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Approximate density matrices for spherical metal clusters
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On the sole basis of the knowledge of the expectation values of several physical observables, an inferred
density matrix for spherical alkali-metal clusters is obtained. No explicit knowledge of any Hamiltonian model
is assumed. A combination of information theory with the pseudoinverse variational formalism is employed,
and densities for spherical Na clusters are obtaifi®d163-1829)09127-4

[. INTRODUCTION tonian, yields a model-independent density matrix from the
sole knowledge of the expectation valugsV) of a few
During the last years, several theoretical models havehysical observables. These EV will be extracted from the
been applied in order to understand both static and dynamigPJM and jellium models. It will be seen that the IT ap-
properties of alkali-metal clusters measured in the pioneeringroach is able to closely reproduce each of the model's den-
experiments of Knighet al? For small clusters &b initio” ~ Sity matrices. o _
calculations are availabfewhile in the case of large ones  For the purpose of building up our model-independent
approaches based on the energy density-functional formafl€nsity matrix, we have useld physical observables af
ism (EDF) have provided a reasonable description of sometnd k spaces and we have mfer_red_,lzywth the help of the
experimental physical observabfss. pseudoinverse variational formalisi,*2 the ground-state

The simplest model based on the EDF assumes that tH€NSity matrix in a space of dimensidh (M<N). In this
main properties of these alkali-metal clusters can be deProcess the unknown observables that we need for the com-

scribed by the quantized motion of the valence electrons in Rl€te determination of the density matrix are considered as
mean field generated b§j) their mutual interaction as de- vanatpnal parameters. The formlallsm'ls appln_ad to Na clus-
scribed by the EDF andi) the attraction of a positive ionic ter_s with closed shells, using as input !nformatlon the_expec-
background, modeled as a uniformly charged “jellium” tation values of some operators obtained with the different
sphergJM). In such a scenario, the theoretical plasmon resomOdels_ one wishes to compare. The paper is organized as
nance has a blueshift with respect to the experimentdPllows: In Sec. II, we provide a brief reminder of the EDF
values®’ within both the jellium and the pseudojellium strictures. The
Recently, more elaborated models have been app"e@_seudoinverse formalism is presented in Sec. lll. Results are
Reference is to be made, for instance, to the pseudopotentigfesented in Sec. IV, and some conclusions are drawn in Sec.
jellium model (PPJM that accounts for the ionic structure. v
Here the electron-ion interaction is given by the Bachelet,
Hamann, and Schier realistic nonlocal pseudopotenﬁal. Il. EDF FORMALISM
This model is able to greatly diminish previous discrepancies .
between theory and experiment, for optical spectra and po- N the EDF formalism we assume that the total enegy
larizabilities, that plagued the conventional jellium model. of a cluster withN valence electrons is given by
One would like to be in a position to infer a wave function
for our systems from available. experimental in.fo.r_mation. It E=Ein+ Exct Eost Eqis (1)
is our goal here that of exploring such a possibility by ad-
vancing a Hamiltonian-independent information thed)-  where E,;, is the kinetic energy of a noninteracting elec-
based way of obtaining an approximate density matrix fortrons, while E,., E.s, and E,; refer to the exchange-

clusters. correlation, the electrostatic, and the electron-ion parts of the
As an application, we will show that it is clearly able to total energy, respectively.
discriminate between the PPJM approach and the jellium The electrostatic repulsion direct term is
model for describing metal clusters. More precisely, we shall
in the present effort examine, for the case of spherical alkali- ,
ot - - i 1 p(N)p(r')
metal clusters, the predictions of our information theory Ees== [ drdr'———, 2)
based approach that, without explicit use of any Hamil- 2 [r—r’|
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wherep(r) is the diagonal density of valence electrons. The RMSRN, )
exchange-correlation term is taken in the local-density ap- . . .
proximation(LDA) with the parametrization of Ref. 13. The In these spaces, the density matrix can be viewed as an

electron-ion term in the JM becomes N2-dimensional vectof e R and the input information as
an M-dimensional onel e R ™.
Eei:J drp(r)v; 3) Notice that if the density matrix were to be known, those
! expectation values that comprise our data would arise from a

wherev; is the potential produced by an uniformly charged mapping inverse to the one above
sphere. N M 8
In the case of the PPJM the electron-ion energy is RTSRY ®
effected by a rank deficient operat@ that maps vectors

Eei= 2 j dr¢i*(r)vps¢i(r), (4) from R+ into vectors belonging t® ™. This operatmé is
i(oc represented in our chosen basis byMix N? matrix whose

. ey . elements are, in turn, the matrix elements of the operators
wherev ¢ is an external nonlocal potential &f ions, given <

by the spatial average of the ion electron interaction insidér . i.€., one orders the paifs=1,... N; j=1,... Nin
the jellium spheré,and the sum is over the occupied statesSOMe, for example lexicographic order so as to a255|gn to each
with single particle wave functiogp;(r). pair an appropriate index(i,j), (I=1,...N), and

The minimization of the total energy gives us the Kohn-Writes
Sham model equations that, in the PPJM, adopt the form

