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Schwinger-Keldysh approach to disordered and interacting electron systems: Derivation of
Finkelstein’s renormalization-group equations
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We develop a dynamical approach based on the Schwinger-Keldysh formalism to derive a field-theoretic
description of disordered and interacting electron systems. Within this formalism we calculate the perturbative
renormalization-group~RG! equations for interacting electrons expanded around a diffusive Fermi liquid fixed
point, as obtained originally by Finkelstein„Zh. Éksp. Teor. Fiz.84, 168 ~1983! @Sov. Phys. JETP57, 97
~1983!#… using replicas. The major simplifying feature of this approach, as compared to Finkelstein’s, is that
instead ofN˜0 replicas, we only need to considerN52 species. We compare the dynamical Schwinger-
Keldysh approach and the replica methods, and we present a simple and pedagogical RG procedure to obtain
Finkelstein’s RG equations.@S0163-1829~99!03427-X#
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I. INTRODUCTION

Since the original idea of an impurity driven meta
insulator transition~MIT ! was put forward by Anderson,1 a
substantial amount of work has been carried out to und
stand this problem in the language of phase transitions an
the renormalization group~RG!.2–4 Simple scaling argu-
ments were made for the case of noninteracting electron
was demonstrated that there would always be a meta
insulator transition in three dimensions as a function of
disorder strength, whereas in one and two dimensions e
the weakest amount of disorder would make the system
insulator at zero temperature.4 The lower critical dimension
for the MIT is d52 for the noninteracting electron problem
ande5d22 expansions have been carried out to determ
the critical exponents characterizing the phase transition3

These scaling ideas were extended to include the eff
of electron-electron interactions by Finkelstein,5 and later by
Castellaniet al.,6 who obtained RG equations for the co
ductance, as well as the singlet and triplet interaction c
pling constants, starting with a diffusive Fermi-liquid fixe
point ~for a review, see Ref. 7!. This seminal work defined a
field-theoretical language to study the simultaneous prese
of interactions and disorder. Unfortunately, this approa
suffered from being inconclusive — since the coupl
renormalization-group equations flow to strong couplin
away from the perturbative starting point of a diffusiv
Fermi-liquid state — and technically quite involved. A r
cent discussion of Finkelstein’s replica theory can be fou
in Ref. 8.

The recent experimental discovery by Kravchenko a
co-workers9 of a MIT in a two-dimensional Si-MOSFET
PRB 600163-1829/99/60~4!/2239~16!/$15.00
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~metal-organic semiconductor field-effect transistor!, and the
subsequent discovery of such a transition in oth
two-dimensional10–12electron-gas systems, has rekindled
terest in sharpening our understanding of the combined
fects of disorder and interactions. In this paper we will re
erive the RG equations for all marginal perturbations of
diffusive Fermi-liquid fixed point~there are no relevant per
turbations!. We will do so using the dynamical Schwinge
Keldysh approach. Our results agree with those obtained
ing the replica method5 and disorder-averaged perturbatio
theory.6 As we will show, the Schwinger-Keldysh and rep
lica approaches to studying the diffusive Fermi liquid exhi
very similar structures. It is important to note that, in t
replica solution, there are no subtleties involved in theN
˜0 replica limit at the perturbative level, which reflects th
fact that that there is no replica symmetry breaking in
diffusive Fermi liquid state. This is the underlying reas
why the Schwinger-Keldysh and replica solutions, as we w
see, look very much alike, with the dynamical thermal in
ces for time-ordered and anti-time-ordered fields behaving
simple bookkeeping devices, just as in the replica soluti
On the other hand, glassy systems which exhibit replica s
metry breaking, such as the recently proposed Wigner g
phase,13,14 should be rather different and more interestin
We will explore these directions in the future. In the prese
paper, we will limit ourselves to the study of the diffusiv
Fermi liquid, which we present below.

We present the Schwinger-Keldysh approach for dis
dered and interacting electronic systems in Sec. II, where
show that instead ofN˜0 replicas, we only need to conside
N52 species of fields. Using this dynamic approach, in S
III we derive a nonlinears model for interacting diffusion
2239 ©1999 The American Physical Society
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2240 PRB 60CHAMON, LUDWIG, AND NAYAK
modes in the Schwinger-Keldysh formalism. For simplici
we restrict attention to the ‘‘unitary’’ case considered
Finkelstein’s original paper:5 we assume that the electron
interact through a short-range interaction, and that they ar
a magnetic field which affects their orbital motion, but th
the Zeeman coupling vanishes~this situation might be real
izable in GaAs-AlxGa12xAs systems!. By straightforward
extension of the methods used here, we can also trea
more interesting, but more complicated, ‘‘orthogonal’’ ca
in which the magnetic field is turned off. In a similar vei
we avoid the straightforward but more involved extension
long-range Coulomb interactions. This would include app
cations of our approach to the quantum Hall plateau tra
tions. We emphasize the similarities and differences with
replicateds model. In Sec. IV, we find the diffusive sadd
point and bring thes model into a form which is convenien
for perturbation theory about this saddle point. This form
used to derive the Feynman rules, given in Sec. V, which
needed for one-loop perturbative calculations. In Sec. VI,
use these Feynman rules to discuss the one-loop renor
ization of thiss model. One of our main purposes here
pedagogy, so we discuss the diagrammatics in detail, pa
attention to the symmetry factors and minus signs wh
prove to be crucial in determining the physics of the mod
As we show, the apparent complexity — due to the la
number of diagrams — can be offset by a systematic e
meration. Finally, in Secs. VII and VIII, we discuss the r
sulting RG equations, a constraint on them following fro
the Ward identity for charge conservation, and their phys

II. DYNAMICAL SCHWINGER-KELDYSH APPROACH
TO DISORDERED AND INTERACTING ELECTRONS

In the Schwinger-Keldysh — or closed-time path
formalism,15–17 a functional integral~see also the formula
tion by Feynman and Vernon18! is constructed for the time
evolution of the vacuum state fromt52` to t5` and back
to t52` ~the Keldysh contour, shown in Fig. 1, is just on
possible path for this evolution!. Such evolution of the
vacuum brings it back to the initial state, and therefore
vacuum-to-vacuum overlap~or vacuum persistenceZ) in the
closed-path formalism is 1. Consequently, the functional
tegral is automatically normalized toZ51 for any realiza-
tion of the disorder potential, so disorder-averaged corr
tion functions can be calculated directly from the disord
averaged functional integral. The price which must be pai
the doubling of the number of the fields in the theory; t
second copy of each field propagates backwards in time

The application of dynamical approaches, such as
Schwinger-Keldysh formalism, to disordered systems w
previously proposed. At the classical level, Martin, Sigg
and Rose19 used a dynamical approach and explored the
dependence of the classical generating functional on the
order. Sompolinsky20 used this formalism to study the mea
field theory for the spin-glass problem. Quantum versions
the idea of using dynamics to enforceZ51 were proposed

FIG. 1. Keldysh contour, going from2` to ` and back
to 2`.
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by Schuster and Vieira21 and Kree.22 However, these propos
als were never stated in a language suitable for calculat
in disordered systems. A concrete formulation was put f
ward by Horbach and Scho¨n,23 who developed a time-path
formulation for disordered noninteracting electrons. R
cently, Cugliandolo and Lozano24 proposed a closed-time
path formalism for quantum spin glasses. In work comp
mentary to ours, Andreev and Kamenev25 used the
Schwinger-Keldysh formalism to address the issue of ga
invariance in disordered interacting electron systems. T
discussed the single-particle density of states — which we
not — but did not derive the full set of coupled RG equatio
— which we do, following Finkelstein.

