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Electron-electron interactions in disordered metals: Keldysh formalism
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We develop a field theory formalism for the disordered interacting electron liquid in the dynamical Keldysh
formulation. This formalism is an alternative to the previously used replica technique. In addition, it naturally
allows for the treatment of nonequilibrium effects. Employing the gauge invariance of the theory and carefully
choosing the saddle point in th®@-matrix manifold, we separate purely phase effects of the fluctuating
potential from the ones that change quasiparticle dynamics. As a result, the cancellation of super-divergent
diagrams(double logarithms ird=2) is automatically built into the formalism. As a by-product we derive a
nonperturbative expression for the single-particle density of states. The remaining low-energgiel de-
scribes the quantum fluctuations of the electron distribution function. Its saddle-point equation appears to be
the quantum kinetic equation with the appropriate collision integral along with collisionless terms. The
Altshuler-Aronov corrections to the conductivity are shown to arise from the one-loop quantum fluctuation
effects.[S0163-182809)03227-0

[. INTRODUCTION Finkel'stein® developed a replicated-model approach
for interacting disordered electron systems, which was fur-
The physics of weakly disordered interacting electron systher developed in Refs. 14 and 15. He demonstrated further
tems at low temperatures has been a subject of consideralite renormalizability in the one-loop approximation, and ob-
theoretical and experimental interest over the past y¢ars tained the one-loop renormalization-group flow equations.
review see Refs. 1 and.2Although significant progress has From these equations it followed that the weak-coupling
been made in this direction, many thermodynamic and transfixed point corresponding to a noninteracting metal is un-
port properties of such systems are not completely understable. The need for introducing replicas in Finkel'stein’s
stood and continue to stimulate both experimental and theapproach follows from the fact that the ensemble-averaged
retical research. The latest revival of interest in the problenpbservables are obtained as derivatives oferaged loga-
was prompted by the experimental discovery of a possibleithm of the partition function. The formalism in Refs. 13—-15
metal-insulator transition originally in clean Si metal-oxide utilizes the Matsubara representation, and is therefore re-
semiconductor field-effect transistdrand later inp-type  stricted to the equilibrium situation.
GaAs? Later it was suggested that the Keldysh-type field theory,
The low-temperature behavior of the conductivity of aoriginally developed for the treatment of nonequilibrium
metal is mainly determined by the quanturiweak systems® may be an alternative to the replica tech-
localization>® and interactioh corrections to the classical niquel’~*° The point is that the use of the Keldysh closed
Drude result. These corrections are especially strong in loweontour in the time direction leads to an automatically nor-
dimensional §<2) systems. In two dimensions, for ex- malized (disorder independenpartition function. This cir-
ample, both the lowest order weak-localization correction cumvents the need to introduce replicas. A similar situation
and the lowest order interaction correctiativerge logarith-  exists in the theory of spin glasses, where in addition to the
mically at low temperatures. The ultimate faith of the low- replica approacl the Martin-Siggia-Rose formalisAf,
temperature phase is determined by the interplay betweeanalogous to the Keldysh approach?®has been used. This
these corrections. formalism provided insight complementary to that gained
According to the scaling theory of localizati8rin the  from the replica approach. Horbach and Swfaleveloped a
absence of electron-electroe-€) interactions(and with no ¢ model for noninteracting electrons in the Keldysh formal-
spin-orbit scattering quantum corrections lead to localiza- ism. Although our treatment differs from theirs in many im-
tion of all single-particle states in dimensiotis: 2, and thus  portant details, we have benefitted much from their work. In
to insulating behavior for arbitrarily weak disordéweak a parallel and independent wérkChamon, Ludwig, and
localization. Wegne? proposed a replicated model to  Nayak applied similar ideas to the treatment of interacting
study this problem. With the coupling constant correspondelectrons. They derived FinkelsteinS’srenormalization-
ing to the dimensionless conductangethis o model pro- group equations in the framework of the Keldysh formalism.
vided justification for the one-parameter scaling theory ofTheir work provides a useful application of the technique,
localization® Later, Efetov® introduced a supersymmetric which is to a large extent complementary to the one pre-
version of theo model which obviated the need to take the sented in this paper.
tricky**12 zero replica number limit. Here we apply the Keldysh formalism to disordered inter-
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acting systems. We restrict ourselves to a consideration of C
spinless electrons in the presence of a weak magnetic field /
(unitary ensemble and leave the considerations of the spin
and Cooper channels for future work. Another important dis-
tinction of the present theory from the previous dHe¥is FIG. 1. Schematic representation of the discretization of the
the different choice of a saddle point of the functional inte-time contourC. The dots on the upper and lower branches of the
gral on theQ-matrix manifold. The saddle point in our for- contour denote the discretized time points.

malism explicitly depends on a fluctuating potential in the

system(the Hubbard-Stratonovich field, which decouples the QCE 1. (1)
electron-electron interactionThis choice of the saddle point

allows us to separate pure phase effects of the fluctuatinget us consider next the partition function defined as
potential and to present the first, to our knowledge, clear .

derivation of the tunneling density of statd30S) in a metal Z=Tr{poUHTr{po}=1, (2

film obtained earlier by Finkel'stetd and Levitov and ) ) ) o
Shyto® by different means. Another advantage of thisWherepq is a density matrix of the system at the initial time
choice of the saddle point is that the perturbative expressiorls= — before the interactions and disorder are adiabatically
for gauge-invariant quantities contain only single logarithmsSwitched on. A more informative object is the generating
of temperature or frequend§n d=2). The diagrams con- functlonal, which is obtained by_mtroduc_lng source fleIQS. It
taining double logarithms which appear in the standard dialS clear that to have a generating functional not identically
cancel each other for any gauge-invariant quantity, do nofpavior on the forward and backward parts of the contour'. To
appear in our formulation at all. This significantly reducesshorten the subsequent expressions we shall operate with the
the number of diagrams in each order of the perturbatiofartition function[Eq. (2)], and will introduce the generating
theory. We then obtain a low-energy theory in the form of afunctional in Sec. IVC. . _

o model. The advantage of the Keldysh formulation is that it The next step is to divide the contour into N+1 time
allows for a clear physical interpretation of the effective de-Steps, such ag =tpy.;=— andty.,=+ as shown in
grees of freedom. These turn out to be the quantum fluctudsig- 1. Following the standard rouf®, we obtain the
tions of the electron distribution function. The saddle-pointcoherent-state functional integral, by introducing a resolution
equation on the massless manifold is just the quantum kinetief unity at each time step. Taking thé—ce limit, for the
equation with an appropriate collision integral. The one-loopPartition function we obtain

fluctuations on top of this saddle point lead to corrections to

various observables, and in the case of conductivity can be _ — cor

identified with the Altshuler-Aronov correctiodg® Z_NJ Dy yrexplisLy i}, &)

The paper is organized as follows: In Sec. Il we present L . o
the funcﬁio%al integ?al representation of the Keldysh pgrtitionWhereN is disorder-independennormalization constarf
function for disordered interacting electron systems. Sectio@"d the fermionic action is given by
[ll is devoted to the choice of an interaction-dependent
saddle point and the derivation of an effecthrem_odel as the S[Z W= f dt( f dr J[Go—l_ Ugi(r) 14
massless fluctuations around this saddle point. We discuss c
some applications of the theory, like the derivation of the 1
nonperturbative expression for the single-particle Green _ = YN T e /
function, in Sec. IV. Quantum fluctuations and Altshuler- 2[ Jdrdr YOG IVo(r=rY(r)¢(n) -
Aronov corrections to the conductivity are the subjects of ()

Sec. V. In Sec. VI we derive the quantum kinetic equation as

the saddle-point equation on the massless manifold, and digtere the inverse bare Green function is a shorthand notation
cuss the corresponding collision relaxation times along withfor

the collisionless terms. Finally, in Sec. VII we briefly discuss

-0 +00 t

the obtained results and the future perspectives. o, .0 V2
= —+ —

Go =15 2m ®

Il. FUNCTIONAL INTEGRAL FORMULATION where the time derivative is taken along the cont6uNo-

tation (5) is somewhat symbolic: while inverting this opera-
tor it is necessary to invert its discretized version first, and
Consider a unitary evolution of a system along a closednly then take the limitN— .2
contour(C in the time direction which consists of the propa- We then divide the fermionic field(r,t) into the two
gation fromt= —o tot= +o, and then back frorh=+~ to ~ componentsy(r,t) and ¢,(r,t) which reside on the for-
t=—o0. All external time-dependent fields are assumed to bevard and backward parts of the time contour, respectively.
exactlythe same during the forward and backward evolutionSince the interaction part of the action is strictly local in
processes. As a result, at the end of such evolution the sysime, it may be rewritten a8 11— Sinil #-] (the minus
tem must find itself precisely in the original state. We thussign comes from the opposite direction of the time integral
conclude that the evolution operator on the backward part of the contgur

A. Keldysh formalism
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1 -
Sl 1= 5 | atar dr g Vet - AP
Gyl= : 9)
XYi(r ) (r). (®) ’ 0 N
Herei=1 and 2, and/o(r—r') is a bare interaction poten-

tial. We now introduce two independent auxiliary bosonlcThe trace operation in Eq7b) and henceforth is understood

fields ¢, (5)(r,t) to decouple the two interaction terms by the to he performed over the>22 structure as well as over the
Hubbard-Stratonovich transformation. As a result, for thetime and space variables.

partition function one obtains

~ ) THOTV Lo o iSIT ] B. Disorder averaging
= a3 s E
z NJ bbe ’ f bwre ' The great advantage of the Keldysh technique is that the

(78 normalization constant/ in Eq. (7@ does not depend on the
- . — . o g realization of the disorder potential. Thus the disorder aver-
S, ¥, P]=TH{V[Gy "~ Uqgisost ¢ ¥“1¥}. (70 aging can be performed directly, without the need to resort to
Here we have introduced the following vector notations forthe replica trick. Hereafter we employ the simplest model of

the fermionic doublet¥, the bosonic double®, and two the Gaussiang-correlated disorder
where the disorder strength is characterized by the elastic

vertex matricesy®:
b1
~ (8a)
mean free timer; v is the bare density of states at the Fermi
R 1 0 R 0 0 energy. Next, we perform the Gaussian integration &gt
= v2= 1 (8b)

