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Electron-electron interactions in disordered metals: Keldysh formalism
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We develop a field theory formalism for the disordered interacting electron liquid in the dynamical Keldysh
formulation. This formalism is an alternative to the previously used replica technique. In addition, it naturally
allows for the treatment of nonequilibrium effects. Employing the gauge invariance of the theory and carefully
choosing the saddle point in theQ-matrix manifold, we separate purely phase effects of the fluctuating
potential from the ones that change quasiparticle dynamics. As a result, the cancellation of super-divergent
diagrams~double logarithms ind52) is automatically built into the formalism. As a by-product we derive a
nonperturbative expression for the single-particle density of states. The remaining low-energys model de-
scribes the quantum fluctuations of the electron distribution function. Its saddle-point equation appears to be
the quantum kinetic equation with the appropriate collision integral along with collisionless terms. The
Altshuler-Aronov corrections to the conductivity are shown to arise from the one-loop quantum fluctuation
effects.@S0163-1829~99!03227-0#
ys
ra

s
n

de
e
em
ib
e

a

l
ow
-
n

-
e

-

nd

o
c
he

ur-
ther
b-
ns.
ing
n-
’s

ged

5
re-

ry,
m
h-
ed
or-

ion
the

s
ed

al-
-
In

ing

m.
e,
re-

er-
I. INTRODUCTION

The physics of weakly disordered interacting electron s
tems at low temperatures has been a subject of conside
theoretical and experimental interest over the past years~for
review see Refs. 1 and 2!. Although significant progress ha
been made in this direction, many thermodynamic and tra
port properties of such systems are not completely un
stood and continue to stimulate both experimental and th
retical research. The latest revival of interest in the probl
was prompted by the experimental discovery of a poss
metal-insulator transition originally in clean Si metal-oxid
semiconductor field-effect transistors3 and later in p-type
GaAs.4

The low-temperature behavior of the conductivity of
metal is mainly determined by the quantum~weak
localization!5,6 and interaction7 corrections to the classica
Drude result. These corrections are especially strong in l
dimensional (d<2) systems. In two dimensions, for ex
ample, both the lowest order weak-localization correctio5

and the lowest order interaction correction7 diverge logarith-
mically at low temperatures. The ultimate faith of the low
temperature phase is determined by the interplay betw
these corrections.

According to the scaling theory of localization,8 in the
absence of electron-electron (e-e) interactions~and with no
spin-orbit scattering!, quantum corrections lead to localiza
tion of all single-particle states in dimensionsd<2, and thus
to insulating behavior for arbitrarily weak disorder~weak
localization!. Wegner9 proposed a replicateds model to
study this problem. With the coupling constant correspo
ing to the dimensionless conductanceg, this s model pro-
vided justification for the one-parameter scaling theory
localization.8 Later, Efetov10 introduced a supersymmetri
version of thes model which obviated the need to take t
tricky11,12 zero replica number limit.
PRB 600163-1829/99/60~4!/2218~21!/$15.00
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Finkel’stein13 developed a replicateds-model approach
for interacting disordered electron systems, which was f
ther developed in Refs. 14 and 15. He demonstrated fur
its renormalizability in the one-loop approximation, and o
tained the one-loop renormalization-group flow equatio
From these equations it followed that the weak-coupl
fixed point corresponding to a noninteracting metal is u
stable. The need for introducing replicas in Finkel’stein
approach follows from the fact that the ensemble-avera
observables are obtained as derivatives of theaveraged loga-
rithm of the partition function. The formalism in Refs. 13–1
utilizes the Matsubara representation, and is therefore
stricted to the equilibrium situation.

Later it was suggested that the Keldysh-type field theo
originally developed for the treatment of nonequilibriu
systems,16 may be an alternative to the replica tec
nique.17–19 The point is that the use of the Keldysh clos
contour in the time direction leads to an automatically n
malized ~disorder independent! partition function. This cir-
cumvents the need to introduce replicas. A similar situat
exists in the theory of spin glasses, where in addition to
replica approach20 the Martin-Siggia-Rose formalism,21

analogous to the Keldysh approach,21–23has been used. Thi
formalism provided insight complementary to that gain
from the replica approach. Horbach and Scho¨n24 developed a
s model for noninteracting electrons in the Keldysh form
ism. Although our treatment differs from theirs in many im
portant details, we have benefitted much from their work.
a parallel and independent work25 Chamon, Ludwig, and
Nayak applied similar ideas to the treatment of interact
electrons. They derived Finkelsteins’s13 renormalization-
group equations in the framework of the Keldysh formalis
Their work provides a useful application of the techniqu
which is to a large extent complementary to the one p
sented in this paper.

Here we apply the Keldysh formalism to disordered int
2218 ©1999 The American Physical Society
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acting systems. We restrict ourselves to a consideratio
spinless electrons in the presence of a weak magnetic
~unitary ensemble!, and leave the considerations of the sp
and Cooper channels for future work. Another important d
tinction of the present theory from the previous ones13–15 is
the different choice of a saddle point of the functional in
gral on theQ-matrix manifold. The saddle point in our for
malism explicitly depends on a fluctuating potential in t
system~the Hubbard-Stratonovich field, which decouples t
electron-electron interaction!. This choice of the saddle poin
allows us to separate pure phase effects of the fluctua
potential and to present the first, to our knowledge, cl
derivation of the tunneling density of states~DOS! in a metal
film obtained earlier by Finkel’stein13 and Levitov and
Shytov26 by different means. Another advantage of th
choice of the saddle point is that the perturbative express
for gauge-invariant quantities contain only single logarith
of temperature or frequency~in d52). The diagrams con
taining double logarithms which appear in the standard d
grammatic expansion27 or in Finkel’stein’s formalism,13 and
cancel each other for any gauge-invariant quantity, do
appear in our formulation at all. This significantly reduc
the number of diagrams in each order of the perturba
theory. We then obtain a low-energy theory in the form o
s model. The advantage of the Keldysh formulation is tha
allows for a clear physical interpretation of the effective d
grees of freedom. These turn out to be the quantum fluc
tions of the electron distribution function. The saddle-po
equation on the massless manifold is just the quantum kin
equation with an appropriate collision integral. The one-lo
fluctuations on top of this saddle point lead to corrections
various observables, and in the case of conductivity can
identified with the Altshuler-Aronov corrections.7,28

The paper is organized as follows: In Sec. II we pres
the functional integral representation of the Keldysh partit
function for disordered interacting electron systems. Sec
III is devoted to the choice of an interaction-depend
saddle point and the derivation of an effectives model as the
massless fluctuations around this saddle point. We dis
some applications of the theory, like the derivation of t
nonperturbative expression for the single-particle Gre
function, in Sec. IV. Quantum fluctuations and Altshule
Aronov corrections to the conductivity are the subjects
Sec. V. In Sec. VI we derive the quantum kinetic equation
the saddle-point equation on the massless manifold, and
cuss the corresponding collision relaxation times along w
the collisionless terms. Finally, in Sec. VII we briefly discu
the obtained results and the future perspectives.

II. FUNCTIONAL INTEGRAL FORMULATION

A. Keldysh formalism

Consider a unitary evolution of a system along a clos
contourC in the time direction which consists of the prop
gation fromt52` to t51`, and then back fromt51` to
t52`. All external time-dependent fields are assumed to
exactlythe same during the forward and backward evolut
processes. As a result, at the end of such evolution the
tem must find itself precisely in the original state. We th
conclude that the evolution operator
of
ld
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ÛC[1. ~1!

Let us consider next the partition function defined as

Z5Tr$r0ÛC%/Tr$r0%51, ~2!

wherer0 is a density matrix of the system at the initial tim
t52` before the interactions and disorder are adiabatic
switched on. A more informative object is the generati
functional, which is obtained by introducing source fields.
is clear that to have a generating functional not identica
equal to unity, the source fields should have a different
havior on the forward and backward parts of the contour.
shorten the subsequent expressions we shall operate wit
partition function@Eq. ~2!#, and will introduce the generating
functional in Sec. IV C.

The next step is to divide theC contour into 2N11 time
steps, such ast15t2N1152` and tN1151` as shown in
Fig. 1. Following the standard route,29 we obtain the
coherent-state functional integral, by introducing a resolut
of unity at each time step. Taking theN˜` limit, for the
partition function we obtain

Z5NE Dc̄ c exp$ iS@c̄,c#%, ~3!

whereN is disorder-independentnormalization constant30

and the fermionic action is given by

S@c̄,c#5E
C
dtH E dr c̄@G0

212Udis~r !#c

2
1

2E E dr dr 8c̄~r !c̄~r 8!V0~r2r 8!c~r 8!c~r !J .

~4!

Here the inverse bare Green function is a shorthand nota
for

G0
215 i

]

]t
1

¹ r
2

2m
, ~5!

where the time derivative is taken along the contourC. No-
tation ~5! is somewhat symbolic: while inverting this oper
tor it is necessary to invert its discretized version first, a
only then take the limitN˜`.29

We then divide the fermionic fieldc(r ,t) into the two
componentsc1(r ,t) and c2(r ,t) which reside on the for-
ward and backward parts of the time contour, respectiv
Since the interaction part of the action is strictly local
time, it may be rewritten asSint@c1#2Sint@c2# ~the minus
sign comes from the opposite direction of the time integ
on the backward part of the contour!

FIG. 1. Schematic representation of the discretization of
time contourC. The dots on the upper and lower branches of
contour denote the discretized time points.
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Sint@c i #52
1

2E dt dr dr 8c̄ i~r !c̄ i~r 8!V0~r2r 8!

3c i~r 8!c i~r !. ~6!

Here i 51 and 2, andV0(r2r 8) is a bare interaction poten
tial. We now introduce two independent auxiliary boson
fields f̂1(2)(r ,t) to decouple the two interaction terms by th
Hubbard-Stratonovich transformation. As a result, for
partition function one obtains

Z5ÑE DF̂ e( i /2)Tr$F̂TV0
21s3F̂%E DC̄ CeiS[ C̄,C,F̂] ,

~7a!

S@C̄,C,F̂#5Tr$C̄@Ĝ0
212Udiss31f̂aĝa#C%. ~7b!

Here we have introduced the following vector notations
the fermionic doubletC, the bosonic doubletF̂, and two
vertex matricesĝa:

C5S c1

c2
D , F̂5S f̂1

f̂2
D , ~8a!

ĝ15S 1 0

0 0D , ĝ25S 0 0

0 21D . ~8b!

The inverse matrix Green function stands for
e

-
a

th
e

r

Ĝ0
215S i

]

]t
1

¹ r
2

2m
0

0 2 i
]

]t
2

¹ r
2

2m

D . ~9!

The trace operation in Eq.~7b! and henceforth is understoo
to be performed over the 232 structure as well as over th
time and space variables.

B. Disorder averaging

The great advantage of the Keldysh technique is that
normalization constantÑ in Eq. ~7a! does not depend on th
realization of the disorder potential. Thus the disorder av
aging can be performed directly, without the need to resor
the replica trick. Hereafter we employ the simplest model
the Gaussian,d-correlated disorder

^ . . . &5E DUdis•••expH 2pntE dr Udis
2 ~r !J , ~10!

where the disorder strength is characterized by the ela
mean free timet; n is the bare density of states at the Fer
energy. Next, we perform the Gaussian integration overUdis
in Eq. ~7a! and decouple the arising~nonlocal in time! quar-
tic interaction by means of the Hubbard-Stratonovich tra
formation. Doing so, we obtain
^e2 i Tr$C̄Udiss3C%&5expH 2~4pnt!21E dr F E dt C̄~r ,t !s3C~r ,t !G2J ~11a!