Here we apply the closed-time path formulation, and c
it in a language appropriate to consider the effect of inter
tions. We give an extended discussion of the method in R
26, where we discuss, in addition to systems with a natu
quantum dynamics, a nontrivial extension of the method
systems with no natural quantum or classical dynamics, s
as disordered, interacting statistical field theories. Below
give a short summary of the method.

The Keldysh contour in Fig. 1 is just one example of
possible contour for which we can achieve our desired
jective, namely, the absence of a denominator in the corr
tion functions~i.e., Z51). Here we will discuss a more gen
eral class of contours originally devised for the study of fie
theories at finite temperatures.27–29 These formulations are
carried out in real time, and their objective was to circu
vent pitfalls from the strong assumptions about analyti
continuation of imaginary-time~such as Matsubara’s! formu-
lations.

At finite temperature, the contour of Fig. 1 is replaced
a contour running fromt52` to t5` and thence tot5
2`2 ib. A contour of this type is displayed in Fig. 2. Fo
such a contour, there is an important factorization propert26

shown in Ref. 29, for the contributions from each piece
the contour to the functional integralZ:

Z5ZC1øC2ZC3øC4. ~1!

Only C1 andC2 are important in obtaining physical correla
tion functions.30 As a consequence of the factorization pro
erty, we can obtain these correlation functions fromZC1øC2

which satisfies the normalization property

ZC1øC251. ~2!

Hence, even at finite-temperature, we can work with a pa
tion function normalized to 1. Denoting the fields on th
upper (C1) and the lower (C2) pieces of the countour by

f1~ t !5f~ t !, f2~ t !5f~ t2 is! ~ t real! ~3!

one defines a matrix propagator

FIG. 2. Real-time contour separated into four parts that facto
into separate contributions:C1øC2 andC3øC4.
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^Tc@fa~ t,x!fb
†~ t8,x8!#&52 iDab~ t2t8,x2x8!, ~4!

whereTc denotes ordering of fields according their positi
along the contour of Fig. 2. The particular choices5b/2
makes the form of the propagators especially simple. Lef
denote a complex field, bosonic or fermionic. The propaga
iDab can be written in terms of the zero-temperature pro
gator iD0

ab as

iD~v,k!5u~v!iD0~v,k!u†~v!, ~5!
p
n
f

-

rit
r
-

where

iD0~v,k!5S iG0~v,k! 0

0 2 iG0* ~v,k!
D , ~6!

with iG0(v,k) the usual time-ordered propagator,

iG0~ t2t8,x2x8!5^T@f~ t,x!f†~ t8,x8!#&, ~7!

and2 iG0* (v,k), consequently, the anti-time-ordered one
es
2 iG0* ~ t2t8,x2x8!5$^T@f~ t,x!f†~ t8,x8!#&%* 5^T̄@f~ t8,x8!f†~ t,x!#&. ~8!

The matrixu contains the information about the temperature. For bosonic fields, this matrix is given by

u~v!5uB~v!5S coshDuv sinhDuv

sinhDuv coshDuv
D where Duv5uv

T2uv
T50 and cosh2 uv

T5
1

12e2v/T
. ~9!

For a fermion field, the matrix is altered to account for the fermionic statistics, and we have

u~v!5uF~v!5S cosDuv sinDuv

2sinDuv cosDuv
D where Duv5uv

T2uv
T50 and cos2 uv

T5
1

11e2(v2m)/T
. ~10!

Notice that at zero temperatureuB,F51.
All correlation functions in a theory with propagatorDab and interactionL@f,f* # are obtained using the following

functional integral over two fieldsf1,2:

Z5E Df1 Df2 expF i E dt ddxS 1

2
fa* @D21#abfb1LI@f1 ,f1* #2LI@f2 ,f2* # D G , ~11!

where all time integrals are to be done from2` to `. This gives rise to a crucial relative sign in how the interaction com
in for the forward-propagating fieldf1 and the backward-propagating fieldf2.
III. NONLINEAR SIGMA MODEL WITHIN THE
SCHWINGER-KELDYSH FORMALISM

We start by deriving a nonlinears model in the language
of the dynamical Schwinger-Keldysh formalism. The ste
are quite similar to the derivation in the replica formulatio
As shown above, we formulate the problem in terms o
real-time path integral

Z5E Dc† Dc eiS[c†,c] ~12!

for a fermionic field

c5S c1

c2
D

comprised of two componentsc i labeled by the thermal in
dicesi 51 and 2~in addition to other indices such as spin!.
The index i 51 corresponds to time-ordered fields, andi
52 to anti-time-ordered ones.

A. Free action

The free part of the action for these fermions can be w
ten as
s
.
a

-

S0@c†,c#5E ddxE dv

2p
c†~x,v!uF~v!s3

3F v1
¹2

2m
1eF1 ihsgnv 0

0 v1
¹2

2m
1eF2 ihsgnv

G
3uF

†~v!c~x,v!, ~13!

from which we obtain the free matrix propagator

cĉ†5 iD~v,k!5uF~v!iD0~v,k!uF
†~v!, ~14!

where

iD0~v,k!5F iG0~v,k! 0

0 2 iG0* ~v,k!
G , ~15!

and iG0 is the time-ordered propagator

iG0~v,k!5
i

v2
k2

2m
1eF1 ih sgnv

.
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Notice that the anti-time-ordered propagator is the adjoin
iG0. The matrixuF(v) containing the temperature depe
dence was defined above. In particular,uF(v)51thermal at T
50. In this case we have

S0@c†,c#5E ddxE dv

2p
c̄~x,v!

3F S v1
¹2

2m
1eFD11 ihs3f sgnvGc~x,v!,

~16!

where in the last line we definedc̄5c†s3.

B. Disorder term

The static disorder contribution to the action is

SV@c†,c#5E ddxE dv

2p
V~x!c†~x,v!s3c~x,v!.

~17!
rix

h
e

it
sp

re
fNotice that any interaction term entering the action has
following properties.

~1! It does not mix the two fieldsc1,2. There will be
mixing after disorder averaging, but not before.

~2! The contributions from the two thermal componen
i 51 and 2 enter with opposite signs~thus thes3) due to the
negative sign for the time integration along the anti-tim
ordered branch.

The disorder potential is assumed to be Gaussian dis
uted according to

P@V~x!#}e~2 1/2u! *dx V2(x). ~18!

We then integrate out the disorder, using the fact that
Schwinger-Keldysh formulation cancels the denomina
problem

eiSrand[c
†,c]5E DV P@V#eiSV[c†,c] , ~19!

thus generating a four-fermion term
Srand@c†,c#5 i
u

2E ddxE dv

2p

dv8

2p
c†~x,v!s3c~x,v!c†~x,v8!s3c~x,v8!

