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We develop a dynamical approach based on the Schwinger-Keldysh formalism to derive a field-theoretic
description of disordered and interacting electron systems. Within this formalism we calculate the perturbative
renormalization-grouRG) equations for interacting electrons expanded around a diffusive Fermi liquid fixed
point, as obtained originally by Finkelstei@h. Eksp. Teor. Fiz.84, 168 (1983 [Sov. Phys. JET7, 97
(1983))) using replicas. The major simplifying feature of this approach, as compared to Finkelstein's, is that
instead ofN—0 replicas, we only need to considir=2 species. We compare the dynamical Schwinger-
Keldysh approach and the replica methods, and we present a simple and pedagogical RG procedure to obtain
Finkelstein's RG equation$S0163-182809)03427-X

[. INTRODUCTION (metal-organic semiconductor field-effect transigtand the
subsequent discovery of such a transition in other
Since the original idea of an impurity driven metal- two-dimensiondP~*?electron-gas systems, has rekindled in-
insulator transitionMIT) was put forward by Anderscha terest in sharpening our understanding of the combined ef-
substantial amount of work has been carried out to underfects of disorder and interactions. In this paper we will red-
stand this problem in the language of phase transitions and @frive the RG equations for all marginal perturbations of the
the renormalization grougRG).>~* Simple scaling argu- diffusive Fermi-liquid fixed pointthere are no relevant per-
ments were made for the case of noninteracting electrons. turbation3. We will do so using the dynamical Schwinger-
was demonstrated that there would always be a metal-td<eldysh approach. Our results agree with those obtained us-
insulator transition in three dimensions as a function of théng the replica methodand disorder-averaged perturbation
disorder strength, whereas in one and two dimensions evaheory® As we will show, the Schwinger-Keldysh and rep-
the weakest amount of disorder would make the system alica approaches to studying the diffusive Fermi liquid exhibit
insulator at zero temperatutélhe lower critical dimension very similar structures. It is important to note that, in the
for the MIT isd=2 for the noninteracting electron problem, replica solution, there are no subtleties involved in the
and e=d—2 expansions have been carried out to determine-0 replica limit at the perturbative level, which reflects the
the critical exponents characterizing the phase transition. fact that that there is no replica symmetry breaking in the
These scaling ideas were extended to include the effectdiffusive Fermi liquid state. This is the underlying reason
of electron-electron interactions by Finkelstgiand later by ~ why the Schwinger-Keldysh and replica solutions, as we will
Castellaniet al.® who obtained RG equations for the con- see, look very much alike, with the dynamical thermal indi-
ductance, as well as the singlet and triplet interaction couees for time-ordered and anti-time-ordered fields behaving as
pling constants, starting with a diffusive Fermi-liquid fixed simple bookkeeping devices, just as in the replica solution.
point (for a review, see Ref.)7 This seminal work defined a On the other hand, glassy systems which exhibit replica sym-
field-theoretical language to study the simultaneous presenasetry breaking, such as the recently proposed Wigner glass
of interactions and disorder. Unfortunately, this approactphase;>'* should be rather different and more interesting.
suffered from being inconclusive — since the coupledWe will explore these directions in the future. In the present
renormalization-group equations flow to strong coupling,paper, we will limit ourselves to the study of the diffusive
away from the perturbative starting point of a diffusive Fermi liquid, which we present below.
Fermi-liquid state — and technically quite involved. A re- We present the Schwinger-Keldysh approach for disor-
cent discussion of Finkelstein’s replica theory can be foundiered and interacting electronic systems in Sec. I, where we
in Ref. 8. show that instead dfi— 0 replicas, we only need to consider
The recent experimental discovery by Kravchenko and\N=2 species of fields. Using this dynamic approach, in Sec.
co-worker€ of a MIT in a two-dimensional Si-MOSFET Il we derive a nonlineawr model for interacting diffusion
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modes in the Schwinger-Keldysh formalism. For simplicity,
we restrict attention to the “unitary” case considered in  [iG. 2. Real-time contour separated into four parts that factorize
Finkelstein’s original papet:we assume that the electrons into separate contribution€,UC, andCsUC,.
interact through a short-range interaction, and that they are in
a magnetic field which affects their orbital motion, but thatby Schuster and Vieifaand Kree?? However, these propos-
the Zeeman coupling vanishéis situation might be real- als were never stated in a language suitable for calculations
izable in GaAs-AlGa _,As systems By straightforward in disordered systems. A concrete formulation was put for-
extension of the methods used here, we can also treat thgard by Horbach and Sch@® who developed a time-path
more interesting, but more complicated, “orthogonal” caseformulation for disordered noninteracting electrons. Re-
in which the magnetic field is turned off. In a similar vein, cently, Cugliandolo and LozaAb proposed a closed-time
we avoid the straightforward but more involved extension topath formalism for quantum spin glasses. In work comple-
long-range Coulomb interactions. This would include appli-mentary to ours, Andreev and Kamefevused the
cations of our approach to the quantum Hall plateau transiSchwinger-Keldysh formalism to address the issue of gauge
tions. We emphasize the similarities and differences with thénvariance in disordered interacting electron systems. They
replicateds model. In Sec. IV, we find the diffusive saddle discussed the single-particle density of states — which we do
point and bring ther model into a form which is convenient not — but did not derive the full set of coupled RG equations
for perturbation theory about this saddle point. This form is— which we do, following Finkelstein.
used to derive the Feynman rules, given in Sec. V, which are Here we apply the closed-time path formulation, and cast
needed for one-loop perturbative calculations. In Sec. VI, wét in a language appropriate to consider the effect of interac-
use these Feynman rules to discuss the one-loop renormalens. We give an extended discussion of the method in Ref.
ization of thisc model. One of our main purposes here is 26, where we discuss, in addition to systems with a natural
pedagogy, so we discuss the diagrammatics in detail, payinguantum dynamics, a nontrivial extension of the method to
attention to the symmetry factors and minus signs whichsystems with no natural quantum or classical dynamics, such
prove to be crucial in determining the physics of the modelas disordered, interacting statistical field theories. Below we
As we show, the apparent complexity — due to the largegive a short summary of the method.
number of diagrams — can be offset by a systematic enu- The Keldysh contour in Fig. 1 is just one example of a
meration. Finally, in Secs. VII and VIII, we discuss the re- possible contour for which we can achieve our desired ob-
sulting RG equations, a constraint on them following fromjective, namely, the absence of a denominator in the correla-
the Ward identity for charge conservation, and their physicstion functions(i.e.,Z=1). Here we will discuss a more gen-
eral class of contours originally devised for the study of field
theories at finite temperaturés.?° These formulations are
carried out in real time, and their objective was to circum-
vent pitfalls from the strong assumptions about analytical
In the Schwinger-Keldysh — or closed-time path — continuation of imaginary-timésuch as Matsubarg'$ormu-
formalism*~1" a functional integralsee also the formula- lations.
tion by Feynman and Vernd) is constructed for the time At finite temperature, the contour of Fig. 1 is replaced by
evolution of the vacuum state frota= —o to t=o and back ~a contour running front=—o to t= and thence td=
to t=—o (the Keldysh contour, shown in Fig. 1, is just one —%—i3. A contour of this type is displayed in Fig. 2. For
possible path for this evolution Such evolution of the such a contour, there is an important factorization propérty,
vacuum brings it back to the initial state, and therefore theshown in Ref. 29, for the contributions from each piece of
vacuum-to-vacuum overlafr vacuum persistencg) in the  the contour to the functional integral
closed-path formalism is 1. Consequently, the functional in- CaUCamCallC
tegral is automatically normalized ©=1 for any realiza- L=ZmrmmaZmsm, @

