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For the calculation of charge excitations as those observed in, e.g., photoemission spectroscopy or in
electron-energy-loss spectroscopy, a correct description of ground-state charge properties is essential. In
strongly correlated systems like the undoped cuprates this is a highly nontrivial problem. In this paper we
derive a nonperturbative analytical approximation for the ground state of the three-band Hubbard model on an
infinite, half-filled CuQ plane. By comparison with projector quantum Monte Carlo calculations it is shown
that the resulting expressions correctly describe the charge properties of the ground state. Relations to other
approaches are discussed. The analytical ground state preserves size consistency and can be generalized for
other geometries, while still being both easy to interpret and to evall®@#463-18269)01628-§

I. INTRODUCTION

The interest devoted to the three-band Hubbard nidgel

Strong correlations due tdy are the reason why ground-
state properties of Hamiltoniad can be calculated only ap-
proximately and/or on finite clusters. Besides analytical ap-

due to the fact that it describes the charge properties of Broaches like, e.g., different approximations for dynamical

CuG, layer, like those found in the high superconducting
cuprates, while still being comparatively simgl@he basic

assumption that leads to the three-band Hubbard model #&"

that the only relevant orbitals are the Cd,3_,2 and the
O 2p, and 2, orbitals. This granted, the CyQayer may be

described by a lattice with one Cu and two O sites per uni
cell with hybridization between nearest-neighbor Cu-O pair
and O-O pairs. In the hole picture the three-band Hubba

Hamiltonian reads

H=Hy+Hq, (1a

HozAjz njp(,-i— Udzl nidTnidl, (1b)

Hl:tpdazj;’ ¢ipjd(p;r“d“f+H'C')+tpp2 ¢E;pf¢,pjf@,
e (e
(1o
R

whered;,, (pJTU) create a hole with spimr in theith Cu d
orbital (jth O 2p orbital), while nidg (nlpg) are the corre-
sponding number operatorsl, is the atomic part of the
Hamiltonian with the charge-transfer energyand the on-
site Coulomb repulsiotd4 between Cu @ holes.H, repre-
sents the hybridization of Cud3and O 2 orbitals(hopping

strengtht,4) and of O 2 orbitals (hopping strengtrt).

The factors¢, 4 and ¢{)‘p give the correct sign for the hop-
ping processe$,and (ij) denotes the summation over
nearest-neighbor pairs.

In Eg. (18 only the most important Coulomb repulsion

r

Green'’s functioné, mostly numerical simulatioihave been
applied to the three-band Hubbard model. The aim of the
esent work is to derive an analytical approximation for the
ground state of an infinite system at half-fillifige., one hole
per Cu site that correctly describes charge properties and is
§ti|l comparatively easy to evaluate. The resulting approxi-
mation does not only allow for a calculation of ground-state
%roperties of the three-band modgdla). It also provides a

amework for the investigation of excitations. Furthermore,
the approach is sufficiently general to be applied not only to
a CuQ plane but also to different geometries like, e.g., that
of a CuQ, corner-sharing chaif.

Starting point of the approximation is a dleordered
ground state of the atomic Hamiltoni&ty, which is denoted
by |#o). Due to fluctuations induced bii,, this atomic
ground statg ) differs from the full ground stat¢¥) of
HamiltonianH. In Sec. Ill, it will be shown that a perturba-
tive treatment of these fluctuations breaks down for param-
eter values that are in the physically relevant range. There-
fore, ground-state fluctuations have to be treated in a
nonperturbative way. In the following, we will present a sys-
tematic and nonperturbative scheme to introduce these fluc-
tuations on the background pf).

The paper is organized as follows. In Sec. Il, the general
formalism is presented. As an illustration in Sec. lll, this
formalism is applied to théexactly solvablg problem of a
single CuQ plaquette. The approximative ground state of an
infinite, half-filled CuQ plane is developed in Sec. IV, and
ground-state expectation values are evaluated in Sec. V. In
Sec. VI, the results of the analytical approach are compared
to projector quantum Monte Carlo simulations. The conclu-
sions are presented in Sec. VII. Finally, a more detailed jus-

Uq is included, while O on-site and intersite Coulomb repul-jiication of the approach together with a discussion of its

sions have been neglected. For explicit calculations the fol
lowing typical set of values for the parameters involved in

Eq. (18 will be used?
A=35eV, U;=88¢eV,
tpa=1.3 eV,

tpp=0.65 eV. 2)
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felationship to the cumulant formalidnis given in the Ap-
pendix.

