PRB 60 2259ANALYTICAL GROUND STATE FOR THE THREE-BAND . . .
tuations and many-body effects. Notice, however, that
neglect of many-body effects allows for unphysical fluctu
tions, which may decrease the calculated ground-state en
below the exact value. Thus, in contrast to an exact eva
tion of Eq. ~5!, our approximate solution does not guaran
an upper limit to the exact ground-state energy.

From ground state~15! all expectation values are easi
evaluated using Eq.~5!. The ground-state energy per Cu si
occupation numbers, and double occupancies of Cu an
sites are

EG524tpdl1 , ~25!

^nCu&5
1

n
~114l2s

2 p2s14l2d
2 p2d!, ~26!

^dCu&5
1

n
~4l2d

2 p2d!, ~27!

^nO&5
2

n
~l1

212l3
2p31l4

2p4!, ~28!

^dO&5
1

4
^nO&2. ~29!

The number of holes is conserved, i.e.,^nCu&12^nO&51. By
comparison with quantum Monte Carlo calculations, it w
be shown in the next section that these results correctly
produce the charge properties of the ground state. Howe
magnetic properties like the reduction of sublattice magn
zation due to fluctuations are only partly described. We h
neglected many-body effects in processes in which two h
simultaneously leave their original plaquette. Therefore,
spin-flip effects are included. Thus, in the~Heisenberg! limit
of infinitely largeD andUd , ground state~15! reduces to the
Néel state.

FIG. 3. Delocalization probability as a function of fluctuatio
length. The graph shows the delocalization probability of a hole
originates from Cu sitei. The probability is summed over the site
displayed beneath the bars and over all equivalent final sites.
hole remains predominantly on its original plaquette. Delocalizat
beyond the nearest-neighbor plaquette is negligibly small.
probability has been calculated using Eq.~15! for parameter set~2!.
e
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VI. DISCUSSION OF THE RESULTS AND COMPARISON
TO QUANTUM MONTE CARLO SIMULATIONS

We have carried out numerical simulations of the thre
band Hubbard model~1a!, using the projector quantum
Monte Carlo~PQMC! algorithm,10 in order to compare them
with the analytical result, Eq.~15!. In the PQMC approach
the ground state of a finite cluster is projected out from
suitable trial state by applying the exponential operatore2bH

onto the trial state in the limitb˜`. However, in numerical
calculations only finite values of the parameterb are acces-
sible. Therefore, one has to check convergence of the re
with respect tob. Furthermore, one has to account for po
sible finite-size effects.

In the present study, two different cluster sizes have b
investigated. First, we have used a system consisting o
34 plaquettes~i.e., 48 sites!. This is the smallest cluster tha
allows for periodic boundary conditions while still bein
fully two dimensional. Second, we have studied the n
largest cluster, a system of 636 plaquettes~i.e., 108 sites!.
We have used a mean-field version of the analytical gro
state~15! as trial state. No sign problem occurred.

It turns out that the results obtained for the 434 system
with b54 are already reasonably well converged with
spect to bothb and system size. As shown in Fig. 4 for th
case of the ground-state energy per Cu site, the error bar
different values ofb overlap and the values of the 434
system differ only slightly from those of the 636 system.
For this reason, we restrict our simulations to a system
434 plaquettes withb54 and compare the results with th
analytical approach.

In Figs. 5 and 6, the ground-state energiesEG per Cu site
and several occupation numbers calculated using Eqs.~25!–
~29! are compared to the results of the PQMC simulatio
The number of holes is conserved in both approaches. T
the O occupation number^nO& is a function of the Cu occu-
pation number̂nCu&, and the former is, therefore, not show
While the values of the model parameters are those of set~2!,
the charge-transfer energyD is varied covering the range o
very large charge fluctuations (D51.5 eV) to fairly small
charge fluctuations (D54.5 eV). In general, there is goo
agreement between the analytical and numerical results
pecially for larger values ofD.

With increasingD, bothEG and^nCu& increase while the

t

he
n
e

FIG. 4. Convergence of the PQMC calculations with respec
b and the system size. The ground-state energyEG per Cu site for
clusters of 434 and 636 plaquettes is shown as a function
inverse linear system sizeL. The solid and broken error bars are th
results forb54 andb58, respectively. The parameters are tho
of set ~2!.
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2260 PRB 60WAIDACHER, RICHTER, HETZEL, AND BECKER
O double occupancŷdO& decreases. This behavior is due
the suppression of fluctuations for larger values of
charge-transfer energy. For smallerD, the analytical value
for the ground-state energy lies below the PQMC result. T
can be explained by the neglect of many-body effects in
~15!, which allows for more unphysical fluctuations whenD
becomes smaller. These fluctuations also lead to values
^nCu& that are slightly larger than the PQMC result. How
ever, even forD51.5 eV, the relative deviation for bothEG
and ^nCu& amounts to less than 3%.