tion of the disorder potential, so disorder-averaged correlapnly C, andC, are important in obtaining physical correla-
tion functions can be calculated directly from the disorder+jon functions3® As a consequence of the factorization prop-

averaged functional integral. The price which must be paid I®rty, we can obtain these correlation functions fraft" ¢z
the doubling of the number of the fields in the theory; theyyhich satisfies the normalization property

second copy of each field propagates backwards in time.
The application of dynamical approaches, such as the Z7C1YVCe=1, 2

Schwinger-Keldysh formalism, to disordered systems wa - . .
g y y ﬁence, even at finite-temperature, we can work with a parti-

previously proposed. At the classical level, Martin, Siggia,,. i : . .
and Ros® used a dynamical approach and explored the infion function normalized to 1. Denoting the fields on the

dependence of thlg?classical generating functional on the digiPPer €1) and the lower €;) pieces of the countour by
order. Sompolinsky used this formalism to study the mean- _ — o

field theory for the spin-glass problem. Quantum versions of $1(D=¢(1),  $()=¢(t=ic) (t rea) 3
the idea of using dynamics to enforZe=1 were proposed one defines a matrix propagator

II. DYNAMICAL SCHWINGER-KELDYSH APPROACH
TO DISORDERED AND INTERACTING ELECTRONS
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(T alt, X)Lt X)) =—iA(t—t' ,x—x'), (4  Where

whereT_ denotes ordering of fields according their position iGo(w,k) 0
along the contour of Fig. 2. The particular choiee= B/2 iAg(w,k)= 0 SiGX (k)| (6)
makes the form of the propagators especially simple.d.et 1o (@,
denote a complex field, bosonic or fermionic. The propagatofyith iG ,(w,k) the usual time-ordered propagator,
i A2 can be written in terms of the zero-temperature propa-
gatori A as iGo(t—t' x—x)=(T[S(t,) " (t' X)), (D
iA(w,K)=u()idy(w,kuT(w), (5) and —iG§ (w,k), consequently, the anti-time-ordered one
|
—iGH(t—t' x=x")={(T[H(t,) " (t' X ))}* =(T[(t' . X" ) $T(t,%)]). (8
The matrixu contains the information about the temperature. For bosonic fields, this matrix is given by
coshAd, sinhAg, T 10 - 1
U(w)=ug(w)= sinhAg, coshAd, where A9,=6.— 0. and cosh aw:m. 9
For a fermion field, the matrix is altered to account for the fermionic statistics, and we have
cosAd, sinAg, here A T 10 q 27 1
U(w)=Ug(w)= _sinAf, cosAd, where A§,=6,—6, and co ew—m. (10

Notice that at zero temperatuog = 1.
All correlation functions in a theory with propagatdr,;, and interaction[ ¢,¢* ] are obtained using the following
functional integral over two fieldg, ,:

_ 1
Z:f Do D¢2ex+f dt ddx<§¢;[Al]ab¢b+£|[¢1)¢’I]_£|[¢2,¢§])}, (11

where all time integrals are to be done fromwe to o. This gives rise to a crucial relative sign in how the interaction comes
in for the forward-propagating fielgh; and the backward-propagating fiefs.

11l. NONLINEAR SIGMA MODEL WITHIN THE do
SCHWINGER-KELDYSH FORMALISM So[z,/ﬁ,w]:f ddxf Z!ﬂT(X,w)UF(w)O'g

We start by deriving a nonlinear model in the language V2
of the dynamical Schwinger-Keldysh formalism. The steps w+ —+ex+insgno O

are quite similar to the derivation in the replica formulation. 2m

As shown above, we formulate the problem in terms of a X v
real-time path integral 0 wt %+ €r— i 7Sgnw
+
z=J Dy' Dy eSlv v (12 XUg(@) (X, o), (139

from which we obtain the free matrix propagator
for a fermionic field

bt =iA(0,K) =Ue(0)idg(w,Kul(0), (14

1//—( tﬂl)

s where

comprised of two componentg labeled by the thermal in- _ iIGo(w,k) 0

dicesi=1 and 2(in addition to other indices such as spin 1Ao(w,k)= 0 _iG* (w.k)|’ (15
The indexi=1 corresponds to time-ordered fields, aind or

=2 to anti-time-ordered ones. andiGy is the time-ordered propagator

A. Free action ) i
. . . iGo(w,k)= K2
The free part of the action for these fermions can be writ- 0= ~—+ €ex+1 7 SgNe

ten as 2m
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Notice that the anti-time-ordered propagator is the adjoint oNotice that any interaction term entering the action has the

iGg. The matrixug(w) containing the temperature depen-
dence was defined above. In particulag(w) = Lermaat T
=0. In this case we have

so[wtw]=f d"xf S w)

v? ]
X w+%+ ex | 1+inosf sgnow | (X, w),
(16)
where in the last line we defineﬂz Yo,
B. Disorder term
The static disorder contribution to the action is
+ a, [ 9o +
St ¢l=| d% ZV(XW (X, ) o3h(X,w).
(17

following properties.

(1) It does not mix the two fields); ,. There will be
mixing after disorder averaging, but not before.

(2) The contributions from the two thermal components
i=1 and 2 enter with opposite sigithus theo3) due to the
negative sign for the time integration along the anti-time-
ordered branch.

