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Approximate density matrices for spherical metal clusters
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On the sole basis of the knowledge of the expectation values of several physical observables, an inferred
density matrix for spherical alkali-metal clusters is obtained. No explicit knowledge of any Hamiltonian model
is assumed. A combination of information theory with the pseudoinverse variational formalism is employed,
and densities for spherical Na clusters are obtained.@S0163-1829~99!09127-4#
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I. INTRODUCTION

During the last years, several theoretical models h
been applied in order to understand both static and dyna
properties of alkali-metal clusters measured in the pionee
experiments of Knightet al.1,2 For small clusters ‘‘ab initio’’
calculations are available,3 while in the case of large one
approaches based on the energy density-functional form
ism ~EDF! have provided a reasonable description of so
experimental physical observables.4,5

The simplest model based on the EDF assumes tha
main properties of these alkali-metal clusters can be
scribed by the quantized motion of the valence electrons
mean field generated by~i! their mutual interaction as de
scribed by the EDF and~ii ! the attraction of a positive ionic
background, modeled as a uniformly charged ‘‘jellium
sphere~JM!. In such a scenario, the theoretical plasmon re
nance has a blueshift with respect to the experime
values.6,7

Recently, more elaborated models have been app
Reference is to be made, for instance, to the pseudopote
jellium model ~PPJM! that accounts for the ionic structure
Here the electron-ion interaction is given by the Bache
Hamann, and Schlu¨ter realistic nonlocal pseudopotentia8

This model is able to greatly diminish previous discrepanc
between theory and experiment, for optical spectra and
larizabilities, that plagued the conventional jellium model9

One would like to be in a position to infer a wave functio
for our systems from available experimental information
is our goal here that of exploring such a possibility by a
vancing a Hamiltonian-independent information theory~IT!-
based way of obtaining an approximate density matrix
clusters.

As an application, we will show that it is clearly able
discriminate between the PPJM approach and the jell
model for describing metal clusters. More precisely, we sh
in the present effort examine, for the case of spherical alk
metal clusters, the predictions of our information theo
based approach that, without explicit use of any Ham
PRB 600163-1829/99/60~3!/2117~5!/$15.00
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tonian, yields a model-independent density matrix from
sole knowledge of the expectation values~EV! of a few
physical observables. These EV will be extracted from
PPJM and jellium models. It will be seen that the IT a
proach is able to closely reproduce each of the model’s d
sity matrices.

For the purpose of building up our model-independe
density matrix, we have usedM physical observables ofr
and k spaces and we have inferred, with the help of t
pseudoinverse variational formalism,10–12 the ground-state
density matrix in a space of dimensionN (M,N). In this
process the unknown observables that we need for the c
plete determination of the density matrix are considered
variational parameters. The formalism is applied to Na cl
ters with closed shells, using as input information the exp
tation values of some operators obtained with the differ
models one wishes to compare. The paper is organize
follows: In Sec. II, we provide a brief reminder of the ED
within both the jellium and the pseudojellium strictures. T
pseudoinverse formalism is presented in Sec. III. Results
presented in Sec. IV, and some conclusions are drawn in
V.

II. EDF FORMALISM

In the EDF formalism we assume that the total energyE

of a cluster withN̄ valence electrons is given by

E5Ekin1Exc1Ees1Eei , ~1!

where Ekin is the kinetic energy of a noninteracting ele
trons, while Exc , Ees, and Eei refer to the exchange
correlation, the electrostatic, and the electron-ion parts of
total energy, respectively.

The electrostatic repulsion direct term is

Ees5
1

2E drdr 8
r~r !r~r 8!

ur2r 8u
, ~2!
2117 ©1999 The American Physical Society
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wherer(r ) is the diagonal density of valence electrons. T
exchange-correlation term is taken in the local-density
proximation~LDA ! with the parametrization of Ref. 13. Th
electron-ion term in the JM becomes

Eei5E drr~r !v j , ~3!

wherev j is the potential produced by an uniformly charg
sphere.