5E DQ̂ expH 2E dr dt dt8Fpn

4t
Tr Q̂tt8~r !Q̂t8t~r !1

1

2t
C̄~r ,t !Q̂tt8~r !s3C~r ,t8!G J . ~11b!
ed
the
nt is

tain
st

s

Here we have introduced the Hubbard-Stratonovich fieldQ̂
which is a matrix with indices both in the Keldysh 232
space and in the time space. To ensure the convergenc

the integral in Eq.~11b!, the Q̂ matrix is chosen to be Her
mitian. After these transformations the fermionic function
integral in Eq.~7a! can be formally performed, leading to

detUĜ0
211

i

2t
Q̂s31f̂aĝaU. ~12!

As a result, the disorder averaged partition function takes
forms

^Z&5E DF̂ e( i /2)Tr$F̂TV0
21s3F̂%E DQ̂ eiS[ Q̂,F̂] , ~13a!

iS@Q̂,F̂#52
pn

4t
Tr Q̂21Tr lnF Ĝ0

211
iQ̂s3

2t
1f̂aĝaG .

~13b!
of

l

e

As before the trace operation is understood to be perform
over the Keldysh and the time indices as well as over
coordinate space; the unessential normalization consta
omitted.

C. Keldysh rotation

In the notations introduced in Eqs.~8! and~9! the electron
Green functionsĜ are matrices in the 232 Keldysh space.
Their components are not independent and satisfy cer
general identities.16,31 This interdependence becomes mo
transparent if one introduces the rotated Green functionG
denoted by the absence of the hat and defined as

G[Ls3ĜL†, ~14!

where the unitary matrixL is given by

L5
1

A2
~s02 is2!5

1

A2
S 1 21

1 1D . ~15!
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As follows from the definition of the Keldysh Gree
function,16,31 the rotated Green function has the structure

G~ t,t8!5S GR~ t,t8! GK~ t,t8!

0 GA~ t,t8!
D , ~16!

where GR(A)(t,t8) vanish for t<t8(t>t8). To pass to the
rotated representation we introduce a new Hubba

Stratonovich fieldQ which is related to the old one,Q̂, by
the following unitary transformation:

Q[LQ̂L†. ~17!

We also introduce the rotated bare inverse Green func
G0

21, expressed throughĜ0
21 of Eq. ~9! in a manner consis

tent with Eq.~14!:

G0
21[LĜ0

21s3L†5S i
]

]t
1

¹ r
2

2mDs0 . ~18!

It is also convenient to perform a linear transformation
the bosonic doubletF̂ by introducing the symmetric and th
antisymmetric combinations of the fields residing on the
per and lower branches of the contourC:

f15 1
2 ~f̂11f̂2!, f25 1

2 ~f̂12f̂2!. ~19!

Then the rotated vertex matrices for these new fields
g1(2)5L(ĝ16ĝ2)s3L† with the following explicit forms:

g15s05S 1 0

0 1D , g25s15S 0 1

1 0D . ~20!

Any classical external field takes on identical values
the two branches of the contour and, hence, in the rota
basis has only the first symmetric component. The nonz
antisymmetric component may appear only as a virtual fl
tuating field. Below we shall sometimes refer to the first a
second components of the bosonic fields asclassical and
quantumones, correspondingly. Since the presence of an
ternal classical field does not change the basic fact thaZ
51, any auxiliary source field should have a nonvanish
quantum component to generate an observable. We sha
turn to this observation in Sec. IV C.

Utilizing the cyclic invariance of the trace operation, w
obtain the following expressions for the partition functio
Eq. ~13!, through the new variablesF andQ:

^Z&5E DF ei Tr$FTV0
21s1F%E DQ eiS[Q,F] , ~21a!

iS@Q,F#52
pn

4t
Tr Q21Tr lnFG0

211
i

2t
Q1fagaG .

~21b!

III. NONLINEAR s MODEL

A. Saddle-point equation

We shall look now for a saddle point of the function
integral over theQ matrix in Eq.~21a!. The aim is to find a
stationary solution for a given realization of the fluctuati
-

n

f

-

re

n
d

ro
-

d

x-

g
re-

,

bosonic fieldsF, slowly varying in space and time. Calcu
lating a variation of the action@Eq. ~21b!# over theQ matrix,
one obtains the following equation for the saddle-point m
trix Q5Q@F#:

Qt,t8~r !5
i

pn FG0
211

i

2t
Q1fagaG21U

r ,r ;t,t8

. ~22!

We are unable to solve this equation exactly; therefore,
goal will be to find its approximate solution, which is a
close as possible to the true stationary point of the functio
integral in Eq.~21a!. To execute this program, we first con
sider the case whereF50. It is easy to check that in this
case

L t2t8[Q@F50#5
i

pn (
p

G~p,t2t8!, ~23!

where the impurity averaged Keldysh Green function is@cf.
Eq. ~16!#

G~p,e!5S GR~p,e! GK~p,e!

0 GA~p,e!
D

5S 1 Fe

0 21D S GR~p,e! 0

0 GA~p,e!
D S 1 Fe

0 21D ,

~24!

with

GR(A)~p,e!5@e2ep6 i /~2t!#21, ~25a!

GK~p,e!5GRF2FGA. ~25b!

The function F defined by Eq.~25b! can be expressed
through the single-particle distribution functionn(e) as
F(e)5122n(e). In equilibrium at temperatureT it is given
by

Fe
eq5tanh

e

2T
. ~26!

Substituting Eqs.~24! and~25! into Eq.~23!, and performing
the momentum summation, for the noninteracting (F50)
saddle point one obtains

Le5S 1e
R 2Fe

0 21e
AD , L t2t85S d t2t820 2Ft2t8

0 2d t2t810
D .

~27!

Here we have introduced the retarded and advanced un
1e

R(A) , which should be understood as Fourier transforms
infinitesimally shiftedd functions. This particular form of
the Green function is a result of the approximation that
single-particle DOS is independent of the energye. In reality
it does depend one, and the retarded~advanced! components
of Le are analytic functions of energy in the upper~lower!
half-plane which do depend on energy on the scale of or
of the Fermi energyeF . Therefore, the infinitesimally shifted
d functions in Eq. ~27! should be understood asd t70
5 f 6(t)Q(6t), whereQ(t) is the Heaviside function, and
f 6(t) are functions that are highly peaked forutu&eF

21 and
satisfy the normalization condition*0

6`dt f6(t)51. This
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high-energy regularization is important to remember in c
culations to avoid spurious unphysical constants. In part
lar, for obvious reasons,

1t2t8
R M t8,t

R
50, 1t2t8

A M t8,t
A

50, ~28!

whereM t8,t
R(A) is an arbitrary retarded~advanced! matrix in

the time space.
Substituting Eq.~27! into Eq.~22! with F50, it is easy to

see thatQ5L solves the noninteracting saddle-point equ
tion for any functionFe . @The simplest way to check it is to
use the decomposition equation~24!.# This is natural, since
any distribution function is allowed for the noninteractin
electron gas. We shall see below how the interaction effe
drive the system toward the equilibrium distribution@Eq.
~26!#.

Let us now include a finitefa(r ,t) into Eq. ~22!. To this
end we notice that this equation can be still solved exa
for the particular case of spatially uniform realizations of t
boson field,fa5fa(t). This is obvious since such a fiel
may be gauged out, resulting in

Qt,t8@F~ t !#5exp[i * tdt fa(t)ga]L t2t8

3exp[2 i * t8dt fa(t)ga]. ~29!

The validity of this solution can be verified by acting wi
the operator@G0

211 i /(2t)Q# 1fa(t)ga# on both sides of
Eq. ~22!, and utilizing the fact thatL t2t8 solves Eq.~22!
with F50. We also rely on the commutativity of the verte
matrices,@g1,g2#50, in writing the solution in the form of
Eq. ~29!.

We now consider the case where the bosonic fieldsfa are
slowly ~compared to the mean free pathl ) varying in space.
In analogy with Eq.~29! we shall look for an approximate
solution of Eq.~22! in the form of a local~in time and space!
gauge transformation ofL

Qt,t8~r !5eika(r ,t)ga
L t2t8e

2 ika(r ,t8)ga
, ~30!

whereka5ka@F# is a certainlinear functional of the fields
F, whose specific form is to be determined to satisfy E
~22! in the best possible way.

To proceed we introduce a new Hubbard-Stratonov

field Q̃ which is related to the old one,Q, by the gauge
transformation

Qt,t8~r !5eika(r ,t)ga
Q̃t,t8~r !e2 ika(r ,t8)ga

. ~31!

Substituting this definition into the action@Eq. ~21b!#, and
using the invariance of the trace under a cyclic permuta
of operators, we can rewrite the action as

iS@Q̃,F#52
pn

4t
Tr Q̃2

1Tr lnFG0
211C2

¹ka¹kbgagb

2m
1

i

2t
Q̃G ,

~32!
l-
-

-

ts

ly

.

h

n

where we have introduced the notation

C~r ,t ![~fa2] tka2vF¹ka!ga, ~33!

with the Fermi velocity,vF52 i¹ r /m. To find the approxi-

mate saddle point of Eq.~30!, we substituteQ̃5L1dQ̃ into

Eq. ~32! and require terms linear indQ̃ to vanish. In doing so
we neglect the diamagnetic term¹ka¹kbgagb/2m, since it
is quadratic inka ~and hence inF) and is also smaller than
C in the parameterq/pF!1, whereq is the characteristic
momentum scale of variation ofF. As a result we obtain the
equation

2pnL t8,t1 i @G2GCG1GCGCG2•••# t8,t~r ,r !50.
~34!

The first two terms in this expression cancel, according
Eq. ~23!. The freedom of choosing theK@F# functional is
not sufficient to cancel all the terms in this expansion. W
thus concentrate on the term which is linear inF andK:

(
p

G~p1 ,e1!C~q,v!G~p2 ,e2!

5pnt@~fa1 ivka!~ga2L1gaL2!

2Dq2ka~L1ga2gaL2!#, ~35!

wherep65p6q/2, e65e6v/2 andL65Le6
. To derive

Eq. ~35! one may employ the following useful representati
of the Keldysh Green function:

G~p,e![FG0
211

i

2t
LeG21

5
1

2
GR~p,e!~s01Le!1

1

2
GA~p,e!~s02Le!.

~36!

Only (pGRGA and(pGRvFGA contribute to Eq.~35!. Mul-
tiplying Eq. ~35! by Le1

from the left, one obtains the fol
lowing matrix condition for the vanishing of the linear ter
in Eq. ~34!:

Dq2ka~L1gaL22ga!1~fa1 ivka!~L1ga2gaL2!50.
~37!

To cancel~1,1!, ~2,2!, and~2,1! components of the matrix on
the left-hand side of this equation, the functionalK should
satisfy

~Dq21 iv!k2~q,v!1f2~q,v!50. ~38!

Provided this equality is obeyed, the condition to cancel
Keldysh (2,1) component on the left-hand side of Eq.~37! is

~Dq22 iv!k12f1522Dq2k2

12Fe1
Fe2

Fe1
2Fe2

. ~39!