(.. )Zf DU 4is- - -exp[ —WVTJ dr Uﬁis(r)}, (10

in Eq. (7a) and decouple the arisingonlocal in time quar-

00 0 tic interaction by means of the Hubbard-Stratonovich trans-
The inverse matrix Green function stands for formation. Doing so, we obtain
o o 2
(e Tr{‘PUdiS"'o‘q'}):exp{ —(4ww)*1f dr“ dt‘l’(r,t)o-;g‘lf(r,t)} } (119
~ TV_ - ~ 1_ ~
=f DQ exp[—f dr dtdt’{ETert,(r)Qt,t(r)vL Z—T\If(r,t)Qtt,(r)%\If(r,t’)}]. (11b

Here we have introduced the Hubbard-Stratonovich f(@ld As before the trace operation is understood to be performed
which is a matrix with indices both in the Keldyshx2 over the Keldysh and the time indices as well as over the

space and in the time space. To ensure the convergence ggordinate space; the unessential normalization constant is

. . - - omitted.
the integral in Eq(11b), the Q matrix is chosen to be Her-
mitian. After these transformations the fermionic functional
integral in Eq.(7a) can be formally performed, leading to C. Keldysh rotation
In the notations introduced in Eg®) and(9) the electron
A [ A Green function$s are matrices in the 22 Keldysh space.
1, @
de*Go * 27QU3+¢“7 ‘ (12 Their components are not independent and satisfy certain
general identities®3! This interdependence becomes most

As a result, the disorder averaged partition function takes th&ransparent if one introduces the rotated Green funct®ns
forms denoted by the absence of the hat and defined as

o i . = At
<Z>:f Do e(i/z)Tr{<1>Tvgla3c1>}J DQ eSle®l (139 G=LosGL, (14)

where the unitary matrix is given by

v

iS[Q,d]=— 4:Tr(AQZJrTrIn

Go '+ 'Q23+<§5a&“] 1 1 (1 —1) 15

2 = (Oon—i =
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As follows from the definition of the Keldysh Green bosonic fields®, slowly varying in space and time. Calcu-

function®3!the rotated Green function has the structure lating a variation of the actiofEq. (21b)] over theQ matrix,
o Ko one obtains the following equation for the saddle-point ma-
Gl = GH(tt) Gt 16 trix Q=Q[®]:
R ) GAt,t"))’ o 1
where GRA(t,t") vanish fort<t’(t=t’). To pass to the Qtt’(r)_ Gol*'—Q+ bav” (22

rotated representation we introduce a new Hubbard- rot

Stratonovich fieldQ which is related to the old on@, by We are unable to solve this equation exactly; therefore, our

the following unitary transformation: goal will be to find its approximate solution, which is as
close as possible to the true stationary point of the functional
Q=LQL". (17)  integral in Eq.(21a. To execute this program, we first con-

) ) ~ sider the case wherd®=0. It is easy to check that in this
We also introduce the rotated bare inverse Green functiogase
G, 1, expressed througB, * of Eq. (9) in a manner consis-

tent with Eq.(14): Ay =Q[P=0]= # > G(p,t—t), (23)
— p

V2
+ 2m

Gyt —LG0 logL =i oy (18  where the impurity averaged Keldysh Green functioficis
Eqg. (16)]
It is also conveniAent to perform a linear transformation of GR(p,e) GX(p,e)
the_bosonic g:ioublei). by.introducing .the symmetric and the G(p,e) =( 0 GA )
antisymmetric combinations of the fields residing on the up- (p.€)
per and lower branches of the contdlr (1 Fs) ( GR(p,e) 0 )(1 Fe)
-1

~ -~ ~ ~ A _ ’
b1=2(di+ B2),  bo=2(b1— o). (19 0 0 Gipe 1

Then the rotated vertex matrices for these new fields are (24)

Y=L (3= %) 5L T with the following explicit forms: with
(1 o) (o 1) GRM(p,e)=[e—epxil(27)] 1, (250

1__ 2
Y =00= , Y EO= (20

“lo1 oo GK(p,e)=GRF—FGA. (25h)

Any classical external field takes on identical values onThe function F defined by Eq.(25b can be expressed
the two branches of the contour and, hence, in the rotatethrough the single-particle distribution function(e) as
basis has only the first symmetric component. The nonzer&(€)=1—2n(e). In equilibrium at temperaturg it is given
antisymmetric component may appear only as a virtual flucby
tuating field. Below we shall sometimes refer to the first and
second components of the bosonic fieldscéesssical and eq_ €

. . Fe —tanh2—. (26)
guantumones, correspondingly. Since the presence of an ex-

ternal classical field does not change the basic fact Zhat Substituting Eqs(24) and(25) into Eq.(23), and performing

=1, any auxiliary source field should have a nonvanishin he momentum summation, for the noninteracting=0)
guantum component to generate an observable. We shall r€addle point one obtains

turn to this observation in Sec. IV C.
Utilizing the cyclic invariance of the trace operation, we 1R 2F Si_v_o  2F_y
obtain the following expressions for the partition function, A :( ) ¢ t,—(

€

0 _lﬁ 0 —Si-v+o/

(27)
<Z>:f DD el Tr{qﬂ'valgltb}j DQ SR (219 Here we have introduced the retarded and advanced unities,
’ 1R™ " which should be understood as Fourier transforms of
infinitesimally shifted§ functions. This particular form of
the Green function is a result of the approximation that the
single-particle DOS is independent of the eneegin reality
(21b) it does depend on, and the retardethdvanceficomponents
of A, are analytic functions of energy in the updéwer)

Eq. (13), through the new variable® andQ:

_ i
Go '+ 5-Q+ by

. TV 2
iS[Q,®]=— 2,17Q +Trin

IIl. NONLINEAR o MODEL half-plane which do depend on energy on the scale of order
_ _ of the Fermi energyg . Therefore, the infinitesimally shifted
A. Saddle-point equation & functions in Eq. (27) should be understood a8,

We shall look now for a saddle point of the functional =f.(t)®(=t), where®(t) is the Heaviside functlon and
integral over theQ matrix in Eq.(21a. The aim is to find a f-(t) are functions that are highly peaked fof<e;* and
stationary solution for a given realization of the fluctuatingsatisfy the normalization conditioffy “dt f.(t)=1. This
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high-energy regularization is important to remember in calwhere we have introduced the notation

culations to avoid spurious unphysical constants. In particu
lar, for obvious reasons,

Jltth'MS,t:O' lﬁt,/\/lﬁ'tZO, (28
WhereMtR,(f) is an arbitrary retardedadvancegl matrix in
the time space.

Substituting Eq(27) into Eq.(22) with =0, it is easy to
see thatQ= A solves the noninteracting saddle-point equa-
tion for anyfunctionF,. [The simplest way to check it is to
use the decomposition equati@@4).] This is natural, since
any distribution function is allowed for the noninteracting
electron gas. We shall see below how the interaction effect
drive the system toward the equilibrium distributipRq.
(26)].

Let us now include a finiteb,(r,t) into Eq.(22). To this

C(rvt)E(¢a_atka_VFVka)7av (33)
with the Fermi velocityvg=—iV,/m. To find the approxi-
mate saddle point of Eq30), we substitute) = A + 5Q into

Eqg. (32 and require terms linear iéiQ to vanish. In doing so
we neglect the diamagnetic terﬁkaVkﬁy“yB/Zm, since it
is quadratic ink, (and hence inb) and is also smaller than
C in the parameteng/p<1, whereq is the characteristic
momentum scale of variation df. As a result we obtain the
equation

—mvAy Fi[G—GCG+GCGCG—-- -]y 4(r,r)=0.
s (34
The first two terms in this expression cancel, according to

Eqg. (23). The freedom of choosing thi€[ @] functional is
not sufficient to cancel all the terms in this expansion. We

end we notice that this equation can be still solved exactlfhus concentrate on the term which is lineadinandK:

for the particular case of spatially uniform realizations of the
boson field,¢,= ¢,(t). This is obvious since such a field
may be gauged out, resulting in

gt,t’[q)(t)] =exp[i['dt ¢,(t) YA v

X exp[—i [t dt ¢,(t)y*]. (29)

The validity of this solution can be verified by acting with
the operator[Ggl+i/(27)Q+ d,(1)v*] on both sides of
Eqg. (22), and utilizing the fact that\,_,, solves Eq.(22)
with ®=0. We also rely on the commutativity of the vertex
matrices[ y*,v%]=0, in writing the solution in the form of
Eqg. (29).

We now consider the case where the bosonic figlgsre
slowly (compared to the mean free pajhvarying in space.
In analogy with Eq.(29) we shall look for an approximate
solution of Eq.(22) in the form of a localin time and spage
gauge transformation of

Qi(r)= eika(r,t)y“At_t,e—ika(th')y“, (30)

wherek,=k,[®] is a certainlinear functional of the fields

% G(p. ,€4)C(q,w)G(p_ ,e)

=mvT(patiowk,) (Y —A, y*A_)
—Dg?ka(A 1y =y A )], (35)
wherep.=p*0q/2, e.=e*w/2 andA.=A_ . To derive

Eq. (35 one may employ the following useful_representation
of the Keldysh Green function:

-1

[
27

G(p,e)=|Ggy 1+

1 1
=5 GR(p,e)(0ot A+ 5GA(P ) (o= A,

(36)
Only 3,GRG* and = ,GRveG* contribute to Eq(35). Mul-
tiplying Eq. (35) by A, from the left, one obtains the fol-
lowing matrix condition for the vanishing of the linear term
in Eq. (34):
DO%Ka(A 4 Y A = y*) +(hotiok,) (A 7“—7/“/\_)?07-)

3

®, whose specific form is to be determined to satisfy Eq.To cancell,1), (2,2), and(2,1) components of the matrix on

(22) in the best possible way.

the left-hand side of this equation, the functiom@kshould

To proceed we introduce a new Hubbard-Stratonovictsatisfy

field 6 which is related to the old on&, by the gauge
transformation

Quu () =e*r07Q (e et (31
Substituting this definition into the actiditq. (21b)], and

using the invariance of the trace under a cyclic permutation

of operators, we can rewrite the action as

(D@ +iw)ky(q, )+ ¢2(q,0)=0. (39

Provided this equality is obeyed, the condition to cancel the
Keldysh (2,1) component on the left-hand side of 8Y) is