Goap=CIAl); r=1,...M; I=1,... N2 (9
1 p(r’) With these notational conventions it is clear that our infor-
_ T y2 )
{ 2V +f d(r)|r_r,| FVxd P ]F Vst 4ilr) mationala priori knowledge can be cast into the form
=€ ¢i(r), (5) d=Gf, (10

whereV, [ p(r)]= 6Ey./Jp(r) . Note thatv s is replaced by ~ which can be viewed as direct linear problem(if one

vj in the jellium ansatz. The self-consistent solution of theyows f, compute theM expectation values that defird.
Kohn-Sham radial equations yields the single-particle wavest the crux of the matter is that we need to solve the asso-
function ¢; and the single-particle eigenenergigs Notice  cjatedinverseproblem, as exemplified by E7). It is shown
that, in the PPJM, nonlocal effects produce an effectivgn Refs. 10—12 that a maximum entropy approéetEP) to
orbital-dependent potential, contrary to what happens in thgye task yields a convenient solution in terms of the Moore-

case of the jellium model, where the mean field is the sam% doinverd torP h i
for all valence electrons. With the single-particle wave func—sgr?tgotisgnprzzlésomve ®peralor-yp, Whose matrix repre-

tions a density matrix is obtained for both models, and, con=
sequently, the expectation values of relevant observables ob-

E —_p__t try—1
tained in the usual fashion [Pupl=Pc=G"(GG") "~ 11
. o where the supraindex above indicates matrix transposition.
d;=(A;)=Trace (pA,). (6)  The MEP approximate density matrix is then given by

These expectation values, computed within the framework of P G”(GG")*la (12)
the PPJM or JM models, will be taken as the input informa- MEP '

tion of our IT-based pseudoinverse variational formalism. which neatly expresses our inferred density matrix in terms

of the input datal and the known matri. For more details
ll. INFORMATION THEORY BASED PSEUDOINVERSE and illustrative applications the reader is referred to Refs.
FORMALISM 10-12.

The central idea of the present formalism is that of infer-
ring, by recourse to information theoretic tools, an approxi- IV. RESULTS

mate (_1ensity matrix. To this end, the perti_nent prior knowl-  The formalism reviewed in the preceding section has been
edge is assumed to be that bf expectation values that gpplied to the inference of ground-state density matrices in
correspond to a set of noncommuting operatégr the case of some spherical metal clusters. It is assumed that
=1,... M). each single-particle wave functiof(r) can be suitably ex-

In order to actually implement this methodold§y*?a  panded in a harmonic oscillator basis
Hilbert space basién principle, arbitrary {|i)} must be ap-
propriately selected. In practical calculations one always
deals with a finite subspace of dimension, for example, Gnim(r) = ,E ChriRan(r)Yim(€2), (13
Consequently, our density matrix is &x N matrix, which n=1
entails thatN?=\/ pieces of information must be inferred where theC,,,, are unknown overlap coefficients to be deter-
out of M pieces of data. The concomitant inference processnined according to the information theoretic tools described
can thus be viewed as a mapping above, and th&,,(r) refer to harmonic oscillatofHO) ra-
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FIG. 1. PPJM ground-state electronic density of; Nétained FIG. 2. Kohn-Sham electronic densities for Nelusters pre-
by recourse to different basis sizes for the same input informatiomlicted by the jellium mode(thin line) and by the pseudopotential
consisting of(r2), (p?), (r%), and(r®). jellium model (thick line). Exact model resultgsolid lines are
compared to those inferred with the present appro@tdshed
dial wave functions. For simplicity, we have chosen the HO'NeS-

radial basis becaug@ it is of an analytical character artil)
it depends only on one parameter that can be obtained fro
the input information(r?).

It is obvious that if the above expansion includes enoug
terms our results will be basis independent. This condition _
can be verified by comparing the results obtained from two Sthermo= — Tracdp In(p)] (19
distinct expansions that differ only in their respective num-is zero.
bers of terms. Thus, in order to study the influence of the As shown in Ref. 12, these facts can be gainfully em-
expansion size in our results we compare in Fig. 1 the PPJMIloyed in a “variational-like” fashion. We select
ground-state electronic density of Nabtained usingi) a  D-independent observables and consider their expectation
basis with five orbitals rf,=5) and (ii) a basis with four values as parameters entering our calculation. The idea is to
orbitals (h,=4). Of course, the input information is the repeatedly apply the pseudoinverse formalism for different
same in both case$or more details see caption of Fig).1 values of these parameters so as to ensure both a positive-
Notice that the result fon,=4 is very close to the one definite p and Siyermo=0. In order to accomplish this goal
correspondingn,=5. For n,=3 (this instance is not de- we define a cost function,
picted the basis is too small and the concomitant results not .
satisfactory. The ensuing practical recipe would be to include
as many expansion terms as needed to ensure that the results 32241 [wil[In(fwi )+ wil, (16)
are quasiindependent of the expansion-size.