II. GENERAL FORMALISM

The basic idea is to start with a stdig,) that is a first
approximation to the full ground stat&”). In the present
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case, we will choosé,) to be a Nel-ordered ground state The fluctuation strengtix, in Eq. (7) is determined from
of the atomic HamiltoniarH, Eq. (1b). In |4g), every Cu  condition(4),

site is singly occupied and all O sites are empty. Next, fluc-

tuations on the background ¢f,) are introduced. These 0=(¥|[H,F{]|¥). €)
ground-state fluctuations are described by fluctuation oper
torsF, (introduced below in more detaithat approximately
transform state ¢,) into the full ground statéWw). Under
quite general conditions it can be shdithat the transfor-
frgfrtr:on leading from ) to |¥) has to be of exponential 0="4tpq—4(A— 2ty )\ — 16ty o\ 2. (10)

a}\'Ionvanishing contributions in E@9) arise only from terms
up to order)\i. The following quadratic equation fox, is
obtained:

When the positive solution fok; is used in Eq.(7), one

_ obtains the exact ground state. The ground-state ertgtdy
|\If}—ex;{ Ea: )\“F“)WO)' ®) calculated using Eq5),

The parameters , are fluctuation strengths of the fluctuation 1 5 5
operators, . They are determined using the set of equations Ec= ~4tpah1=5[A =2ty V(A =2t,)%+ (4t,)? .

(11)
For parameter sé€R), a value of\ ;= 0.33 results. Notice that

Eq. (11) contains only a reduced effective charge-transfer
energy A—2t,,. The Cu occupation numbeknc,)

0=(¥|[H,FI|¥), a=1.2,.... 4

Equation(4) follows from the condition that¥’) is an eigen-
state of the full HamiltoniarH, Eq. (1a). From Eq.(3) all

ground-state properties can be evaluated using = (W[ny| W)(¥| W)L is given by
({ >:M (5) (olexp(N1F1)ng exp(\1F )| o)
The ground-state energy, for instance, is calculated from Eg.
(5) with A=H. Equations(3) and (4), together with an ap- B (Yol (1+N1FDNg(1+N1F1)| o)
propriate choice of fluctuation operatdes,, constitute the N (v|v)
formal framework to be used in the remainder of this work.
The above formalism will be applied to an exactly solvable 1
problem in Sec. lll. This serves both as an illustration of the - 1+4)2° (12)
approach and as an indication to which extent a perturbative !
treatment of ground-state fluctuations is possible. From this result one may conclude that a perturbative treat-

We finally remark that Eqg3) and(4) are closely related ment of F; fluctuations(i.e., an expansion in,, see the
to the cumulant formalisnisee the Appendjx Therefore, Appendix, also in infinite systems, is in general not pos-
the approach presented in this work preserves size consisible. Typically,\; is of the order 1/2. An expansion of Eq.
tency. Thus, for instance, the approximated ground-state erfi2) in \,, however, diverges foA,;=0.5. Condition\;

ergy remains an extensive quantity. =0.5 is equivalent to a vanishing effective charge-transfer
energyA—2t,,=0 and to a Cu occupation number of 1/2.
Ill. APPLICATION TO A SINGLE PLAQUETTE At this point, staté ) ceases to be a good approximation of

the exact ground statgV). This divergence has been ob-

As an example, the methqd presented In the last section rved previously,although its origin was unclear at that
now used to find an approximate expression for the groung -

state of Hamiltonian(1la) for the case of a single CuO
plaquette occupied by a single hole. In this case, the unper-
turbed ground statl,) of Hy is a state in which the Cu site
is singly occupied while the four O sites are empty. For We now apply the formalism presented in Sec. Il to the
reasons of symmetry we may use a single fluctuation operageometry of an infinite Cu@plane. State,) is again the
tor F4, which describes fluctuations of the hole from the CuNeel-ordered ground state of the atomic Hamiltonig) Eq.