The disorder potential is assumed to be Gaussian distrib-
uted according to

P[V(x)]oce(‘ 1/2u) fdx v2(x)_ (18)

We then integrate out the disorder, using the fact that the
Schwinger-Keldysh formulation cancels the denominator
problem

eisranc{'/’Trl/’] — f DV P[V]eisv[kl’fv'ﬁ], (19)

thus generating a four-fermion term

u do do’
Sand 00115 [ % ﬁ%w(x,w)omx,w)w(x,w')ogdf(x,w')

u
= 5] dx | 55 X X, H(x 0 X, (20)

Let us now introduce the Hubbard-Stratonovich matrix
field Q that decouples the four fermior(the matrix Q is
chosen to be HermitianWe will choose the decoupling in

the diffusive particle-hole channel. As in the case of the

original diffusive Fermi liquid study by Finkelstein, here we
will not consider the Cooperon contributions. We have

eiSrand 9] — f DQ o~ 1/2u) [ tr Q2iSgl Q.0 0] (21)

where

Sud Q. ¥, w]—nf d f— (X, @) Qo (X) (X, 00").
(22)

The matrixQ has indices in three separate spaces, i.e., it is

assembled as a direct product in energy, thermal, and sp
spaces:

Qif};c',ﬁ:[Qi‘);i“]* Hermitian.
Thus the trace 0Q? corresponds to

2 2

dw do’ 2 Q'J aBQJI Ba.

27T|J 1 apB

tr Q2_

When we writeQ,,,,» we mean a matrix whose elements are
matrices in thermali(j=1,2) and spin spacesy(8=1,2).

We can then write an expression fdras a functional
integral overy, ¥ andQ:

z= f DQ f Dy D el ~ 20 [drQ% i Sol v ] oI Suel Q.11 4]
(23)

where, writingSy and S5 explicitly in terms of sums over
the energy, thermal, and spin indices

do d
So+ SHSZJ' ddXJ' 2: 2(17)7_ IE ’;b| a(x (,0)

v? .
X w+ﬁ+sp 5ij+i7]0"3f sgnw
in X 5aﬂ5ww’+ IQIUJ);U&'B(X) ‘pj,ﬁ(X,w’)- (24)

Upon integrating out the fermions we obtain an effective
theory for the matrixQ field,

ZZJ DQ e(—l/zu)fddxtrQ2

X exp[ f dtrIn

] , (29

VZ
—iQ—i(ﬁ+EF)1

+ A+ Q(Xx)
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where we introduced) and A as matrices in the energy nected loops generated by the disorder average is encoded in

thermal® spin spaces: the matrix structure fof) and A. This structure ensures that
i ap we can work with only two indices,, j=1,2, instead oiN
Qi = 08441 6ijSup (260 replicas withN—O0 at the end. Notice, however, that very
and much like in the replicated sigma model, the disorder con-

nectsQ components sitting on different indices. Next, we
ij,aB_ ij will add the contributions due to interactions.
A =SANW S, T3 O0p

or
A=3.® o: ® 1 C. Interaction term
- 3 3 ’
_— = T (27 Let us consider the case of short-range interactions, in the

Energy Thermal Spin
singlet and triplet channels:
with 35 defined as a matrix in energy space that is diagonal

and whose entries aré 1 for positive energies ane 1 for

negative ones. Sn=S1*tS;
Equation(25) is the nonlinear model for a noninteract-

ing system. The information necessary to dispose of disconwhere

do do' d
Slw*,w]:wrlf ddxf b 2“; 2;2 U1 o(%,0) 3 (X, 0+ ) T3] (X, 0" + €)1 o(X, 0)

dw do’ de

=Ty T T 2w iy VX0 X0t DL (X0 Y a(x0") (28)
and
dow do' d
S 1= =T | @ 525020 S Ul xio)h do o i yx0’ € sl
¢ [ do do’ de
=-—al jd f—gzlz Ui (X, 0) i o(X, w+6)031r/f1 pX, @'+ €) ¢ s(X,0"). (29

Notice the following.

(1) Once again, the interaction does not mix the figlds different thermal indices# j; this is enforced by the-; matrix
in thermal space.

(2) The contributions from the two thermal componeintsl and 2 enter with opposite signs due to the negative sign for
the time integration along the anti-time-ordered branch.

(3) Because all four fermions sit on the same indexsing the definitionzj,a= wiaog does not change the structure of the
interaction as the positive or negative signs from dhematrices always come in pairs.
We now introduce two Hubbard-Stratonovich fiellsandY to decouple the four fermion interactions.

giSilhil = fDY R exp( V2m fdd fz 5 I_E Ui, @) YD) g g%, 0 )) (30)

do do’
) (3D

|52[¢"// f DX eSxX] ex% /2 f d xf e |2 l//l (X, w)X IJ aﬁ(x)l/ﬁ ﬁ(x w')

where 1 de . .
SX[X]=§f ddxf S X FeadxIF(—e), (32
XDab=xiab(h—w') 8, Y P=Y(0—0')5,46; .

1 de . _—
y - Y]== ddXJ —Y'(e)odY!(—e). 33
Notice that the matricex'**” andY'!:%* depend only on the Y] ZJ 27" (V7Y 9) %3
energy differenceo— w’. We chooseX Hermitian X=X'),  The action for thé =1 and 2 components & andY in Egs.
and Y to be anti-Hermitian Y=—YT); we could alterna- (32) and(33) come with opposite signs, which is necessary
tively, have absorbed a factor ofinto Y and made it Her- to generate the correct sign in the four fermion terms for
mitian. The action for the matrices andY is time-ordered and anti-time-ordered pieces. The fact that at
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least one of the components is not positive definite is not &he expansion is achieved by allowing a slow position de-
problem here because we work with a real time path integrgbendence in the matrixJ—-U(x), and considering small
and have the factor in front of the actionss, andS, as in  couplingsI'; , and small energies. Expanding Eq.(34)
Egs.(30) and(31). around the saddle point, we have

Including the fieldsX andY together with the matrix field
Q, and integrating out the fermions, we can write the parti-Z:f DX DY DQ dS{XIgiS$ylV] ex;{ _ EJ' d9{D tr (VQ)?
tion function (vacuum persistengeas 2

Z=f DO DX DY é*lla.l)fddxtereiSX[X]eiSy[Y] +4ztr[ (10— nA)Q]+2V27I', tr(XQ)

+2iy27l, tr(YQ)}], (36)

2
xexp{ f dtr,In —iQ—i V—+e,: 1+ 7A +Q(X)
2m where we have also absorbed the rescaling of the saddle into
the couplingd’, ,, as well asD andz. Integrating ouX and
— 27T, X(X) =271 Y(X) ] (34 Y, we obtainZ=DQ e~ 5%, with an effective action foQ
as follows:
D. Expansion around the diffusive Fermi-liquid fixed point SQI=Sp[Q]+See[ QI

We will now expand trIn around th® saddle of a diffu- Where
sive Fermi liquid. The saddle-point solution for the noninter-

acting problem isQ=mwuvoA, where v, is the density of So[Q]= %J d{D tr(VQ)?+4ztr[ (iQ— »A)Q]},

states at the Fermi level andl is given in Eq.(27). The 37

matrix Q can be rescaled so that the saddle point can be

parametrized a®=U'AU. The matrixQ in the nonlineaw

model then satisfies the constraints Se—e[Q]:f d[i 7T'1Qy:Q—i7T,Qv,Ql, (39
Q=Q", Q?=1, trQ=0. (35  and the contraction®y,;Q andQy,Q correspond to

dwl dﬂ)z d(l)3 d(,()4

— A TTme TS i, aa~ii,BB _ii _ _
leQ I;ﬁ 277_ 277 271_ 277, lewzQa)3w4o-3 2775(('01 w2+(u3 0)4), (39)

do; dw; dws dwy _; - y
— P ,aB II,,Ba 1 _ _
Q’YZQ i%:ﬁ 20 27 2@ 2 lewzQw3w4 g3 2775((1)1 (l)2+ w3 (1)4)- (40)

At this stage we would like to compare the expressions
for the effective nonlinear model [Egs. (37) and (38)].
First, notice that the structure is very close to Finkelstein's -
replicated model; however, here we have only two “repli- or A=2;9 1 ®1.