In general, in order to infeng single-particle state€l3)  wherew; are the eigenvalues of the density matrix. The cost
by recourse to a basis expansion in term&efn,, orbitals, function J is always positive and corresponds to the pure
n?=(n,ns)? expectation value®f independent observables state when its value is equal tQ, as we have then only one
are required. However, since we are going to be dealing withv;=1 for each single-particle state. This value is also the
real, symmetric density matrices just V=[n(n+1)]/2 be-
come actually necessary. 6

Notice also that our systems are characterized by spheri-
cal symmetry, so that each single-particle state is character-
ized by the angular quantum numbeiThe orthogonality of
the spherical harmonics allows for a further reduction\6f

must be of a positive-definite character. Neither does it
“know” that we are to infer a pure state, whose thermody-
H”namical entropy

Tellium ——
Pseudopotential ———

Zz
as nﬁ[ns(ns— 1)]/2 overlap coefficients will vanish identi- 5
cally. As a consequence, the number of independent observ- &
ables whose expectation values we need turns out to be 27
nb(nb+ 1)
N=ng——F"7. (14 0 - s
2 0 02 04 0.6 0.8
k
Our input information will consist oM <N expectation val- FIG. 3. Kohn-Sham electronic momentum densities per atom for
ues of noncommuting observables. Let us & N—M. Nag, as predicted by the jellium modéhin lines and the pseudo-

In practical computations a caveat of our formalism mustpotential jellium model(thick lines. Exact model resultgsolid
be kept in mind? The IT-method is not provided with the lines are compared to those inferred with the present approach
information that the diagonal elements of the density matrixdashed lines
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FIG. 4. PPJM ground-state electronic density of; Ndtained FIG. 6. Same as Fig. 3 but for the Na

by recourse to different sets of input information for the same basis.

The HO parameter of thR,(r) wave functions is deter-
minimum one it can adopt. Thus, our problem is translatednined, for each shell, from the value 6f?). A truncated
into a minimization problem withD variables. Unfortu- basis of four oscillators,=4 proves to be sufficient for the
nately, this is not a convex problem so that local minimiza-task at handsee Fig. 1 Since for Ng one hasn,=2, our
tion algorithms are not adequate. We have used, instead, theorking variational space is a 10-dimensional one.
method of simulated annealitfgo find a pure state compat- For the Ngg a truncated basis of five oscillatong=5 is
ible with our information. The precision of the result can berequired. In this case, one hag=4, and thus a 36-
improved afterwards by recourse to a local minimizationdimensional variational space. The input information used is
technique, in our case the downhill simplex metfdd. the same as in Eq17) with the addition of(1/r). Our in-

Figures 2 and 3 display, for the case ofgNthe ground- ferred results are compared to the exact ones in Figs. 5 and 6,
state electronic density and the momentum distribution inboth forr andk spaces. The degree of agreement is indeed

ferred from the input information consisting of remarkable.
Notice that from the profiles shown in Figs. 2, 3, 5, and 6,
2 2 4 6
(ro), (P9, ), (r?) (7 it becomes clear that our formalism nitidly discriminates be-

together with the number of particles of each shell. Theséween the two models considered in the present effort. In

expectation values are calculated according to the tenets @gddition, starting from the coefficients of our inferred density

the models we wish to compare. matrix our formalism provides single-particle wave functions
In order to test the influence of the input operators, weof rather good qualitythey closely resemble those of the

depict in Fig. 4 the PPJM ground-state electronic density ofoncomitant modejsfor both EDF models, as illustrated by

Nag obtained from two different sets of “input” operators: Figs.7and8. . . .

the one referred to above and that obtained when we change Notice that our inferred wave functions are obtained with

(r% by (p*. Both densities closely resemble each other. Inthe help of a few data andithout recourse to the Kohn-

the general case, the concomitant results may obviously dé&sham self-consistent procedure.

pend upon the input information, but in practice a working

recipe could be that of choosing low momentsp¢f) and V. CONCLUSIONS

e(k). We can speculate that the most suitable experimental o .

information will be provided by these expectation values ob- We have developed a variational pseudoinverse formal-

tained, as in the nuclear physics case, from elasticatter-  ism that allows us to infer, in a rather satisfactory fashion,

ing and from the momentum distribution of the valence elec-

trons obtained with electron knock-out experimelits. 0.2
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FIG. 7. Kohn-Sham Ng single-particle wave functions ob-

tained with the jellium mode(solid lineg are compared to those
FIG. 5. Same as Fig. 2 but for the Na inferred with the present approaétiashed lines
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mational input to our algorithm, and shown that the model's
density matrix is satisfactorily reproduced.

Our input information is restricted tM expectation val-
ues, corresponding to noncommuting observables. We do not
assume any knowledge concerning the system’s Hamil-
tonian. Our results are, consequently, of a model-
independent character. We have shown, that with the help of
a few data, a quite reliablén the sense that it resembles
closely the model's onecluster wave function can be con-
structed. The corresponding results are of a remarkably good
quality, both forr andk spaces.

We conjecture then that, if similar kinds of information
were experimentally obtained, tlaetual cluster density ma-
trix could be inferred in the same fashion.
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