5 i
u

2E ddxE dv

2p

dv8

2p
c̄~x,v!c~x,v!c̄~x,v8!c~x,v8!. ~20!
ve
Let us now introduce the Hubbard-Stratonovich mat
field Q that decouples the four fermions~the matrix Q is
chosen to be Hermitian!. We will choose the decoupling in
the diffusive particle-hole channel. As in the case of t
original diffusive Fermi liquid study by Finkelstein, here w
will not consider the Cooperon contributions. We have

eiSrand[ c̄,c]5E DQ e(21/2u)*ddx tr Q2
eiSHS[Q,c̄,c] ~21!

where

SHS@Q,c̄,c#5 i E ddxE dv

2p

dv8

2p
c̄~x,v!Qvv8~x!c~x,v8!.

~22!

The matrixQ has indices in three separate spaces, i.e.,
assembled as a direct product in energy, thermal, and
spaces:

Qvv8
i j ,ab

5@Qv8v
j i ,ba

#* Hermitian.

Thus the trace ofQ2 corresponds to

tr Q25E dv

2p

dv8

2p (
i , j 51

2

(
a,b51

2

Qvv8
i j ,abQv8v

j i ,ba.

When we writeQvv8 we mean a matrix whose elements a
matrices in thermal (i , j 51,2) and spin spaces (a,b51,2).
e

is
in

We can then write an expression forZ as a functional

integral overc̄,c andQ:

Z5E DQE Dc̄ Dce(21/2u)*ddxtrQ2
eiS0[ c̄,c]eiSHS[Q,c̄,c] ,

~23!

where, writingS0 and SHS explicitly in terms of sums over
the energy, thermal, and spin indices

S01SHS5E ddxE dv

2p

dv8

2p (
i j ,ab

c̄ i ,a~x,v!

3H F S v1
¹2

2m
1eFD d i j 1 ihs3

i j sgnvG
3dabdvv81 iQvv8

i j ,ab
~x!J c j ,b~x,v8!. ~24!

Upon integrating out the fermions we obtain an effecti
theory for the matrixQ field,

Z5E DQ e(21/2u)*ddx tr Q2

3expH E ddx tr lnF2 iV2 i S ¹2

2m
1eFD1

1hL1Q~x!G J , ~25!



n

o

ed in
t

ry
n-
e

the

PRB 60 2243SCHWINGER-KELDYSH APPROACH TO DISORDERED . . .
where we introducedV andL as matrices in the energŷ
thermal^ spin spaces:

Vvv8
i j ,ab

5vdvv8d i j dab ~26!

and

Lvv8
i j ,ab

5sgnvdvv8s3
i j dab

or

~27!

with S3 defined as a matrix in energy space that is diago
and whose entries are11 for positive energies and21 for
negative ones.

Equation~25! is the nonlinears model for a noninteract-
ing system. The information necessary to dispose of disc
al

n-

nected loops generated by the disorder average is encod
the matrix structure forV andL. This structure ensures tha
we can work with only two indices,i , j 51,2, instead ofN
replicas withN˜0 at the end. Notice, however, that ve
much like in the replicated sigma model, the disorder co
nectsQ components sitting on different indices. Next, w
will add the contributions due to interactions.

C. Interaction term

Let us consider the case of short-range interactions, in
singlet and triplet channels:

Sint5S11S2

where
for

e

S1@c†,c#5pG1E ddxE dv

2p

dv8

2p

de

2p (
i j ,ab

c i ,a
† ~x,v!c i ,b~x,v1e!s3

i j c j ,b
† ~x,v81e!c j ,a~x,v8!

5pG1E ddxE dv

2p

dv8

2p

de

2p (
i j ,ab

c̄ i ,a~x,v!c i ,b~x,v1e!s3
i j c̄ j ,b~x,v81e!c j ,a~x,v8! ~28!

and

S2@c†,c#52pG2E ddxE dv

2p

dv8

2p

de

2p (
i j ,ab

c i ,a
† ~x,v!c i ,a~x,v1e!s3

i j c j ,b
† ~x,v81e!c j ,b~x,v8!

52pG2E ddxE dv

2p

dv8

2p

de

2p (
i j ,ab

c̄ i ,a~x,v!c i ,a~x,v1e!s3
i j c̄ j ,b~x,v81e!c j ,b~x,v8!. ~29!

Notice the following.
~1! Once again, the interaction does not mix the fieldsc in different thermal indicesiÞ j ; this is enforced by thes3 matrix

in thermal space.
~2! The contributions from the two thermal componentsi 51 and 2 enter with opposite signs due to the negative sign

the time integration along the anti-time-ordered branch.

~3! Because all four fermions sit on the same indexi, using the definitionc̄ j ,a5c i ,a
† s3

i j does not change the structure of th
interaction as the positive or negative signs from thes3 matrices always come in pairs.

We now introduce two Hubbard-Stratonovich fieldsX andY to decouple the four fermion interactions.

eiS1[ c̄,c]5E DY eiSy[Y] expS iA2pG1E ddxE dv

2p

dv8

2p (
i j ,ab

c̄ i ,a~x,v!Yvv8
i j ,ab

~x!c j ,b~x,v8! D , ~30!

eiS2[ c̄,c]5E DX eiSx[X] expSA2pG2E ddxE dv

2p

dv8

2p (
i j ,ab

c̄ i ,a~x,v!Xvv8
i j ,ab

~x!c j ,b~x,v8! D , ~31!
ry
for
t at
where

Xvv8
i j ,ab

5X i ,ab~v2v8!d i j , Yvv8
i j ,ab

5Y i~v2v8!dabd i j .

Notice that the matricesXvv8
i j ,ab andYvv8

i j ,ab depend only on the
energy differencev2v8. We chooseX Hermitian (X5X†),
and Y to be anti-Hermitian (Y52Y†); we could alterna-
tively, have absorbed a factor ofi into Y and made it Her-
mitian. The action for the matricesX andY is
Sx@X#5
1

2E ddxE de

2p
X i ,ab~e!s3

i j X j ,ba~2e!, ~32!

Sy@Y#5
1

2E ddxE de

2p
Y i~e!s3

i j Y j~2e!. ~33!

The action for thei 51 and 2 components ofX andY in Eqs.
~32! and ~33! come with opposite signs, which is necessa
to generate the correct sign in the four fermion terms
time-ordered and anti-time-ordered pieces. The fact tha
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least one of the components is not positive definite is no
problem here because we work with a real time path inte
and have thei factor in front of the actionsSx andSy as in
Eqs.~30! and ~31!.

Including the fieldsX andY together with the matrix field
Q, and integrating out the fermions, we can write the pa
tion function ~vacuum persistence! as

Z5E DQ DX DY e(21/2u)*ddx tr Q2
eiSx[X]eiSy[Y]

3expH E ddx tr, lnF2 iV2 i S ¹2

2m
1eFD11hL1Q~x!

2A2pG2X~x!2 iA2pG1Y~x!G J . ~34!