IV. APPLICATION TO AN INFINITE CuO , PLANE

site to the four surrounding O sitgsi.e., (1b). Let us introduce appropriate fluctuation operatérs
First, operator; from Eq. (6) is generalized to alN Cu
Fi=—2 ¢h4p],d,. (6)  sitesi,
IR
where ¢}4 are the phase factors introduced in Etg). Ac- Fii=— 2 &g.plodi,,
cording to Eq.(3), the full ground state of a hole on a single Lo
plaquette is expressed by where the sum is over the four O sifethat surround Cu site
_ i. The remaining operators are constructed in accordance

[¥) = exp(haF )| o). (D With the following principles:(i) All operators describe de-

The norm of this state is localizations of a hole initially located at Cu siite(ii) The

5 final site in the process is reached via the shortest path ac-
(U|W)=1+4n1. ) cessible by Cu-O hopping processéi) A summation over
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FIG. 1. Final sites of the fluctuation operatdts,. Cu and O
sites are symbolized by squares and circles, respectively. Arrows
show spin orientation and position of the holes in the atomic ground

state. The fluctuations; , start from Cu sité and lead to the final FIG. 2. Examples for many-body effects. There are three types
sites labeled by=1, . . . ,4. Thearea shown is a quarter of the full of effects:(a) processes which are excluded by the Pauli principle,
area accessible to the fluctuations. (b) site-changing processes, afi correlations due to the Hubbard

Uy on doubly occupied Cu sites. The approach presented in this
all equivalent final sites is takefiv) The signs of the hop- work accounts for all effects shown here.
ping processes are chosen to be the negative of the phases
¢4 in Hamiltonian(1c) (which guarantees non-negative val- do not depend on the Cu site indexTo simplify Eq.(13),

ues for the fluctuation strengths,). we approximately factorize the exponential function with re-
Figure 1 shows final sites reached by fluctuation operator§Pect to the fluctuations; ;,

Fi ., a=1,...,4. Forreasons of symmetry only a quarter

of the allowed fluctuation range is shown. Fluctuattr, )= ex A F lex = 14

for instance, describes the hopping of the hole from Cuisite ¥) i,a2>1 ot lz Fira|ldo) (14

via O sitej, to the four nearest-neighbor Cu sites
This approximation amounts to the assumption that far-
o\t reaching fluctuation§; ,-, occur on the background & ;
Fio= —Zklo (1-nj,)dy,dis- fluctuations that in turn are influenced only indirectlye.,
b via \;) by the former. The second exponential function in
Final states with singly or doubly occupied Cu sites differ by Eq. (14) exactly factorizes with respect 16,
the Coulomb energW . SinceUy is large, we have to dis-
tinguish between these two cases. Therefore, we Bpljt _
. . . . - i + i .
into two operators that describe a process leading to a singly [¥)=ex i,a2>1 NaFia ll_[ (1+MaFi o). (19

or doubly occupied Cu site, respectively,
In Eq.(15) every hole may fluctuate over a total range of five

p : plaguettes each. Notice that all holes fluctuate simulta-
Fiz=— > (1-n-)(1-nP)d} di,, neously. This leads to a multitude of many-body effects, i.e.,
Peo the fluctuation of a hole depends on the configuration of
other holes. Basically there are three types of many-body
Fig=— 2 niil—njpg)dT do . effecj[s that are exem_plified in Fig. 2. First, due to the Pauli
' ko <7 principle, the fluctuation of a hole may be blocked by the
presence of other holes with the same spin, as in the fluctua-
Note that it is not necessary to introduce a fluctuation operaggn process labelet) in Fig. 2. Second, there are processes
tor, which leads to the neal’est-neighbor Cu sites in diagonah which holes with the same Spin Change p|ace7 as in pro-
direction(e.g., the Cu site without a label in Fig). Due to  cess(b). In the following we will call these processaite-
the Pauli principle, fluctuations to these sites are largely eXchanging processedhird, there are strong correlations due
cluded because of antiferromagnetic order. The neglect qf the HubbardJ 4 on doubly occupied Cu sites, as in pro-
fluctuations leading beyond the range shown in Fig. 1 will begess(c). One common feature of all these many-body effects
justified a posteriori It will be shown that the fluctuation g that they suppress fluctuations.
strengthsk, decrease rapidly with increasing length of the  This multitude of many-body effects makes an exact
fluctuation processes. evaluation of expectation values using Efj5) impossible.
According to Eq.(3), the ground state has the form Further approximations are, therefore, necessary. Let us con-
sider processes in which two or more holes simultaneously
leave their original plaquette. The fluctuation strengths
for such far-reaching fluctuations turn out to be small com-
pared to\ . Therefore, it should be possible to neglect the
where « denotes the five fluctuation operators describedmany-body effects arising in these processasept for site-
above. Because of translational symmetry, the paramketers changing processes in diagonal direction, see belowthe