—— —— ——

cas” corresponding to the two thermal indices. Also, the Energy Thermal Spin
interaction termsQy;Q and Qy,Q do not couple the two In this case the thermal and spin structures for the saddle

thermal spaces ”?“Ch n the. same way that f[he Inter""Ct'OBecome trivial, and we need only to worry about the energy
does not couple different replicas. In the Schwinger-Keldyshy.. | +.re. This transformation is achieved through
approach the two thermal indices appear with an opposite

sign; hencerg , in contrast tog;; , as is the case of replicas. Q—T'QT,

A'(if,ﬁzsgn wﬁww/ 5” 50,’3

where

IV. PARAMETRIZATION OF THE SADDLE ) 501 8:8.s, =1
Tihap_ e TUTeE

o 00" | 8y 08 Baps 1=2.

We have used above the parametrizatiQr=UTAU, ’ 1%ep

where A=23Energ@ O 37hermaf® Lspin- The tensor product of The matrixT can be viewed as a direct product of matrices in

the 33 in energy space and; in thermal space makes the energy, thermal and spin spacé:=U (i) ® Linerma® Lspin,

parametrization of the saddle rather cumbersome for carryinghereU(i) is a rotation in energy space that dependes on the

out calculations. This can be resolved through the use of Eérmal index. This transformation leaves the form of the

transformation that allows us to parametrize around thection invariant, with the exception ocf—A and Q—(),

saddle point where
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Q'J)wa’ﬁ—a)5wwr0'3] 5015 Q:E Q(n).
It is easy to check that the forms Qfy;Q andQy,Q remain "
unchanged'upon using the transfqrmatib!(lthe Interaction \\ heren is the order in the power series expansionViv'.
does not mix thermal indices, so for1 this is trivial, and =
or example,
for i=2 one can absorb all changes in sign by redefining the

integration variables 1 0 0o vt
The parametrization of around theA saddle becomes Q(O):[O 1}, Q(l):[ }

simple and familiar, as in the work of Hikar: v o0
w'>0 w'<0 0 Q(2)=-12VtV0012VVt,
w
Q=| V1-Viv Al o (42)
w<0,
Vv —J1-VV - %(V*V)2 0
where the matri®/,,,, has row indices with negative ener- Q®=0, Q®¥W= 1 ,
gies (w<0) and column indices with positive energias’( 0 ~(VVh)?2
>0). As in several other work&ee, for example, the work 8
by McKane and Ston# and by Grilli and Sorell#), we will
proceed with the study of the nonlinearmodel by expand- The quadratic piece of the expansion of the ac8ghQ]
ing in powers of theV,V' matrices: in powers ofV,V' is
1 o~ ~
SrQl= > f d{D tr (VQWM)2+4ztr[(iQ— »A)QP]} (42
f ddx f J - 2 [D VQ(l)'J aﬁVQ(lw Ba+4z(|9u ap_ 7]A'J aB)Q(z)JI Ba] (43)
T ij,aB
d et 2_ ' ol tij,aB ji.Ba,
fd kL>02w ) <027T ”EaB[Dk iz(woy— o' oIV P VIPY(— k), (44)
and
SEAQI= | a*(imT,QW QW -i7T,Qy,Q1) @5
with

dwl da)z d(l)3 dw4 aa
QMy, QM= 2 Sm 27 2w 2w Q(l)ilwzQ(l)Zsii 0527801~ 0yt Wy~ @) (46)

dw,; dw dw, dw .
:22 LT 2 3V4rII waayyii, BB '2775(w1—w2+ w3~ wy), (47)

iap Jog, u’4>027T 2@ wy, a)3<027T 2T  “192 030,79

d(,()l da)z dw3 dw4 o i Ba i
Q(l)?’zQ(l)_ Z P P Q‘l’ilw'iQ(l)LL;ﬁ4U§2ﬂ5(wl— Wyt w3— wy) (48

dw, dw dw, dw -
=2> — —2 —Zyfil.apyjii.fa 03278 w1~ W+ w3~ wy). (49)

ivap Jog,w,>0 2T 2T )y we<0 2 27 = “1¥2° “3%4

Notice that the contribution to quadratic order coming fr@t?)yQ(® vanishes due to the trace, as do contributions to any
order in the expansion d@yQ whereQ(® appears as one of the tw@ terms.
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L=> (1 1) 1E+1 (52)
@ —_— 9 v 2VY 2 '

(O]

With these relations in hand, it is simple to check that we
only need to consider three and four point vertices in the
() > .
B " one-loop (=1) renormalization of ther model. As men-
tioned above, the RG flows can be obtained from the two-
point function alone, so we s&=2. Thus we have

1=, nv(%v—l>, (53

which has only two solutions:v(=3,n,=2) or (v=4n,
=1).

Hence, at the one-loop level, we need only consider the
two-point vertex which follows from the expansion &f, to
quadratic order in th&/ matrix; the triangle vertices which
follow from its expansion to third order i¥; and the square
vertices which follow from its expansion to fourth order as
well as the expansion @&, to fourth order. The index struc-
ture of the former follows from Eq46). The index structure
of the latter two follow from the fact that the thick lines are
understood as splitting at the vertices to give the thin lines of
the vertices; frequencies, spin, and thermal indices from the
FIG. 3. The propagator and two-, three-, and four-point verticesthick lines then split and follow the thin lines, as we demon-

strate with the spin indices in Fig.(d. At the interaction
V. FEYNMAN RULES dots, they follow the same rules as at the two-point vertices.