This equation cannot be in general satisfied, since its rig
hand side contains an explicit dependence one, whereas the
left-hand side is supposed to bee independent. This happen
because the trial saddle-point solution~30!, is too restrictive.
In particular, we demanded that it may be obtained fromL
by the rotation, which is local in time. As a result, the fun
tional K depends only on differential energyv and not on
‘‘center-of-mass’’ energye. This restriction is in an apparen
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contradiction with Eq.~39!. There is, however, an importan
particular case when Eq.~39! may be solved. This is the cas
of thermal equilibrium, where the fermionic distributio
function is given by Eq.~26!. As a result,

12Fe1

eqFe2

eq

Fe1

eq2Fe2

eq
5coth

v

2T
[Bv

eq , ~40!

where Bv
eq stands for the equilibrium bosonic distributio

function. Thus the matrix equation~37! for the functional
K@F# can be resolved in equilibrium. The result may
written in a short form as

D21~q,v!K~q,v!5Pv
21F~q,v!. ~41!

Here we have introduced the following bosonic mat
propagators in the 232 Keldysh space:

D~q,v!5SD K~q,v! DR~q,v!

D A~q,v! 0 D , ~42!

with

DR(A)~q,v!5~Dq27 iv!21, ~43a!

D K~q,v!5Bv@DR~q,v!2D A~q,v!#, ~43b!

and

Pv52 ivD~q50,v!5S 2Bv 1v
R

21v
A 0

D . ~44!

The superscript ‘‘eq’’ denoting equilibrium in the bosonic
distribution has been omitted for brevity.

Equations~30! and ~41! complete the task of finding th
approximate saddle pointQ5Q@F# for any given realiza-
tion of fieldsF. On this solution we are able to cancel on
the term linear inF in the expansion@Eq. ~34!#. This guar-

antees only that terms likeFdQ̃ will not appear in the ex-
pansion of the action around the saddle point given by E

~30! and~41!. Terms likeF2dQ̃ may ~and will! arise in such
expansion. We shall see later that it is precisely these te
that are responsible for the divergent Altshuler–Aronov c

rections to conductivity.28 The ability to avoidFdQ̃ terms
is, strictly speaking, limited only to the thermal equilibrium
For an out-of-equilibrium situation such terms reappear
require some care~see Sec. VI!.

The influence of the external potentialF on the electron
dynamics~and hence on the Green function! is twofold32: ~i!
it changes the particle trajectory, and~ii ! it changes the phas
of the electron wave function. The first effect is proportion
to the electric fieldE52¹F, and is small for the long-
wavelength spatial configurations ofF. The second effect
however, requires no actual electric fields. It is proportio
to F itself, rather than¹F, and is akin to the Aharonov
Bohm effect. It changes the phase but not the amplitude
the wave function, and can be taken into account in the
konal approximation. The second effect exceeds the first
for the long-wavelength fluctuations of the potential; the
fore, it is especially important in the presence of the lon
range Coulomb interactions. The approximation to the sad
s.

s
-

d

l

l

of
i-
ne
-
-
le

point @Eq. ~30!# is similar to the Eikonal approximation. It is
designed to account for the phase effect of the slow fluct
tions of the potentialF. Note that the phaseK enters the
saddle-point equation only through its total time derivati
along the trajectory of a particle,d/dt5] t1vF¹ @cf. Eq.
~33!#. If we demand thatC vanish, we obtain the standar
Eikonal equation32 for the actionK of the particle moving
with a given velocityv in an external fieldF. Unfortunately,
the ansatz@Eq. ~30!# is too restrictive to nullifyC for par-
ticles of every velocityv. Eventually all the particles in the
Fermi sea interfere to produce the Green functionQt,t8(r ).
Equation~30! approximately accounts for the phase interfe
ence between particles moving along different trajector
Since the particle dynamics is diffusive this leads to the d
fusive relations~41!–~43! between the external potentialF
and the phaseK. As will be clear below the choice of the
saddle point in Eq.~30! considerably simplifies the subse
quent calculations. In particular, it eliminates completely t
family of superdivergent diagrams which cancel in the tra
tional treatment13 after sometimes tedious calculations.

B. Effective action

To formulate an effective low-energy theory in terms

the fluctuating fieldsQ̃ andF, we need to examine the fluc

tuations around the saddle point. The fluctuations ofQ̃ fall
into two general classes:9,10,13 ~i! massive, with the mass
}1/t; and ~ii ! massless, those on which the action depe
only very weakly. The fluctuations along the massive mod
can be integrated out in the Gaussian approximation and
to insignificant renormalization of various parameters in
action. The massless, or Goldstone, modes describe diffu

motion of the electrons. The fluctuations of theQ̃ matrix
along these massless modes are not small and shoul
treated carefully. The Goldstone modes can be parametr

by the Q̃ matrices satisfying a certain nonlinea
constraint.9,10,13

To identify the relevant Goldstone modes consider
first term in Eq.~32!. The saddle point given by Eqs.~30!
and ~41! satisfies

Q̃25S 1e
R 0

0 1e
AD , ~45!

and the first term in Eq.~32! vanishes. The fluctuations ofQ̃
which do not satisfy Eq.~45! are massive. The massles
modes are generated by rotations of the saddle point and
be parametrized as9,10,13

Q̃5T21LT. ~46!

The parametrization of the rotation matricesT must ensure
the convergence of the functional integration over the ma
ces given by Eq.~46!. Below we only assume that such
parametrization exists, whereas the concrete form ofT is not
important for what follows.

One way of parametrizing the rotations is to writeT
5exp$W/2%, where, without loss of generality,WL5
2LW. Expanding Eq.~32! to the second order inW and
neglecting for a moment the term arising due toe-e interac-
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tions, it is easy to establish that in the diffusive regime
relevant fluctuations must satisfy the condition

We,e8Þ0 only if ueu,ue8u,1/t. ~47!

That is, all effective degrees of freedom are concentrate
the narrow energy strip of the width 1/t!eF near the Fermi
energy. Therefore, the matricesT differ from unity only in
the narrow region of energies defined by Eq.~47!. For
this reason the gauge transformationUt,t8(r )
5exp$2ika(t,r)ga%d(t2t8) in Eq. ~31! cannot be incorporated
into a redefinition ofT and should be carried out explicitly
Indeed, being diagonal in time indices, the matrixUt,t8
spreads over the entire energy space and, thus, cann
reduced to a disturbance which is close to the Fermi sh
Physically, this describes the fact the low-wave-number s
lar potentialF(q,t) shifts the entire electronic band and n
only the energy strip given by Eq.~47!. It is essential to
follow the variations of the electron spectrum all the w
down to the bottom of the band to respect the charge n
trality imposed by the Coulomb interactions. As we shall s
below, once the phase factors in Eq.~31! have been taken
into account, the residual interactions may be regarded
being short range without loss of generality.

Substituting Eq.~46! into Eq. ~32!, and retaining only the
universal (t-dependent! terms in the expansion of the loga

rithm, for theQ̃ action we obtain

iS@Q̃,F#5 in Tr$~F2 ivK !Ts1~F1 ivK !%2
pn

4

3@D Tr$] r Q̃%214i Tr$„e1~fa1 ivka!ga
…Q̃%#,

~48!

where we have introduced the long derivative

] r Q̃[¹Q̃1 i @¹kaga,Q̃#. ~49!

A few comments are in order regarding Eq.~48!. First, it is

restricted toQ̃, which satisfies Eq.~45!. The last two terms,

containingQ̃, conventionally originate from(pvFGRvFGA

and(pGR(A) combinations in the expansion of the logarithm
On the other hand, the first term on the right-hand side of
~48! originates from(pGRGR and (pGAGA combinations.
These terms should be retained since, as was mentio
above, the matrixfa(e2e8)ga is not restricted to the 1/t
shell near the Fermi energy. To derive this term we e
ployed the fact that for any physical fermionic distributio
function

Fe˜6`˜61. ~50!

Finally, the terms like(pvFGRvFGR, although nonvanish-
ing, cancel against the diamagnetic term.

Employing the explicit form of the long derivative, Eq
~49!, and the relation between theK andF fields @Eq. ~41!#,
for the the partition function one finally obtains
e

in

be
ll.
a-

u-
e

as

.
q.

ed

-

^Z&5E DF exp$ i Tr@FTV21F#%

3E DQ̃ exp$ iS0@Q̃#1 iS1@Q̃,¹K#1 iS2@Q̃,¹K#%,

~51!

whereSl , l 50, 1, and 2, contain¹K in the l th power and
are given by

iS0@Q̃#52
pn

4
@D Tr$¹Q̃%214i Tr$eQ̃%#, ~52a!

iS1@Q̃,¹K#52 ipn@D Tr$¹kagaQ̃¹Q̃%

1Tr$~fa1 ivka!gaQ̃%#, ~52b!

iS2@Q̃,¹K#5
pnD

2
@Tr$¹kagaQ̃¹kbgbQ̃%

2Tr$¹kagaL¹kbgbL%#. ~52c!

The effective interaction matrixV is nothing but the screene
interaction in the random-phase approximation~RPA!

V~q,v!5@V0
21~q!s11P0~q,v!#21, ~53!

whereP0(q,v) is the bare density-density correlator. It has
typical form of a bosonic correlator in Keldysh space,

P0~q,v!5S 0 P0
A~q,v!

P0
R~q,v! P0

K~q,v!
D , ~54!

with

P0
R(A)~q,v!5n

Dq2

Dq27 iv
, ~55a!

P0
K~q,v!5Bv@P0

R~q,v!2P0
A~q,v!#. ~55b!

To derive Eqs.~51!–~55!, we had to add and subtract th
term Tr$¹kagaL¹kbgbL%, and employed the equation

E
2`

1`

de Tr$gagb2gaLe1
gbLe2

%54v~Pv
21!ab. ~56!

Heree65e6v/2, and matricesL andP are defined by the
Eqs. ~27! and ~44! correspondingly. Equation~56! is based
on the following relations between bosonic and fermion
distribution functions:

E
2`

1`

de ~Fe1
2Fe2

!52v, ~57!

E
2`

1`

de ~12Fe1
Fe2

!52vBv . ~58!

The last equation is obviously satisfied in the thermal eq
librium. For a nonequilibrium situation it should be consi
ered as a definition ofBv .

Equations~51!–~55! together with Eq.~41! constitute an
effective nonlinears model for interacting disordered elec
tron gas. The model consists of two interacting fields:
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matrix field Q̃, obeying the nonlinear constraint@Eq. ~45!#,
and the bosonic vector fieldF ~or equivalentlyK). As will

be apparent later, theQ̃ field describes fluctuations of th
quasiparticle distribution function, whereasF ~or K) repre-
sents propagation of electromagnetic fields through the
dia. The following sections are devoted to an analysis of
model and calculations of various physical quantities on
basis of the model.

IV. APPLICATIONS OF THE FORMALISM

A. Single-particle Green function

In this section we shall show how the developed form
ism can be used for a calculation of the average sin
particle Green function at coinciding spatial points. Th
quantity is defined as

Ĝi , j~ t2t8!52 i Š^c i~r ,t !c̄ j~r ,t8!&‹, ~59!

where Š^•••&‹ denotes both the quantum and the disor
averaging. It is convenient to apply the Keldysh rotation@Eq.
~14!#, and define

G~ t2t8!5Ls3Ĝ~ t2t8!L†. ~60!

