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We study smectic liquid crystals in random environments, e.g., aerogel. A low-temperature analysis reveals
that even arbitrarily weaguenchedlisorder(i.e., arbitrarily low aerogel densitglestroys translationdémec-
tic) order, in agreement with recent experimental results. A harmonic approximation &lasté energy
suggests that there may be no “smectic Bragg glass” phase in this system: even at zero temperature, it is
riddled with dislocation loops induced by the quenched disorder. This result would imply the destruction of
orientational(nemati¢ order as well, and that the thermodynamically sharp nematic—sndtignsition is
destroyed by disorder. We show, however, that the anharmonic elastic terms neglected in the above approxi-
mate treatmengre important (i.e., are “relevant” in the renormalization group sepsand may, indeed,
stabilize the smectic Bragg glass and the sharp phase transition into it. However, theyt diber our
conclusion that translation&mectig order is always destroyed. In contrast, we expect thedk annealed
disorder should have ngualitative effects on the smectic orddiS0163-182€09)09121-3

[. INTRODUCTION is then identified as the glass phase, and the temperature at
which the pinning becomes irrelevant is the thermodynami-
cally sharp glass transition temperature.

The effect of quenched disorder on condensed matter sys- ynfortunately, this simple scenario cannot be directly car-
tems is an important and challenging problem that continuefied over to three dimensions for vortex lattiggsough, as
to be actively investigated, because of its relevance to reale shall show later, it almost can for smectics in aerpdel
systems, which always contain some amount of random inthree-dimensional vortex latticéand other pinned isotropic
homogeneity. Recently, much attention has focused on thelastic media listed in the opening paragraphe aforemen-
random fieldXY model as a minimal model of a broad class tioned Larkin argument shows that disorderaisvays rel-
of systems such as disordered Josephson junction drraygvant ind=3. Hence, its relevance cannot be used as a cri-
roughening of crystal surfaces growing on a disorderederion for distinguishing the glass and liquid phases.
substraté and the pinning of Wigner crystals, vortex lattices So what can? One appealing proposal is the “Bragg
in superconductorsor charge density wavésAnother sys- glass’® M picture, in which the glass, while being elastically
tem that is considerably less well understood is the superfluidisordered, is topologically ordered, and is therefore distin-
transition, e.g., Hein the random, “fractal-like” environ- guished from the liquid by being free of unbound dislocation
ment of aerogel. In apparent contradiction to the Harris loops, which proliferate in the liquid. The glass transition is
criterion® the disorder modifies the critical properties of the then identified as an “unbinding” of the dislocation loops.
transition(including the critical exponenks This transition is then, qualitatively, very similar to the

The central question addressed in all of the above studiemelting of the flux lattice in the absence of disorder, which
is: does a distinct low temperature “glass” phase exist incan also be thought of as an unbinding of dislocation loops.
any of these disordered systems? And if so, wiifaany)  The only difference is that in the glass problem, the flux
static property distinguishes it from the high temperature,lattice is translationally disorderdzbth above andelowthe
conventional thermally disordered phase? The answer to thHgansition. The absence of defects below the transition, how-
second question is clearly subtle: arguments dating back tever, means that the low temperature solid phase still has a
Larkin’ show that it is impossible to have long-ranged trans-inite shear modulus, leading to glassy behavior.
lational order in three dimensions in a randomly pinned elas- Another related system that has been experimentally in-
tic medium. Hence, the glass cannot be distinguished fromvestigated is nematic liquid crystals in aerogel near and be-
the high temperature “liquid” phase by long-ranged transla-low the pure system’s nematic—smectic(NA) transition
tional order. temperaturé? The mean-field theory of a bulk, pure smectic

In the context of pinned vortex lattices in dirty type Il liquid crystal looks similar to that of aXY model, with a
superconductors, Fishet'original argument for the exis- complex scalar order parametgrcharacterizing the smectic
tence a vortex glass phase is based on a twe1l)- density wave. As was first noted by de Gerfiééa more
dimensional model in which the random pinning is relevantprecise model must include the couplingipto the nematic
at low temperatures but becomes irrelevant at highedirector fluctuations$in, which takes the model out of theY
temperature8. The low-temperature pinning relevant phaseuniversality class?~® Although the agreement between ex-

A. Motivation and background

0163-1829/99/6(1)/206(52)/$15.00 PRB 60 206 ©1999 The American Physical Society



PRB 60 SMECTIC LIQUID CRYSTALS IN RANDOM ENVIRONMENTS 207

periments and theory is far from perfect, theoreticalcon- T]K
sensus is that the scaling near the NA transisbouldcross
over from that of a three-dimension4lY transition line(as
in a neutral superfluidto inverted XY-like behavior with 2T
anisotropic x-ray correlation length exponetfts.