1-F F.
(DG*=iw)ky— b=~ 2DG%ko =

(39

This equation cannot be in general satisfied, since its right-

~ g ~
iS[Q,CI)]=—4—TTrQ2

27

Vk,VkgyeyP
MLALT N

+Trin| Gy +C— T

hand side contains an explicit dependence:pwhereas the
left-hand side is supposed to béndependent. This happens
because the trial saddle-point soluti@b), is too restrictive.
In particular, we demanded that it may be obtained frdm
by the rotation, which is local in time. As a result, the func-

tional K depends only on differential energy and not on

(32

“center-of-mass” energy. This restriction is in an apparent
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contradiction with Eq(39). There is, however, an important point[Eq. (30)] is similar to the Eikonal approximation. It is
particular case when E¢39) may be solved. This is the case designed to account for the phase effect of the slow fluctua-
of thermal equilibrium, where the fermionic distribution tions of the potentiakb. Note that the phasi enters the

function is given by Eq(26). As a result, saddle-point equation only through its total time derivative
along the trajectory of a particla/dt=,+ VgV [cf. Eq.
1—F§3F§q o (33)]. If we demand thatCC vanish, we obtain the standard
ot - —Req . . . . .
Fea_Fea COch_T B, (40 Eikonal equatioff for the actionK of the particle moving
€, €_

with a given velocityv in an external fieldb. Unfortunately,
the ansat4Eq. (30)] is too restrictive to nullifyC for par-
ticles of every velocity. Eventually all the particles in the
Fermi sea interfere to produce the Green func@n.(r).
Equation(30) approximately accounts for the phase interfer-
ence between particles moving along different trajectories.
-1 -1 Since the particle dynamics is diffusive this leads to the dif-
b Ha,0)K(g,w) =11, ®(g,). (1) fusive relations(41)—(43) between the external potentid
Here we have introduced the following bosonic matrixand the phas&. As will be clear below the choice of the

where B stands for the equilibrium bosonic distribution
function. Thus the matrix equatio(87) for the functional
K[®] can be resolved in equilibrium. The result may be
written in a short form as

propagators in the 22 Keldysh space: saddle point in Eq(30) considerably simplifies the subse-
quent calculations. In particular, it eliminates completely the
DX(q,0) DR(q,w) family of superdivergent diagrams which cancel in the tradi-
D(Q, )= DA, ) 0 , (42 tional treatmerif after sometimes tedious calculations.
with

B. Effective action
DRA(q,0)=(Dg?Fiw) 3, (439 To formulate an effective low-energy theory in terms of
the fluctuating field€) and®, we need to examine the fluc-

K — R _ 1A ~
D(q,0)=B,[DP™(q,0) =D™q,0)], (43 tuations around the saddle point. The fluctuation®ofall

and into two general classés®'3 (i) massive, with the mass
«1/7; and (i) massless, those on which the action depends
2B, 115 only very weakly. The fluctuations along the massive modes
,=—i wD(q:O,w):( A o ) (44 can be integrated out in the Gaussian approximation and lead

to insignificant renormalization of various parameters in the
The superscript &g’ denoting equilibrium in the bosonic action. The massless, or Goldstone, modes describe diffusive

distribution has been omitted for brevity. o motion of the electrons. The fluctuations of tfe matrix
Equations(30) and (41) complete the task of finding the ajong these massless modes are not small and should be

approximate saddle poir@=Q[®] for any given realiza- treated carefully. The Goldstone modes can be parametrized
tion of fields®. On this solution we are able to cancel only by the O matrices satisfying a certain nonlinear

the term linear ind in the expansiofEq. (34)]. This guar- constrainf 1013

antees only that terms lik& 6Q will not appear in the ex- To identify the relevant Goldstone modes consider the
pansion of the action around the saddle point given by Eqsirst term in Eq.(32). The saddle point given by Eqé30)

(30) and(41). Terms like®25Q may (and will) arise in such  and(41) satisfies

expansion. We shall see later that it is precisely these terms .

that are responsible for the divergent Altshuler—Aronov cor- 62_ ( I 0)

rections to conductivity® The ability to avoid® 5Q terms 0 1

is, strictly speaking, limited only to the thermal equilibrium. _

For an out-of-equilibrium situation such terms reappear andnd the first term in Eq.32) vanishes. The fluctuations Gf

require some carésee Sec. L which do not satisfy Eq(45) are massive. The massless
The influence of the external potentidl on the electron modes are generated by rotations of the saddle point and can

dynamics(and hence on the Green functjas twofold®% (i)  be parametrized &3%**

it changes the particle trajectory, atig it changes the phase

of the electron wave function. The first effect is proportional Q=7 AT (46)

to the electric fieldE=—-V®, and is small for the long-

wavelength spatial configurations df. The second effect, The parametrization of the rotation matricésnust ensure

however, requires no actual electric fields. It is proportionalthe convergence of the functional integration over the matri-

to @ itself, rather tharV®, and is akin to the Aharonov- ces given by Eq(46). Below we only assume that such a

Bohm effect. It changes the phase but not the amplitude gparametrization exists, whereas the concrete foriisfnot

the wave function, and can be taken into account in the Eiimportant for what follows.

konal approximation. The second effect exceeds the first one One way of parametrizing the rotations is to wrife

for the long-wavelength fluctuations of the potential; there-=exp{W/2}, where, without loss of generalityWA =

fore, it is especially important in the presence of the long-— AW. Expanding Eq.(32) to the second order W and

range Coulomb interactions. The approximation to the saddlaeglecting for a moment the term arising dueete interac-

(45

€
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tions, it is easy to establish that in the diffusive regime the ) S—
relevant fluctuations must satisfy the condition <Z>=J DO expfi Ti[® 'V~ "®]}

W, #0 onlyif |e,|e'|<1/7. (47 xf DQ exp(iS[Q]+iS,[Q, VK] +iS,[Q,VK]},
That is, all effective degrees of freedom are concentrated in (52

the narrow energy strip of the width7A£ e near the Fermi
energy. Therefore, the matric&sdiffer from unity only in
the narrow region of energies defined by Hg7). For
this reason the gauge transformationis . (r) - TV - -
= exp{—ik,(t,r) v+ &t—t") in Eq.(31) cannot be incorporated iSo[Q]=——[D T{VQ}*+4i Tr{eQ}], (523
into a redefinition of7 and should be carried out explicitly.
Indeed, being diagonal in time indices, the matii;
spreads over the entire energy space and, thus, cannot be
reduced to a disturbance which is close to the Fermi shell.
Physically, this describes the fact the low-wave-number sca-
lar potential® (q,t) shifts the entire electronic band and not

whereS;,1=0, 1, and 2, contaitVK in the Ith power and
are given by

iS;[Q,VK]=—imy[D Tr{VK,y*QVQ}

+TH(pa+iok,)y°Q}],  (52b

~ D ~ ~
only the energy strip given by Ed47). It is essential to isz[Q,VK]zl[Tr{VkaaQVkﬁyﬁQ}
follow the variations of the electron spectrum all the way 2
down to the bottom of the band to respect the charge neu- —Tr{Vk y“AVkﬁyBA}]. (520

trality imposed by the Coulomb interactions. As we shall see o _ ) ]

below, once the phase factors in H81) have been taken The effective interaction matrix is nothing but the screened
into account, the residual interactions may be regarded agteraction in the random-phase approximati&PA)

being short range without loss of generality.

_ -1 -1
Substituting Eq(46) into Eq.(32), and retaining only the V(9,0)=[Vo (q)o1+Po(q,@)]7, (53)
universal (-dependentterms in the expansion of the loga- wherePy(q, ) is the bare density-density correlator. It has a
rithm, for theQ action we obtain typical form of a bosonic correlator in Keldysh space,
TV P = ° Pé(q'w) (54)
IS[Q.@]=i» Tr{(®—iwk) oy (®+iwk)} - o) = PR(q,w) Pi(q,w)/’
~ - with
X[D Tr{d,Q}*+4i Tr{(e+ (d,+iwky) y)Q}],
D 2
(48) PEA) (g, 0) = p—t— (559
Dog*+iw
where we have introduced the long derivative « o R
PO(qvw):Bw[PO(qaw)_PO(qvw)] (55b)
9,0=VQ+i[Vk,y* Q]. (490  To derive Egs(51)—(55), we had to add and subtract the

term TI{Vka)/“AVkB)/'BA}, and employed the equation

A few comments are in order regarding E¢8). First, it is Foo

~ a a _ -La
restricted toQ, which satisfies Eq(45). The last two terms, fﬁx de Tr{y*y’—y*A Y’A }=4(I1,1)*F. (56)
containingQ, conventionally originate fromSvaGRvFGA N . .
and= ;,GR™ combinations in the expansion of the logarithm. Heree. = e+ w/2, and matrices\ andlII are defined by the
On the other hand, the first term on the right-hand side of EqEYS: (27) and (44) correspondingly. Equatiotb6) is based

(48) originates fromEpGRGR and EpGAGA combinations. ©n the following relations between bosonic and fermionic

These terms should be retained since, as was mentionditribution functions:
above, the matrixp,(e—€') y* is not restricted to the %/

+ oo
shell near the Fermi energy. To derive this term we em- f de(F, —F, )=2w, (57)
ployed the fact that for any physical fermionic distribution - ’ -
function .
j de(1-F. F. )=2wB,,. (58
Feosn—m=*1 (50 o

The last equation is obviously satisfied in the thermal equi-
Finally, the terms IikeEvaGRvFGR, although nonvanish- librium. For a nonequilibrium situation it should be consid-
ing, cancel against the diamagnetic term. ered as a definition dB,, .
Employing the explicit form of the long derivative, Eq. Equations(51)—(55) together with Eq(41) constitute an
(49), and the relation between tikeand® fields[Eq. (41)], effective nonlinearc model for interacting disordered elec-
for the the partition function one finally obtains tron gas. The model consists of two interacting fields: the
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matrix field Q, obeying the nonlinear constraifq. (45)],  1he Keldysh matrix’ has the familiar structure of a bosonic
and the bosonic vector field (or equivalentlyK). As will ~ Propagator:

be apparent later, th® field describes fluctuations of the

quasiparticle distribution function, whereds (or K) repre- V(q,w)=<

sents propagation of electromagnetic fields through the me-

dia. The following sections are devoted to an analysis of this .