D. Expansion around the diffusive Fermi-liquid fixed point

We will now expand tr ln around theQ saddle of a diffu-
sive Fermi liquid. The saddle-point solution for the noninte
acting problem isQ5pun0L, where n0 is the density of
states at the Fermi level andL is given in Eq.~27!. The
matrix Q can be rescaled so that the saddle point can
parametrized asQ5U†LU. The matrixQ in the nonlinears
model then satisfies the constraints

Q5Q†, Q251, tr Q50. ~35!
n

n’
li-
he

tio
s
si
.

f
e
yin
of
th
a
al

-

-

e

The expansion is achieved by allowing a slow position d
pendence in the matrixU˜U(x), and considering smal
couplings G1,2 and small energiesv. Expanding Eq.~34!
around the saddle point, we have

Z5E DX DY DQ eiSx[X]eiSy[Y] expS 2
1

2E ddx$D tr ~¹Q!2

14z tr@~ iV2hL!Q#12A2pG2 tr ~XQ!

12iA2pG1 tr ~YQ!% D , ~36!

where we have also absorbed the rescaling of the saddle
the couplingsG1,2, as well asD andz. Integrating outX and
Y, we obtainZ5*DQ e2S[Q] , with an effective action forQ
as follows:

S@Q#5SD@Q#1Se-e@Q#,

where

SD@Q#5
1

2E ddx$D tr~¹Q!214z tr@~ iV2hL!Q#%,

~37!

Se2e@Q#5E ddx@ ipG1Qg1Q2 ipG2Qg2Q#, ~38!

and the contractionsQg1Q andQg2Q correspond to
Qg1Q5 (
i ,ab

E dv1

2p

dv2

2p

dv3

2p

dv4

2p
Qv1v2

i i ,aaQv3v4

i i ,bb s3
i i 2pd~v12v21v32v4!, ~39!

Qg2Q5 (
i ,ab

E dv1

2p

dv2

2p

dv3

2p

dv4

2p
Qv1v2

i i ,abQv3v4

i i ,ba s3
i i 2pd~v12v21v32v4!. ~40!
dle
rgy

in

the
he
At this stage we would like to compare the expressio
for the effective nonlinears model @Eqs. ~37! and ~38!#.
First, notice that the structure is very close to Finkelstei
replicated model; however, here we have only two ‘‘rep
cas’’ corresponding to the two thermal indices. Also, t
interaction termsQg1Q and Qg2Q do not couple the two
thermal spaces much in the same way that the interac
does not couple different replicas. In the Schwinger-Keldy
approach the two thermal indices appear with an oppo
sign; hences3

i i , in contrast tod i j , as is the case of replicas

IV. PARAMETRIZATION OF THE SADDLE

We have used above the parametrizationQ5U†LU,
whereL5S3Energŷ s3Thermal̂ 1Spin. The tensor product o
the S3 in energy space ands3 in thermal space makes th
parametrization of the saddle rather cumbersome for carr
out calculations. This can be resolved through the use
transformation that allows us to parametrize around
saddle point
s

s

n
h
te

g
a
e

L̃vv8
i j ,ab

5sgnvdvv8d i j dab

In this case the thermal and spin structures for the sad
become trivial, and we need only to worry about the ene
structure. This transformation is achieved through

Q˜T†QT,

where

Tvv8
i j ,ab

5H dv,v8d i j dab , i 51

dv,2v8d i j dab , i 52.

The matrixT can be viewed as a direct product of matrices
energy, thermal and spin spaces:T5U( i ) ^ 1thermal̂ 1spin,
whereU( i ) is a rotation in energy space that dependes on
thermal index. This transformation leaves the form of t
action invariant, with the exception ofL˜L̃ and V˜Ṽ,
where
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Ṽvv8
i j ,ab

5vdvv8s3
i j dab .

It is easy to check that the forms ofQg1Q andQg2Q remain
unchanged upon using the transformationT ~the interaction
does not mix thermal indices, so fori 51 this is trivial, and
for i 52 one can absorb all changes in sign by redefining
integration variables!.

The parametrization ofQ around theL̃ saddle becomes
simple and familiar, as in the work of Hikami:31

Q5F v8.0 v8,0

A12V†V V†

V 2A12VV†
G v.0

v,0,
~41!

where the matrixVvv8 has row indices with negative ene
gies (v,0) and column indices with positive energies (v8
.0). As in several other works~see, for example, the wor
by McKane and Stone,32 and by Grilli and Sorella33!, we will
proceed with the study of the nonlinears model by expand-
ing in powers of theV,V† matrices:
e

Q5(
n

Q(n),

wheren is the order in the power series expansion inV,V†.
For example,

Q(0)5F1 0

0 21G , Q(1)5F 0 V†

V 0 G ,
Q(2)52 12V†V0012VV†,

Q(3)50, Q(4)5F 2
1

8
~V†V!2 0

0
1

8
~VV†!2

G , •••.

The quadratic piece of the expansion of the actionSD@Q#
in powers ofV,V† is
any
SD
(2)@Q#5

1

2E ddx$D tr ~¹Q(1)!214z tr@~ i Ṽ2hL̃!Q(2)#% ~42!

5
1

2E ddxE dv

2pE dv8

2p (
i j ,ab

@D ¹Q(1)
vv8
i j ,ab¹Q(1)

v8v
j i ,ba

14z~ i Ṽvv8
i j ,ab

2hL̃vv8
i j ,ab

!Q(2)
v8v
j i ,ba

# ~43!

5E ddkE
v.0

dv

2pEv8,0

dv8

2p (
i j ,ab

@Dk22 iz~vs3
i i 2v8s3

j j !#V†
vv8
i j ,ab

~k!Vv8v
j i ,ba

~2k!, ~44!

and

Se-e
(2)@Q#5E ddx@ ipG1Q(1)g1Q(1)2 ipG2Q(1)g2Q(1)#, ~45!

with

Q(1)g1Q(1)5 (
i ,ab

E dv1

2p

dv2

2p

dv3

2p

dv4

2p
Q(1)

v1v2

i i ,aaQ(1)
v3v4

i i ,bbs3
i i 2pd~v12v21v32v4! ~46!

52(
i ,ab

E
v1 ,v4.0

dv1

2p

dv4

2p E
v2 ,v3,0

dv2

2p

dv3

2p
V†

v1v2

i i ,aaVv3v4

i i ,bbs3
i i 2pd~v12v21v32v4!, ~47!

Q(1)g2Q(1)5 (
i ,ab

dv1

2p

dv2

2p

dv3

2p

dv4

2p
Q(1)

v1v2

i i ,abQ(1)
v3v4

i i ,bas3
i i 2pd~v12v21v32v4! ~48!

52(
i ,ab

E
v1 ,v4.0

dv1

2p

dv4

2p E
v2 ,v3,0

dv2

2p

dv3

2p
V†

v1v2

i i ,abVv3v4

i i ,ba s3
i i 2pd~v12v21v32v4!. ~49!

Notice that the contribution to quadratic order coming fromQ(2)gQ(0) vanishes due to the trace, as do contributions to
order in the expansion ofQgQ whereQ(0) appears as one of the twoQ terms.
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V. FEYNMAN RULES

We now present the Feynman rules which follow from t
actionSD1Se-e . Our theory is parametrized most succinc
in terms of theV matrix used above. The basic propagator
the ^VV& propagator or diffusion propagator which follow
from SD . It is represented by a thick line, as in Fig. 3~a!, but
it can be understood as a double line comprised of an e
tron and a hole. It carries momentumq and the two frequen-
ciese ande1v of the electron and hole. The arrow is in th
direction of the larger frequency. The propagator also car
two thermal indices and two spin indices~one each for the
electron and the hole!. The actionSD1Se-e contains terms of
all orders inV. However, not all of these are needed at t
one-loop level, as we now show.