For larger values ofD, the decrease of̂dO& with increas-
ing D is about two times as large as the decrease of^dCu&.
The reason for this weaker dependence of^dCu& on D is that
an increase in the charge-transfer energy affects^dCu& only
indirectly by reducing the effective Cu-Cu hoppin
while—in contrast tô dO&—the on-site energy of the fina
site is not changed. Both analytical and numerical res
show a maximum in the Cu double occupancy^dCu& for

FIG. 5. Comparison of analytically calculated ground-state
ergies and Cu occupation numbers~solid lines! with the results of
PQMC simulations for a cluster of 434 plaquettes~error bars con-
nected by broken lines!. As a function ofD, the plots show the
ground-state energyEG per Cu site~upper graph!, and the Cu oc-
cupation number̂ nCu& ~lower graph!. The other parameters ar
those of set~2!.

FIG. 6. Comparison of analytically calculated double occup
cies~solid lines! with the results of PQMC simulations for a clust
of 434 plaquettes~error bars connected by broken lines!. As a
function of D, the plots show the Cu double occupancy^dCu& ~up-
per graph! and the O double occupancy^dO& ~lower graph!. The
other parameters are those of set~2!.
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intermediate values ofD. This may be interpreted as th
point whereD is already sufficiently large to force hole
from O sites onto already occupied Cu sites but still not la
enough to suppress the effective Cu-Cu hopping.

VII. CONCLUSION

Summing up, we have derived an analytical approxim
tion, Eq.~15!, for the ground state of the three-band Hubba
model ~1a! on an infinite, half-filled CuO2 plane. The ap-
proach uses fluctuation operatorsFa and fluctuation
strengthsla that have a clear physical interpretation. T
parameters contained in Eq.~15! are determined self-
consistently by solving a nonlinear system of equatio
While the approach is nonperturbative and conserves
consistency, expectation values with the approximate gro
state are still easy to evaluate. By comparison with projec
quantum Monte Carlo simulations, we have demonstra
that Eq.~15! gives a reliable description of charge properti
covering the range from small to very large charge fluct
tions. Equation~15! can be generalized for other geometrie
Furthermore, due to the use of fluctuation operators our
proach provides a natural framework for the calculation
charge excitations, for example, by using projection te
nique. This will be demonstrated in a forthcomin
publication.6
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APPENDIX: RELATION TO THE CUMULANT
FORMALISM

The approach presented above can be formulated in
framework of the cumulant formalism.7 The cumulant expec-
tation value11 of a product of operators is a linear combin
tion of different factorizations of expectation values. For e
ample, for two operatorsA1 andA2,

^wuA1A2ux&c5
^wuA1A2ux&

^wux&
2

^wuA1ux&^wuA2ux&

^wux&2
.

Here and in the following we always assume that the sta
involved in a cumulant have nonvanishing overlap, i.
^wux&Þ0. One of the attractive features of cumulants is th
they preserve size consistency.7

The cumulant formalism for the calculation of groun
state properties may be formulated as follows. By applicat
of an operatorV within the cumulant ordering an approx
mate ground stateuc0& can be mapped onto the full groun
stateuC&,

uC&c5Vuc0&
c5expS (

a
laFaD uc0&

c. ~A1!

The parametersla are determined using the equation8

-
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05^wuFa
†HVuc0&

c ~A2!

for all a and for an arbitrary stateuw&. These equations
follow12 from the condition thatVuc0&

c is an eigenstate o
H. The exponential function in Eq.~A1! should be under-
stood in terms of a series expansion in which the opera
Fa are subjected to the cumulant ordering. From Eq.~A1!,
ground-state properties can be calculated using

^A&5^wuAVuc0&
c. ~A3!

Next we show that Eqs.~3! and~4! can be derived from the
above equations when the following identity12 is used:

^wueF†
AeFux&c5^eFwuAueFx&c. ~A4!

Equation~A4! holds for all operatorsF andA. It allows us to
remove the exponential functions from the cumulant ord
ing and apply them directly onto the states. Using Eq.~A4!,
Eqs. ~3! and ~A1! can be directly transformed into eac
other. In Eq. ~A2!, on the other hand, we choseuw&
5Vuc0& and use Eq.~A4! to obtain
,

a

.

r,
rs

r-

05^Vc0uFa
†HuVc0&

c.

If uVc0& is an eigenstate ofH, this equation is equivalent to
Eq. ~4!.

We conclude by pointing out some of the advantages
Eqs. ~3! and ~4! as compared to other possible approach
within the framework of the cumulant formalism. First, th
fact that the exponential operatorV has been transferre
onto the stateuc0& amounts to a summation of all orders
the la . Thus, our approach is nonperturbative and avo
~possibly divergent! series expansions of expressions li
Eq. ~12!. The divergence of these series forl1>0.5 is
equivalent to the violation of condition13 u^c0uC&u2.1/2.
Consequently, whenl1>0.5, within the cumulant ordering
no operatorV exists for stateuc0&. These difficulties do not
occur whenV has been removed from the cumulant ord
ing. Second, since in Eq.~4! the full ground stateuC& ap-
pears as both bra and ket vector, more fluctuations are ta
into account. If, for example, Eq.~A2! with uw&5uc0& is
used instead of Eq.~4!, one always obtains a vanishing valu
for l2s .
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