model and calculations of various physical quantities on thé/"Ith

basis of the model. , | -1
VR(A)(q,a))= 1 vDq

IV. APPLICATIONS OF THE FORMALISM (quiiw)2 V_o quiiw

V¥(q,0) VR(q,w))
, (64)

VA, w) 0

(653

In this section we shall show how the developed formal- VK(q,w)=B, [ VR(q,w)—VA(q,w)]. (65b)
ism can be used for a calculation of the average single-
particle Green function at coinciding spatial points. ThisOne may recognize that this propagator precisely corre-

A. Single-particle Green function

quantity is defined as sponds to the screened Coulomb interaction line dressed by
o two diffusons at the vertices. Thus, the role of #dield is
@i,j(t—t')Z—i(<lﬂi(f,t)¢j(r,t')>>, (590  to take into account automatically both the RPA-screened

. interactions and its vertex renormalization by diffusons.
where (_(- : '>)_ denotes_ both the quantum and the disorder T4 calculate the functional integriEq. (62)], we write
averaging. It is convenient to apply the Keldysh rotafiBg.  he phase factors as

(14)], and define

R Hik, Y% 1 ati(ki+Ko) 4 ati(ky—ko)y A1

Glt—t")=Lasl(t—t")L". (60) € 2(e e )Y
1/ a%i(kg ko) _ ari(ky—ko)y -2

Such a Green function arises, e.g., in calculations of the tun- Fa(er T —em T v (66

neling DOS, or shot noise power. To evaluate it one may,n§ perform the Gaussian integration according to (E8).

introduce a source term in Eq4), directly coupled to @ The result may be conveniently expressed in the form
bilinear combination of the fermion operators. Following the

same algebra as above one finds that the source field enters 2
into the logarithm in Eq(21b). Differentiating finally with G(ty=—imv >, (Y AYP) Bg(t), (67)
respect to the source and putting it to zero, for the Green ap=1

function one obtains o )
where the fictitious propagatds has the standard bosonic

g(t—t’):f Do o Tr{q:Tvglalcb}J Q &SiQ) structurefas, e.g., Eq(64)] with
BRA(t) = 1RV OV 0]V _ o=V P )

(683

X (61)

; -1
Gy '+ 2|—Q+ %7"‘}

T rrtt’ - K K ; R A
] . BK(t)=%e('/2)[V H-v (0)](e(|/2)[v (ORRZ2a0)
We shall evaluate the integral over tli@ matrix by the
saddle-point approximation, neglecting both the massive and +ef(i/2)[VR(t)fVA(t)])_ (68b)
the massless fluctuations around the stationary point. Then,
according to Eq(22), the pre-exponential factor is simply The (KKT) propagator), defined by Eqs(64) and (65), is
—imvQqy . At the saddle poinQ is given by Eq.(30). taken at coinciding spatial points
Transforming the actio§[ Q,®] as it was done in Sec. Il B,

one obtains do
V(t):fﬁef'w@ Vg,0). (69)
q
G=—i va DD & THEV 1heilkaOY A e ikalt)Y",
(62) The electron Green function must satisfy several impor-

tant requirements: the tunneling DO&€), which is defined
SinceK is the linear functional ofp, given by Eq.(41), the  as
remaining functional integral is Gaussian. Employing Egs.
(41) and (53)—(55), for the correlator of the& fields (aver- i
aged over fluctuations ¢b) one obtains v(e)= z[QR( €)—GA(e)], (70

P _! must be a positive definite quantity. In addition, in thermal
(Ka(G,0)kg(—0,— @))o=5Vap(q, @), (633 equilibrium theR, A, andK components of the bosonic and
fermionic propagators are related by the fluctuation-
Vg, 0)=D(q,0)I1,V(q,0)TI-L)"DT(—q,— ). dissipation theorenfFDT). Below, we demonstrate that our
(63b) approximation[Egs. (67) and (68)] for the Green function
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Y,\/\/\/i f>(<)((y)):fdteiwtf(fdiB>(<)(w,)e_iw/t .
2

AY 7 A} 7
~T 7 ~T 7

(75

FIG. 2. Lowest order interaction correction to the single-particleExpandingf on the right-hand side of this equation in the

Green function. The wavy line here denotes the RPA-screened Co‘Taonr series and performing théntegration, we see that in

lomb interaction. The impurity-dressed single-particle Green func-each order of the expansiof ()= exp/T)f<(w). One

tions are depicted by solid lines, and the double dashed lines "eRan also check that § > (<) andB> (<) satisfy the FDTEq.
resent diffusons. . :

(74)], then so do the functiong” (<) defined as
satisfies these requirements. For this purpose it is convenient

to rewrite identically Eq(67) in the form G =¢"O1)B~ ). (76)
Noting that the arguments in the exponential in Eg3)
>( (1) = —i A= O B> ¢ 71 obviously satisfy the FDTEq. (74a], we conclude that
G =—mvh ). () B~)(w) [Eq. (73)] and the approximate Green function,
where [Eq. (67)] satisfies it as well.

To establish the positive definiteness of the tunneling den-
sity of statedEq. (70)], we first show that3~(<)(w) in Eq.
R A —
BR()=BA)=B" () =B~(1), (729 (73) is positive definite. Indeed, ekpiV¥(t=0)] is real, as
Kies 1o - can be seen from Eq&65). It is also not difficult to see that
BEO)=B7()+B7(1). (72b each Fourier component of the argument of the exponential
The > and< components of the fermionic Green functions in Eq. (73) is positive definite. All the coefficients in the
are related taR, A, andK in the same manner. From Egs. Taylor series of the exponential are positive and, since the

(72) and Egs.(68), we obtain Fourier transform of a product is given by the convolution of
positively defined-ourier transforms, we conclude that the
1 K : i (do' | left-hand side of Eq(73) is positive definite. We next use
>(<) — — A (il2)V™(t=0) i wt _ |  aie’'t ’ . -
B7(w)=5e f dte exp{ zf on € Egs.(72a and(74a to rewrite the tunneling density of states
as

VR(q,0")~ VA(Q,0’ ( w,il)}.
X2 V(@)= VA(Q.0)]| cothyr

(73

o . - .
According to the FDT the equilibrium bosonic and fermionic whereg>(e) is given by Eq.(71). SinceA /=0 we imme-
Green functions in the frequency representation satisfy thdiately see from Eq(71) that the tunneling density of states

W= 507 (1 +e T, i

relations is positive.
In equilibrium, it is convenient to write the DOS through
B~ (w)=explo/T}B~(w), (743  the Keldysh Green function employing the FDT:
G (e)=—explelT}G(e). (74b) v f et K
V(E)—m dt e F»[B (t), (78)

It is not difficult to see that if any pair of bosonic Green
functionsB~ (t) and B=(t) satisfies Eq(744a then for any As was proven above, Eq&.7) and(78) are equivalent. One
analytic functionf(z) the pairf~(t)=f(B~(t)) andf=(t)  can then expres8X(t) throughB~(<)(t), where the latter
=f[B~(t)] also satisfies it. Indeed, are conveniently rewritten as

B¢ )(t)—zexp{fE(cothz—_r(l—cos(ot)q smwt)lmé VR(q,w)]. (79)

Expanding this expression to the first order in the interactigrand substituting into Eq.78), one recovers the Altshuler-
Aronov result for the zero-bias anomaf/This perturbative result corresponds to the diagram drawn in Fig. 2.

We shall restrict ourselves to the analysis of the nonperturbative [&qgt(78) and(79)] only at T=0. Noting that for
T=0, F,=(imt) %, one obtains

v(s)=%J dtsinleltexp[ :d%)lmg VR(w)(l—COSwt)]cos[ fowd?wlm% VR(w)sinwt }. (80)
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In the two-dimensional case EQq(653 with Vy(q) S SN
— 2me?/q leads to st)= [ dterqimio+Hoin). @3
*dw R 1-coswt Here the current operator in the tunneling approximation is
f—lmEv (0,0) iven byl (t)—iTa' bt
0o q given byl (t)=iTa'(t,rg)b(t,rg) —iT*b'(t,rg)a(t,ry), and
b(t,rg) anda(t,ry) are electron annihilation operators at the
1 [Int/rlntméJr 2yIntw, position of the contact in the dirty film and in the clean

Ssinwt

metal, respectively. Below, all the fermion operators and the
Green functions are taken at the point of the tunneling con-
whereg=vD is the conductanceyw,=D«?, k=2me?v is  tactr,, and we omit the position argument for brevity. Using

the inverse screening radius; ame=0.577 . .. is theEuler  the expression for the current operator, we can rewrite Eq.

constant. Since we have neglected the fluctuatioré,oz’ve (83 as

have missed corrections of ordgr® Int/r (in d=2); there-

fore, Eq.(80) can only be trusted foe not too small, such s(w):|T|Zf dte“ (G (—1G, (D+G, (HGp (1)
that (8w2g) ~*In(er) 1<1. However IRt/ terms have been

a 8m?g | mIntwo,

accounted for correctly by our procedure. If, in addition, GG (=) + G (-1 GE(t 84
g tInwyr<1, the time integral in Eq(80) may be per- Ga ()G (Z0*Ga(Z1G, (1], 4
formed by the stationary point method, resulting in wheregG, andg, are Green functions for the clean metal and

for the dirty film, respectively. We assume that the volt&ge
1 . ) is applied across the contact. To the lowest order in the tun-
v(e)=vexp — 82 In(le|7)""InTwi/|€l 1. (82 neling matrix element, the Green functions under these con-
T°g e Lo X o
ditions are equilibrium, except that the chemical potentials in
Theoretically, howeverg ! In wyr need not be small. In that the two metals differ b V. Therefore in the lowest order in
case the stationary point integration should be somewhdhe tunneling amplitude we can express the power spectrum
modified and terms: In twg should be retained. of current noise through the equilibrium Green functions.
We have achieved a nonperturbative resummation oExpressing them through DOS with the aid of the FDT and
anomalously divergentr In? er, terms for a single-particle utilizing the fact that for the clean metal DOS,, is inde-
Green function. The nonperturbative expression for the DO$endent of energy, one obtains
essentially arises from the gauge noninvariance of the single-
particle Green function. The calculations above are in es- _ 2
sence the “Debye-Waller” factd? due to almost pure gauge S(w)=2m,|T| f devp(e){n(e)[2—n(e+w=eV)
fluctuations of electric fields, cf. Eq62). Gauge-invariant
characteristicésuch as, e.g., conductivitgdo not carry phase —N(e-w—eV)]+[1-n(e)]ln(e+w—eV)
factors, and therefore are not affected by the interactions on +n(e—w—eV]} (85)

his level of | i Q shoul i
this level of accuracyfluctuations ofQ should be retained wheren(e)=[1-+exp@T)]* is the Fermi function,