Let us start by counting which vertices we need to inclu
in the renormalization program. We can determine the lo
order of any diagram33,34 by considering the numbernv of
vertices withv legs, and the number of external linesE. The
number of legs in all vertices must equal the number of
ternal legs plus twice the number of internal lines~each in-
ternal line belongs to two vertices!:

E12I 5(
v

vnv . ~50!

The loop order is the net number of momentum integra
which is the number of internal lines minus the number
contraints from momentum conservation in each vertex, p
an overall momentum conservation constraint

L5I 2(
v

nv11. ~51!

Thus

FIG. 3. The propagator and two-, three-, and four-point vertic
s

c-

s

e
p

-

,
f
s

L5(
v

nvS 1

2
v21D2

1

2
E11. ~52!

With these relations in hand, it is simple to check that
only need to consider three and four point vertices in
one-loop (L51) renormalization of thes model. As men-
tioned above, the RG flows can be obtained from the tw
point function alone, so we setE52. Thus we have

15(
v

nvS 1

2
v21D , ~53!

which has only two solutions: (v53,nv52) or (v54,nv
51).

Hence, at the one-loop level, we need only consider
two-point vertex which follows from the expansion ofSe-e to
quadratic order in theV matrix; the triangle vertices which
follow from its expansion to third order inV; and the square
vertices which follow from its expansion to fourth order
well as the expansion ofSD to fourth order. The index struc
ture of the former follows from Eq.~46!. The index structure
of the latter two follow from the fact that the thick lines a
understood as splitting at the vertices to give the thin lines
the vertices; frequencies, spin, and thermal indices from
thick lines then split and follow the thin lines, as we demo
strate with the spin indices in Fig. 3~c!. At the interaction
dots, they follow the same rules as at the two-point vertic
In Fig. 3~b!, there is a matrix structuredagdmn if the inter-
action dot is aG1 anddamdgn if the interaction dot is aG2.
This is abbreviated asG. The frequencies have an overa
d-function at the dot. The Feynman rules are summari
below.

Propagator and diffusion vertex.At the one-loop level,
we need only consider the first two terms in the expansion
SD . They are the propagator and the diffusion vertex. T
propagator is given by

~a!5^V†
v1v2

i j ,ab~q!Vv3v4

kl,mn~2q!&

5
1

2 iz~v1s3
i i 2v2s3

j j !1Dq2
d i l d jkdandbm

32pd~v12v4!2pd~v22v3!. ~54!

The second term in the expansion ofSD is the box (e). It
is given by

~e!5
D

8
@2~q1•q31q2•q4!1~q11q3!•~q21q4!#

1 i
z

16
@v1s3

i i 2v2s3
j j 1perm.#. ~55!

We have omitted in the expression above the momentum
frequency conservingd functions. Theqi ’s are the momenta
on the four external legs. These legs can have arrows a
nating between in and out as one goes around the box,
two pointing in and two pointing out.

Interaction vertices.The two-point vertex results from th
lowest-order term in the expansion ofSe-e :

.
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~b!52p i ~2G1 dabdmn1G2dandbm!s3
i i

32pd~v12v21v32v4!. ~56!

The next terms in the expansion of the interaction are
triangle terms:

FIG. 4. The geometric series of diagrams which decorate
two-, three-, and four-point vertices.
th

nd

e
th
e

~c!,~d!57 ipG, ~57!

whereG can be eitherG1 or G2 ~the suppressed index struc
ture is an extension of the two-point case, as we discus
above! and the arrowless propagator can have an ar
pointing in either direction.

Diagrams~f! ~and a similar one with the arrows reverse!
and~g! are the quartic terms resulting from the expansion
the interaction.

~ f !52 ip
G

4
, ~g!51 ip

G

2
. ~58!

Decoration of the interaction vertices.At the one-loop
level, we do not need to consider terms of higher order th
the above. However, there can still be terms of arbitra
high order inG because there are quadratic interaction term
These can be obtained by grouping all of the quadratic te
together and inverting them to obtain the full propagator:

e

^V†
v1v2

i j ,ab~q!Vv3v4

kl,mn~2q!&5D0d i l d jkdandbm2pd~v12v4!2pd~v22v3!

22p iG1D1D2d i j d i l d jkdabdmn2pd~v12v21v32v4!

12p iG2D2D0d i j d i l d jkdandbm2pd~v12v21v32v4!. ~59!
s

tex,

et-

—
all

t of
es
the
e,
nal

is
Note that the interaction terms are distinguished from
propagator by thed i j on the thermal indices and the overalld
energy function. Herez15z22G11G2[z22Gs and z25z
1G2[z22G t , where we have introduced the singlet a
triplet interaction amplitudes,Gs5G12G2/2, G t52G2/2 by
rewriting

G1dabdmn2G2dandbm

5S G12
1

2
G2D dabdmn2

1

2
G2sabsmn. ~60!

The inversion is more simply done in the singlet-triplet d
composition since these matrices are orthogonal. It can
be reexpressed in Eq.~59!, whereD0 , D1, andD2 are given
by

D05
1

2 iz~v1s3
i i 2v2s3

j j !1Dq2
,

D15
1

2 iz1~v1s3
i i 2v2s3

j j !1Dq2
, ~61!

D25
1

2 iz2~v1s3
i i 2v2s3

j j !1Dq2
.

e

-
en

Hence, by inverting the sum of all of the quadratic term
~rather than just the quadratic term coming fromSD) and
amputating the propagators entering and leaving the ver
we effect the replacement

~b!52p i S 2G1

D1D2

D0
2

dabdmn1G2

D2

D0
dandbmD s3

i i

32pd~v12v21v32v4!. ~62!

This can, equivalently, be obtained by summing the geom
ric series of Fig. 4~a!. It is this peculiar property of this
theory — namely that there are quadratic interactions
which lead to one-loop RG equations which have terms of
orders inG2.

Similarly, when the interaction in (c), ~d!, ~f!, or ~g! is on
an internal line, we can sum the infinite series of Figs. 4~b!
or 4~c! and, again, make the replacements

G1˜G1

D1D2

D0
2

, G2˜G2

D2

D0
. ~63!

While the decoration of vertices leads to a replacemen
propagators~63!, the decoration of propagators themselv
— and, in particular, external legs — is superfluous since
first term in Eq.~59!, which has the desired index structur
is not affected by decoration. The decoration of an exter
line of a vertex amounts to propagator decoration and
similarly ignored.
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VI. RENORMALIZATION OF THE s MODEL

There are four couplings,D,z,G1,2, in our action,

S5
1

2E d2x$D tr ~¹Q(1)!21tr@~4izṼ2hL̃!Q(2)#%

1E ddx@ ipG1Q(1)g1Q(1)2 ipG2Q(1)g2Q(1)#.

~64!

All of these couplings are present in the quadratic terms
the action. Hence the RG flows can be computed from
two-point function alone, separating the different contrib
tions according to their spin, frequency, and Schwing
Keldysh matrix structures.