The goal of this paper is to investigate the effects of dis- €— expansion result
order on the liquid crystal phase diagram in the vicinity of
and below the NA transition. Does the NA transition survive
in the presence of even weak disorder? If so, what is the
nature of the low-temperature phase? A condensed report of .
some of our results, the details and extensions of which are )

. . . 2 4 "M

presented in this paper, has appeared in recent B
publicationst”®

FIG. 1. The region indicates those values g and 7y for

Our '”ﬂgf&_;@ r:hls problem was Etlmulated by rPfcemv\/hich, in three dimensions, the long-range orientationally ordered
experimen that aim to answer these very quUestions. gy qyic Bragg glass” phase is stable for sufficiently small disor-

In these experiments, a liquid crystal that exhibits a bU|kder(sufficiently low density aerogg!

nematic—smectié: transition is introduced into an aerogel.

X-ray scattering measurements show that this systewer (SBG) phase replaces the smectic phase, and a thermody-
develops true smectic long-rangedr even quasi-long- namically sharp nematic-to-SB@®I-SBG) transition can sur-
ranged order: the translational correlation lengfh remains  vive in the presence of arbitrarily weak disorder, if and only
finite at all temperatures. This length smoothly increases ag two universal positive definite anomalous exponenyg
temperature is lowered across the bulk NA transition temand 7, satisfy the bounds

perature, monotonically and slowly rising to some finite

asymptotic low-temperature limit, which doest appear to nx+ 7e<2, (1.1a
be associated with any natural length scale of the aerogel
itself. Our theory predicts this x-ray correlation length as the <1, (1.1b
scale at which the pinning disorder energy begins to domi-
nate over the smectic elastic energy; consistent with these ng+57c>4. (1.109

experimental observations, the smectic correlation length i§here the bounds in Eq€l.1a,(1.15 come from the re-

H o 12l H 2 H 1 1 i ’ i
not s_lmply pore” size of the aerpgéi. This beha\_/lor IS quirement of long-ranged orientational order and the condi-
also in sharp contrast to the fast rise of the smectic correlajon for dislocations to remain confined, respectively. The

tion length to the nominal pore sizg at the bulk transitionregion in theyg , 7« plane that satisfies these three bounds is
temperature that one would expect in more regularly porou§jystrated in Fig. 1.

materials, which can be understood as a bulklike sharp tran- Tpese exponents atmiversal i.e., the same foall smec-
sition cutoff by the finite pore size. The specific heat in aero+jcs in low density quencheddisordered media. Unfortu-
gel was also measured and was found to exhibit a broadengfhtely, we have only been able to calculate them in a rather
but very well defln.e.d peak, near but slightly shlfteq down poor approximation: @=5— e expansion. Since we are in-
from the bulk transition temperatufig,s - These experimen-  terested ind=3, the ostensibly small parameterin this

tal observations suggest the destruction of the NA tra”S't'oréxpansion is=2, and so the expansion is expected to be
by the d%%order imposed Dby the fractal ae?%)gelrather poor. However, taking this expansion as our best esti-
environment.” However, in contrast, recent experimems, mate(since it is ouronly estimate of the values ofyg and
which study the NA transition in even lower density aerosils, <, We obtain, ind=3, 7z=12/5, andy, =2/5. These val-
appear to show a true resolution limited heat capacity singuzes which are illustrated by the dot labeled &xpansion”
larity, v_vhll_e d_|splay|ng afinite x-ray sm_ectlc correlation Fig. 1, violate the bounds in EL.1), and, hence, imply
length indicative of short-range translational order. Thesent the smectic Bragg glass phase dnetexist, and that

latter experimental findings appear to support the idea thap,q thermodynamically sharp NA transition is destroyed by
the nematic—smectié-transition in pure systems, when con- i, presence of any disorder, no matter how weak.