In the case of the PPJM the electron-ion energy is

Eei5 (
i (occ)

E drf i* ~r !vpsf i~r !, ~4!

wherevps is an external nonlocal potential ofN̄ ions, given
by the spatial average of the ion electron interaction ins
the jellium sphere,9 and the sum is over the occupied sta
with single particle wave functionf i(r ).

The minimization of the total energy gives us the Koh
Sham model equations that, in the PPJM, adopt the form

H 2
1

2
¹21E d~r !

r~r 8!

ur2r 8u
1Vxc@r~r !#1vpsJ f i~r !

5e if i~r !, ~5!

whereVxc@r(r )#5dExc /dr(r ) . Note thatvps is replaced by
v j in the jellium ansatz. The self-consistent solution of t
Kohn-Sham radial equations yields the single-particle w
function f i and the single-particle eigenenergiese i . Notice
that, in the PPJM, nonlocal effects produce an effect
orbital-dependent potential, contrary to what happens in
case of the jellium model, where the mean field is the sa
for all valence electrons. With the single-particle wave fun
tions a density matrix is obtained for both models, and, c
sequently, the expectation values of relevant observables
tained in the usual fashion

dr5^Âr&5Trace ~ r̂Âr !. ~6!

These expectation values, computed within the framewor
the PPJM or JM models, will be taken as the input inform
tion of our IT-based pseudoinverse variational formalism

III. INFORMATION THEORY BASED PSEUDOINVERSE
FORMALISM

The central idea of the present formalism is that of inf
ring, by recourse to information theoretic tools, an appro
mate density matrix. To this end, the pertinent prior know
edge is assumed to be that ofM expectation values tha
correspond to a set of noncommuting operatorsÂr(r
51, . . . ,M ).

In order to actually implement this methodology10–12 a
Hilbert space basis~in principle, arbitrary! $u i &% must be ap-
propriately selected. In practical calculations one alwa
deals with a finite subspace of dimension, for example,N.
Consequently, our density matrix is anN3N matrix, which
entails thatN2[N pieces of information must be inferre
out of M pieces of data. The concomitant inference proc
can thus be viewed as a mapping
e
-

e
s

-

e

e
e
e
-
-
b-

of
-

-
-
-

s

s

RM
˜RN. ~7!

In these spaces, the density matrix can be viewed as

N2-dimensional vectorfWPRN and the input information as

an M-dimensional onedW PRM.
Notice that if the density matrix were to be known, tho

expectation values that comprise our data would arise fro
mapping inverse to the one above

RN˜RM, ~8!

effected by a rank deficient operatorĜ that maps vectors

from RN into vectors belonging toRM. This operatorĜ is
represented in our chosen basis by anM3N2 matrix whose
elements are, in turn, the matrix elements of the opera

Âr , i.e., one orders the pairsi 51, . . . ,N; j 51, . . . ,N in
some, for example lexicographic order so as to assign to e
pair an appropriate indexl ( i , j ), (l 51, . . . ,N2), and
writes

Gr ,l ( i , j )5^ i uÂr u j &; r 51, . . . ,M ; l 51, . . . ,N2. ~9!

With these notational conventions it is clear that our info
mationala priori knowledge can be cast into the form

dW 5GfW , ~10!

which can be viewed as adirect linear problem~if one

knows fW , compute theM expectation values that definedW ).
But the crux of the matter is that we need to solve the as
ciatedinverseproblem, as exemplified by Eq.~7!. It is shown
in Refs. 10–12 that a maximum entropy approach~MEP! to
the task yields a convenient solution in terms of the Moo

Penrose pseudoinverse14 operatorP̂M P , whose matrix repre-
sentation reads

@ P̂M P#[PG5Gtr~GGtr !21, ~11!

where the supraindex above indicates matrix transposit
The MEP approximate density matrix is then given by

fWMEP5Gtr~GGtr !21dW , ~12!

which neatly expresses our inferred density matrix in ter

of the input datadW and the known matrixG. For more details
and illustrative applications the reader is referred to Re
10–12.