First, there is the diffusion constant,D — or, equiva-
lently, the resistivity,g51/@(2p)2D#. In the noninteracting
s model, this is the only coupling constant. In the interact
case, it is still used as the expansion parameter: we ass
that g is small, but make no assumptions aboutG1,2. The
second coupling constant isz, the relative rescaling of time
versus space.g and z are renormalized by the diagrams
Fig. 5. The other couplings are the interactionsG1,2, which
are renormalized by the diagrams of Figs. 6–13. Contri
tions to theQ self-energy determine the flow ofD or z if they
are proportional toq2 or v, respectively, provided they hav
the correct thermal index structure. They determine the fl
of G1,2 if they are independent of the external and frequen
and are diagonal in the thermal indices; they contribute
one or the other depending on their spin structure.

It is a matter of taste whether or not we choose to int
duce a ‘‘wave-function’’ renormalizationz ~the quotation
marks refer to the fact that we mean a renormalization oV,
not c!, since this can be completely absorbed in the ren
malization of D and z. There is a natural definition ofz
which is related to the density of states, but this is moot
the scaling equations which we consider because we ca
scale our couplings to eliminatez. Hence, we sweep th
wave-function renormalization under the rug in this pape

At tree level,D, z, andG1,2 are marginal.@One might have
expectedG1,2 to have the dimensions of (length)22, but they
do not as a result of the extra frequency integral#. To find the
fluctuation corrections to their scaling behavior, we use

FIG. 6. The lowest-order diagram which renormalizesG1,2.

FIG. 5. The self-energy diagrams which renormalizez andD.
n
e
-
-

me

-

w
y
o

-

r-

r
re-

a

Wilsonian shell elimination scheme in which we compu
their change as we integrate out shells

L2dL,Dq2,L, 0,v,L

and

L2dL,v,L, 0,Dq2,L. ~65!

Renormalization of D and z.Let us examine Fig. 5. By
inspection, we see that these diagrams have the approp
matrix structure for the propagator, i.e., the matrix struct
of Eq. ~54!. Diagrams without an interaction vertex do n
contribute to the renormalization ofD to one-loop order; the
reason for this is that there is a cancellation between the
~time-ordered and anti-time-ordered! Schwinger-Keldysh
species. In the case of the replica calculation, the contr
tion to one-loop order is proportional to the replica numb
N˜0.

The diagrams in Fig. 5 give the following contribution t
the Q-field self-energyS:

S~q,V1e,e!5SA~q,V1e,e!1SB~q,V1e,e!, ~66!

where

FIG. 7. The five ‘‘primitive’’ diagrams which renormalizeG1.
They are elaborated in Figs. 8–10. The corresponding elabora
for G2 is in Figs. 11–13.

FIG. 8. Diagrams~a! and ~b! renormalizingG1.
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SA~q,V1e,e!524E d2k

~2p!2

dv

2p
~22p i !

3@G1~k,v!22G2~k,v!#D0
2~k,v!

3FD

8
~k1q!22 i

z

8
~v1V!G ~67!

is the contribution of the diagram on the left, and

SB~q,V1e,e!54E d2k

~2p!2

dv

2p S 2
p i

4 D @G1~k2q,v2V!

22G2~k2q,v2V!#D0~k,v! ~68!

is the contribution of the diagram on the right. There is
relative factor of 2 between theG1 and G2 contributions
because the former contribution has no free internal spin
dices, while the latter has one which is summed over. No
that SA andSB cancel atq5V50. The contribution ofSA
as well as a piece ofSB are absorbed into the wave-functio
renormalization. TheSB contribution includes a term of th
form

4G2E d2k

~2p!2

dv

2p
D0~k,v!D2~k,v!, ~69!

which comes from differentiatingD0 with respect toq2. The
wave-function renormalization multiplies theV fields, and
therefore resurfaces in the renormalization ofG2. Differenti-
ating with respect tov or q2, respectively, we get, to lowes
order inG1,2, the one-loop contributions todD anddz ~the
external frequencies and momenta have been set to zero
differentiation!:

FIG. 10. Diagrams~e! renormalizingG1.

FIG. 9. Diagrams~c! and ~d! renormalizingG1.
-
e

fter

dD52S dSB

dq2 D
q50,V50

52D~22p i !E d2k

~2p!2

dv

2p

3@G1~k,v!22G2~k,v!#D0
3~k,v!Dk2, ~70!

dz52 i S dSB

dV D
q50,V50

52
1

2E d2k

~2p!2
@G1~k,0!22G2~k,0!#D0~k,0!. ~71!

In the dz term, theV derivative cancels thev integral.
Making the replacement~63!, we obtain

2
dD

D
5~22p i !E d2k

~2p!2

dv

2p
Dk2@G1D0~k,v!

3D1~k,v!D2~k,v!22G2D0
2~k,v!D2~k,v!#,

~72!

dz52
1

2
~G122G2!E d2k

~2p!2
D0~k,0!. ~73!

FIG. 11. Diagrams~a! and ~b! renormalizingG2.

FIG. 12. Diagrams~c! and ~d! renormalizingG2.
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The contribution todz is unchanged but the contribution t
dD receives corrections of all order inG1,2. This result is the
full one-loop result: it is lowest order ing but to all orders in
G1,2.

Integrals~70! and ~72! are discussed in the appendixe
Here we just state the results:

dg

dl
5g2@G1f 2~z,z1 ,z2!22G2f 2~z,z,z2!#,

dz

dl
5g~2G112G2!, ~74!

wheredl52d(ln L) and we have made the substitutiong
51/8pD.35 Following Finkelstein, we have introduced th
functions

f 1~z,z2!5
1

z22z
lnS z2

z D ,

f 2~z,z1 ,z2!5
2z1

z12z2
f 1~z,z1!2

2z2

z12z2
f 1~z,z2!. ~75!

As we show in the appendixes, the functionsf 1,2 arise as
a result of the mismatch between the poles of the propaga
D0,1,2. In the noninteracting case, in which these propaga
are equal, these functions are just constants,f 1(z,z)
51,f 2(z,z,z)52. Interactions split the energies of singl
and triplet particle-hole states from their noninteracti
value, leading to Eq.~75!.

Renormalization ofG1,2. The diagrams which renorma
ize G1 are in Figs. 6 and 8–10, while the related diagra
which renormalizeG2 are in Figs. 6 and 8–10. In Figs. 8–1
we have, for the sake of completeness and pedagogy,
merated all of the diagrams which contribute to the ren
malization ofG1,2. On combinatoric grounds, we see that w
have included all 20 of the diagrams which contribute toG1,
and the 20 which contribute toG2. All of these diagrams
must be taken into account to obtain the correct signs
relative coefficents of various terms in the RG equatio
However, these two sets of 20 are really elaborations of
sets of five diagrams. In Fig. 7, we give the five basic d
grams forG1; Figs. 8–13 are put in Appendix A to avoi
unnecessary clutter and confusion. From Fig. 7~a! we obtain
the six diagrams of Fig. 8~a!. From each of Figs. 7~b!, 7~c!,
and 7~d!, we obtain four diagrams shown, respectively,
Figs. 8~b!, 9~c!, and 9~d!. Finally, Fig. 7~e! gives rise to the
two diagrams of Fig. 10.