fined in a low density qL_J_enched random structure, is rep_laced However, since the expansion parameter in this calcula-
by a new phas_e transition into a novel thermodyna_m|callyﬁon e=5-d=2 in the physical case af=3, this argument
stablc_a phase with a finite smectic correlation length in bothy, 4t the transition and the SBG are destroyed is utterly un-
the high- and low-temperature phases. compelling. Fortunately, experimentsvhich we will de-
scribe shortly well below the pure transition temperature
Tya Can measure the exponentg and 7x . With these
numbers in hand, the bounds given in Eis1) would then
The main conclusion of our work is that, consistent with provide an unambiguous prediction as to whether or not the
these and many other experimetts®=2? the three- transition to the SBG islwaysdestroyed by disorder.
dimensional smectic phase, as defined by the existence of The physical significance of these exponents is quite in-
quasi-long-ranged translational order, is unstable to arbitriguing: they reflect “anomalous elasticity,” which, in this
trarily weak quencheddisorder(i.e., arbitrarily low aerogel context, refers to the fact that the smectic bend modKlus
or aerosil density Furthermore, we find that a nesvienta-  and the layer compression moduBisirenot constants in the
tionally ordered low-temperature “smectic Bragg glass” randomly pinned smectic, but, rather, singular functions of

B. Summary, interpretation and consequences of the results
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the wave vectok under considerationK(k) and B(k) di- p
verge and vanish respectively, &s-0, according to the A
scaling laws

K(k)=K(k €M)~ Fylk£y (k€19 (1.2a

B(k)=B(k, &)%) 78t g[k,en (k, £)5)4].
(1.2b

Herek, andk, denote the projections & along and per-
pendicular to the mean normal to the smectic layers, respec-
tively, andK andB without argument& will here and here- T T T T
after denote the “bare” values of the smectic elastic moduli, p NA IN
i.e., their \{alues in 'the purébulk) smectic. The universal FIG. 2. A schemati¢aerogel density, , temperaturd) phase
exponent is determined byyg and 7y through Eq(1.12D.  giagram for a smectic liquid crystal, confined inside a low density
The “nonlinear” length scaleg)" and £} are the dis-  aerogel, validf and only ifall of the bounds, Eq(1.1) are satisfied.
tances in the. andz directions, respectively, beyond which As discussed in the text the “smectic Bragg glas&BG) and
the disorder-driven anomalous elasticity is manifest. That isinematic elastic glass'NEG) phases are, respectively, translation-
Egs.(1.2 only hold fork, ¢\'"<1 andk,é)-<1. If either of  ally and orientationally disordered, but are topologically ordered,
these limits is violated, botK andB arek independentup and are therefore distinct from each other and from the fully disor-
to logarithms, as in pure smecticd. In three dimensions dered “isotropic” phase. The dotted line within the SBG phase

Isotropic

these nonlinear length scales are given by rgpresents a remnant of the disc.)rder-dr.iv.en pinrlling.transition of
Fig. 6, rounded by the anharmonic elasticity studied in Secs. VI-
64\ 12 K54 VIII.
TL:( ) 1Uap 12 (1.3
3 ] BY¥A}l

As we will demonstrate in Sec. VI, the effects are larger
in the pinned smectic because the disorder induces layer
2 3T A (1.3b roughness that is much larger than that due to thermal fluc-
h tuations, thereby leading to the stronger diverging and van-

Expressions for these lengths for general dimensionality 1Shing of K and B found here. The stability of the smectic
>3 are given in Egs(6.6) and (6.8 of Sec. VI. In the Bragg glass phase dependsgpand 7 because the elastic
aboveA,, is a measure of the strength of one of two types offoduli K andB determineboth the size of the orientational
disorder,(the other random “field” disorden being less fluctuations and the stability of the phase against the unbind-
important in three dimensiopsvhose relation to various pa- ing of dislocations. Requiring that real space orientational
rameters of the aerogel is given in Sec. II. For now, it suf-fluctuations remain finite leads to E(L.1a, while disloca-
fices to say tha, is a monotonically increasing function of tions remain bound only if Eq(1.1b is satisfied. If the
the aerogel density, and we expect it to be a smooth, andounds Eq(1.1) are satisfied for a real smectic liquid crystal
lytic, nonsingular, finite and nonvanishing function of tem- confined inside a low density aerogel, then the resuling

2
w4 K2

perature through the bulk NA transition temperatilig,. ~ Phase diagram will be topologically identical to that dis-
SinceK is likewise well behaved througfiys, &) is as ~ Played in Fig. 2. Itis important to note that all of the results
well, a fact that we will make use of shortly. quoted here areequilibrium results. In contrast, in other