! . ) ay v o
We now present the Feynman rules which follow from theIn Fig. 3b), there is a matrix structurg™”o*" if the inter

. . . . action dot is a'; and 5*#6”” if the interaction dot is d°.
actionSp + Se.e. Our theory is parametrized most succmctly This is abbreviated af'. The frequencies have an overall

in terms of theV matrix used above. The basic propagator IS 3 tunction at the dot. The Feynman rules are summarized
the (VV) propagator or diffusion propagator which follows below '

from Sp . It is represented by a thick line, as in FigaB but Propagator and diffusion vertexat the one-loop level,

it can be understood as a double line comprised of an ele%e need only consider the first two terms in the expansion of

g.(;n agﬂ; Tle'olft tf]aergia:c:ngr:naer?émgd'mz 'g/v:aofrgqgr?rgr—]e Sp. They are the propagator and the diffusion vertex. The
leSe ande w r : frowis | propagator is given by

direction of the larger frequency. The propagator also carrie
two thermal indices and two spin indicésne each for the
electron and the holeThe actionSp + S, contains terms of
all orders inV. However, not all of these are needed at the

@

(@)=(Ve Vi (—a)

1

one-loop level, as we now show. _ _ _ 5 sik sav 5B
Let us start by counting which vertices we need to include —iz(w,03— w,0d)+Dq?
in the renormalization program. We can determine the loop
order of any diagrafi** by considering the number, of X2m( w1~ wg) 2wy~ w3). (54)

vertices withv legs, and the number of external lineésThe

number of legs in all vertices must equal the number of ex- The second term in the expansionSy is the box €). It
ternal legs plus twice the number of internal linesch in-  is given by

ternal line belongs to two vertices

D
(€)= g[2(A1-Gs+02:Ga) + (A2 03) - (G2+ s ]
E+21=, vn,. (50)
v
z . N

The loop order is the net number of momentum integrals, + 1_6[“’1‘75_“’20131+perm]' (59)
which is the number of internal lines minus the number of
contraints from momentum conservation in each vertex, plu¥Ve have omitted in the expression above the momentum and
an overall momentum conservation constraint frequency conserving functions. Theg;’s are the momenta
on the four external legs. These legs can have arrows alter-
nating between in and out as one goes around the box, with
two pointing in and two pointing out.

Interaction verticesThe two-point vertex results from the
Thus lowest-order term in the expansion ${.:

L=1—-> n,+1. (51)
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W —— + e + S>> .. (c),(d)=FiaT, (57)

wherel” can be eithef’; or I', (the suppressed index struc-
® * * e ture is an extension of the two-point case, as we discussed
above and the arrowless propagator can have an arrow

pointing in either direction.

Diagrams(f) (and a similar one with the arrows reversed
© . . . and(g) are the quartic terms resulting from the expansion of
the interaction.

, . . . r r
FIG. 4. The geometric series of diagrams which decorate the (H=—im—, (Q)=+im=. (58)
two-, three-, and four-point vertices. 4 2

(b)=27i(—T; 6“F5""+T 6% 8%#) o) Decoration of the interaction verticest the one-loop
level, we do not need to consider terms of higher order than
X278 w1— Wyt w3— wy). (56)  the above. However, there can still be terms of arbitrarily

high order inl" because there are quadratic interaction terms.
The next terms in the expansion of the interaction are th&hese can be obtained by grouping all of the quadratic terms
triangle terms: together and inverting them to obtain the full propagator:

(VI B(a)Vh(—a))=Dos" 845" 8P4 2m 8( w1~ w4) 2 8w~ w3)

— 27T 1D 1D,8" 8" 88 642 71 8(w1— wo+ wz— w,)
+27iT,D,D 8" 8" K57 6PF2m8(w1— wyt w3— wy). (59

Note that the interaction terms are distinguished from the Hence, by inverting the sum of all of the quadratic terms

propagator by thé" on the thermal indices and the overdll  (rather than just the quadratic term coming fr@&g) and

energy function. Here,=z—-2I",+1',=z-2I'g andz,=z  amputating the propagators entering and leaving the vertex,

+I',=z—2I';, where we have introduced the singlet andwe effect the replacement

triplet interaction amplituded;s=1"1—T',/2, I';=—T",/2 by

rewriting

(b)=2mi —rlDlgzaaﬁamrzB—z s §bu | gl
0

X278 w1— wyt wz— wy). (62

T, 8°B8H —T 6% 8P

1 1
—r.—-= aB guv_ . B iV
(Fl ZFZ) L SR C O ER can, equivalently, be obtained by summing the geomet-

ric series of Fig. ). It is this peculiar property of this
The inversion is more simply done in the singlet-triplet de_theory — namely that there are quadratic interactions —

composition since these matrices are orthogonal. It can thef{nich léad to one-loop RG equations which have terms of all

b d in E59), whereD,, Dy, andD i orders inl’,. . o .
bs reexpressed in E(p9), whereD,, Dy, andD, are given Similarly, when the interaction incj, (d), (f), or (g) is on

an internal line, we can sum the infinite series of Figb) 4
or 4(c) and, again, make the replacements

b 1
° —iz(w103— wp0Y) + D’ [T Dib> .—T 2 (63)
1 1 D(Z) ’ 2 2D0
_ 1 While the decoration of vertices leads to a replacement of
D,=— . — , (61) .
~iz4(w,0% — wp0) +Dg? propagatorg63), the decoration of propagators themselves
— and, in particular, external legs — is superfluous since the
first term in Eq.(59), which has the desired index structure,
1 is not affected by decoration. The decoration of an external
D,= line of a vertex amounts to propagator decoration and is

—izy(w 05— w,0Y)+Dq similarly ignored.
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St
} @ . m}
@) i ;;
=

FIG. 7. The five “primitive” diagrams which renormalizE;.
They are elaborated in Figs. 8—10. The corresponding elaboration
for I', is in Figs. 11-13.

FIG. 5. The self-energy diagrams which renormalzand D.

VI. RENORMALIZATION OF THE o MODEL

There are four coupling®,z,I"; 5, in our action,

S= %f d?x{D tr (VQ®)2+tr[ (4izQ) — »A)QP]}

+ [ AT 1007, T, Q5,0
(64

All of these couplings are present in the quadratic terms in
the action. Hence the RG flows can be computed from the
two-point function alone, separating the different contribu-
tions according to their spin, frequency, and Schwinger-a
Keldysh matrix structures.

First, there is the diffusion constan) — or, equiva-
lently, the resistivity,g=1/(2)?D]. In the noninteracting
o model, this is the only coupling constant. In the interacting
case, it is still used as the expansion parameter: we assume Renormalization of D and Z.et us examine Fig. 5. By
that g is small, but make no assumptions abdyt,. The inspection, we see that these diagrams have the appropriate
second coupling constant i the relative rescaling of time matrix structure for the propagator, i.e., the matrix structure
versus spacey and z are renormalized by the diagrams of of Eq. (54). Diagrams without an interaction vertex do not
Fig. 5. The other couplings are the interactidhs,, which  contribute to the renormalization &f to one-loop order; the
are renormalized by the diagrams of Figs. 6—13. Contribureason for this is that there is a cancellation between the two
tions to theQ self-energy determine the flow 8or zif they  (time-ordered and anti-time-ordepedSchwinger-Keldysh
are proportional t@? or , respectively, provided they have species. In the case of the replica calculation, the contribu-
the correct thermal index structure. They determine the flowion to one-loop order is proportional to the replica number
of I'y , if they are independent of the external and frequencyN—0.
and are diagonal in the thermal indices; they contribute to The diagrams in Fig. 5 give the following contribution to
one or the other depending on their spin structure. the Q-field self-energy2.:

It is a matter of taste whether or not we choose to intro-
duce a “wave-function” renormalizatiof (the quotation
marks refer to the fact that we mean a renormalizatiol,of
not ¢), since this can be completely absorbed in the renor-
malization of D and z. There is a natural definition of where
which is related to the density of states, but this is moot for
the scaling equations which we consider because we can re-
scale our couplings to eliminaté. Hence, we sweep the
wave-function renormalization under the rug in this paper.