In perturbation theory this fact is reflected by the cancella- . e .
tion of diagrams without diffuson&@part from those which __ SettingV=0 in Eq. (85), we obtain the power spectrum

renormalize vertice<® In our formulation such terms never °f the equilibrium current noise in the conté8j(w). The

appear since the phase factors cancel along any closed lo§§CeSS noise is given by the differenaiS(w)=3S(«w)

diagram. —Sy(w). The noise power is a symmetric function of fre-
The gauge physics of anomalous corrections to the DO§UeNcY, and at zero temperature reduces to

was first realized by Finkel'steit?3 who obtained a non- oy Y

perturbative result similar to ours. Nazar\vand later Levi- 8 w>0)=27v,|T|? J de Vb(f)—J’ de Vb(f)}

tov and Shyto#® obtained the same resulin imaginary ~lw—eV ~o

time) by semiclassical reasoning. Kopi&tzecently rein- (86)

stated it, stressing the role of phase fluctuations. The analo- At zero frequency the shot noise is proportional to the

gous expression for the zero-dimensional case has also betaial current. This is natural, since in the lowest order in the

known for some timé®~38 We believe that we provide its tunneling amplitude the electrons pass through the contact

first consistent derivation using tkemodel. Unlike the pre- extremely rarely and, therefore, can be viewed as noninter-

vious approaches, the Keldysh technique provides the ar@cting. The role of interactions reduces to modification of the

swer directly in real time and at finite temperature. This en-density of the available states. The cusp present at zero tem-

ables us to circumvent the tedious analytical continuatiorperature in the noise power spectrum for noninteracting elec-

procedure. trons atw=0 andw=eV is washed out because DOS van-
ishes ate=0.

B. Shot noise

In this subsection we shall use the results obtained in Sec. C. Extemnal fields and auxiliary sources

IV A to calculate the power spectrum of current noise In some sense our previous manipulations leading to Egs.
through a tunneling contact between a clean metal and €1) and(52) were no more than a complicated representa-
dirty metal film. The power spectrum of current noise istion of unity. This is so since, according to the basic idea of
given by the Keldysh technique, the partition functidris identically
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equal to unity. To make the entire construction meaningfulwhere
one should introduce auxiliary source fields, which enable
one to compute various observables. We shall do this in par- 1 °Z[A]
allel with introducing external classical fields. Since we shall 24A(q,0)= 5 - (92

. Al | | - 2i dag(q,w)éa,(—q,—w)|,_
mostly discuss the conductivity, we will use the vector po- A=O
tential A(r,t) as an exampl& Other fields(e.g., the scalar Here we have omitted the vector indicesafising its lon-
potentia) may be introduced in a similar way. We introduce gitudinal character. In general, any response function is
a doublet in the rotated Keldysh frame given by the(2,1) component of the appropriate bosonic cor-
relator. The structure of the theory guarantees that this is a
retarded functioricf., e.g., Eq.(54)].

In the presence of an external vector poten#althe trial
L . saddle poin{Eg. (30)], is shifted. Noting tha#A enters the
W_h'Ch 'S relat_ed b}/ the usugl _transformautm‘. Eq. (19)] action always in the combinatioiK + A, one finds that the
with the two fle|dsaa(l’,t) I’eSIdIng on the two branches of Cond|t|on for the OpumaK |S g|Ven by Eq(37), Wlth the
the time contour. The vector potentials enters the fermio”i%ubstitutionquK—>Dq2K+iD(qA) ' Solving this equa-
Hamiltonian through the long spatial derivativéé,—V,  tion in a manner that was done in Sec. Il A, one obtains that
+ia,y®. The classical external vector potential is the sameEq. (41) should be modified as
on the two branches of the contour, and hence it is described

ay(r,t)

Alrt)= ay(r,t)

: 87

by the symmetric componeaj(r,t) only, whereas,=0. In Dfl(q,w)K(q,w)=H;l¢(q,w)—iDal(qA(q,w)),
this case the generating function is still equal to unity: (93
Z[a,8,=0]=1. (88)  where bosonic propagator®(q,») and II,=—-iwD(q

=0,w) are defined by Eq$42) and(44). In solving Eq.(3
To obtain a nontrivial generating function, one has to intro- “) y £q¢42) 44 g Ea.37)

- . with the external field we still assumed that the fermionic
duce a quantum component of the source figldr,t). This  istribution function is the equilibrium one. This is a legiti-

component does not have a classical meaning, and thus hagye procedure in linear response. The generalization to the
to be nullified at the end of the calculations. Its presence,,nequilibrium case is discussed in Sec. VI. After disregard-
however is essential for generating observables. One can €38y the massive modes and expanding the logarithm, one
ily check that the current density defined as obtains Eq(48), with the long derivative modified as

e

1 _ _ - ~ ~
=5 5iElz{¢i<V+ia1>¢i—<V—ia1>¢iwi}> 3Q=V,Q+i[(Vk,+a,)7".Ql, (94)
$(89) andK given by Eq.(93). Sincey!=1, any static external

is given by?° field a;(r) appears to be decoupled fro’.~@1 This reflects the
fact that diffusons are not coupled to a static magnetic field.
e OZ[A] On the other hand, even space- and time-independent quan-

i 2i day(r,t) a2=0' 0 tum componenta,, is coupled toQ. A little algebra shows
that

We restrict ourselves to the case of longitudinal vector po-
tentials only. Taking into account the fact that the external VK+A=—igDIl {®+(qA) w/q?], (953
electric field is given by-iwa;(qg,w)/e, one obtains that the
linear response conductivity is given by the retarded compo- O +iwK=Dg*Da,[ P+ (qA) w/g?]. (95b)
nent of the current-current correlator
With these expressions and the long derivative given by Eq.
(94), one can rearrange E(8) to obtain the average gen-
erating function in the form

2

o(.0)= - 3(q,0), (91)

2
<Z[A]>=f DO expi Tr{<I)TV0101<D+[<D+(qA)w/q2]TPO[<IJ+(qA)w/qZ]})fDéexp{zo is.[Eg,VK+A]],
(96)

where the actior, =0, 1, and 2 is given by Eq$52) and  ately guarantees that the continuity equation is satisfied to all
the bare polarization operaté;(q,w) is given by Eq.(55). orders in the perturbation theory. Indeed, one could intro-
By virtue of Eqs.(95) the entire action is expressible through duce the external scalar potentialwhich enters the action
the combinationd + (qA) w/q?, which is proportional to the always asb + ¢ (apart from the bare interaction terivig).
(gauge invariantelectric fieldV®+ g,A. This fact immedi- Then, due to the fact that=Z[ ¢+ (qA) w/g?], the charge
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density, p=(2i) 16Z/5¢, and current density,j= Shifting the integration variabl®—® — (qA) w/qg? in Eq.
—(2i) 152/ 5a,, has to be related by (96) and differentiating twice with respect #, one obtains
an exact relation for the polarization operator,
(Vi) +dp=0. (97)

P(d,0)=Vy ' +2iVo {(®(q,0)PT(~q,~ @)V,
The corresponding variation with respect to the classical

(109
componentsp; anda; guarantees continuity at each branch T ,
of the contour separately even in the presence of nonzer‘Uhere(q)q) ) is an exact propagatdaveraged with respect

auxiliary quantum fields. As a result of continuity, an exact to the full action[Eg. (96)]). Employing Eq.(104), one finds
relation between current-current and density-density correla-

tors holds:

2

%E(q,w). (98

P(q,w)=
At the saddle pointQ=A, one hasS[A,VK+A]=0.
Thus, neglecting the fluctuations @f, for the RPA generat-
ing function one obtains

wZ
iAT— PoA
q°

(ZrpAd Al)= exp{

xJ DO exp(i Tr[(IDTV‘1<I>+2CI>T§POA]).