Such a Green function arises, e.g., in calculations of the
neling DOS, or shot noise power. To evaluate it one m
introduce a source term in Eq.~4!, directly coupled to a
bilinear combination of the fermion operators. Following t
same algebra as above one finds that the source field e
into the logarithm in Eq.~21b!. Differentiating finally with
respect to the source and putting it to zero, for the Gr
function one obtains

G~ t2t8!5E DF ei Tr$FTV0
21s1F%E DQ eiS[Q,F]

3FG0
211

i

2t
Q1fagaG21U

r ,r ;t,t8

. ~61!

We shall evaluate the integral over theQ matrix by the
saddle-point approximation, neglecting both the massive
the massless fluctuations around the stationary point. T
according to Eq.~22!, the pre-exponential factor is simpl
2 ipnQt,t8 . At the saddle pointQ is given by Eq.~30!.
Transforming the actionS@Q,F# as it was done in Sec. III B
one obtains

G52 ipnE DF ei Tr$FTV21F%eika(t)ga
L t2t8e

2 ika(t8)ga
.

~62!

SinceK is the linear functional ofF, given by Eq.~41!, the
remaining functional integral is Gaussian. Employing E
~41! and ~53!–~55!, for the correlator of theK fields ~aver-
aged over fluctuations ofF) one obtains

^ka~q,v!kb~2q,2v!&F5
i

2
Vab~q,v!, ~63a!

V~q,v!5D~q,v!Pv
21V~q,v!~P2v

21 !TD T~2q,2v!.
~63b!
e-
is
e

-
-

r

n-
y

ers

n

d
n,

.

The Keldysh matrixV has the familiar structure of a boson
propagator:

V~q,v!5S V K~q,v! VR~q,v!

V A~q,v! 0 D , ~64!

with

VR(A)~q,v!5
21

~Dq27 iv!2 S 1

V0
1

nDq2

Dq27 iv
D 21

,

~65a!

V K~q,v!5Bv@VR~q,v!2V A~q,v!#. ~65b!

One may recognize that this propagator precisely co
sponds to the screened Coulomb interaction line dresse
two diffusons at the vertices. Thus, the role of theK field is
to take into account automatically both the RPA-screen
interactions and its vertex renormalization by diffusons.

To calculate the functional integral@Eq. ~62!#, we write
the phase factors as

e6 ikaga
5 1

2 ~e6 i (k11k2)1e6 i (k12k2)!g1

1 1
2 ~e6 i (k11k2)2e6 i (k12k2)!g2, ~66!

and perform the Gaussian integration according to Eq.~63!.
The result may be conveniently expressed in the form

G~ t !52 ipn (
ab51

2

~gaL tg
b!Bab~ t !, ~67!

where the fictitious propagatorB has the standard boson
structure@as, e.g., Eq.~64!# with

BR(A)~ t !5 1
2 e( i /2)[V K(t)2V K(0)]~e( i /2)V R(A)(t)2e2( i /2)V R(A)(t)!,

~68a!

B K~ t !5 1
2 e( i /2)[V K(t)2V K(0)]~e( i /2)[V R(t)2V A(t)]

1e2( i /2)[V R(t)2V A(t)] !. ~68b!

The ^KKT& propagator,V, defined by Eqs.~64! and ~65!, is
taken at coinciding spatial points

V~ t !5E dv

2p
e2 ivt(

q
V~q,v!. ~69!

The electron Green function must satisfy several imp
tant requirements: the tunneling DOS,n(e), which is defined
as

n~e!5
i

2p
@GR~e!2G A~e!#, ~70!

must be a positive definite quantity. In addition, in therm
equilibrium theR, A, andK components of the bosonic an
fermionic propagators are related by the fluctuatio
dissipation theorem~FDT!. Below, we demonstrate that ou
approximation@Eqs. ~67! and ~68!# for the Green function
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satisfies these requirements. For this purpose it is conven
to rewrite identically Eq.~67! in the form

G.(,)~ t !52 ipnL t
.(,)B.(,)~ t !, ~71!

where

BR~ t !2B A~ t !5B.~ t !2B,~ t !, ~72a!

B K~ t !5B.~ t !1B,~ t !. ~72b!

The . and, components of the fermionic Green functio
are related toR, A, and K in the same manner. From Eq
~72! and Eqs.~68!, we obtain

B.(,)~v!5
1

2
e2( i /2)V K(t50)E dt eivtexpH i

2E dv8

2p
e2 iv8t

3(
q

@VR~q,v8!2V A~q,v8!#S coth
v8

2T
61D J .

~73!

According to the FDT the equilibrium bosonic and fermion
Green functions in the frequency representation satisfy
relations

B.~v!5exp$v/T%B,~v!, ~74a!

G.~e!52exp$e/T%G,~e!. ~74b!

It is not difficult to see that if any pair of bosonic Gree
functionsB.(t) and B,(t) satisfies Eq.~74a! then for any
analytic functionf (z) the pair f .(t)[ f (B.(t)) and f ,(t)
[ f @B,(t)# also satisfies it. Indeed,

FIG. 2. Lowest order interaction correction to the single-parti
Green function. The wavy line here denotes the RPA-screened
lomb interaction. The impurity-dressed single-particle Green fu
tions are depicted by solid lines, and the double dashed lines
resent diffusons.
nt

e

f .(,)~v!5E dt eivt f S E dv8

2p
B.(,)~v8!e2 iv8tD .

~75!

Expandingf on the right-hand side of this equation in th
Taylor series and performing thet integration, we see that in
each order of the expansionf .(v)5exp(v/T)f,(v). One
can also check that ifG.(,) andB.(,) satisfy the FDT@Eq.
~74!#, then so do the functionsG̃.(,) defined as

G̃.(,)~ t !5G.(,)~ t !B.(,)~ t !. ~76!

Noting that the arguments in the exponential in Eq.~73!
obviously satisfy the FDT@Eq. ~74a!#, we conclude that
B.(,)(v) @Eq. ~73!# and the approximate Green functio
@Eq. ~67!# satisfies it as well.

To establish the positive definiteness of the tunneling d
sity of states@Eq. ~70!#, we first show thatB.(,)(v) in Eq.
~73! is positive definite. Indeed, exp@2iV K(t50)# is real, as
can be seen from Eqs.~65!. It is also not difficult to see tha
each Fourier component of the argument of the exponen
in Eq. ~73! is positive definite. All the coefficients in the
Taylor series of the exponential are positive and, since
Fourier transform of a product is given by the convolution
positively definedFourier transforms, we conclude that th
left-hand side of Eq.~73! is positive definite. We next use
Eqs.~72a! and~74a! to rewrite the tunneling density of state
as

n~e!5
i

2p
G.~e!~11e2e/T!, ~77!

whereG.(e) is given by Eq.~71!. SinceLe
.>0 we imme-

diately see from Eq.~71! that the tunneling density of state
is positive.

In equilibrium, it is convenient to write the DOS throug
the Keldysh Green function employing the FDT:

n~e!5
n

tanhe/~2T!
E dt ei et Ft B K~ t !, ~78!

As was proven above, Eqs.~77! and~78! are equivalent. One
can then expressB K(t) throughB.(,)(t), where the latter
are conveniently rewritten as

u-
-
p-
-

B.(,)~ t !5
1

2
expH E dv

2p S coth
v

2T
~12cosvt !6 i sinvt D Im(

q
VR~q,v!J . ~79!

Expanding this expression to the first order in the interaction,V, and substituting into Eq.~78!, one recovers the Altshuler
Aronov result for the zero-bias anomaly.28 This perturbative result corresponds to the diagram drawn in Fig. 2.

We shall restrict ourselves to the analysis of the nonperturbative result@Eqs.~78! and ~79!# only at T50. Noting that for
T50, Ft5( ipt)21, one obtains

n~e!5
n

pE dt
sinueut

t
expH E

0

`dv

p
Im (

q
VR~v!~12cosvt !J cosH E

0

`dv

p
Im (

q
VR~v!sinvtJ . ~80!
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In the two-dimensional case Eq.~65a! with V0(q)
52pe2/q leads to

E
0

`dv

p
Im(

q
VR~q,v!S 12cosvt

sinvt D
52

1

8p2g
H ln t/t ln ttv0

212g ln tv0

p ln tv0 ,
~81!

whereg5nD is the conductance,v05Dk2, k52pe2n is
the inverse screening radius; andg50.577 . . . is theEuler

constant. Since we have neglected the fluctuations ofQ̃, we
have missed corrections of orderg21 ln t/t ~in d52); there-
fore, Eq.~80! can only be trusted fore not too small, such
that (8p2g)21 ln(et)21!1. However ln2 t/t terms have been
accounted for correctly by our procedure. If, in additio
g21 ln v0t!1, the time integral in Eq.~80! may be per-
formed by the stationary point method, resulting in

n~e!5n expH 2
1

8p2g
ln~ ueut!21ln tv0

2/ueuJ . ~82!

Theoretically, however,g21 ln v0t need not be small. In tha
case the stationary point integration should be somew
modified and terms} ln tv0 should be retained.

We have achieved a nonperturbative resummation
anomalously divergent,} ln2 et, terms for a single-particle
Green function. The nonperturbative expression for the D
essentially arises from the gauge noninvariance of the sin
particle Green function. The calculations above are in
sence the ‘‘Debye-Waller’’ factor33 due to almost pure gaug
fluctuations of electric fields, cf. Eq.~62!. Gauge-invariant
characteristics~such as, e.g., conductivity! do not carry phase
factors, and therefore are not affected by the interactions

this level of accuracy~fluctuations ofQ̃ should be retained!.
In perturbation theory this fact is reflected by the cance
tion of diagrams without diffusons~apart from those which
renormalize vertices!.28 In our formulation such terms neve
appear since the phase factors cancel along any closed
diagram.

The gauge physics of anomalous corrections to the D
was first realized by Finkel’stein,13,33 who obtained a non-
perturbative result similar to ours. Nazarov,34 and later Levi-
tov and Shytov,26 obtained the same result~in imaginary
time! by semiclassical reasoning. Kopietz35 recently rein-
stated it, stressing the role of phase fluctuations. The an
gous expression for the zero-dimensional case has also
known for some time.36–38 We believe that we provide its
first consistent derivation using thes model. Unlike the pre-
vious approaches, the Keldysh technique provides the
swer directly in real time and at finite temperature. This e
ables us to circumvent the tedious analytical continuat
procedure.

B. Shot noise

In this subsection we shall use the results obtained in S
IV A to calculate the power spectrum of current noi
through a tunneling contact between a clean metal an
dirty metal film. The power spectrum of current noise
given by
,

at

f

S
e-
s-

n

-

op

S

lo-
en

n-
-
n

c.

a

S~v!5E dt eivt
Š^ Î ~ t ! Î ~0!1 Î ~0! Î ~ t !&‹. ~83!

Here the current operator in the tunneling approximation
given by Î (t)5 iTa†(t,r 0)b(t,r 0)2 iT* b†(t,r 0)a(t,r 0), and
b(t,r 0) anda(t,r 0) are electron annihilation operators at th
position of the contact in the dirty film and in the clea
metal, respectively. Below, all the fermion operators and
Green functions are taken at the point of the tunneling c
tact r 0, and we omit the position argument for brevity. Usin
the expression for the current operator, we can rewrite
~83! as

S~v!5uTu2E dt eivt@G a
,~2t !G b

.~ t !1G a
.~ t !G b

,~2t !