Although we have been unable to calculate the scalinginned elastic medige.g., Abrikosov flux lattices in dirty
functions f«(x) and fg(x) exactly, we do know that they supercond.uctors and_ charge density waves in anisotropic
have the simple property of making(k) andB(k) indepen- metals)_, it is often difficult to observe the tr_ue equilibrium
dent ofk, when the scaling argumehggzNL/(kL gTL)g is <1, behavior due to the extremely slow dynamics of those sys-

: ; T T tems, which cause them to drop out of equilibrium, as evi-
and independent d€, in the opposite limit. This implies denced by strong hysteretic effedts,

K7 for k,eNt<(k, N0y In this sense, smectics, and liquid crystals in general, ap-
K (K)o zz e 1.43 pear to be far better systems for investigatingebeailibrium
k, I for ke (K, £NNye, effects of quenched disorder, since they typicallynio ex-
hibit hysteresis. This suggests that liquid crystals have intrin-
K™  for k.eNl< (k. £NLy¢ sically faster dynamics than, e.g., vortex lattices in supercon-
or kz&; <(k &) q h densi . |
B(k)x y (1.4b uctors, or charge density wave systems in metals.
k78’ for k&> (k, €)N)e. That this should be so is hardly surprising: liquid crystals

are, after all, “liquids” in the sense that, even in the trans-
This strong wave-vector dependencekondB (driven by  |ationally ordered phases like smectics, molecules are quite
disordey is caused by the same mechanism that leads to thgee to move around. In contrast, the atoms in the conven-
much weakellogarithmig but still singular divergence and tjonal crystalline solids are essentially locked into lattice
vanishing ofK and B (driven by thermal fluctuationsthat  sjtes, from which they can only escape by thermally acti-
occurs in disorder-free smectitsthe anharmonic elasticity vated hopping over substantial energy barriers. Even at room
of large fluctuations in the smectic layers. temperature, this hopping is extremely slow; the fact that
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even “high-T.” superconductors are much colder than roomtionally ordered, nonglassy smectic phase exists for suffi-
temperature exacerbates the problem further. ciently weak disorder. For §d<7, tilt disorder remains

So, because of both their liquidlikeicrostructure and irrelevant, but the random field and the anharmonic terms
microdynamics,and the fact that they are at a higher tem- both become relevant, destroying smectic translational order
perature than, e.g., superconductors, one might have anticid leading instead to a stable smectic Bragg glass phase. As
pated that it would be far easier to observe the equilibriunin previously studied “vortex glass” models of pinned elas-
effects of quenched pinning in liquid crystals than in othertic media?®® here too we find that in all spatial dimensions
pinned elastic media studied to date. This belief is supporte8<d< 7, real-space positional fluctuations diverge logarith-
by experiment$!*° and so we believe that thequilibrium  mically with system size:
results we obtain here should be directly testable in experi-
ments. (Ud(n)=cqIn[L, fy(AL,/L3)], 1.9

The theoretical analysis that leads to these conclusions is . . . .

o . ot pri . ~whereL, (, is the linear spatial extent of the system in the
quite interesting and novel. Our first-principles analysis O]l (2) direction
smectics in aerogel demonstrates that the random pinning '
induced by the aerogel leads to only two potentially relevant K
types of random perturbations to the smectic: a rangom A= \[
sitional field disorder(hereafter referred to simply as the B

“random field” and designated by, ), which represents the f (x) is a universal scaling function, ang} is a universal
aerogel's tendency to force the smectic layers to sit at pargimension-dependent constant proportional te d7 for d
ticular positions and a randonvrientational field disorder npear 7. As a result, translational correlations throughout the

flecting the aerogel’s proclivity for particularientationsof

the nematogens and smectic layers. If we ignore the anhar- (pE(r)pg(0)yocr [ "D (Nz/r?) (1.7
monic effects that lead to anomalous elasticity, we find that . ) )