IV. RESULTS

The formalism reviewed in the preceding section has b
applied to the inference of ground-state density matrices
the case of some spherical metal clusters. It is assumed
each single-particle wave functionf(r ) can be suitably ex-
panded in a harmonic oscillator basis

fnlm~r !5 (
n851

K

Cn8 lRn8 l~r !Ylm~V!, ~13!

where theCn8 l are unknown overlap coefficients to be dete
mined according to the information theoretic tools describ
above, and theRn8 l(r ) refer to harmonic oscillator~HO! ra-
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dial wave functions. For simplicity, we have chosen the H
radial basis because~i! it is of an analytical character and~ii !
it depends only on one parameter that can be obtained f
the input information̂ r 2&.

It is obvious that if the above expansion includes enou
terms our results will be basis independent. This condit
can be verified by comparing the results obtained from t
distinct expansions that differ only in their respective nu
bers of terms. Thus, in order to study the influence of
expansion size in our results we compare in Fig. 1 the PP
ground-state electronic density of Na8 obtained using~i! a
basis with five orbitals (nb55) and ~ii ! a basis with four
orbitals (nb54). Of course, the input information is th
same in both cases~for more details see caption of Fig. 1!.
Notice that the result fornb54 is very close to the one
correspondingnb55. For nb53 ~this instance is not de
picted! the basis is too small and the concomitant results
satisfactory. The ensuing practical recipe would be to inclu
as many expansion terms as needed to ensure that the r
are quasiindependent of the expansion-size.

In general, in order to inferns single-particle states~13!
by recourse to a basis expansion in terms ofK5nb orbitals,
n25(nbns)

2 expectation values~of independent observables!
are required. However, since we are going to be dealing w
real, symmetric density matricesr, justN5@n(n11)#/2 be-
come actually necessary.

Notice also that our systems are characterized by sph
cal symmetry, so that each single-particle state is charac
ized by the angular quantum numberl. The orthogonality of
the spherical harmonics allows for a further reduction ofN,
as nb

2@ns(ns21)#/2 overlap coefficients will vanish identi
cally. As a consequence, the number of independent obs
ables whose expectation values we need turns out to be

N5ns

nb~nb11!

2
. ~14!

Our input information will consist ofM,N expectation val-
ues of noncommuting observables. Let us callD5N2M .

In practical computations a caveat of our formalism m
be kept in mind.12 The IT-method is not provided with th
information that the diagonal elements of the density ma

FIG. 1. PPJM ground-state electronic density of Na8 obtained
by recourse to different basis sizes for the same input informa
consisting of̂ r 2&, ^p2&, ^r 4&, and^r 6&.
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r must be of a positive-definite character. Neither does
‘‘know’’ that we are to infer a pure state, whose thermod
namical entropy

Sthermo52Trace@r ln~r!# ~15!

is zero.
As shown in Ref. 12, these facts can be gainfully e

ployed in a ‘‘variational-like’’ fashion. We selec
D-independent observables and consider their expecta
values as parameters entering our calculation. The idea
repeatedly apply the pseudoinverse formalism for differ
values of these parameters so as to ensure both a pos
definite r and Sthermo50. In order to accomplish this goa
we define a cost function,

J5(
i 51

n

uwi uu ln~ uwi u!u1uwi u, ~16!

wherewi are the eigenvalues of the density matrix. The c
function J is always positive and corresponds to the pu
state when its value is equal tons , as we have then only on
wi51 for each single-particle state. This value is also

FIG. 2. Kohn-Sham electronic densities for Na8 clusters pre-
dicted by the jellium model~thin line! and by the pseudopotentia
jellium model ~thick line!. Exact model results~solid lines! are
compared to those inferred with the present approach~dashed
lines!.