1G a
,~ t !G b

.~2t !1G a
.~2t !G b

,~ t !#, ~84!

whereGa andGb are Green functions for the clean metal a
for the dirty film, respectively. We assume that the voltageV
is applied across the contact. To the lowest order in the t
neling matrix element, the Green functions under these c
ditions are equilibrium, except that the chemical potentials
the two metals differ byeV. Therefore in the lowest order in
the tunneling amplitude we can express the power spect
of current noise through the equilibrium Green function
Expressing them through DOS with the aid of the FDT a
utilizing the fact that for the clean metal DOS,na , is inde-
pendent of energye, one obtains

S~v!52pnauTu2E de nb~e!$n~e!@22n~e1v2eV!

2n~e2v2eV!#1@12n~e!#@n~e1v2eV!

1n~e2v2eV!#%, ~85!

wheren(e)5@11exp(e/T)#21 is the Fermi function.
SettingV50 in Eq. ~85!, we obtain the power spectrum

of the equilibrium current noise in the contactS0(v). The
excess noise is given by the differencedS(v)5S(v)
2S0(v). The noise power is a symmetric function of fre
quency, and at zero temperature reduces to

dS~v.0!52pnauTu2F E
2uv2eVu

v1eV

de nb~e!2E
2v

v

de nb~e!G .
~86!

At zero frequency the shot noise is proportional to t
total current. This is natural, since in the lowest order in
tunneling amplitude the electrons pass through the con
extremely rarely and, therefore, can be viewed as nonin
acting. The role of interactions reduces to modification of
density of the available states. The cusp present at zero
perature in the noise power spectrum for noninteracting e
trons atv50 andv5eV is washed out because DOS va
ishes ate50.

C. External fields and auxiliary sources

In some sense our previous manipulations leading to E
~51! and ~52! were no more than a complicated represen
tion of unity. This is so since, according to the basic idea
the Keldysh technique, the partition functionZ is identically
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equal to unity. To make the entire construction meaning
one should introduce auxiliary source fields, which ena
one to compute various observables. We shall do this in
allel with introducing external classical fields. Since we sh
mostly discuss the conductivity, we will use the vector p
tential A(r ,t) as an example.39 Other fields~e.g., the scalar
potential! may be introduced in a similar way. We introduc
a doublet in the rotated Keldysh frame

A~r ,t !5S a1~r ,t !

a2~r ,t ! D , ~87!

which is related by the usual transformation@cf. Eq. ~19!#

with the two fieldsâa(r ,t) residing on the two branches o
the time contour. The vector potentials enters the fermio
Hamiltonian through the long spatial derivatives,¹ r˜¹ r

1 i âaĝa. The classical external vector potential is the sa
on the two branches of the contour, and hence it is descr
by the symmetric componenta1(r ,t) only, whereasa250. In
this case the generating function is still equal to unity:

Z@a1 ,a250#51. ~88!

To obtain a nontrivial generating function, one has to int
duce a quantum component of the source field,a2(r ,t). This
component does not have a classical meaning, and thus
to be nullified at the end of the calculations. Its presen
however is essential for generating observables. One can
ily check that the current density defined as

j5
e

2mi K 1

2 (
i 51,2

$c̄ i~¹1 ia1!c i2~¹2 ia1!c̄ ic i%L
c
~89!

is given by40

j ~r ,t !52
e

2i

dZ@A#

da2~r ,t ! U
a250

. ~90!

We restrict ourselves to the case of longitudinal vector
tentials only. Taking into account the fact that the exter
electric field is given by2 iva1(q,v)/e, one obtains that the
linear response conductivity is given by the retarded com
nent of the current-current correlator

s~q,v!5
e2

iv
S2,1~q,v!, ~91!
h
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r-
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-

where

Sa,b~q,v!5
1

2i

d2Z@A#

dab~q,v!daa~2q,2v!
U

A50

. ~92!

Here we have omitted the vector indices ofa using its lon-
gitudinal character. In general, any response function
given by the~2,1! component of the appropriate bosonic co
relator. The structure of the theory guarantees that this
retarded function@cf., e.g., Eq.~54!#.

In the presence of an external vector potential,A, the trial
saddle point@Eq. ~30!#, is shifted. Noting thatA enters the
action always in the combination¹K1A, one finds that the
condition for the optimalK is given by Eq.~37!, with the
substitutionDq2K˜Dq2K1 iD (qA).41 Solving this equa-
tion in a manner that was done in Sec. III A, one obtains t
Eq. ~41! should be modified as

D21~q,v!K~q,v!5Pv
21F~q,v!2 iDs1„qA~q,v!…,

~93!

where bosonic propagatorsD(q,v) and Pv52 ivD(q
50,v) are defined by Eqs.~42! and~44!. In solving Eq.~37!
with the external field we still assumed that the fermion
distribution function is the equilibrium one. This is a legit
mate procedure in linear response. The generalization to
nonequilibrium case is discussed in Sec. VI. After disrega
ing the massive modes and expanding the logarithm,
obtains Eq.~48!, with the long derivative modified as

] r Q̃[¹ r Q̃1 i @~¹ka1aa!ga,Q̃#, ~94!

and K given by Eq.~93!. Sinceg151, any static externa

field a1(r ) appears to be decoupled fromQ̃. This reflects the
fact that diffusons are not coupled to a static magnetic fie
On the other hand, even space- and time-independent q

tum component,a2, is coupled toQ̃. A little algebra shows
that

¹K1A52 iqDP21@F1~qA!v/q2#, ~95a!

F1 ivK5Dq2Ds1@F1~qA!v/q2#. ~95b!

With these expressions and the long derivative given by
~94!, one can rearrange Eq.~48! to obtain the average gen
erating function in the form
^Z@A#&5E DF exp„i Tr$FTV0
21s1F1@F1~qA!v/q2#TP0@F1~qA!v/q2#%…E DQ̃ expH (

l 50

2

iSl@Q̃,¹K1A#J ,

~96!
all
ro-
where the actionSl , l 50, 1, and 2 is given by Eqs.~52! and
the bare polarization operatorP0(q,v) is given by Eq.~55!.
By virtue of Eqs.~95! the entire action is expressible throug
the combinationF1(qA)v/q2, which is proportional to the
~gauge invariant! electric field¹F1] tA. This fact immedi-
ately guarantees that the continuity equation is satisfied to
orders in the perturbation theory. Indeed, one could int
duce the external scalar potentialw which enters the action
always asF1w ~apart from the bare interaction term,V0).
Then, due to the fact thatZ5Z@w1(qA)v/q2#, the charge
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density, r5(2i )21dZ/dw2, and current density, j5
2(2i )21dZ/da2, has to be related by

~¹ j !1] tr50. ~97!

The corresponding variation with respect to the class
componentsw1 anda1 guarantees continuity at each bran
of the contour separately even in the presence of non
auxiliary quantum fields. As a result of continuity, an exa
relation between current-current and density-density corr
tors holds:

P~q,v!5
q2

v2 S~q,v!. ~98!

At the saddle point,Q̃5L, one hasSl@L,¹K1A#50.

Thus, neglecting the fluctuations ofQ̃, for the RPA generat-
ing function one obtains

^ZRPA@A#&5expH iAT
v2

q2
P0AJ

3E DF expS i TrH FTV21F12FT
v

q
P0AJ D .

~99!

Finally performing the Gaussian integration, one finds

^ZRPA@A#&5expS i TrH AT
v2

q2
PRPAAJ D , ~100!

wherePRPA(q,v) is the RPA screened density-density~po-
larization! correlator, which is given by

PRPA~q,v!5P02P0@V0
211P0#21P05@P0

211V0#21,
~101!

and has the structure of a bosonic correlator:

P~q,v!5S 0 PA~q,v!

PR~q,v! PK~q,v!
D . ~102!

The v2/q2 factor in Eq.~100! reflects the relation betwee
the density-density and longitudinal components of
current-current correlators@Eq. ~98!#. The fact that the~1,1!
component ofP ~as well as of any other bosonic correlato!
vanishes is a manifestation of the normalization condit
@Eq. ~88!#. Employing Eq.~91!, for the conductivity in the
RPA one obtains

sRPA~q,v!5e2nD
2 iv

Dq2@11nV0~q!#2 iv
, ~103!

One is usually interested in theirreducible part of the
density-density~or current-current! correlators, which de-
scribes the linear response to thetotal or internal field and
not to the external field as discussed above. The rela
between the irreducible partPirr and the totalP is exactly
the same as between the bareP0, andPRPA @Eq. ~101!#,

Pirr ~q,v!5@P21~q,v!2V0~q!#21. ~104!
l

ro
t
a-

e

n

n

Shifting the integration variableF˜F2(qA)v/q2 in Eq.
~96! and differentiating twice with respect toA, one obtains
an exact relation for the polarization operator,

P~q,v!5V0
2112iV0

21^F~q,v!FT~2q,2v!&V0
21 ,

~105!

where^FFT& is an exact propagator„averaged with respec
to the full action@Eq. ~96!#…. Employing Eq.~104!, one finds

Pirr 5
i

2
~^FFT&!212V0

21 . ~106!

If one is interested in the response to a uniform exter
field, q50, the expressions may be further simplified. No
ing that for the Coulomb interactionV0

21(q50)50 and em-
ploying Eq. ~98! and relation betweenF and K @Eq. ~41!#,
one obtains

S irr ~q50,v!5
i

2
@^¹K~v!¹KT~2v!&#21. ~107!

Unlike in the calculations of the single-particle Green fun
tion, only ¹K and neverK itself appears in calculations o
gauge invariant quantities. This allows one to consider a u
versal limit of strong interactionsV0

21(q)˜0. In this limit it
is convenient to change the integration variable fromF to
¹K ~although formally it is a vector, it has only a longitud
nal component and hence a number of variables is c
served!. In the new variables the Gaussian weight is given
i Tr$¹KTq22V21¹K%, whereV is defined by Eqs.~64! and
~65!. In the universal limit one has

V21~q,v!˜2nDq2D21~q,v!, ~108!

where the diffusion propagatorD is defined by Eqs.~42! and
~43!. Finally, for the action in terms of¹K one obtains

^Z&5E D¹K e2 inD Tr$¹KTD 21¹K%

3E DQ̃ expS (
l 50

2

iSl@Q̃,¹K# D . ~109!

Equations~107! and ~109! constitute a complete framewor
for calculations of gauge-invariant response functions. N

glecting Q̃ fluctuations, one finds S irr (q50,v)
5nDivPv

21 , which leads to the Drude conductivitys

5e2nD. Fluctuations ofQ̃ and¹K lead to weak-localization
and interaction corrections. Note that unlike in the case

the DOS~Sec. IV A!, fluctuations of¹K alone, withQ̃5L,
do not lead to any corrections to linear response. This
direct consequence of gauge invariance of linear respo

functions. Only combined fluctuations of¹K and Q̃, dis-
cussed in Sec. V, renormalize the Drude conductivity.

V. FLUCTUATION EFFECTS

A. Q̃-matrix parametrization

As discussed in Sec. III B the massless fluctuations of

Q̃ matrix can be parametrized as
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Q̃5exp$2W/2%L exp$W/2%, ~110!

where

WL1LW50. ~111!