the response of the smecticphase to the random field dis- With the exponenty(d) aumvgrsalfunc_nongofd, andf 4(x)
order inthreedimensions is in very close mathematical anal-2 universal(d-dependentscaling functior: _
ogy to that of theXxY model intwo dimensiong2D).8 While Unlike the vortex glass case, however, here we find
this suggests that a nontrivial glassy phase might replace th%womalous elasticity in this dimension range as well, obtain-
smecticA phase in analogy with the experience with the 2D'N9
XY model® the presence ofilt disorder(which is always
generated by the random figldctually destroys this phase.
Even in the regime where the random field by itself has no
effect at long scales, the tilt disorder leads to short-range
smectic order parameter correlations, which fall off expo-
nentially in the direction of the layer normal and as a Gausswheref,(x) andfg(x) are universal scaling functions, and
ian within the smectic layer@vithin a purelyharmonicelas-  we have, rather remarkably, calculated the universal expo-
tic mode). This absence of long-ranged order in the elastimentsy,(d) and yg(d) exactlyfor all d in this range, 5d
model is a strong indication of its limitation and that dislo- <7, finding

cation defects are likely to proliferate. Focusing on the most

(1.6

K(k)oc|In[k, fi (ko /NK2)]| 7@, (1.89

B(k)x|In[k, fg(k,/Nk?)]|~ 7@, (1.8b

important part of randomness, the tilt disorder, we find, in 1({—d?+12d—23

the approximation of ignoring elastic anharmonicities, that yk(d)= §<m) (1.93
disorderalwayscreates dislocations. The formalism we use

to demonstrate this is new, powerful and potentially appli- 3 d2—1

cable to5 a wide variety of candidate “Bragg glass ve(d)= > m) (1.9
systemg’

Once dislocations are present, the phase is best charact@fote that both the fluctuations dfu?(r))xIn(L) and the
ized as a nematic in a random tilt field. However, subsequeninomalous behavior df (k) andB(k) are very weakly di-
examination of orientational fluctuations in this nematic leadvergent functions of system side and k respectively, de-
to the conclusion that tilt disorder destroys the orientationapending only logarithmically on these quantities. Fsr5,
order of the smectic Iayers as well. Whether an orientationthese weak |Ogarithmic divergences are overwhelmed by
ally and translationally disordered low-temperature phasgower-law divergences caused by thedisorder, withk (k)
distinct from the conventionally disordered high temperatureandB(k) diverging and vanishing, respectively, according to
isotropic phase is a “nematic elastic glas§NEG), sepa-  Eq. (1.2) with,
rated from it by adisclination unbinding transition, is the

subject of an active current investigatith. _€ 2
Including anharmonic elastic effects considerably modi- ’7K_§+O(e ). (1.109
fies this picture. Although spatial dimensiathgreater than 3
are clearly irrelevant to experiment, it is conceptually ex- Ge
tremely usefuland fun to generalize our model to arbitrary 8= 5 +0(€), (1.10b

spatial dimensions. We find that far>7, both the random
field and the tilt disorder are irrelevant, and a stable, translawheree=5—d, and
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X
- [ (L e
<u2(r)>=Lfou(ﬁ , (1113 §
» (Lo/er 1500 A
{LZX £ofor L/gt< (L /e
:
L2 for Ly/&bs (L, 18%Y, /!
smectic
(1.11b confined
with the universal roughnesg and anisotropy, exponents in aerogel
given by
+ ° )
x= w’ (1.123 40A T , —
20C T, TN A T
. Mtk
(=2-——%— (1.12h FIG. 3. Finite, temperature-dependent x-ray correlation length
- EX(T) for a smectic liquid crystal, confined inside a low density
Heref,(x) is another universal scaling function. aerogel. The essential features of the x-ray correlation length that

This result, Eq(1.11), for (u?(r)) leads to a quantitative, we predict are (i) saturation asT—0 of §X(T) at a finite
experimentally testable prediction for the x-ray correlationpa-dependent value farbitrarily low aerogel densitydiverging as
length €%, obtained by equatingu?(r))=a?, wherea is the pa—0), (i) power-law scaling with thelisorder-freesmectic bulk
smectic layer spacing, and solving fog, with L, — . This modulus_B(T) [see Eq.(l.l@], (iii ) crossover from the exponent
solution for L, is the x-ray correlation length that will be ¢/x t©2inEq.(1.13 asTy, is approached from below and anoma-
obtained by scattering off a powder sampléhich probably !ous e_lgstlcny be(_:omes unimportant f&f, (iv) crossover to genu-
means all samples, since, as discussed earlier, there is prdB? critical behavior at the temperatuirg af<Wh'Ch§°f“(T*) ('nd'.'
ably no long-ranged orientational order dé3, given our cated by the dotted Curv%below’“’*)zé - In the low density