In Fig. 6,G1 contributes to the renormalization ofG2, and
vice versa. When onlyG2’s appear in Figs. 8–13, the spi
index structures dictate that Figs. 8–10 contribute to the fl
of G1 while Figs. 11–13 contribute to the flow ofG2. If any

FIG. 13. Diagrams~e! renormalizingG2.
.
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of the vertices areG1’s, however, corresponding diagrams
Figs. 8–10 and 11–13 cancel. Hence, we need only cons
G2’s in Figs. 7–13.

By following the frequencies and spin indices around t
diagram of Fig. 6, we see that it gives a contribution

dG1dabdmn2dG2dandbm

5~G1dandbm2G2dabdmn!E d2k

~2p!2
D0~k,v!.

~76!

Corresponding diagrams of Figs. 8–10 and 11–13 g
identical contributions, apart from a factor of 2 coming fro
a spin sum, so we will focus on Figs. 8–10. Figure 8~a! gives
a contribution

22p i dG15~ ipG2!2E d2k

~2p!2

dv

2p
D0

2~k,v!. ~77!

The signs of the six diagrams@( i i i ) and (iv) are two dia-
grams each because the arrow can point in either directio
the arrowless lines# are determined by the relative signs
the two triangle vertices~57!. The first two diagrams come
with a positive sign while the other four come with a neg
tive sign. Adding these together, we obtain the coeffici
22. Both of the interaction ‘‘dots’’ are on internal lines, s
we make the replacement~63!:

22p i dG1
(a)522~ ipG2!2E d2k

~2p!2

dv

2p
D2

2~k,v!.

~78!

In Fig. 8~b!, there are four diagrams and they all com
with positive signs. Only one interaction dot is on an intern
line, so we have

22p i dG1
(b)54~ ipG2!2E d2k

~2p!2

dv

2p
D0~k,v!D2~k,v!.

~79!

The diagrams of Fig. 11~b! vanish because the integrate
frequency is overdetermined. However, the wave-funct
renormalization coming from the neglected part ofSB makes
up the missing contribution.

In Fig. 9~c!, the four diagrams have positive signs. The
are three interactions, but one is on an external line, so th
is a contribution:

22p i dG1
(c)54~ ipG2!2~ i2pG2!

3E d2k

~2p!2E0

Ldv1

2p E
2L

0 dv2

2p
D0~k,v12v2!

3@D2~k,v12v2!#2

54~ ipG2!2~ i2pG2!

3E d2k

~2p!2E0

Ldv

2p

v

2p
D0~k,v!@D2~k,v!#2,

~80!
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where we have setv5v12v2 as the only variable inside
the propagators, and obtained the phase-space factorv/2p
from integrating the intermediate frequencies.

Figure 9~d!, on the other hand, comes with a negative s
and only one internal interaction:

22p i dG1
(d)524~ ipG2!2~ i2pG2!

3E d2k

~2p!2E0

Ldv

2p

v

2p
@D0~k,v!#2D2~k,v!.

~81!

The coefficient 4 is important for the physics of this theo
In Finkelstein’s original paper,5 the contributions from the
diagrams of Fig. 9 were too small by a factor of 2. As
result, a metallic fixed point with infinite conductivity wa
found. This error was corrected in Refs. 36 and 37.

Finally, we have the two diagrams of Fig. 10~e!:

22p i dG1
(e)522~ ipG2!2~ i2pG2!2

3E d2k

~2p!2

dv

2p S v

2p D 2

3@D0~k,v!#2@D2~k,v!#2, ~82!

where, as in Figs. 10~c! and 10~d!, there are intermediate
frequency integrals that lead to the phase-space fa
(v/2p)2.

The integrals in the expressions above are discussed in
appendixes. Their upshots are

dG1
(a)52

G2
2

z2
gd~ ln L!,

dG1
(b)52G2

2f 1~z,z2!gd~ ln L!,

dG1
(c)52

G2
3

z2
f 2~z,z,z2!gd~ ln L!, ~83!

dG1
(d)5

G2
3

z
f 2~z2 ,z2 ,z!gd~ ln L!,

dG1
(e)52G2

4S 1

z
1

1

z2
22 f 1~z,z2!

~z2z2!2
D gd~ ln L!.

Adding these contributions, we obtain

dG1
(a)1dG1

(b)1dG1
(c)1dG1

(d)1dG1
(e)[2F5

G2
2

z
gd~ ln L!.

~84!

VII. RENORMALIZATION-GROUP EQUATIONS

Gathering these results, we have the flow equations

dg

dl
5g2@G1f 2~z,z1 ,z2!22G2f 2~z,z,z2!#,
n

.

or

he

dz

dl
5g~2G112G2!,

dG1

dl
5gS G21

G2
2

z D ,

~85!

dG2

dl
5gS G11

2G2
2

z D .

Adding the second and fourth equations, and subtrac
the third equation twice, we find

d

dl
~z22G11G2!50. ~86!

Although we have only verified Eq.~86! to one loop, it is, in
fact, an exact relation which follows from the Ward identi
for charge conservation, as we discuss in Appendix C.

Since a constant of integration in~86! can be absorbed
into a rescaling of frequencies, we can setG15(z1G2)/2.
Changing variables fromG2 to g25G2 /z we have the equa
tions

dg

dl
5g2F113S 12

11g2

g2
ln~11g2! D G ,

~87!
dz

dl
5zgS 2

1

2
1

3

2
g2D ,

dg2

dl
5

g

2
~11g2!2.

From the final equation, we see thatg2 increases at long
length scales. This is not problematic since we made no
sumptions about the smallness ofG2. Wheng2 becomes suf-
ficiently large,z begins to grow, andg, after an initial in-
crease, begins to decrease. Since these equations are va
the small-g regime, it would appear that the flow improve
their validity. However,g2 and z diverge at a finite length
scale. Since these equations include all orders ing2, their
breakdown signals the onset of nonperturbative physics.

It is useful, as a comparison, to consider the BCS inter
tion in a Fermi liquid. There the flow equation for the BC
interactionV can be computed to all orders in perturbati
theory:

dV

dl
52V2. ~88!

The one-loop RG result is the full story because there is o
a geometric series of bubble diagrams. This equation a
breaks down at a finite length scale — the coherence len
At this length scale, the nonperturbative physics of pair
takes over. Similarly, the breakdown of our flow equatio
~85! implies that nonperturbative physics—such as the f
mation of local moments — determines the behavior of
system. Such physics cannot be accessed perturbatively
the diffusive saddle point.

VIII. DISCUSSION

In this paper we have shown how the Schwinger-Keldy
dynamical formulation26 can be applied in treating a diso
dered interacting electronic problem. We reproduce Fink
stein’s renormalization-group equations for the interact
strength and conductance. In our approach, the RG pr
dure is carried out in a very simple way, in close rese
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blance to af4 theory ~with cubic terms as well!.
For the case of the diffusive Fermi-liquid state, the calc

lation using the Schwinger-Keldysh method is very simi
to the replica method. The two thermal indices for tim
ordered and anti-time-ordered propagation play a similar
to that of the replica indices in the particular case of
diffusive Fermi-liquid regime studied by Finkelstein. Th
disorder couples fields with different thermal indices~or rep-
licas!, while the interaction does not mix thermal indices~or
replicas!. The Schwinger-Keldysh indices, like the replica
act in this example as simple bookkeeping devices. In
replica calculation, the diffusive Fermi-liquid state is repli
symmetric. This is the underlying physical reason for t
simplicity of the replica structure.