Employing Eq.~24!, one obtains that the general form ofW,
which satisfies condition~111!, is

W5S 1 F

0 21D S 0 w

w̄ 0 D S 1 F

0 21D 5S Fw̄ 2w1Fw̄F

2w̄ 2w̄F
D

~112!

wherew̄ andw are arbitrary Hermitian matrices in the tim
space. Below we shall thus understand the functional in

gration overQ̃ as integration over Hermitianw̄ andw. No-

tice thatQ̃ itself ~as well as the Green functionG) appears to
be non-Hermitian. This means that the ‘‘contour’’ of integr

tion in theQ̃ space is deformed from being pure Hermitian
pass through the non-Hermitian saddle point. As will be
parent later, the physical meaning ofw is a deviation of the
fermionic distribution function,F, from its stationary value
At the same time,w̄ has no classical interpretation. To
large extent it plays the role of the quantum counterpart ow,
which appears only as the internal line in the diagrams.

One may expand now the action@Eqs.~52!# in powers of

w̄ andw. The expansion of the noninteracting action,iS0@Q̃#
starts from the second order, which has a familiar diffus
structure

iS0
(2)@W#5

pn

2
w̄e1e2

@2D¹21 i ~e12e2!#we2e1
.

~113!

As a result the bare propagator of theQ̃-matrix fluctuations
is given by

^we2e1
~q!w̄e3e4

~2q!&W52
2

pn

de1e3
de2e4

Dq21 i ~e12e2!

52
2de1e3

de2e4

pn
DA~q,e12e2!.

~114!

The higher-order terms describe nonlinear interactions of
fusons with the vertices having the structure of Hika
boxes. One can easily work out this expansion in
Keldysh formalism. We shall not do it here, since our ma

focus is on the interaction effects. SubstitutingdQ̃(1)

5@L,W#/2 into iS1@Q̃,¹K#, one obtains, in the first order i
W,

iS1
(1)@W,¹K#52

ipn

2
Tr$@D¹2ka~LgaL2ga!

1~fa1 ivka!~gaL2Lga!#W%.

~115!

In equilibrium iS1
(1)@W,¹K#50. Indeed, the right-hand sid

of Eq. ~115! coincides with Eq.~37!, which was used to
e-

-

e

f-
i
e

determine theK functional. In equilibrium we were able to
solve Eq.~37! by an appropriate choice ofK. This was pre-
cisely the motivation behind looking for the saddle point f
each realization of the Hubbard-Stratonovich field: to can
terms linear inW. Since we could not find the exact sadd
point, such terms do appear, however, only in the sec

order in¹K. For iS2@Q̃,¹K#, part of the action, one obtain

iS2
(1)@W,¹K#5

pnD

2
¹ka~e12e2!Tr$@gaLe2

gbLe3

2Le1
gaLe2

gb#W%¹kb~e22e3!

5pnD Tr$¹KT~e12e2!@M e2

w we3e1

1M e1e2e3

w̄ w̄e3e1
#¹K~e22e3!%, ~116!

where we have introduced two vertex matrices in the boso
Keldysh space:

M e2

w 5S 0 1

21 22Fe2
D ,

M e1e2e3

w̄

5S 2Fe2
2Fe1

2Fe3
11Fe1

Fe3
22Fe2

Fe3

212Fe1
Fe3

12Fe2
Fe1

Fe1
1Fe3

22Fe1
Fe2

Fe3

D .

~117!

(M e2

w )1,150 is a manifestation of the normalization conditio

Z51. Indeed, this matrix element connects only the class
components ofW and K fields, which alone cannot chang
the normalization. Being averaged over fluctuations of¹K
with the action Eq.~109!, iS2

(1)@W,¹K# gives

^ iS2
(1)@W,¹K#&¹K52p iw̄ee$~Fe1v2Fe!D K~v!

2~12Fe1vFe!@DR~v!2D A~v!#%.

~118!

There is no term proportional to the classic component,w. In
equilibrium the right-hand side of Eq.~118! is obviously
zero. Out of equilibrium, it is this term which is responsib
for the standard collision integral; see Sec. VI. As we sh
see in Sec. V B, fluctuations described byiS2

(1)@W,¹K# are
responsible for the Altshuler-Aronov corrections to condu
tivity. For completeness we write also the second order
pansion ofiS1@W,¹K#

iS1
(2)@W,¹K#5 inD$¹k1~e12e2!

3~¹we2e3
w̄e3e1

2w̄e2e3
¹we3e1

!

1¹k2~e12e2!@2Fe2
¹w̄e2e3

we3e1

2we2e3
¹w̄e3e1

Fe1
1Be12e2

¹

3~we2e3
w̄e3e1

2w̄e2e3
we3e1

!#%. ~119!
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B. Altshuler-Aronov corrections

Restricting oneself to the lowest nonvanishing terms
the expansion overW @Eqs.~113! and ~116!#, one obtains a
Gaussian theory with respect to theW fluctuations. After
integrating out these fluctuations employing Eq.~114!, one
ends up with the action for the¹K field only:

iS@¹K#52 inD Tr$¹K2v
T ~r !D21~r 2r 8,v!¹Kv~r 8!%

22pnD2 Tr$¹Ke12e2

T ~r !M e1e2e3

w̄ ¹Ke22e3
~r !%

3DA~r 2r 8,e32e1!Tr$¹Ke32e4

T ~r 8!

3M e4

w ¹Ke42e1
~r 8!%. ~120!

This way the (¹K)4 effective vertex is generated. Perturb
tively the (¹K)4 interaction term may be treated by pairin
two fields, say¹KT^¹K¹KT&¹K. This results in a renor-
malization of the bare correlator,D21. Only pairing of¹K
fields in different spatial points leads to nonvanishing corr
tions; see Fig. 3. There are four different ways one can
^¹ka(r )¹kb(r 8)&. Taking into account all these four poss
bilities and integrating over an intermediate energy one
tains a correction, e.g., for the retarded component of
(^¹K¹KT&)21 correlator:

@dD21~q,v!#R52
4

dn (
q8,v8

$DR~q1q8,2v1v8!

3@D~q8,v1v8!#R2DR~q1q8,v1v8!

3@D~q8,v8!#R%v8Bv8 , ~121!

whereBv is defined by@Eq. ~58!#; d is the dimensionality.
Obviously, the correction preserves the retarded characte
the corresponding component. In equilibrium, the correct
to the Keldysh component obeys the fluctuation-dissipa
relation

@dD21#K5coth
v

2T
$@dD21#R2@dD21#A%. ~122!

Employing Eqs.~91! and ~107!, for the correction to the
q50 conductivity one obtains

ds~v!52 i
4e2D

dv (
q8,v8

DR~q8,v1v8!@D~q8,v8!#R

3$~v82v!Bv82v2v8Bv8%. ~123!

FIG. 3. Lowest order self-energy diagram for^¹K¹KT& propa-
gator. The zigzag lines represent the bare^¹K¹KT& propagators,
the parallel solid lines denote the^WW& propagator, and the ope
circles with two zigzag and two straight lines emanating from th
represent the¹KTW¹K vertices.
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In the low frequency limit this reduces to the familia
expression28

ds5 i
2sd

p dnE2`

`

dv
]

]v S v coth
v

2TD(
q

1

~Dq22 iv!2
,

~124!

wheresd5e2nD.
Note that this expression is given by the sum of diagra

drawn in Fig. 4. The other diagrams which are presented
Fig. 5 add up to zero. They represent the purely phase
rection to the single-particle Green function and therefore
not enter the expression for the conductivity. In the pres
formalism these diagrams do not appear at all.

In two dimensions expression~124! leads to the logarith-
mically divergentnegativecorrection to the conductivity~or
conductance!:7

ds2

s2
5

dg

g
5

e2

2p2g
ln T tel, ~125!

where the elastic mean free timetel enters as an upper cuto
in the integral over frequency.

To handle this divergence one may try to set up a s
consistent mean-field treatment of the (¹K)4 nonlinearity.
To this end let us put̂¹K¹KT& propagator on Fig. 3 to be a
dressed one,D̃, whereD̃215D211dD21. Then Eq.~121!
may be rewritten as a closed nonlinear equation for, e.g.,
retarded component of the propagator,@D̃(q,v)#R;

FIG. 5. Diagrams for the interaction corrections to conductiv
which add up to zero. These diagrams never appear in our form
ism.

FIG. 4. Lowest order diagrams for the interaction correction
conductivity. Their sum is equivalent to the diagram in Fig. 3 in t
present formalism.
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FDq22 iv2
4

dn (
q8,v8

DR~q1q8,v1v8!@D̃~q8,v8!#R@~v82v!Bv82v2v8Bv8#G @D̃~q,v!#R51. ~126!
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The frequency-dependent conductivity is then given by

s~v!5e2nD
~@D̃~q50,v!#R!21

2 iv
. ~127!

One may easily check that in the one-loop approximat
there are no other corrections to the conductivity. Inde
possible corrections like ^( iS1

(2)@W,¹K#)2&W50 and
^ iS2

(2)@W,¹K#&W50 vanish, since they include the energ
integration of purely retarded or advanced functions. Be
expanded to higher orders inW, these terms yield weak
localization corrections.

VI. KINETIC EQUATION

The aim of this section is to demonstrate how the kine
equation for the distribution functionF appears naturally in
the framework of the Keldysh formulation. The kinetic equ
tion is nothing but the saddle-point equation for the effect

action on theQ̃ matrix.42 In the case of interacting electron
it is obtained by integrating out theK ~or equivalentlyF)
degrees of freedom. Consider the partition function@Eq.

~21a!#, with the actionS(Q̃,F) given by Eq.~48!. Let us
perform theF integration first. As a result for the averag
partition function we obtain

^Z&5E DQ̃ eiSe f f[ Q̃] , ~128a!

iSe f f@Q̃#5 ln E DF ei Tr$FTV0
21s1F%1 iS[ Q̃,F] . ~128b!

Since the actionS(Q̃,F) @Eq. ~48!# is quadratic inF ~given
the linear relation betweenK and F) the integration in the
last expression can be carried out explicitly. We find it mo
convenient, however, to proceed with expression~128b!. To
obtain a nontrivial kinetic theory one may assume the pr
ence of classical external fields, like, e.g., scalar or vec
potentials. These fields can be introduced in the action
~48! the way it was done in Sec. IV C.

We shall now look for the saddle-point equation forQ̃,

dSe f f@Q̃#

dQ̃
50, ~129!

obtained under the conditionQ̃251. Let us reiterate the
logic of the entire procedure. After averaging over disord
and introducing theQ matrix, we found that the low-energ
degrees of freedom are described by theQ matrices given by

Eq. ~31! with Q̃251. We then restrict ourselves to this mas

less manifold and look for a realization ofQ̃ which extrem-
izes the effective action. The latter is obtained by integrat
out the photon fields originating frome-e interactions. With-
n
,

g

c

-
e

e

s-
r

q.

r

-

g

out any external fields~and/or nontrivial boundary condi

tions! such an extremalQ̃ is simply given byL @Eq. ~27!#,
with the equilibriumF function @Eq. ~26!#. If external fields
~and/or nontrivial boundary conditions! are present, the sta

tionary Q̃ may deviate fromL, still being on the massles

manifoldQ̃251. The stationary point is to be found by solv
ing Eq. ~129!, which turns out to be precisely the kinet
equation with the collision integral term.