(99
Finally performing the Gaussian integration, one finds

<ZRPA[A]>:eX% 1Ty A _PRPAA]) (100
9

wherePrpa(Q,w) is the RPA screened density-densipo-
larization) correlator, which is given by

Prea(0,@)=Po—Po[ Vg '+ Pyl " 1Po=[Py '+ Vo] 1,

(101)
and has the structure of a bosonic correlator:
0 PA(q,w)
P(g,w)= . 10
(%)= pRg.w) PK(qw) (162

The w?/q? factor in Eq.(100 reflects the relation between
the density-density and longitudinal components of th

current-current correlatofdg. (98)]. The fact that the1,1)

component o (as well as of any other bosonic correlator glecting Q

Pir = (<<I><1>T)) vyt (106)

If one is interested in the response to a uniform external
field, g=0, the expressions may be further simplified. Not-
ing that for the Coulomb interactiovi, (q=0)=0 and em-
ploying Eq.(98) and relation betweed® andK [Eg. (41)],
one obtains

i (q=0,0)= —[(VK(w)VKT( w)>] L (107
Unlike in the calculations of the single-particle Green func-
tion, only VK and never itself appears in calculations of
gauge invariant quantities. This allows one to consider a uni-
versal limit of strong interaction‘s'gl(q)—>0. In this limit it

is convenient to change the integration variable frénto

VK (although formally it is a vector, it has only a longitudi-
nal component and hence a number of variables is con-
served. In the new variables the Gaussian weight is given by
i Tr{VKTq 2y~ 1VK}, whereV is defined by Eqs(64) and
(65). In the universal limit one has

VYV~ Yq,0)——vDg?D "Y(q,w), (108

where the diffusion propagat@ is defined by Eqs42) and
(43). Finally, for the action in terms oVK one obtains

(Z)= f DVK e~ "D TH{VKTD ~1vky

2
xf DQ exp(E iS,[é,VK]). (109

=0
Equations(107) and (109 constitute a complete framework
or calculations of gauge-invariant response functions. Ne-

fluctuations, one finds 3;,(q=0,0)

vanishes is a manifestation of the normalization condition™ VDIwHw , Which leads to the Drude conductivity

[Eq. (88)]. Employing Eq.(91), for the conductivity in the
RPA one obtains

—iw
,w)=e?vD ., (103
orpA0,®) v DA 1+ Vo(q)]— i@ (103

One is usually interested in thiereducible part of the
density-density(or current-current correlators, which de-
scribes the linear response to ttatal or internal field and

not to the external field as discussed above. The relation

between the irreducible paR;,, and the totalP is exactly
the same as between the bétg andPgrpa[EQ. (101)],

Pir (9,0)=[P~*(q,@) = Vo(a)] ™. (104

=e?yD. Fluctuations oQ andVK lead to weak-localization
and interaction corrections. Note that unlike in the case of

the DOS(Sec. IV A), fluctuations ofVK alone, With(~3=A,
do not lead to any corrections to linear response. This is a
direct consequence of gauge invariance of linear response

functions. Only combined fluctuations &K and 6 dis-
cussed in Sec. V, renormalize the Drude conductivity.

V. FLUCTUATION EFFECTS

A. é-matrix parametrization

As discussed in Sec. Il B the massless fluctuations of the
Q matrix can be parametrized as
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= _ determine theK functional. In equilibrium we were able to
Q=exp{—WIZA exp{ Wiz, (119 solve EQ.(37) by an appropriate choice &f. This was pre-
where cisely the motivation behind looking for the saddle point for
each realization of the Hubbard-Stratonovich field: to cancel
WA +AW=0. (11D terms linear inW. Since we could not find the exact saddle
Employing Eq.(24), one obtains that the general form\f  Point, such terms do appear, however, only in the second
which satisfies conditioi111), is order inVK. ForiS,[Q,VK], part of the action, one obtains
1 F\[(0 w (1 F ) Fw —w+FwF " avD ,
W= — = _ _ i = - a
0 -1 W 0 0 -1 —w —wE ISZ [WvVK] 2 Vka(el 62)Tr{[7 Aez’y A53
(112

_ _Ael?’a/\eZ?’B]W}Vkﬁ(Ez_Q)
wherew andw are arbitrary Hermitian matrices in the time . w
space. Below we shall thus understand the functional inte- =mvD TH{VK (€1~ €)[M W,

gration over(~3 as integration over Hermitiaw andw. No- w
:  : : + Me €€ We. e ]VK(€2_63)}1 (116)
tice thatQ itself (as well as the Green functidh) appears to 192€3° %3°1

be non—He~rm|tlan. This means that the “contour” of integra- where we have introduced two vertex matrices in the bosonic
tion in theQ space is deformed from being pure Hermitian toKeldysh space:

pass through the non-Hermitian saddle point. As will be ap-

parent later, the physical meaningwfis a deviation of the 0 1
fermionic distribution functionF, from its stationary value. MY =( 1 )

At the same timew has no classical interpretation. To a

large extent it plays the role of the quantum counterpavt,of _

which appears only as the internal line in the diagrams. M‘glfzes
One may expand now the actipBgs.(52)] in powers of

w andw. The expansion of the noninteracting actit®y[ Q] _( 2F,—F¢—F 1+FFe=2FFq )

€3
starts from the second order, which has a familiar diffusive _1-F.F. +2F.F. F.+F.-2F.F.F
structure €1 €3 € € e e el 6 €

(117
iSEPTWI= 2w,

We, o[~ DVZ+i(e1— €)W, - (M¥)**=0 is a manifestation of the normalization condition
(113 Z=1. Indeed, this matrix element connects only the classical

~ . _ components ofV andK fields, which alone cannot change
As a result the bare propagator of tQematrix fluctuations  the normalization. Being averaged over fluctuationsVét

is given by with the action Eq(109), iSSH[W, VK] gives
— 2 55 € 66 € ic(l) — e _ K
<w6251(q>w6354(—q>>w=—;$ (ISEIW, VK)o =27W{(F o1, = F) D ()
aritare ~(1=F  F O[DR(w) ~ DA(w)]}.
26¢,e,0¢,¢, (118

=————""DN0q,e;—€y).
av . . .
There is no term proportional to the classic componentn

(114 equilibrium the right-hand side of Eq118 is obviously
The higher-order terms describe nonlinear interactions of difZ€r0- Out of equilibrium, it is this term which is responsible
fusons with the vertices having the structure of Hikamifor the standard collision integral; see Sec. VI. As we shall

: : 4 ot
boxes. One can easily work out this expansion in theee in Sec. V B, fluctuations described i85”[ W, VK] are

Keldysh formalism. We shall not do it here, since our mainresponsible for the Altshuler-Aronov corrections to conduc-
tivity. For completeness we write also the second order ex-

focus is on the interaction effects. SubstitutingQ pansion ofiS,[W,VK]

=[A,W]/2 intoiSl[b,VK], one obtains, in the first order in

W, iSPIW,VK]=ivD{Vk;(€;— €;)
iy — —
IS{UIW, VK=~ —-TH[DVZK,(AyA ~ %) K(VWeyeWese, ™ Wepe; VWese,)
+ ( ¢a+ | wka)( ,yaA _A,ya)]w} + VkZ( €1~ 62)[ - FEZVW5253 €36
(119 -w_ _Vw, . F.+B._.V
2¢3 31 1 1 2

In equilibriumiS{Y[W,VK]=0. Indeed, the right-hand side S —
of Eq. (115 coincides with Eq.(37), which was used to X(szfs fsfl_szfstsfl)]}' (119
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FIG. 3. Lowest order self-energy diagram {0fKVKT) propa-
gator. The zigzag lines represent the b&V VKT) propagators,
the parallel solid lines denote t{&/W) propagator, and the open

circles with two zigzag and two straight lines emanating from them

represent th& KTWVK vertices.

B. Altshuler-Aronov corrections

INTERACTIONS IN . .. 2231

FIG. 4. Lowest order diagrams for the interaction correction to
conductivity. Their sum is equivalent to the diagram in Fig. 3 in the
present formalism.

In the low frequency limit this reduces to the familiar
expressioff

Restricting oneself to the lowest nonvanishing terms in

the expansion oveW [Egs. (113 and(116)], one obtains a
Gaussian theory with respect to thg fluctuations. After
integrating out these fluctuations employing Etj14), one

ends up with the action for th€K field only:

iISIVK]=—ivD T{VKT (1D X (r—r",0)VK,(r')}
Y VKo e(D)}

(r")

—2mvD?Tr{VK

€

(1M

—€

€

XDA(r =1’ €3~ €1) THVK L,

—€

w !
XM VK, o (1 )} (120
This way the ¥K)* effective vertex is generated. Perturba-
tively the (VK)# interaction term may be treated by pairing
two fields, sayVK(VKVKT)VK. This results in a renor-
malization of the bare correlatoR ~1. Only pairing of VK

fields in different spatial points leads to nonvanishing correc-

tions; see Fig. 3. There are four different ways one can pa
(VK4(r)Vkg(r')). Taking into account all these four possi-
bilities and integrating over an intermediate energy one o
tains a correction, e.g., for the retarded component of th
((VKVKT)) ™! correlator:

4

[6Dq,0)]R=~ -

> {DR(g+q’ 20+ e’)

9’0’
X[D(q",w+ ') ]R-DR(q+q", 0+ ")
X[D(q",0")]Re'B,, (121

whereB,, is defined by[Eq. (58)]; d is the dimensionality.

Obviously, the correction preserves the retarded character of
the corresponding component. In equilibrium, the correction

b

ot
(DYP—iw)?’
(124

>

q

So=i

20’d o d J w
mdv) _w e wCOch_T

whereoy=evD.

Note that this expression is given by the sum of diagrams
drawn in Fig. 4. The other diagrams which are presented in
Fig. 5 add up to zero. They represent the purely phase cor-
rection to the single-particle Green function and therefore do
not enter the expression for the conductivity. In the present
formalism these diagrams do not appear at all.

In two dimensions expressidii24) leads to the logarith-
mically divergentnegativecorrection to the conductivityor
conductance’

So, 69 €

02

g

777 InT 7!,

(125

ir
é(vhere the elastic mean free tim# enters as an upper cutoff
in the integral over frequency.

To handle this divergence one may try to set up a self-
consistent mean-field treatment of th€K)* nonlinearity.
To this end let us putVKVKT) propagator on Fig. 3 to be a
dressed oneD, whereD =D 1+ 5D L. Then Eq.(121)
may be rewritten as a closed nonlinear equation for, e.g., the
retarded component of the propagafd?(q, ) ]~;

AR S

to the Keldysh component obeys the fluctuation-dissipation

relation
[6D ¥ =cothy—{[sD 1*-[6D 1Y) (122

Employing Eqgs.(91) and (107), for the correction to the
g=0 conductivity one obtains

4e’D
dw

So(w)=—i > DR, w+w)[D(,0)R

! ’
q

X{(w'"—w)B, _,~w'B,}. (123

FIG. 5. Diagrams for the interaction corrections to conductivity
which add up to zero. These diagrams never appear in our formal-
ism.
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4 -
De’—iw— o 2 DR(a+q’ 0+ )[D(Q o) (o'~ )B,
quw!