Attree level,D, z, andI'; , are marginal{One might have
expected’, , to have the dimensions of (lengttd, but they
do not as a result of the extra frequency intefyrab find the
fluctuation corrections to their scaling behavior, we use a @

Wilsonian shell elimination scheme in which we compute
their change as we integrate out shells

A—dA<DQ@?*<A, 0<w<A

nd

A—dA<w<A, 0<Dg?’<A. (65)

3(9,Q+€e)=2A(0,0+¢€,6)+25(0,0+¢€,€), (66)

(i) w—

/ v

(iii)

(iv).

FIG. 6. The lowest-order diagram which renormali1gs,.

(iii)

(iv)

FIG. 8. Diagramga) and (b) renormalizingl;.
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(b)
w >@> (d) m> . k k m
o . 18] W]

(i)

m) >@ AN AN
KA K(ﬁ’ N N D

(iiiy (iii)

A L LLAT s ST

(i), L g (iv)

FIG. 9. Diagramg(c) and(d) renormalizingl';. FIG. 11. Diagramga) and(b) renormalizingl’».

d23>
2
dq g=0,Q2=0

d’k dw
=—D(— 27T|)f 2 o

X[T1(k,w)— 2T 5(k,0)]D3(k, @)Dk, (70)

SA(9,0 = 4f ddo i
A(Q! +6!6)__ (Zﬂ)zﬁ - 7T|) dD=—

X[T1(k, @) — 2T 5(k,0)]D3(K, )

D K , . Z Q
Xl gk+a)—igle+Q) (67)

is the contribution of the diagram on the left, and

(dY
d’k do( i dz=—i dQB)
EB(q’Q+6’6):4J(2ﬂ-)227T —4)[Fl(k—q,w—Q) q=00=0
11 d%k
—2I'(k—g,0—Q)]Dg(k,w) (68) ——f( )2[F1(k,0)—2F2(k,0)]Do(k,0)- (72)

is the contribution of the diagram on the right. There is a o )
relative factor of 2 between thE; and ', contributions N the dzterm, theQ) derivative cancels the integral.
because the former contribution has no free internal spin in- Making the replacemen63), we obtain

dices, while the latter has one which is summed over. Notice

thatX, andXy cancel atg=Q=0. The contribution of 5 _ 7_( o ')J

Dkz[FlD (k, )

as well as a piece dlg are absorbed into the wave-function (27)2 2 27
renormalization. Th& g contribution includes a term of the
form X D1(K,@)Dy(k, ) = 2I';D§(k, ) Da(K, )],
72
r f k do ) ke)Dako) (69) -
T 5 A !w !w )
) (2m?2m i 1 d2k
dz=75(1“1721“2)f ——Do(k,0). (73
which comes from differentiatin®, with respect tay?. The (2m)

wave-function renormalization multiplies thé fields, and

therefore resurfaces in the renormalizatio 'gf Differenti- © /< o /< @ /< . >\>
ating with respect ta or g2, respectively, we get, to lowest , = @

order inl'; ,, the one-loop contributions @D anddz (the

external frequencies and momenta have been set to zero aft
differentiation: @ f E Z §
(i) SBm— (i) S—

(e

NN AN
(i) — (i) ) Z—

FIG. 10. Diagramge) renormalizingl’;. FIG. 12. Diagramgc) and (d) renormalizingl,.
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© of the vertices aré’;’s, however, corresponding diagrams in
f § E é Figs. 8—-10 and 11-13 cancel. Hence, we need only consider
@0 I';’s in Figs. 7-13.
By following the frequencies and spin indices around the
S E E 2 diagram of Fig. 6, we see that it gives a contribution
iy Zw—

dlr,6%Fs+r—dIr, 64" 6P+
FIG. 13. Diagramge) renormalizingl,.

d%k
. . . . . — av SBu __ af uv
The contribution tadz is unchanged but the contribution to (I'y 87707 =T, 5" )f (Zw)zDO(k"")'
dD receives corrections of all order Ity ,. This result is the
full one-loop result: it is lowest order ig but to all orders in (76)

Fl,Z'
Integrals(70) and (72) are discussed in the appendixes.
Here we just state the results:

Corresponding diagrams of Figs. 8—10 and 11-13 give
identical contributions, apart from a factor of 2 coming from
a spin sum, so we will focus on Figs. 8—10. Figute)8jives
dg_ a contribution
ar = 9laf2(2,21,25) = 2T5f5(2,2,25) ],

i ATy =i r)zf & 9o ey, (77
— | =(I - s .
dz TR ) 2w
G =9(=Ty+2r), (74 The signs of the six diagranigiii) and (v) are two dia-

o grams each because the arrow can point in either direction on
whered|=—d(In A) and we have made the substitutign the arrowless lindsare determined by the relative signs of
=1/8wD.” Following Finkelstein, we have introduced the the two triangle vertice$57). The first two diagrams come

functions with a positive sign while the other four come with a nega-

tive sign. Adding these together, we obtain the coefficient

__1 %2 —2. Both of the interaction “dots” are on internal lines, so
f1(2,2,) In ,
z,—-z \z we make the replaceme(id):
d’k dow
2z 2z o (&) _ oy; 2 w2
F(2.21,20) = e 1(2,2) 2 t1(2,2,). (79 2midrP = —2(iaT? | (22 220

z,—2 z,—2
1 2 1 2 (78)
As we show in the appendixes, the functidns arise as . .
a result of the mismatch between the poles of the propagatorsi tlhn Egtl\ibil tgsr%r:reoﬁgzn?é?gggﬁ d&:)r:?stgﬁyar?liln?:rrg;
Dy 12 In the noninteracting case, in which these propagator P gns. y
- . ; Ine, so we have
are equal, these functions are just constarftgz,z)
=1,,(z,2,2)=2. Interactions split the energies of singlet 2k do
and triplet particle-hole states from their noninteracting _ 2 q; dT(lb)=4(i7TFz)2f . 2—Do(k.w)D2(k,w)-
value, leading to Eq(75). (2m)= ™
Renormalization of"; ,. The diagrams which renormal- (79

ize I'y are in Figs. 6 and 8-10, while the related diagrams ) ) ) )
which renormalizd™, are in Figs. 6 and 8-10. In Figs. 8-13,  The diagrams of Fig. Ib) vanish because the integrated
we have, for the sake of completeness and pedagogy, en[;_equency is overdgtermmed. However, the wave-function
merated all of the diagrams which contribute to the renorJ€normalization coming from the neglected partef makes
malization ofl"; ,. On combinatoric grounds, we see that we YP the_m|ssmg Contrlbutl_on. N _

have included all 20 of the diagrams which contributd’to In Fig. %(c), the four diagrams have positive signs. There
and the 20 which contribute t5,. All of these diagrams are three _mteyactmns, but one is on an external line, so there
must be taken into account to obtain the correct signs anff & contribution:

relative coefficents of various terms in the RG equations. . . .