Before proceeding along these lines, let us comment
the relation between the phaseK, introduced in Sec. III A
and the Hubbard-Stratonovich fieldF. The procedure of Sec
III A was based on the property of the equilibrium distrib
tion described by Eq.~40!. We need to generalize it for non
equilibrium situations. To this end we note that the equat
for the quantum componentk2(r ,t) @Eq. ~38!# does not con-
tain a distribution function and remains valid for a noneq
librium case. The equation for the classical compon
k1(r ,t) @Eq. ~39!# cannot be satisfied identically out of equ
librium. Thus the choice ofk1(r ,t) allows for a certain arbi-
trariness. However, as we shall see below, this arbitrarin
does notaffect the form of the kinetic~saddle-point! equa-
tion. It would manifest itself in a calculation of fluctuatio
corrections~cf. Sec. V! to the nonequilibrium saddle poin
result. We shall not attempt this task here. For our purpo
it is sufficient to keep the definition ofK(r ,t) given by Eq.
~41! @or Eq. ~93! if external fields are present#. The equilib-
rium bosonic distribution function used in the definition
the Keldysh component of the propagatorD(q,v) @Eq.
~43b!# does not show up in the kinetic equation.

Employing Eq.~128b!, we rewrite the saddle-point equa
tion ~129! as

K dS@Q̃,F#

dQ̃
L

F

50, ~130!

where

^•••&F5

E DF ei Tr$FTV0
21s1F%1 iS[ Q̃,F]

•••

E DF ei Tr$FTV0
21s1F%1 iS[ Q̃,F]

. ~131!

Here Q̃ is a self-consistent saddle-point solution of E

~130!. Performing variation of the actionS(Q̃,F) given by

Eq. ~48! under the conditionQ̃251, one obtains

^D] r~Q̃] r Q̃!1 i @„e1~fa1 ivka!ga
…,Q̃#&F50,

~132!

whereQ̃251. This equation is analogous to the kinetic equ
tion in the semiclassical theory of disordere
superconductors.43,44 We have derived it here for the case
a normal interacting metal.
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We shall seek the solution of Eq.~132! in the classical

form, e.g., obeying the conditionQ#̃ 2150. A nonzero quan-
tum component at the saddle point would violate causa

ProvidedQ#̃ 2150 andQ#̃ 251 are satisfied, the saddle-poi
solution assumes the form

Q̃e,e85S 1e
Rd~e2e8! 2Fe,e8~r !

0 21e
Ad~e2e8!

D , ~133!

whereFe,e8(r ) is a nonstationary distribution function. As
suming that the saddle point has the form given by Eq.~133!,
one can easily check that the exponent in theF averaging,
@Eq. ~131!# does not contain linear terms inF ~or ¹K).
Indeed, the terms proportional to¹k1 vanish identically,
which is a manifestation of the normalization conditionZ
51. From another hand, terms proportional to¹k2 are re-
duced to the full gradient~the fact that there is no ambiguit
in the choice ofk2 is important here!, and thus also vanish
upon the spatial integration. As a result the terms linear inF
~or ¹K) in the saddle-point equation~132! do not survive the
F integration. Therefore, Eq.~132! may be reduced to
.

D¹ r~Q̃¹ r Q̃!1 i @e,Q̃#5D^@¹kagaQ̃¹kbgb,Q̃#&F .
~134!

The right-hand side of this equation contains the collis
integral term along with the collisionless renormalization
the kinetic part. To evaluate it, one needs to know the pro
gator ^¹ka(r ,t)¹kb(r 8,t8)&F at r 5r 8, averaged over the
nonequilibrium action@Eq. ~131!#. To follow the same nota-
tions as for the equilibrium case, we shall denote this pro
gator as

^¹ka~r ,t !¹kb~r 8,t8!&F52
i

2nD
D t,t8

ab
~r ,r 8!. ~135!

The form of the saddle pointQ#̃ given by Eq.~133! guaran-
tees thatDt,t8 has the standard retarded/advanced structur
a Keldysh propagator. Employing Eq.~28!, one finds that the
only nonzero matrix component of Eq.~134! is its Keldysh
(1,2) component. The corresponding equation for the dis
bution functionFt,t8(r ) takes the form
of

our
D¹ r
2Ft,t82~] t1] t8!Ft,t85

i

n FFt,t8SD t,t8
K

2
1

2
@D t,t

K 1D t8,t8
K

# D1~D t,t1
R 2D t1 ,t8

A
!~d t,t1

d t1 ,t82Ft,t1
Ft1 ,t8!G . ~136!

Here allF functions and propagatorsD are to be taken at the same spatial point; integration overt1 is assumed in the last term
on the right-hand side. Note that the left-hand side of this equation is a linear diffusion operator acting onFt,t8(r ). The
subsequent calculations are significantly simplified by passing to the Wigner representation,

Fe~r ,t!5E E dt dt8Ft,t8~r !ei e(t2t8)dS t2
t1t8

2 D . ~137!

Furthermore we shall assume thatFe(r ,t) is a slow function oft on the scale 1/T ~or any other inverse characteristic scale
energy,e). With this assumption Eq.~136! may be rewritten as

D¹ r
2Fe~t!2]tFe~t!2]tRe~t!]eFe~t!1]eRe~t!]tFe~t!

5
i

n (
v

$D v
K~t!@Fe2v~t!2Fe~t!#1@D v

R~t!2D v
A~t!#@12Fe2v~t!Fe~t!#%, ~138!

where

Re~r ,t!5
1

2n (
v

@D v
R~r ,r ,t!1D v

A~r ,r ,t!#Fe2v~r ,t!. ~139!

The right-hand side of Eq.~138! represents the collision integral, cf. Eq.~118!. If the equilibrium relation@Eq. ~43b!# between
Keldysh and retarded and advanced components ofD holds, then the equilibrium distribution function@Eq. ~26!# nullifies the
collision integral. Therefore, Eq.~138! is satisfied in the thermal equilibrium. This, in fact, provides justification for
previous use ofL with the equilibriumF function as the saddle point. Indeed, without interactions~and hence without collision
integral! any stationary functionFe satisfies the saddle-point equation. It is the relaxation processes due toe-e interactions that
render the equilibrium solution unique. The terms which contain real part of the self-energy,Re(r ,t), lead to a collisionless
renormalization of the kinetic part; see Sec. VI B.

To proceed further we need an explicit form of the nonequilibrium propagatorDv(r ,r ,t). We shall evaluate it in the

universal limit of strong interactions,V0
21

˜0. Substituting the saddle-pointQ̃ given by Eq.~133! into the actionS@Q̃,F# @Eq.
~48!#, and performing the Gaussian integration, one finds@cf. Eq. ~56!#

D v
ab~r ,r 8,t!5F2D¹ r

2s1
ab1d r ,r 8

ip

2 (
e

Tr$gaQ̃e1v/2~r ,t!gbQ̃e2v/2~r ,t!2gagb%G21

. ~140!
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The term with¹ r
2 originates from the termuF1 ivKu2s1 in Eq. ~48!. ~It is easy to check that the ambiguity in the choice

k1, mentioned above, disappears upon the calculation of this term by the symmetry reason.! The local in space term in Eq

~140! originates fromD Tr(] r Q̃)2. Assuming that any distortion of the equilibrium distribution is limited to a vicinity of t
Fermi energy, e.g.,Fe˜6`(r ,t)˜61, one finds

Dv~r ,r 8,t!5S 0 2D¹ r
21 ivd r ,r 8

2D¹ r
22 ivd r ,r 8 22ivd r ,r 8Bv~r ,t!

D 21

. ~141!

By definition, the nonequilibrium bosonic distribution function is given by@cf. Eq. ~58!#

Bv~r ,t!5
1

2vE2`

`

de@12Fe1v/2~r ,t!Fe2v/2~r ,t!#. ~142!

According to Eq.~141! the retarded and advanced components ofD are not modified with respect to their equilibrium valu
@Eq. ~43a!#. As a result,D v

R(A)(r ,r 8,t)5D v
R(A)(r 2r 8) even in a nonequilibrium situation. Inverting the operator on

right-hand side of Eq.~141!, for the Keldysh component at coinciding spatial points one finds

D v
K~r ,r ,t!52ivE ddr 8FD v

R~r 2r 8!Bv~r 8,t!D v
A~r 82r !

1
1

2i
@D v

R~r 2r 8!]tBv~r 8,t!]vD v
A~r 82r !2]vD v

R~r 2r 8!]tBv~r 8,t!D v
A~r 82r !#G . ~143!

From now on we shall retain only the first term in this expression, which is dominant due to the assumed slownes
temporal variations ofFe(t). If in addition Bv(r ,t) changes slowly on the spatial scaleLv5AD/v, where v;T, the
expression for the Keldysh component acquires the quasiequilibrium form

D v
K~r ,r ,t!5Bv~r ,t!(

q
@D v

R~q!2D v
A~q!#. ~144!

One can calculate gradient corrections to this expression, which lead to a nonlocal collision integral. Usually such co
may be safely neglected. Finally in this hydrodynamic regime, the kinetic equation takes the form

D¹ r
2Fe~t!2@12]eRe~t!#]tFe~t!2]tRe~t!]eFe~t!

52(
v

F2

n
Im(

q
D v

R~q!G$Bv~t!@Fe2v~t!2Fe~t!#1@12Fe2v~t!Fe~t!#%, ~145!

with

Re~r ,t!5
1

n (
v,q

@ReD v
R~q!#Fe2v~r ,t! ~146!

andD v
R(q)5(Dq22 iv)21.

A. Collision integral and relaxation time

Using the conventional fermion distribution functionne(r ,t)5„12Fe(r ,t)…/2, one can rewrite the collision integral in th
usual form with ‘‘out’’ and ‘‘in’’ relaxation terms. Indeed, employing Eqs.~57! and ~58!, one identically rewrites the
right-hand side of Eq.~145! as

2E E
2`

` dv de8

p

4Im(
q
D v

R~q!

nv
@nene82v~12ne8!~12ne2v!2ne8ne2v~12ne!~12ne82v!#. ~147!
-
b

This is precisely the collision term derived by Altshuler45

and Altshuler and Aronov47 two decades ago. One can lin
earize this expression around the equilibrium distribution
the substitution
y

Fe~r ,t!5Fe
eq2we~r ,t!/2, ~148!

and keeping linear terms inwe(r ,t). This way one derives
the familiar results for the relaxation rates.46,47,28 We shall
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not repeat this procedure here. Instead we shall demons
how these quantities may be extracted directly from the
fective action. To this end we note that the kinetic equat
~138! may be written as (2pn)21d iSe f f /dw̄e(r ,t)50. ~As
usual, an observable is generated by differentiation with
spect to a quantum component.! Thus the linearized version
of the kinetic equation is just 2(pn)21d2iSe f f /
dw̄dwuQ̃5L . According to Eqs.~128b! and ~131!,

d2iSe f f

dw̄dw
5K d2iS@Q̃,F#

dw̄dw
L

F

1K d iS@Q̃,F#

dw̄

d iS@Q̃,F#

dw L
F

2K d iS@Q̃,F#

dw̄
L

F

K d iS@Q̃,F#

dw
L

F

, ~149!

where all the variational derivatives are calculated atQ̃5Q#̃
5L. The last term in this expression vanishes identica
sinceL is obviously a solution of the kinetic equation~130!.
The first term originates from the expansion

^ iS2@W,¹K#&¹K @Eq. ~52c!# to the leading order inw andw̄.
After a little algebra one obtains~there are no terms withww̄
in equilibrium!