There should exist much more interesting saddle po
where the replica symmetry is broken. One such point is
Wigner glass phase, which occurs in the limit of low ele
tronic densities. As in the cases with other types of glas
such as spin glasses, we know that replica symmetry br
ing is connected to broken ergodicity. In the Schwing
Keldysh approach we expect that broken ergodicity~and thus
replica symmmetry breaking! will manifest itself in subtle-
ties related to thev˜0 limit and the symmetry betwee
time-ordered and anti-time-ordered products. T
Schwinger-Keldysh provides a natural tool to study dyna
cal effects, which is a direction that we will explore.
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APPENDIX A: ELABORATION
OF THE FIVE BASIC DIAGRAMS

The five basic diagrams of Fig. 7 are a schematic rep
sentation of the 20 diagrams in Figs. 8 and 9 which ren
malize G1. The corresponding diagrams which renormali
G2 are shown in Figs. 11–13.

APPENDIX B: INTEGRALS

The following five logarithmically divergent integral
arise in the calculation of the diagram of Fig. 6 and diagra
~a!–~e! in Figs. 11–13. We definex5Dq2 and integrate over
the shellsL2dL,x,L,0,v,L and L2dL,v,L,0
,x,L.

In the diagram of Fig. 4, there are no free frequenci
there is only a momentum integration
f
ive
1

4pDE dx D0~x,v!5
1

4pDE
L2dL

L

dx
1

x
5

1

4pD
d~ ln L!. ~B1!

In diagrams~a!–~e! of Figs. 11–13, there are multiple propagators with differentz’s. By rewriting these products o
propagators as a sum over poles inx and v, we reduce them tod(ln L) times nondivergent integrals. These integrals g
nontrivial functions of thezi ’s.

1

2~2p!2D
E dx dv D0~x,v!D2~x,v!5

1

2~2p!2D
E

L2dL

L

dxE
0

L

dv
1

x2 izv

1

x2 iz2v

1
1

2~2p!2D
E

L2dL

L

dvE
0

L

dx
1

x2 izv

1

x2 iz2v

5
1

2~2p!2D
dLE

0

L

dv
i

~z22z!v S 1

L2 izv
2

1

L2 iz2v D
1

1

2~2p!2D

i

~z22z!

dL

L E
0

L

dxS 1

x2 izL
2

1

x2 iz2L D
5

i

z22z
lnS z2

z D 1

2~2p!2D
d~ ln L!5 i f 1~z,z2!

1

2~2p!2D
d~ ln L!. ~B2!

Similarly,
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1

2~2p!2D
E dx dv x D0~x,v!D2~x,v! D1~x,v!5

1

2~2p!2D
E

L2dL

L

dxE
0

L

dv x
1

x2 izv

1

x2 iz2v

1

x2 iz1v

1
1

2~2p!2D
E

L2dL

L

dvE
0

L

dx x
1

x2 izv

1

x2 iz2v

1

x2 iz1v

5F 2iz1

~z12z2!~z2z1!
lnS z

z1
D2

2iz2

~z12z2!~z2z2!
lnS z

z2
D G 1

2~2p!2D
d~ ln L!

5 i f 2~z,z1 ,z2!
1

2~2p!2D
d~ ln L!, ~B3!

1

2~2p!2D
E dx dvE

0

v

dv8 D0~x,v!D2~x,v!D2~x,v!5
1

2~2p!2D
E

L2dL

L

dxE
0

L

v dv
1

x2 izv

1

x2 iz2v

1

x2 iz2v

1
1

2~2p!2D
E

L2dL

L

v dvE
0

L

dx
1

x2 izv

1

x2 iz2v

1

x2 iz2v

52
1

2z2
F 2

~z2z2!
2

2z2

~z2z2!2
lnS z

z2
D G 1

2~2p!2D
d~ ln L!

52
1

2z2
f 2~z,z,z2!

1

2~2p!2D
d~ ln L!, ~B4!

1

2~2p!2D
E dx dv v2 D0~x,v!D0~x,v!D2~x,v! D2~x,v!

5
1

2~2p!2D
E

L2dL

L

dxE
0

L

v2 dv
1

x2 izv

1

x2 izv

1

x2 iz2v

1

x2 iz2v

1
1

2~2p!2D
E

L2dL

L

v2 dvE
0

L

dx
1

x2 izv

1

x2 izv

1

x2 iz2v

1

x2 iz2v

52 i S 1

z
1

1

z2
22 f 1~z,z2!

~z2z2!2
D 1

2~2p!2D
d~ ln L!. ~B5!
ns

s
ou

e
n

APPENDIX C: WARD IDENTITY

In Sec. VI, we found that our one-loop RG equatio
imply that

d

dl
z52

d

dl
Gs . ~C1!

We would now like to indicate why this constraint follow
from charge conservation. Let us imagine returning to
disorder-averaged actionS01Srand1Sint for interacting elec-
trons. Let us consider some fixed realization of the disord
The Ward identity which follows from charge conservatio

]m^T@ j m~y!c†~x1!c~x2!#&

5 id~y2x1!^T@c†~x1!c~x2!#&

2 id~y2x2!^T@c†~x1!c~x2!#&, ~C2!
r

r.
,

relates vertex renormalization~the left-hand side! to the
renormalization of the propagator~the right-hand side!. This
is more transparent in momentum space:

FIG. 14. Diagrams contributing to the renormalization of~a! Gs

and ~b! z.
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Lm~p,0!5
]

]pm
@v2ep2S~p!#. ~C3!

Lm(p,0) is the Fourier transform of the correlation functio
with a current insertion~at zero momentum! on the left-
hand-side of~C2!. S is the self-energy. We focus on them
50 component of this equation:

L0~p,0!5
]

]v
@v2S~p!#. ~C4!

The equality between the left- and right-hand sides is ex
plified by the relation between the diagrams of Figs. 14~a!
@the dashed line indicates the current insertion in the co
lation function of the left-hand side of Eq.~C2!# and 14~b!.

As we indicate in Fig. 14~a!, the diagrams contributing
tothe renormalization of the left-hand side of Eq.~C4! are
equivalent to those which determine the RG flow ofGs .
a

. B

-

e-

r,
-

e-

Meanwhile, the diagrams contributing to the renormaliz
tion of the right-hand side of Eq.~C4! renormalizez. One
way of seeing this is to note that the renormalization of
propagator determines the RG flow ofz, since the former is
the renormalization of the termivc†c in S0 while the latter
is the renormalization of the equivalent term inSD , namely,
tr@vQ#. The factor of 2 on the right-hand side results fro
the summation over the spin indexa in Fig. 14~b!. This
index is held fixed as an external index in theGs renormal-
ization.

In principle, we can derive the same result for disord
averaged correlation functions directly within thes model
by deriving the corresponding Ward identity. However, th
is more cumbersome because the current operator, and
gauge transformation rules are more complicated in
Q-field language.
. B
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