|\P>:exp(% )\aFia)|¢0>' (13)



2258 WAIDACHER, RICHTER, HETZEL, AND BECKER PRB 60

case ofF; 4 fluctuations, for example, we neglect the possi-The interpretation of E¢(18) is straightforwardp,; =1 holds
bility that the O sitg between the Cu starting and final sites, since we assume that far-reaching fluctuations occur on the
i andk, may already be occupied by a hole with the samebackground of; ; fluctuations. 1# is the probability to find
spin. This amounts to the simplification a given hole at its original Cu sitg,y is, therefore, the
probability that a target Cu site is singly occupied. This is a
necessary prerequisite for the fluctuation prodegs which
leads to a double occupancy, cf. FigcR p,s, on the other
hand, is the probability that a target Cu site is empty, as
In this way, all of the aforementioned processes are includedequired for fluctuation proceds,.. The probability to find
some of them, however, only in a simplified wéye., by  a given hole at a specific O site on its original plaquette is
neglecting many-body effegts \2/v. Thus, p, is the probability that the target O site of
In addition to all many-body effects that are due to pro-fiyctuationF, is not blocked by the hole of the same spin
cesses where only one hole Ieave_s its origi_nal plaquette, Wat resides on the neighboring Cu site, cf. Fig)2Analo-
furthermore take account of all site-changing processes igously, p, is the probability that the target O site of fluctua-
diagonal direction, see Fig(l3. The suppression of charge tjon F, is not blocked. The additional factor 2 ip; (as
fluctuations due to the diagonal sites turns out to be of greatompared tap,) is due to site-changing processes, cf. Fig.
importance. On the other hand, site-changing processes inyp)
volving next-nearest Cu neighbors in horizontal or vertical ~ The flyctuation strengths,, are calculated using E¢4)
direction can be neglected for the following reason: Duringsg, gn arbitrary sitd =0,
these processes the paths of the holes have to cross at the
intermediate O site§.e., sites 1 and 4 in Fig.)1However, 0=(\P|[H,F$a]|\1'>. (19
since the holes have the same spin, they have to avoid each '
other due to the Pauli principle. Site-changing processes iPne obtains the following nonlinear system of equations:
horizontal or vertical direction are, therefore, unlikely.

_ d ot
Fi,zd—_zk: Nygdiodio-
Ko

0:(EG_A+2tpp))\l+tpd+tpd)\23p25
V. EVALUATION OF EXPECTATION VALUES +tpah2aPaat 2tpphaP3— 2t NINs v, (20)

We now evaluate expectation values with stdtB). Us- B /
ing the above approximations the norm of this state is 0=Eghast4tpahaaha/v+tpahaPas
(W|w)=2»", whereN is the number of Cu sites and, in gen- + 2\ 3P3Pas+ tyah aPaPas, (21)
eralization of Eq.(8),

0=(2Eg—Uga)N2g+ 4tpahash 1 +tpahg
_ 2
v=1+ Ea: ZoPoMy, - (16) + thd)\3p3+tpd)\4p4, (22

z, is the number of equivalent final sites of the given process  0=(Eg— A +1tpp)A3p3+tpph1P3+ thah2sP2sP3
(e.g.,z,s=4), andp,, is the probability that the configuration

of the other holes makes the process possible. This probabil-  *+tpat2dP2dPst tpphaPs— (tpat 2tpph1) Nk /v,
ity is defined by (23)
D :M 17 0=(Eg—A)NaPattygN2sP2sPa+ tpah 2aP24P4
()