^ iS2
(2)@W,¹K#&¹K5

ip

2
~w̄e12v,e22v2w̄e1 ,e2

!

3@D v
R~Bv

eq1Fe22v
eq !

2D v
A~Bv

eq1Fe12v
eq !#we2 ,e1

,

~150!

wheree65e6V/2. Equivalently this expression can be o
tained by variation of theFe(r ,t) functions in Eq.~136!. The
terms with w̄e1 ,e2

and w̄e12v,e22v represent ‘‘out’’ and
‘‘in’’ relaxation processes, respectively. Their condens
diagrammatic representation is given in Figs. 6~a! and 6~b!.
The full set of corresponding original diagrams may
found, e.g., in Ref. 48. Restricting ourselves to the diago
fluctuationsV50 only, for the ‘‘out’’ relaxation rate we
obtain
of

t

e

ate
f-
n

-

,

d

al

1

tout~e,T!
5(

vq
F2

n
ImD v

R~q!GFcoth
v

2T
1tanh

e2v

2T G .
~151!

At T50 in two dimensions this leads to the familiar resul28

1

tout
d52~e!

5
ueu

4pg
, ~152!

whereg5nD. Expanding the right-hand side of Eq.~150! in
a smallV, one can also recover the collisionless terms on
left-hand side of Eq.~145!.

Finally we concentrate on the second term on the rig
hand side of Eq.~149!. This term corresponds to the varia
tion of D t,t8

K in Eq. ~136! over a deviation from its equilib-
rium value @or, equivalently, variation ofBv(r ,t) in Eq.
~145!#. Its condensed diagrammatic representation is
picted on Fig. 6~c!. As has already been mentioned abov
this term is generally spatially nonlocal. We take only
local part here. Technically it originates from a connect
part of 1

2 ^S2
(1)@W,¹K#S2

(1)@W,¹K#&¹K , whereiS2
(1) is given

by Eq. ~116!. Performing averaging over¹K and omitting
cumbersomeww̄ terms, one obtains

FIG. 6. Diagrammatic representation of the Gaussian part of
effective action,Se f f @Eq. ~128b!#. ~a! and~b! represent ‘‘out’’ and
‘‘in’’ relaxation terms correspondingly; they originate from the fir
term in Eq.~149!, ^ iS2&¹K . The nonlocal term~c! arises from the
second term in Eq.~149!, ^ iS2iS2&¹K .
^ iS2
(1)iS2

(1)&¹K52
p2

2 (
ee8vVq

w̄e1 ,e2
Tr$@M e81v

w
1~M e82v

w
!T#Dv1V/2~M e2 ,e2v,e1

w̄ !TDv2V/2%we
28 ,e

18

5p2w̄e1 ,e2
@~2Fe2v

eq 2Fe2

eq2Fe1

eq !~Fe81v
eq

1Fe82v
eq

!D v2(V/2)
R D v1(V/2)

A #we
28 ,e

18
, ~153!
d

ss
the
For V50 this expression coincides with the variation
Bv(r ,t) over w in Eq. ~145!. Expanding to first order inV,
one obtains the correction terms written in Eq.~143!. Equa-
tions ~149!, ~150!, and~153! along with Eq.~113!, complete

calculations ofd2iSe f f /dw̄dw on the mean-field level. Le
us note for completeness thatd2iSe f f /dwdw50, which is a
manifestation of the normalization condition. On the oth
 r

hand,d2iSe f f /dw̄dw̄Þ0 originates solely from the secon
term on the right-hand side of Eq.~149!; cf. Fig. 6~c!.

B. Collisionless terms

Finally we briefly discuss the physics of the collisionle
terms. Collisionless terms originate from the real part of



r-

-

n

fr

o
e

io
fo
io

ne

e
n
c
t

o
b
n
th

g

or
h

r
c

n
t t

No
ara

s,

try-
lica
ful
lar

cts
en
ion.
en

ics.
ns
de-

on
ri-
uity
re,
the

con-
ge-
ati-

his

s
of
r of

unt,

dis-
y.
tua-

ri-
re
he

ua-

a-

n
for-
ive

the
to
ns

the
,

2236 PRB 60ALEX KAMENEV AND ANTON ANDREEV
self-energy,Re(r ,t), and thus already appear in the first o
der in the bare interaction~unlike the collision integral,
which arises only in the second order!. For the screened Cou
lomb interaction, from Eq.~146! one obtains

Re~r ,t!5E
2`

` dv

2p
Fe2v~r ,t!E ~ddq!

1

n

Dq2

~Dq2!21v2
.

~154!

In two dimensions this leads to the logarithmic expressio

Re~r ,t!52
1

4pgE21/tel

1/tel dv

2p
ln~teluvu!Fe2v~r ,t!,

~155!

where we have used the superscript for the elastic mean
time, tel, to avoid confusion with a physical timet. If one
linearizes the kinetic equation~145! around the equilibrium
distribution, its left-hand side acquires the form

D¹ r
2Fe~t!2F11

ln~tel max$T,ueu%!

4p2g
G]tFe~t!

1
]eFe

eq

4pg E de8

2p
ln~telue2e8u!]tFe8~t!. ~156!

We focus first on the logarithmic renormalization of the c
efficient in front of]tF. This coefficient corresponds to th
chargeZ in Finkel’stein’s terminology.13 Equation~156! then
describes the renormalization ofZ ~with the correct coeffi-
cient!. We stress, however, that in our theory renormalizat
of Z takes place at the level of the saddle-point equation
the effective action, and not as a result of the fluctuat
corrections. This distinguishesZ from the conductanceg,
whose renormalization occurs only at the level of the o
loop correction; see Sec. V B and Eq.~125!. Physically
renormalization ofZ originates from the suppression of th
single-particle DOS by the residual short-range interactio
This effect is due to the fact that single-particle Hartree-Fo
energies are shifted by the interactions in a way to reduce
DOS near the Fermi energy. We consider it very satisfact
that such a purely mean-field effect is taken into account
the saddle-point equation and not by fluctuation correctio
The important point, however, is to keep the last term of
expression~156! as well. This is to say that only the ‘‘out’’-
minus-‘‘in’’ combination has the physical meaning. Bein
considered together, as an integral operator acting onFe8 ,
these terms do not lead to divergent corrections.

VII. DISCUSSION

We have developed a field theory for interacting dis
dered metals using the Keldysh dynamic formulation. T
advantages of this technique are twofold:~i! one avoids in-
troduction of the replica trick, and~ii ! one naturally gains the
ability to deal with nonequilibrium situations. The latte
manifests itself in the presence of the nontrivial obje
Ft,t8(r ), which plays the role of the fermionic distributio
function. The saddle-point equation of the theory turns ou
ee
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n
r

n

-
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y
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e

-
e

t

o

be the kinetic equation which determines this function.
such object is apparent in the replicated Matsub
formulation,13,15 since by construction it is limited to the
equilibrium case. Based on the analogy with spin glasse22

one may speculate that nontrivial solutionsFt,t8(r ) of the
saddle-point equation are analogous to the replica symme
broken solutions of the saddle-point equation in the rep
formulation. We mainly focused our attention on a care
analysis of the saddle equations of the theory. In particu
we suggested the following two-step procedure.

~i! In the first step we account for the purely phase effe
of the fluctuating electric fields on the single-particle Gre
function by an appropriately chosen gauge transformat
This enables us to get rid of temporal variations of the Gre
function which are not related to the quasiparticle dynam
The remaining temporal fluctuations of the Green functio
are associated with the particle dynamics, and can be
scribed in terms of the quasiparticle distribution functi
Ft,t8(r ). This formulation ensures an explicit gauge inva
ance of the kinetic equation, and preserves the contin
relations at every stage. As a by-product of this procedu
we were able to obtain a nonperturbative expression for
DOS—the case where the phase effects give the main
tribution. Such phase effects do not contribute to gau
invariant observables, which are represented diagramm
cally by closed loops. In the usual diagram technique t
corresponds to a cancellation between certain diagrams~the
diagrams containing double logarithms in two dimension!.
By explicitly accounting for the phase effects we get rid
these diagrams, which significantly reduces the numbe
terms in each order of perturbative expansion.

~ii ! After the phase effects have been taken into acco

we obtain a theory formulated in terms of theQ̃-matrix field.
The latter describes quantum fluctuations of the electron
tribution function in the close vicinity of the Fermi energ
Restricting ourselves to the manifold of the massless fluc

tions given byQ̃251, we obtain the effectives-model ac-

tion Se f f@Q̃#, @Eq. ~128b!#. Searching then for the extremum
of this action, we arrive at the kinetic equation of the dist
bution function. After this two-step saddle-point procedu
one should consider quantum fluctuation effects. T
Altshuler-Aronov corrections28 to the conductance,g, turn
out to be a manifestation of the one-loop quantum fluct
tions.

Although we have obtained renormalization of both p
rametersg and Z @Eqs. ~125! and ~156!# we deliberately
avoided putting it in the framework of the renormalizatio
group. The point is that after introducing the phase trans
mation and integrating out the photon fields, the effect

action onQ̃ @Eq. ~128b!# obtains a complicated form. We
cannot prove that this entire form is reproducible after
fast mode elimination. A seemingly better possibility is
perform the renormalization of the action, which contai

both Q̃ and ¹K fields @Eq. ~48!#. In this case one has to
specify how the relation betweenK andF fields changes in
the process of renormalization. Since we believe that
introduction of the phase,K, is a vital element of the theory
the more complicated form of the action~compared to the
one of Finkel’stein! is justifiable.
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We hope that the present formulation will help to sh
light on the nature of the low-temperature phase of lo
dimensional disordered metals. A few aspects of this the
seem to us very suggestive in this respect. Certain para
with the spin glasses theory may prove to be useful. Ap
from the extremely complicated problems relating to t
character of the low-temperature phase, the functio
Keldysh formalism may be useful for a description of no
equilibrium effects in disordered metals and supercond
ors. The extension of this formalism to include the spin a
Cooper channels will be a subject of our future work.
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Éksp. Teor. Fiz.30, 248 ~1979! @JETP Lett.30, 228 ~1979!#.

6G. Bergmann, Phys. Rep.107, 1 ~1984!; S. Chakravarty, and A.
Schmid,ibid. 140, 193 ~1986!.

7B.L. Altshuler and A.G. Aronov, Zh. E´ksp. Teor. Fiz.77, 2028
~1979! @Sov. Phys. JETP50, 968 ~1979!#.

8E. Abrahams, P.W. Anderson, D.C. Licciardello, and T.V. R
makrishnan, Phys. Rev. Lett.42, 673 ~1979!.

9F.J. Wegner, Z. Phys. B35, 207 ~1979!.
10K.B. Efetov, Adv. Phys.32, 53 ~1983!.
11J.J.M. Verbaarschot and M.R. Zirnbauer, J. Phys. A17, 1093

~1985!.
12A. Kamenev and M. Mezard, preprint, cond-mat/9901110.
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