. ! . . I4e.g.,pn=0.08 g/ findTya—T,~3 K (Ref. 20.
best estimates ofz and 7x). The value of¢* so obtained is aerogelse.g..pa glen) we find Tya =T, (Ref. 20

{x
i ; , A<a, where &M"q(t) is the x-ray correlation length within the lay-
& (113 ©'s of the pure system at a reduced temperater¢T
a2 \>a —Tna)/Tna abovethe pure transition temperatufig,, and
z N ' £ =""(t~1). Herev, is the x-ray correlation length ex-

. . . . . onent for the pure system in the direction, defined via
This relation gives a way of experimentally measuring thep P y

ur -V
exponents{ and y: since the bare compression modulusgE )=t _L' 6~ - ) ~
B(T) of the pure smectic is a strong function of temperature _Theoretically,® ¢ is expected to be given by=wvyy
T near the bulk smectic NA transition temperatlisg, , van- m0.6z. Experimentally® the situation is more complicated,
ishing according toB(T)oc|T—TNA|‘~", and since, further- with ¢ showing no universality_, for reasons that are still
more, §;<, a, andK vary smoothly throughTy,, a plot of unclear (at least to us Hence, in extracting;/2y by~the
In & versus IfiT—Tya| should yield a straight line fof near ~ above analysis, thexperimentallydetermined value o of
Tya, With a slopeg¢/2y, providedthat we stay far enough the particular bulk smectic that is confined in the aerogel
below Ty, that A<a, so that the first expression fa in should be used_. Qne should also_be careful, in such a fit, to
Eq. (1.13 applies. In deriving this result, we have used thelr€at Tna as a fitting parameter, since the presence of even
fact that = K/BoclT—TNAI’E”Z. This prediction for the low density aerogel can presumable shift this temperature

lation | h Eq(113. | h icallv di slightly. Alternatively, one could avoid these complications
;I;?/)édcgrgigtlgn ength, Eq(1.13, is schematically dis- by studying the smectic outside the pure system’s critical

A detailed renormalization group analyisf the critical re.glme,. but still rea'tsonably close t.o thg pm’%ﬁ’ since in
behavior near the pure NA transitiddetails of which will ~ thiS regime mean-field theory applies aie-1.
be presented elsewhershows that Eq(1.13 breaks down Once we know the ratid/x, we know ¢ and y them-
altogether at the temperatufg , which lies below(and for selves, since _the relat|o§1=2—X,_ implicit in Egs. (1.12,
weak disorder very close Xahe pureTy, . The correspond- provides us with a second equation for the two unkno¥ns

ing reduced temperatute = (Txa—T. )/ Tua Obevs and y. If the roughness exponet so obtained is>1, we
g P 8 =(Tna~T.)/Tha 4 predict that orientational fluctuations diverge, and hence,

Eant(ty) =&, (1.14 long-range orientational order is destroyed. As a result, there

will be no “smectic Bragg glass” phase, and hence, no ther-

where £X is given by the second line of E¢1.13, and we  modynamically sharp transition associated with the pure NA
have defined a length scalg,(t) derived entirely from transition that occurs in the absence of disorder. In any

properties of thgure system event, the prediction Eq1.13 for A>a will inevitably ap-
~ ply sufficiently close to the pur@ s, since B(T—Tya)
P t) 2+ ¢l2v, —0, while K(T—Tya) remains nonzero, and, henagT
£ D)=E| : (115  —Tya)—»>a.
31 Should it prove that orientational ordés possible ind
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=3 [i.e., that thed=3 values of the universal exponentg g;NL g';x &D &

and 7 do satisfy the inequalities in Eq1.1), which would 'z L 'z 0
imply that the SBG phase is stahl¢hen single orientational ' ' ' '
domain scatterings, in principle, possible. In such scatter- |—Z

ing, £ which equalstX as given by Eq(1.13, will be the _ _ _ _
correlation length along the mean normal to the smectic lay- FIG. 4. One possible hierarchy of important length scales in the

ers. The correlation Iengtﬁx along the smectic layers is problem of a three-dimensional weakly disordered smectic, valid
then given by + for A<a, y>1, and7¢>1. If insteady<1 and ¢ <1, then the

putative SBG phase is stable a&g and gE,Z are infinite.