—w'B,/]|[D(q,w)]R=1. (126

The frequency-dependent conductivity is then given by out any external field¢and/or nontrivial boundary condi-

— tions) such an extremaD is simply given byA [Eqg. (27)],
o(w)=e2vD ([D(q=0.w)]®)~ (127 with the equilibriumF function[Eq. (26)]. If external fields
—ilw (and/or nontrivial boundary conditionare present, the sta-

One may easily check that in the one-loop apprommaﬂont'OnaryQ may deviate fromA, still being on the massless
there are no other corrections to the conductivity. Indeedmanifold Q?=1. The stationary point is to be found by solv-
possible corrections like ((iSP[W,VK])?)w=0 and ing Eq. (129, which turns out to be precisely the kinetic
(iSIW,VK])w=0 vanish, since they include the energy equation with the collision integral term.
integration of purely retarded or advanced functions. Being Before proceeding along these lines, let us comment on
expanded to higher orders W, these terms yield weak- the relation between the phakg introduced in Sec. Il A

localization corrections. and the Hubbard-Stratonovich fieda. The procedure of Sec.
Il A was based on the property of the equilibrium distribu-
VI. KINETIC EQUATION tion described by Eq40). We need to generalize it for non-

equilibrium situations. To this end we note that the equation
The aim of this section is to demonstrate how the kineticfor the quantum componek(r,t) [Eq. (38)] does not con-
equation for the distribution functioR appears naturally in tain a distribution function and remains valid for a nonequi-
the framework of the Keldysh formulation. The kinetic equa-librium case. The equation for the classical component
tion is nothing but the saddle-point equation for the effectivek,(r,t) [Eq. (39)] cannot be satisfied identically out of equi-

action on theQ matrix“2 In the case of interacting electrons lirium. Thus the choice ok,(r,t) allows for a certain arbi-
it is obtained by integrating out thié (or equivalentlyd)  trariness. However, as we shall see below, this arbitrariness

degrees of freedom. Consider the partition functidy. does notaffect the form of the kineti¢saddle-point equa-

. . ~ . tion. It would manifest itself in a calculation of fluctuation
(21?]’ W;thh (tl?e. ?Ctlor:.S(Qf'.(Dz 'gAlven by 'Ithf.(4?)h. Let us corrections(cf. Sec. VJ to the nonequilibrium saddle point
pertorm the integration Nrst. AS a result for the average oq 1t we shall not attempt this task here. For our purposes
partition function we obtain

it is sufficient to keep the definition df(r,t) given by Eq.
B (41) [or Eq.(93) if external fields are presentThe equilib-
(z):f DQ e'Ser Q| (1283  rium bosonic distribution function used in the definition of
the Keldysh component of the propagatd(q,w) [Eq.
(43b)] does not show up in the kinetic equation.
iSer{Q]=1In f Db & THEV, lr1 @} +iSIQ0] (108} Employing Eq.(1280, we rewrite the saddle-point equa-
tion (129 as

Since the actiorS(é,tb) [Eq. (48)] is quadratic ind (given 58[(3 D]

the linear relation betweeK and ®) the integration in the ———) =0, (130

last expression can be carried out explicitly. We find it more 6Q ®

convenient, however, to proceed with expres<ib®8h. To

obtain a nontrivial kinetic theory one may assume the preshere

ence of classical external fields, like, e.g., scalar or vector B

potentials. These fields can be introduced in the action Eq. J DP e THO Vg toy @} +is[Qe]

(48) the way it was done in Sec. IV C. (- Vo= (131)

We shall now look for the saddle-point equation Qr f Db ¢ Tr{tIJTvalalcb}-%—iS[é,(b]
%LL[Q]:Q (129 Here Q is a self-consistent saddle-point solution of Eq.
6Q (130. Performlng variation of the actloﬁ(Q ®) given by
~ 2_

obtained under the conditio®=1. Let us reiterate the E9-(48) under the conditiol@?=1, one obtains

logic of the entire procedure. After averaging over disorder - o~ ) R

and introducing th&) matrix, we found that the low-energy (DI(QaQ) +i[(e+(¢otiwks) ), QDe=0,

degrees of freedom are described by @matrices given by (132

Eq. (31) with Q%=1. We then restrict ourselves to this mass- whereQ2 1. This equation is analogous to the kinetic equa-
less manifold and look for a realization @‘whlch extrem- tion in the semiclassical theory of disordered
izes the effective action. The latter is obtained by integratingsuperconductors**We have derived it here for the case of
out the photon fields originating froere interactions. With-  a normal interacting metal.
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We shall seek the solution of EG132) in the classical DV (QV Q)+|[e Q] D([Vk y“QVk v Q])cp
~ r a
form, e.g., obeying the conditio®,;=0. A nonzero quan- prs (134
tum component at the saddle point would violate causality.

Providedézlzo and 62:1 are satisfied, the saddle-point The right-hand side of this equation contains the collision

solution assumes the form integral term along with the collisionless renormalization of
the kinetic part. To evaluate it, one needs to know the propa-
~ 128(e—€')  2F (1) gator (VK,(r,t)Vkg(r',t'))e at r=r’, averaged over the
95,5'2 0 —1A5(e—€"))’ (133 nonequilibrium actioEq. (131)]. To follow the same nota-

tions as for the equilibrium case, we shall denote this propa-
whereF ./(r) is a nonstationary distribution function. As- gator as
suming that the saddle point has the form given by(&g§3),
one can easily check that the exponent in dheveraging, :
[Eqg. (131)] does not contain linear terms &b (or VK). (VKy(r,t)VKg(r',t") >¢=—2—D“,(r r'y. (135
Indeed, the terms proportional t6k; vanish identically,
which is a manifestation of the normalization conditi@n _
=1. From another hand, terms proportionalt&, are re- The form of the saddle poir® given by Eq.(133) guaran-
duced to the full gradienthe fact that there is no ambiguity tees thafD, » has the standard retarded/advanced structure of
in the choice ofk, is important herg and thus also vanish a Keldysh propagator. Employing E@8), one finds that the
upon the spatial integration. As a result the terms lineab in only nonzero matrix component of EGL34) is its Keldysh
(or VK) in the saddle-point equatiqii32) do not survive the (1,2) component. The corresponding equation for the distri-
@ integration. Therefore, Eq132 may be reduced to bution functionF, ,(r) takes the form

i
DVth’t,—(&t—i—at/)Ft,t/:; FM/(DH, [D“+Dt, o] +(fotl—D{*lqt,)(ét,tlﬁtl,t/—leFtl,t,) . (139
Here allF functions and propagatof3 are to be taken at the same spatial point; integration gvisrassumed in the last term
on the right-hand side. Note that the left-hand side of this equation is a linear diffusion operator actng (@). The

subsequent calculations are significantly simplified by passing to the Wigner representation,

t+t’
T T .

(137)

Fe(r,r)=f fdtdt'Ft,t,(r)eif“—”&

Furthermore we shall assume thafr, 7) is a slow function ofr on the scale 17 (or any other inverse characteristic scale of
energy,e). With this assumption Eq136) may be rewritten as

DVEF (1) = ,F (1) =0, RA1)IF 1)+ R{7)0,F ()
=';2 {DUNIF - o N =FD]+[DE(1) = DYNIL—F o DF D]}, (138

where

RAr 7= o 2 DR(r,r, 1)+ DA, 1, 1) F _ (1, 7). (139

w

The right-hand side of Eq138) represents the collision integral, cf. EG18). If the equilibrium relatiorf Eq. (43b)] between
Keldysh and retarded and advanced component2 bblds, then the equilibrium distribution functi¢iqg. (26)] nullifies the
collision integral. Therefore, Eq138) is satisfied in the thermal equilibrium. This, in fact, provides justification for our
previous use of\ with the equilibriumF function as the saddle point. Indeed, without interacti@msl hence without collision
integra) any stationary functiofr , satisfies the saddle-point equation. It is the relaxation processes dieeiteractions that
render the equilibrium solution unique. The terms which contain real part of the self-efler@yy), lead to a collisionless
renormalization of the kinetic part; see Sec. VI B.

To proceed further we need an explicit form of the nonequilibrium propadajdr,r,7). We shall evaluate it in the

universal limit of strong interaction¥,, 1_,0. Substituting the saddle- po@ given by Eq.(133) into the actlorS[Q d] [Eq.
(48], and performing the Gaussian integration, one filsEq. (56)]

-1
DF(r 1, 7)= B+5w E THY* Qer o1 7)Y Qe a1 ) = ¥ ¥} . (140
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The term Witth2 originates from the term® +iwK|204 in Eq. (48). (It is easy to check that the ambiguity in the choice of
k;, mentioned above, disappears upon the calculation of this term by the symmetry r&desoiocal in space term in Eq.

(140 originates fromD Tr(aré)z. Assuming that any distortion of the equilibrium distribution is limited to a vicinity of the
Fermi energy, e.gF ., +.(r,7)—*1, one finds

0 ~-DVi+iws, . | *
Dw(r,r’,r)= 2 . . (141)
—DVi—iwéd; ;» —2iwd; 1B,(r,7)
By definition, the nonequilibrium bosonic distribution function is given[bf Eq. (58)]
l £
1,7~ 5o | A1 Fo ol Pl 7)]. (142

According to Eq.(141) the retarded and advanced component®afre not modified with respect to their equilibrium value
[Eq. (43a)]. As a result, DX (r.r’,/)=D¥™(r—r’) even in a nonequilibrium situation. Inverting the operator on the
right-hand side of Eq(141), for the Keldysh component at coinciding spatial points one finds

Dg(r,r,7)=2iwf d' [ DR(r—r")B,(r',7)D(r' —1)

1 R A R A
+ E[Dw(r—r’)aTBw(r’,r)ﬁwa(r’—r)—awa(r—r’)aTBw(r’,r)Dw(r’—r)] . (143

From now on we shall retain only the first term in this expression, which is dominant due to the assumed slowness of the
temporal variations of (7). If in addition B, (r,7) changes slowly on the spatial scdle =+D/w, where o~T, the
expression for the Keldysh component acquires the quasiequilibrium form

Dﬁ(r,r,r>=8w<r,7>§ [DR(q)-D%(q)]. (144

One can calculate gradient corrections to this expression, which lead to a nonlocal collision integral. Usually such corrections
may be safely neglected. Finally in this hydrodynamic regime, the kinetic equation takes the form

DVZF (1) —[1- 3R 7)]3.F 1)~ 3, R7)dF 1)

2
=-3 {;Im% DR(Q) [{Bu(NF e o7 ~Fd D] +[1-Fo o (DFLD]h (149

with
1
R(17)=7 2 [REDYQIF o1, (14
andDR(q)=(Dg?—iw) .