+ 2t 3Pz~ (tpat 2t ph )N g/ v, (24
whereP; , is a projection operator on all configurations that
allow for processx. For exampleP; ,; projects on states in
which the target Cu site of fluctuatidf) . is empty, whereas
Pi o is the projector on states with a singly occupied final
site. Due to translational symmetry, the probabilities do
not depend on the site indéxObviously, Eqs(16) and(17)
have to be solved self-consistently sinck) in Eq. (17)
depends on the parametexs. In the case op,, for in-
stance, we obtain by explicit calculation

whereEg= —4t g\, is the ground-state energy per Cu site
[see Eq.25)]. This system of equations, together with Egs.
(16) and(18), can be solved self-consistently for all,, p,,
and forv. The solution with the lowest value &g is then
used in Eq(15). In the case ok ,=0 for all «>1, Eq.(20)
reduces to Eq(10) for the single plaquette.

Figure 3 shows the delocalization probabiliiy)\i/v ofa
given hole summed over equivalent final sites as a function
of fluctuation length for parameter s@). In order to dem-

(V[P W) 1 onstrate the convergence of the results, additional fluctua-
pzS:'—;“: Z E zapa)\izl_l/,,_ tions have been introduced that lead beyond the fluctuation
v Vo a range shown in Fig. 1. The contribution of these additional
fluctuations to the ground-state energy amounts to less than
0.1 percent. No significant delocalization beyond the nearest-
neighbor plaquette occurs. A similar observation is made
when other model-parameter values are chosen within the
5 5 range, which is relevant for cuprate compounds. These re-
P3=1—2\1/v, ps=1-\i/v. (18)  sults retrospectively justify the neglect of far-reaching fluc-

In an analogous way, one finds

p]_:l, pZS:l_llvl pzd:]./V,
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FIG. 4. Convergence of the PQMC calculations with respect to
O D O I:I B and the system size. The ground-state en&gyer Cu site for
clusters of 4<4 and 6x6 plaquettes is shown as a function of
O O O inverse linear system size The solid and broken error bars are the
results forB=4 andB=8, respectively. The parameters are those
FIG. 3. Delocalization probability as a function of fluctuation of set(2).
length. The graph shows the delocalization probability of a hole that
originates from Cu sité. The probability is summed over the sites /| DISCUSSION OF THE RESULTS AND COMPARISON

displayed beneath the bars and over all equivalent final sites. The  1q QUANTUM MONTE CARLO SIMULATIONS
hole remains predominantly on its original plaquette. Delocalization

beyond the nearest-neighbor plaquette is negligibly small. The We have carried out numerical simulations of the three-
probability has been calculated using Etf) for parameter sei). band Hubbard mode(la), using the projector quantum
Monte Carlo(PQMC) algorithm®in order to compare them
tuations and many-body effects. Notice, however, that thevith the analytical result, E¢(15). In the PQMC approach,
neglect of many-body effects allows for unphysical fluctua-the ground state of a finite cluster is projected out from a
tions, which may decrease the calculated ground-state energyitable trial state by applying the exponential operatdf"
below the exact value. Thus, in contrast to an exact evaluasnto the trial state in the limjg—oc. However, in numerical
tion of Eq. (5), our approximate solution does not guaranteecalculations only finite values of the paramefeare acces-
an upper limit to the exact ground-state energy. sible. Therefore, one has to check convergence of the results

From ground statél5) all expectation values are easily with respect to8. Furthermore, one has to account for pos-
evaluated using Eq5). The ground-state energy per Cu site, sible finite-size effects.
occupation numbers, and double occupancies of Cu and O In the present study, two different cluster sizes have been
sites are investigated. First, we have used a system consisting of 4

X 4 plaquettegi.e., 48 sites This is the smallest cluster that
Ec=—4tpa\1, (250  allows for periodic boundary conditions while still being
fully two dimensional. Second, we have studied the next
1 largest cluster, a system of@& plaquettedi.e., 108 siteks
(New=—(1+4\3Prs+ 4N34P20), (26)  We have used a mean-field version of the analytical ground
v state(15) as trial state. No sign problem occurred.