1/x
a
NL <
A X , A<<a, 2 NL \ {[2(n,~1)]
X 11 D_ #NL A&,
= N (1.16 £=8" g (119
E”— —1, A>a. cha
N

These x-ray correlation lengths shoulidt, however, be in-
terpreted as being the length scales beyond which smectj
correlations cease. In fact, smectic behavior, by which wi
mean, e.g., the anomalous smectic elasticity, E®), per-
sists out to much longer lengths. Specifically, in thelirec-
tion, it persists out to the shorter of the two lengthsand
gE. &o is the distance over which orientational ordesuld
be well correlated in the absence of dislocations, wkflds

Note that the orientational correlation length given by Eg.
.17) is always much greater than the nonlinear length
in the weak disorder limit, in whicf)'-— . However, if we
hold the disorder strength fixed.e., hold A, fixed), and
approach the pure NA transition from below, we will always
eventually, at some temperatuig, <Tya (To—Tna iN
weak disorder limit leave this weak disorder regim@o

. . . NL .
the distance(in the L direction below which dislocations Matter how weak the disorden;since; ", as given by Eg.

would remain bound in the absence of large orientationaf1-3P: does not change TECh ab—Tya, while (T
fluctuations. In actuality, only the prediction of tisenaller ~ — Tna) — - So the raticko /€~ decreases without bound as
of the two of these lengths is valid. We expect that when! — Tna, @nd, hence eventually drops below 1, signaling our
£o<£P, the large orientational fluctuations also induce dis-€ntry into the strong disorder regime for-T, (see Fig. 3
location unbinding at about the same lenggh On the other ~ TNiS iS not surprising: the smectic’s resistance to the perturb-
hand, in the opposite§6>§f) limit, the dislocation unbind- N9 effectg of the disorder is prowded,' in pgrt, Byso when

ing occurs first ath, and on longer scales our system is B—0, as it does as the pure NA transition is approached, any

indistinguishable from a nematic in a random orientationaftiSorder will eventually look “strong,” and our theory will

field. Whether the orientational order is stable or not in this"© longer apply. As long as we are at temperaturefar

case must be reevaluated within an effective random-fielcﬁEnough belowly,, however, our weak disorder results will

nematic model using a LarKirtype of analysi€® apply. As we weaken the disorder, by, e.g., reducing aerogel
The “orientational correlation length’z, is given by density, we can apply our weak disorder theory closer to

NA -
NL\ 1/[2(x—1)] The expression1.17 for the orientational correlation
£o= TL(L> ' (1.17) length ¢4 only holds if the condition for thetability of the
A long-ranged orientational order, E{..139, which is equiva-

. : . . L lent to y<<1, is violated[i.e., Eq.(1.17) only holds for
while the “dislocation length” Scalle in the L direction is >1] If)§(<1 £ is infinitEa Likev(\]/is(e E?qs(l {8) and(1 13
given by for §E'Z only hold if »x>1 (i.e., if dislocationsare, in fact,

5 NL \ V[2(7,—1)] unbound; otherwise, gE,Z are infinite. Clearly, if both
=Nt A7, (1.18 boundsy<1 and »x<1 are satisfiedall three lengths are
L% ck2a2g2 ' ' infinite, smectic behavior holds out to arbitrarily large length

scales, and the smectic Bragg glass is a stable phase of

whered is a microscopic length of order the layer spaciig weakly disordered smectic liquid crystals. A summary of the
and c(T) is a dimensionless constart(T) vanishes like many length scales in our theory for three dimensions and
e E/T asT—0 and diverges likeT/E,(T)x|Tya—T| 77,  their hierarchy, in the weak disorder limit, is illustrated for
whereE_ is the “core energy” of a dislocation line segment the case of<a in Fig. 4 and for the case of>a in Fig. 5.
of lengthd, and vy, is the “line tension” critical exponent
describing howE,(T) vanishes a3 — Ty, from below. We X NL D
expect the resulting divergence ofT) to overwhelm the &Z &z &Z &o
corresponding divergence afT), leading to a° that gets ’ ’ t ¢
smaller asT— Ty, from below. Clearly then, sufficiently L
close toTya, €7 gets to be less tha#l'-, the system enters z
the strong-disorder regime, and the weak-disorder theory we F|G. 5. The hierarchy of important length scales in the problem
have presented here no longer applies. of a three-dimensional weakly disordered smectic, valid\era,