However, these two sets of 20 are really elaborations of two ™~ 27" dr{9=a(inly)%(i 27T )
sets of five diagrams. In Fig. 7, we give the five basic dia-
grams forI'y; Figs. 8—13 are put in Appendix A to avoid
unnecessary clutter and confusion. From Fi@) Ye obtain
the six diagrams of Fig.(&). From each of Figs. (B), 7(c),
and 7d), we obtain four diagrams shown, respectively, in

d%k [ad od
Xf of] )

J— — —D k, —
(2m)2Jo 27 )\ 27 olk,w1— o))

X[Dy(k, w1~ wy)]?

Figs. 8b), 9(c), and 4d). Finally, Fig. 7e) gives rise to the =4(inTy)(i27aT,)
two diagrams of Fig. 10.

In Fig. 6,I"; contributes to the renormalization Bf, and d?k (Adw © )
vice versa. When only’',’s appear in Figs. 8—13, the spin J (Zw)zfo EZDO(k’M)[DZ(k'w)] .

index structures dictate that Figs. 8—10 contribute to the flow
of I'y while Figs. 11-13 contribute to the flow o%. If any (80
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where we have sab=w;— w, as the only variable inside
the propagators, and obtained the phase-space fac¢gar
from integrating the intermediate frequencies.

Figure 9d), on the other hand, comes with a negative sign

and only one internal interaction:

=27 dI{D=—4(i7l,)2({27T,)
<

The coefficient 4 is important for the physics of this theory.

In Finkelstein’s original papet,the contributions from the

diagrams of Fig. 9 were too small by a factor of 2. As a

result, a metallic fixed point with infinite conductivity was

found. This error was corrected in Refs. 36 and 37.
Finally, we have the two diagrams of Fig. (&D

d’k (Adow o

2m)o 2m 2 Lok @Dk 0).

(81)

=27 dI{®=—2(inl,)%(i27T,)?
d%k do

2
Xj (2m)2 ﬁ( )

X[Do(k,@)’[Da(k,®)1%,

(O]

2m

(82

where, as in Figs. 10) and 1Qd), there are intermediate

OACH TO DISORDERED.. .. 2251
dz o dr, . 3
qr - 9Tt 2), ar 9 bt
(85
dr, 213
a9

Adding the second and fourth equations, and subtracting
the third equation twice, we find

%(2—2F1+F2)=0. (86)
Although we have only verified E¢86) to one loop, it is, in
fact, an exact relation which follows from the Ward identity
for charge conservation, as we discuss in Appendix C.

Since a constant of integration {i86) can be absorbed
into a rescaling of frequencies, we can $gt=(z+1',)/2.
Changing variables fromh', to y,=1",/z we have the equa-
tions

d +
d—?=g2 1+31- 72|n(1+72)”,
8
dZ_ 1 3 d’)’z_g 1 2 ( 7)
T R R A IR

frequency integrals that lead to the phase-space factor From the final equation, we see thgt increases at long

(wl2m)2.

length scales. This is not problematic since we made no as-

The integrals in the expressions above are discussed in ttgmptions about the smallnesslof. Wheny, becomes suf-

appendixes. Their upshots are

FZ
dr®=——2gd(in A),
Z

dr{?=212f,(z,2,)gd(In A),

3

@__ L2
dry =—Z—2f2(z,z,zz)gd(InA), (83
F3
dr{?=—f,(z,,2,,2)gd(In A),
1+ ! 2f )
-+ == z,z
© . Z Z, l( 2
dri¥=-15 5 gd(InA).
(z2=2)
Adding these contributions, we obtain
1-*2
drga>+dr<lb>+dr<f>+dr<ld>+dr(f>z—cb:fgd(mA).
(84)

VIl. RENORMALIZATION-GROUP EQUATIONS

Gathering these results, we have the flow equations

dg_ )
T [[1f2(2,21,2,) — 2151 5(2,2,2,) ],

ficiently large,z begins to grow, and, after an initial in-
crease, begins to decrease. Since these equations are valid in
the smallg regime, it would appear that the flow improves
their validity. However,y, and z diverge at a finite length
scale. Since these equations include all ordery.ntheir
breakdown signals the onset of nonperturbative physics.

It is useful, as a comparison, to consider the BCS interac-
tion in a Fermi liquid. There the flow equation for the BCS
interactionV can be computed to all orders in perturbation
theory:

dv

dl
The one-loop RG result is the full story because there is only
a geometric series of bubble diagrams. This equation also
breaks down at a finite length scale — the coherence length.
At this length scale, the nonperturbative physics of pairing
takes over. Similarly, the breakdown of our flow equations
(85 implies that nonperturbative physics—such as the for-
mation of local moments — determines the behavior of the
system. Such physics cannot be accessed perturbatively from
the diffusive saddle point.

—V2, (89)

VIll. DISCUSSION

In this paper we have shown how the Schwinger-Keldysh
dynamical formulatioff can be applied in treating a disor-
dered interacting electronic problem. We reproduce Finkel-
stein’s renormalization-group equations for the interaction
strength and conductance. In our approach, the RG proce-
dure is carried out in a very simple way, in close resem-
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blance to ag* theory (with cubic terms as well Stone for discussions. The authors would like to thank the
For the case of the diffusive Fermi-liquid state, the calcu-nstitute for Theoretical Physics, UCSB, for hospitality dur-

lation using the Schwinger-Keldysh method is very similaring the workshops on Low-Dimensional Quantum Field

to the replica method. The two thermal indices for time-Theory (1997 — where this work was begun — and Disor-

ordered and anti-time-ordered propagation play a similar roleler and Interactions in the Quantum Hall Effect and Meso-

to that of the replica indices in the particular case of thescopic System$1999 — where this work was completed.

diffusive Fermi-liquid regime studied by Finkelstein. The This work was supported in part by the NSF under Grants

disorder couples fields with different thermal indicesrep-  Nos. NSF-PHY 94-07194 and NSF-DMR-94-24511 at the

licas), while the interaction does not mix thermal indides  University of lllinois (C.C), and by the A.P. Sloan Founda-

replicag. The Schwinger-Keldysh indices, like the replicas, tion (A.W.W.L.).