FIG. 3. Kohn-Sham electronic momentum densities per atom
Na8, as predicted by the jellium model~thin lines! and the pseudo-
potential jellium model~thick lines!. Exact model results~solid
lines! are compared to those inferred with the present appro
~dashed lines!.
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minimum one it can adopt. Thus, our problem is transla
into a minimization problem withD variables. Unfortu-
nately, this is not a convex problem so that local minimiz
tion algorithms are not adequate. We have used, instead
method of simulated annealing15 to find a pure state compa
ible with our information. The precision of the result can
improved afterwards by recourse to a local minimizati
technique, in our case the downhill simplex method.16

Figures 2 and 3 display, for the case of Na8, the ground-
state electronic density and the momentum distribution
ferred from the input information consisting of

^r 2&, ^p2&, ^r 4&, ^r 6& ~17!

together with the number of particles of each shell. Th
expectation values are calculated according to the tene
the models we wish to compare.

In order to test the influence of the input operators,
depict in Fig. 4 the PPJM ground-state electronic density
Na8 obtained from two different sets of ‘‘input’’ operators
the one referred to above and that obtained when we cha
^r 4& by ^p4&. Both densities closely resemble each other.
the general case, the concomitant results may obviously
pend upon the input information, but in practice a worki
recipe could be that of choosing low moments ofr(r ) and
e(k). We can speculate that the most suitable experime
information will be provided by these expectation values o
tained, as in the nuclear physics case, from elastice scatter-
ing and from the momentum distribution of the valence el
trons obtained with electron knock-out experiments.17

FIG. 5. Same as Fig. 2 but for the Na20.

FIG. 4. PPJM ground-state electronic density of Na8 obtained
by recourse to different sets of input information for the same ba
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The HO parameter of theRnl(r ) wave functions is deter-
mined, for each shell, from the value of^r 2&. A truncated
basis of four oscillatorsnb54 proves to be sufficient for the
task at hand~see Fig. 1!. Since for Na8 one hasns52, our
working variational space is a 10-dimensional one.

For the Na20 a truncated basis of five oscillatorsnb55 is
required. In this case, one hasns54, and thus a 36-
dimensional variational space. The input information used
the same as in Eq.~17! with the addition of^1/r &. Our in-
ferred results are compared to the exact ones in Figs. 5 an
both for r andk spaces. The degree of agreement is inde
remarkable.

Notice that from the profiles shown in Figs. 2, 3, 5, and
it becomes clear that our formalism nitidly discriminates b
tween the two models considered in the present effort.
addition, starting from the coefficients of our inferred dens
matrix our formalism provides single-particle wave functio
of rather good quality~they closely resemble those of th
concomitant models! for both EDF models, as illustrated b
Figs. 7 and 8.

Notice that our inferred wave functions are obtained w
the help of a few data andwithout recourse to the Kohn-
Sham self-consistent procedure.

V. CONCLUSIONS

We have developed a variational pseudoinverse form
ism that allows us to infer, in a rather satisfactory fashio

s.

FIG. 6. Same as Fig. 3 but for the Na20.

FIG. 7. Kohn-Sham Na20 single-particle wave functions ob
tained with the jellium model~solid lines! are compared to those
inferred with the present approach~dashed lines!.
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the density matrix of spherical alkali-metal clusters. The
lidity of our approach has been checked with reference to
jellium model and the PPJM one. We have calculated a
expectation values from these models, given them as in

FIG. 8. Same as Fig. 7 but for the pseudopotential jelliu
model.
M.

n-

-

-
e

w
r-

mational input to our algorithm, and shown that the mode
density matrix is satisfactorily reproduced.

Our input information is restricted toM expectation val-
ues, corresponding to noncommuting observables. We do
assume any knowledge concerning the system’s Ha
tonian. Our results are, consequently, of a mod
independent character. We have shown, that with the hel
a few data, a quite reliable~in the sense that it resemble
closely the model’s one! cluster wave function can be con
structed. The corresponding results are of a remarkably g
quality, both forr andk spaces.

We conjecture then that, if similar kinds of informatio
were experimentally obtained, theactualcluster density ma-
trix could be inferred in the same fashion.
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