A. Collision integral and relaxation time

Using the conventional fermion distribution functiag(r, ) = (1—F /(r,7))/2, one can rewrite the collision integral in the
usual form with “out” and “in” relaxation terms. Indeed, employing Eq&7) and (58), one identically rewrites the
right-hand side of Eq(145) as

41m2, DR(q)
q

f j“ dowde’ L ) . . y

_ o ” [nng_ (1=-n)(1-n_,)—n.n_,(1-n)(1-n._,)]. (147)
|

This is precisely the collision term derived by Altshdfer F(r,7)=F9—w(r,7)/2, (148

and Altshuler and ArondV two decades ago. One can lin-
earize this expression around the equilibrium distribution byand keeping linear terms w_(r,7). This way one derives
the substitution the familiar results for the relaxation rat®s'’28\We shall
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not repeat this procedure here. Instead we shall demonstrate
how these quantities may be extracted directly from the ef-
fective action. To this end we note that the kinetic equation
(138 may be written as (2v) 16iSqs/dw (r,7)=0. (As
usual, an observable is generated by differentiation with re-

spect to a quantum componeénthus the linearized version 2) b)
of_ the kinetic equation is just —(m7v) 6% Sess/
Swéw|g— . According to Eqs(128b and (131),

52iseff_<52i5[6,q>]> +<5i5[6,c1>] 5i5[6,q>]>

SW W swow [ oW ow [ o)

O S[é,cb] S S[é,cb] FIG. 6. Diagrammatic representation of the Gaussian part of the
- W SW ) (149 effective actionS.¢; [Eq. (128bD]. (a) and(b) represent “out” and
a ®

“in” relaxation terms correspondingly; they originate from the first

o o ~ term in Eq.(149), (iS,)vk . The nonlocal terric) arises from the
where all the variational derivatives are calculate®atQ  second term in Eq149), (iS,iS;) v -

=A. The last term in this expression vanishes identically,
sinceA is obviously a solution of the kinetic equati¢h30).

. =8 - 1 2 R 0 €E—w
The first term originates from the expansion of —= 2 —imD(q) coth2—+tanh— .

. . . — TOUt(G’T) 20| 14 @ T 2T
(iS[W,VK])vk [Eq. (520] to the leading order imv andw. (151)
After a little algebra one obtair{there are no terms witww ) _ ) ) -
in equilibrium) At T=0 in two dimensions this leads to the familiar re&lt

(ISPIW,VK]pox = (. W, ) _t (152
2 ’ VK 2 €E,-wE_—w €, ,€_ Tg:tz(e) 4’7Tg,
X[Dg(BY+FEI_,) whereg=vD. Expanding the right-hand side of E4.50) in
Aoy ceq a small(}, one can also recover the collisionless terms on the
~Dy(BotF )W e, left-hand side of Eq(145).
(150 Finally we concentrate on the second term on the right-

hand side of Eq(149. This term corresponds to the varia-
wheree. = e* /2. Equivalently this expression can be ob- tion of Df’t, in Eq. (136) over a deviation from its equilib-
tained by variation of th& (r, 7) functions in Eq(136). The  rium value [or, equivalently, variation oB_(r,7) in Eq.
terms with va,e, and Wﬂ_wi_w represent “out” and (145)]. Its condensed diagrammatic representation is de-
“in” relaxation processes, respectively. Their condensedPicted on Fig. &). As has already been mentioned above,
diagrammatic representation is given in Figé)@nd &b). this term is generally §pat|a!ly n_onlocal. We take only its
The full set of corresponding original diagrams may pelocal p?rt erre. Technllcally it originates frgmla. co!ﬁnected
found, e.g., in Ref. 48. Restricting ourselves to the diagonaPart of 3(SS[W, VKISV W, VK]) v, whereiS{V is given
fluctuations Q=0 only, for the “out” relaxation rate we by Eq.(116). Performing averaging oveVK and omitting
obtain cumbersomavw terms, one obtains

N

. . 7T — w
(isPisy==7 2 We o THIME, ,+ (ML) TDur0nME o ye) DomontWer o
e’ wQq
= 71-2V_vE+ e [(2F28 —F29— Fif)(F29+w+ Fol ) Do Dh+ arWe €l (153

For (=0 this expression coincides with the variation of hand, §%iS,¢/6wsw+0 originates solely from the second
B.(r,7) overw in Eq. (145). Expanding to first order i),  term on the right-hand side of EL49); cf. Fig. 6c).
one obtains the correction terms written in Ef43. Equa-

tions (149, (150, and(153) along with Eqg.(113), complete N

calculations 0f8%iSgs1/ SWéw on the mean-field level. Let B. Collisionless terms

us note for completeness théftiS.¢/ Swéw=0, which is a Finally we briefly discuss the physics of the collisionless
manifestation of the normalization condition. On the otherterms. Collisionless terms originate from the real part of the
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self-energy;R.(r,t), and thus already appear in the first or- be the kinetic equation which determines this function. No
der in the bare interactioffunlike the collision integral, such object is apparent in the replicated Matsubara
which arises only in the second orgieFor the screened Cou- formulation!®** since by construction it is limited to the
lomb interaction, from Eq(146) one obtains equilibrium case. Based on the analogy with spin glases,
one may speculate that nontrivial solutioRg, (r) of the
saddle-point equation are analogous to the replica symmetry-
_ ot Dq broken solutions of the saddle-point equation in the replica
Rdr.7)= f,xEFE’“‘(r’T)f (d q); (Dg?)2+ w2 formulation. We mainly focused our attention on a careful
(154) analysis of the saddle equations of the theory. In particular
we suggested the following two-step procedure.

(i) In the first step we account for the purely phase effects
of the fluctuating electric fields on the single-particle Green
function by an appropriately chosen gauge transformation.
In(7*|w|)F _ ,(r,7), This enables us to get rid of temporal variations of the Green

(155 function which are not related to the quasiparticle dynamics.
The remaining temporal fluctuations of the Green functions
where we have used the superscript for the elastic mean frege associated with the particle dynamics, and can be de-
time, 7!, to avoid confusion with a physical time If one  scribed in terms of the quasiparticle distribution function
linearizes the kinetic equatiof145) around the equilibrium F.v(r). This formulation ensures an explicit gauge invari-
distribution, its left-hand side acquires the form ance of the kinetic equation, and preserves the continuity
relations at every stage. As a by-product of this procedure,
we were able to obtain a nonperturbative expression for the
J9.F () D.OS.—the case where the phase effects gi\_/e the main con-
tribution. Such phase effects do not contribute to gauge-
invariant observables, which are represented diagrammati-
IF [ de el / cally by closed loops. In the usual diagram technique this
47qg f ﬁln(T |e=€'DaFa(n). (156 corresponds to a cancellation between certain diagi#mes
i L . diagrams containing double logarithms in two dimensjons
We focus first on the logarithmic renormalization of the co-g, eyplicitly accounting for the phase effects we get rid of
efficient in front of 7,F. This coefficient corresponds to the {nese  diagrams, which significantly reduces the number of
chargeZ in Finkel'stein’s terminology-3 Equation(156) then terms in each order of perturbative expansion.

describes the renormalization @f(with the correct coeffi- (i) After the phase effects have been taken into account
cieny. We stress, however, that in our theory renormalization . . ~ o '
e obtain a theory formulated in terms of tQematrix field.

of Z takes place at the level of the saddle-point equation fol’Y X ; ,
the effective action, and not as a result of the fluctuation’ N€ atter describes quantum fluctuations of the electron dis-
corrections. This distinguishe® from the conductance tribution function in the close vicinity of the Fermi energy.

whose renormalization occurs only at the level of the’one_Restricting ourselves to the manifold of the massless fluctua-

loop correction; see Sec. VB and E(L25. Physically tions given byQ®=1, we obtain the effective-model ac-
renormalization ofZ originates from the suppression of the tjgn Seff[é]v [Eq. (128b]. Searching then for the extremum
single-particle DOS by the residual short-range interactionsef this action, we arrive at the kinetic equation of the distri-
This effect is due to the fact that single-particle Hartree-Fockyytion function. After this two-step saddle-point procedure
energies are shifted by the interactions in a way to reduce thgne should consider quantum fluctuation effects. The
DOS near the Fermi energy. We consider it very satisfactoryjtshuler-Aronov correctiorf§ to the conductanceg, turn
that such a purely mean-field effect is taken into account by,yt to be a manifestation of the one-loop quantum fluctua-
the saddle-point equation and not by fluctuation correctionsijgns.

The important point, however, is to keep the last term of the  Although we have obtained renormalization of both pa-
expressior(156) as well. This is to say that only the “out”-  rametersg and Z [Egs. (125 and (156)] we deliberately
minus-“in” combination has the physical meaning. Being ayoided putting it in the framework of the renormalization
considered together, as an integral operator acting-on  group. The point is that after introducing the phase transfor-

2

]

In two dimensions this leads to the logarithmic expression

_ 1 /7! dw
RWD="%0g) yeizm

In(7*'max{T,|e|})
47729

DVZF(7)—| 1+

these terms do not lead to divergent corrections. mation and integrating out the photon fields, the effective
action onQ [Eqg. (128b] obtains a complicated form. We
VII. DISCUSSION cannot prove that this entire form is reproducible after the

We have developed a field theory for interacting disor-fast mode eIimination_. A_seemingly beftter pos_sibility is to
dered metals using the Keldysh dynamic formulation. Thdaerfoim the renormalization of the action, which contains
advantages of this technique are twofold: one avoids in- both Q and VK fields [Eq. (48)]. In this case one has to
troduction of the replica trick, andi) one naturally gains the specify how the relation betwedtand® fields changes in
ability to deal with nonequilibrium situations. The latter the process of renormalization. Since we believe that the
manifests itself in the presence of the nontrivial objectintroduction of the phase, is a vital element of the theory,
Fi¢/(r), which plays the role of the fermionic distribution the more complicated form of the actignompared to the
function. The saddle-point equation of the theory turns out tmne of Finkel'stein is justifiable.
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