It turns out that the results obtained for th&x 4 system
with B=4 are already reasonably well converged with re-
spect to both3 and system size. As shown in Fig. 4 for the
case of the ground-state energy per Cu site, the error bars for

2 different values of overlap and the values of thex#
(ngy= ;()\iJr 2)\§p3+ )\ﬁp4), (28) system differ only slightly from those of the>66 system.
For this reason, we restrict our simulations to a system of
4 X 4 plaquettes wittB=4 and compare the results with the
1 ) analytical approach.
(do)= Z<n0> : (29 In Figs. 5 and 6, the ground-state enerdigsper Cu site
and several occupation numbers calculated using 8-
The number of holes is conserved, if@g,)+2(ng)=1. By  (29) are compared to the results of the PQMC simulations.
comparison with quantum Monte Carlo calculations, it will The number of holes is conserved in both approaches. Thus
be shown in the next section that these results correctly re¢he O occupation numbéng) is a function of the Cu occu-
produce the charge properties of the ground state. Howevepation numbefnc,), and the former is, therefore, not shown.
magnetic properties like the reduction of sublattice magnetiWhile the values of the model parameters are those d2set
zation due to fluctuations are only partly described. We havéhe charge-transfer energy is varied covering the range of
neglected many-body effects in processes in which two holegery large charge fluctuations\& 1.5 eV) to fairly small
simultaneously leave their original plaguette. Therefore, na@harge fluctuationsX=4.5 eV). In general, there is good
spin-flip effects are included. Thus, in tkideisenberglimit agreement between the analytical and numerical results, es-
of infinitely largeA andU, ground staté15) reduces to the pecially for larger values oA.
Neel state. With increasingA, bothEg and(nc¢,) increase while the

74.5 185 | = 1

—
10t :I: 1
]

]

—t

-1.95

Eq (eV)

delocalization probability (%)

1 2
(dew) =~ (4N34P2a). @7
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-1.5 . T intermediate values ofA. This may be interpreted as the
. - ;’g‘,:}l'gca' point whereA is already sufficiently large to force holes
> 27 i from O sites onto already occupied Cu sites but still not large
E sl | enough to suppress the effective Cu-Cu hopping.
-3 ’ ’ — VIl. CONCLUSION
A o7 Summing up, we have derived an analytical approxima-
:3 0.6 - ] tion, Eq.(15), for the ground state of the three-band Hubbard
V. o5t _ model (18 on an infinite, half-filled Cu® plane. The ap-
04 . . L proach uses fluctuation operatos, and fluctuation
T 2 3 4 5 strengths\ , that have a clear physical interpretation. The
A (eV) parameters contained in Eq15) are determined self-

_ _ consistently by solving a nonlinear system of equations.
I_ZIG. 5. Comparlson_ of analytlcall_y c'alculat'ed ground-state eMwhile the approach is nonperturbative and conserves size
ergies and Cu occupation numbésslid lines with the results of . qistancy, expectation values with the approximate ground
PQMC simulations for a cluster of><_14 plaquettegerror bars con- state are still easy to evaluate. By comparison with projector
nected by broken lingsAs a function ofa, the plots show the quantum Monte Carlo simulations, we have demonstrated
ground-state energl per Cu site(upper graph and the Cu oc- . . S -

: that Eq.(15) gives a reliable description of charge properties
cupation numbexng,) (lower graph. The other parameters are coveriﬂ( th)egran e from small to \F;er large cr?arpe f?uctua-
those of set?2). . 9 : 9 . y larg 9 .

tions. Equatior(15) can be generalized for other geometries.
) o Furthermore, due to the use of fluctuation operators our ap-

O double occupancido) decreases. This behavior is due to proach provides a natural framework for the calculation of
the suppression of fluctuations for larger values of thecharge excitations, for example, by using projection tech-

charge-transfer energy. For smalléy the analytical value npique. This will be demonstrated in a forthcoming
for the ground-state energy lies below the PQMC result. Thisyplication®

can be explained by the neglect of many-body effects in Eq.
(15), which allows for more unphysical fluctuations whan
becomes smaller. These fluctuations also lead to values for ACKNOWLEDGMENTS