act in this example as simple bookkeeping devices. In the

replica calculation, the diffusive Fermi-liquid state is replica

symmetric. This is the underlying physical reason for the APPENDIX A: ELABORATION

simplicity of the replica structure. OF THE FIVE BASIC DIAGRAMS
There should exist much more interesting saddle points

where the replica symmetry is broken. One such point is the The five basic diagrams of Fig. 7 are a schematic repre-

Wigner glass phase, which occurs in the limit of low elec-gohtation of the 20 diagrams in Figs. 8 and 9 which renor-

tronic densities. As in the cases with other types of glasse%anzerl_ The corresponding diagrams which renormalize
such as spin glasses, we know that replica symmetry brealf«2 are shown in Figs. 11-13

ing is connected to broken ergodicity. In the Schwinger-
Keldysh approach we expect that broken ergodi@iyd thus
replica symmmetry breakingvill manifest itself in subtle-
ties related to thev—0 limit and the symmetry between
time-ordered and anti-time-ordered products. The ) ) ) ) ) )
Schwinger-Keldysh provides a natural tool to study dynami- _1h€ following five logarithmically divergent integrals
cal effects, which is a direction that we will explore. arise in the calculation of the diagram of Fig. 6 and diagrams
(@—(e) in Figs. 11-13. We define=Dq? and integrate over
the shellsA —dA<x<A,0<w<A and A—dA<w<A,0
<x<A.

We would like to thank Sudip Chakravarty, Eduardo In the diagram of Fig. 4, there are no free frequencies;
Fradkin, Patrick Lee, Adrianus M.M. Pruisken, and Michaelthere is only a momentum integration

APPENDIX B: INTEGRALS

ACKNOWLEDGMENTS

A

—1 JdD _—1J dl——l d(ln A B1
470 ) XPolx@)=775 rear X 4mD (). By

In diagrams(a)—(e) of Figs. 11-13, there are multiple propagators with differgst By rewriting these products of
propagators as a sum over polesximand w, we reduce them tad(Iln A) times nondivergent integrals. These integrals give
nontrivial functions of thez;’s.

1 1 A A 1 1
dedeO(X,w)Dz(X,w)——f dXJ do

2(2m)°D 22m2DJa-an Jo o x—ize x—izpw

1 A A 1 1
+—f dwf dx— -
2(2m)?DJA-da 0 X—izZw X—izyw

——dAfAd ! ! !
“202m o C(z-2w\A-ize A-ize

. 1 i dAfAd
2(2m)2D (22=2) A Jo

1 1
M XZizA X—iz,A

i Z, . 1
Z,—7 n(;)m d('nA)—Ifl(Z,Zz)md“nA). (BZ)

Similarly,
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f dX dw X Dy(X,w)Dy(X, ) D1(X,w)=

A 1 1 1
—J' dxf do X— - .
2(2m)?D 2(2m)2DJa-dr o X—iZw X—iZ,0 X—iZj0

1 A 1 1 1
+ —f dwf dX X—— . .
2(27)?DJA-da 0 X—izZw X—iZ,0 X—iZ1j0

2iz, | (z) 2iz, (z din A)
=l——————In|—|— n| — n
(21-25)(z—21) \21) (z3—2)(2—23) 22/ |2(27)%D
if5( )—1 d(InA) (B3)
=if,(2,2,,2 nA),
2o 2m)?D
_ fddfwd'D D D ——fA ded ! ! !
2(2m)D xdo | do o(X,0)Dy(X, @) 2(X,w)—2(2ﬂ_)2D R AL s izye X123

1 A A 1 1 1
+—f wde dx—: - -
2(27)?DJA-da 0 X—iZw X—iZw X—iZw

1 2 27, | (z) dinA)
_ = _ nl = n
223|(2-23)  (z—2,)% \Z2) |2(27)?D
: fa( )—1 d(inA) (B4)
=—5-faz2,2 nA),
22, 277 522D
——— | dxdw ©?Dy(X,w)Dg(X,®)Do(X, ) Do(X,w
2(277)2DJ o(%,@)Do(X,0)D(x,0) Dy(x,0)
1 A A 1 1 1 1
Z—f dxf w dw—: - - i
2(2m)?DJa-da  Jo X—izZw X—izZw X—iZ,0 X—izZyw
1 1 1 1 1
+—j wzdwf dx—: - - -
2(27)?DJA-da 0 X—izw X—izw X—iZ,0 X—iZyw
12 2f
=-l nA).
(z—2,)? 2(2m)?D
|
APPENDIX C: WARD IDENTITY relates vertex renormalizatiofthe left-hand sideto the

renormalization of the propagatthe right-hand side This
iS more transparent in momentum space:

P I

4,4 r.. (C) o ! _ {
dl dl /‘\

We would now like to indicate why this constraint follows ~

from charge conservation. Let us imagine returning to our (y

disorder-averaged actid®y+ S;,,qt+ St fOr interacting elec-

trons. Let us consider some fixed realization of the disorder.

The Ward identity which follows from charge conservation, /—a\

0T L) (k) x) ) S—

()
=i TLy'
=1y =X )T () wxe)) FIG. 14. Diagrams contributing to the renormalization®fI
—i8(y=x (T[4 (x)%(xx)]), (€2 and(b) z

In Sec. VI, we found that our one-loop RG equations.
imply that
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1%
AM(D.0)=£[w—Ep—E(IO)]- (C3
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Meanwhile, the diagrams contributing to the renormaliza-
tion of the right-hand side of EqC4) renormalizez. One
way of seeing this is to note that the renormalization of the

A ,(p.0) is the Fourier transform of the correlation function propagator determines the RG flow nfsince the former is

with a current insertion(at zero momentuinon the left-
hand-side of(C2). %, is the self-energy. We focus on the
=0 component of this equation:

1%
Ao(p.0)=—~[w=2(p)]. (C4

the renormalization of the terin "¢ in S, while the latter
is the renormalization of the equivalent termS3p, namely,
trf @Q]. The factor of 2 on the right-hand side results from
the summation over the spin index in Fig. 14b). This
index is held fixed as an external index in thig renormal-

The equality between the left- and right-hand sides is exemization.

plified by the relation between the diagrams of Figs(al4

In principle, we can derive the same result for disorder-

[the dashed line indicates the current insertion in the correaveraged correlation functions directly within tlee model

lation function of the left-hand side of EC2)] and 14b).
As we indicate in Fig. 1é), the diagrams contributing

tothe renormalization of the left-hand side of EG4) are

equivalent to those which determine the RG flowlqf.

by deriving the corresponding Ward identity. However, this
is more cumbersome because the current operator, and the
gauge transformation rules are more complicated in the
Q-field language.
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