(ncy that are slightly larger than the PQMC result. How-  pigeyssions with A. Flbsch and M. Vojta are gratefully
ever, even fod =1.5 eV, the relative deviation for bothg acknowledged. This work was supported by DFG through

and(nc,) amounts to less than 3%. o the research program of the SFB 463, Dresden.
For larger values oA\, the decrease didp) with increas-

ing A is about two times as large as the decreasédef).
The reason for this weaker dependencédy) on A is that APPENDIX: RELATION TO THE CUMULANT
an increase in the charge-transfer energy affédgs) only FORMALISM

indirectly by reducing the effective Cu-Cu hopping,
while—in contrast to{do)—the on-site energy of the final
site is not changed. Both analytical and numerical result
show a maximum in the Cu double occupan@g,) for

The approach presented above can be formulated in the
framework of the cumulant formalisfiThe cumulant expec-
Yation valué! of a product of operators is a linear combina-
tion of different factorizations of expectation values. For ex-
ample, for two operatord; andA,,

0.022 ; ; ;
0.018 analytical ]
——- POMC o (elAAx)  (elAdlx)(elAalx)

A, 0014 | 1 (|A1A] x)C= o (o)

T 0010 | Eo T~ Ty | elx
0.006 - . , .

0.002 : : : Here and in the following we always assume that the states
0'018 i ] involved in a cumulant have nonvanishing overlap, i.e.,
' (¢|x)#0. One of the attractive features of cumulants is that

_go 0.014 ] they preserve size consistency.

v 0010 | 1 The cumulant formalism for the calculation of ground-
0.006 r ] state properties may be formulated as follows. By application
0.002 : . . of an operator) within the cumulant ordering an approxi-

1 2 3 4 5
A (eV) mate ground stathj,) can be mapped onto the full ground
state| V),

FIG. 6. Comparison of analytically calculated double occupan-
cies(solid lineg with the results of PQMC simulations for a cluster
of 4x4 plaquetteserror bars connected by broken life#s a |\P)°=Q|¢O)C=ex;{ > )\aFa> | o) ©. (A1)
function of A, the plots show the Cu double occupardy.,) (up- @
per graph and the O double occupangy) (lower graph. The
other parameters are those of &8t The parameters , are determined using the equafion
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0=(o|FIHQ ) (A2) 0=( Q| FLH| Qo) °.

for all « and for an arbitrary statgp). These equations If [Qo) is an eigenstate dfi, this equation is equivalent to
follow*? from the condition that)|y)° is an eigenstate of Ed. (4). o

H. The exponential function in EqA1) should be under- We conclude by pointing out some of the advantages of
stood in terms of a series expansion in which the operator§9s: (3) and (4) as compared to other possible approaches
F, are subjected to the cumulant ordering. From &), within the framework of the cumulant formalism. First, the

ground-state properties can be calculated using fact that the exponential operaté} has been transferred
onto the staté,) amounts to a summation of all orders in
(A)=(p|AQ|p)°. (A3)  the\,. Thus, our approach is nonperturbative and avoids

Next we show that Eq¥3) and (4) can be derived from the (possibly divergent series expansions of expressions like

. i 9. ) Eqg. (12). The divergence of these series fa=0.5 is
above equations when the following identftys used: equivalent to the violation of conditidh |{ yo|W)|?>1/2.

Eta I ovc s F Fo\c Consequently, when;=0.5, within the cumulant ordering
(ole” AeTx)°=(e"¢|Ale"))". (A4) no operatol) exists for staté,). These difficulties do not

Equation(A4) holds for all operator§ andA. It allows usto  occur when() has been removed from the cumulant order-

remove the exponential functions from the cumulant ordering. Second, since in Ed4) the full ground statd¥) ap-

ing and apply them directly onto the states. Using &gt),  pears as both bra and ket vector, more fluctuations are taken

Egs. (3) and (A1) can be directly transformed into each into account. If, for example, EqA2) with |@)=|y) is

other. In Eq. (A2), on the other hand, we chosgn) used instead of Eq4), one always obtains a vanishing value

=) and use Eq(A4) to obtain for Nos.
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