In the z direction, the orientational correlation length is y>1, and 7>1. If instead y<1 and ¢<1, then the putative
also given byé,, while the dislocation length is given by ~ SBG phase is stable argy and¢? , are infinite.
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Just as the proposed “Bragg glass” phase of randomldislocations always proliferate, even in the presence of arbi-

pinned elastic media is distinct from the liquid phds¥, trarily weak disorder, thereby destroying, within ther-
here, too, the absence of long-ranged orientational order do@onic approximation, both the smectic Bragg glass phase
not preclude a “nematic elastic glass” phase that would beand the thermodynamically sharp transition to it.
separated from the high temperature “isotropic fluid” phase The effects of the previously ignored anharmonic elastic
by a thermodynamically sharp equilibrium phase transitionterms are shown to be very important in Sec. VI, which
That such a nematic elastic glass phase may indeed exist @velops a renormalization group treatment of them in a
suggested by dynamic light scattering experim@ritsthat  model that neglects both the random field and dislocations,
show a dramatic slowing down of director fluctuation relax-but includes tilt disorder. The anomalous elasticity Elg2)
ations in liquid crystals in aerogel below a temperaflige; ~ and theu-u correlation functions that follow from it are de-
near the bulk NI transition. rived in this section. Given the importance of these elastic
We are currently investigating theoretically the possibility nonlinearities, we study their effects on dislocation unbind-
of such a nematic elastic glass phase, and initial results inding and orientational order in Sec. VII by incorporating
cate that such pOSSIbIlIty is, in fact, allowed theoretica”y.anoma|ous e|asticity into the dua"ty theory devek)ped in
Our results ‘on this subject will appear in a future sec. V. We thereby derive the bounds Ef.19 and Eq.
publication: _ _ (1.1b on the anomalous exponengg and 7, for the stabil-
The low-temperature analysis presented here is furthgfy of the smectic Bragg glass phase. The irrelevance of the
supported by a complementary approach that investigates thg .4 field in a full, anharmonic theory belog=>5 is

stability of the NA. trans%g)n to disorder fr.om the high- demonstrated by a functional renormalization group treat-
temperature nematic phaseThe resuilts of this latter work ment in Sec. VIII, in which we also calculate exactly the

substantiate our findings that in three dimensions the NAex onentsys(d) andy,(d) that govern the anomalous elas-
transition and the smectik- phase are destroyed. The b s YK 9

rounded remnant of this transitiaran however, be studied ticity for 5<d<7. In Sec. IX, we demonstrate that th

utilizing self-consistent methods previously successfully ap-— 3: dislocation unbinding isotinduced by the random field

plied to pure systems below the lower critical dimension. &lone. We conclude the main part of the manuscript with
This method predicts a Lorentzian-squared structure functioR€¢: X, where we discuss interpretation of our results in
with a correlation length that monotonically, slowly in- (€rms of past experiments and their implications for the fu-
creases through the bulk NA transition, in good agreemeriré experiments, as well as many remaining interesting and
with the x-ray measurement®The calculated specific heat 'Mportant theoretical problems, some under current investi-
is also in qualitative agreement with the experim@ftg, gation. The dgtalls .of the analy5|§ of the randor_n f|§Id disor-
exhibiting a broad, well-defined peak at a temperatureder in t.hrge d!men3|qns, thg functional renor.mallzat'lon.group
slightly lower than the bulk transition temperaturg,T analys_ls in h|gher dimensions, an alternat|ve_der|vat|0n of
As we hope the introduction made clear, the phenomenolth® dislocation loop theory, and a fluctuation-corrected
ogy of this system is extremely rich. Our organizational ap_mean—_ﬁeld treatment o_f the dual _model of randomly pinned
proach to presenting the derivation of these results is theMectic are presented in Appendixes A, B, C, and D, respec-
following: starting from the full model, we first throw out all tVely:
but the simplest effects; only after developing a full under-
standing of this simplified model do we, one at a time, rein-

troduce the complicating effects we had initially thrown out, Il. MODEL
buil((jjir|19 gradually toward the complexity of the full physical Our theory of the disordered NA transition is based on the
model.

) L . _de Gennes model. Near the mean-field transition from the
Since many of these complicating effects prove to be im-

portant, this approach has the drawback that some of thnematic to the smectié- phase, the center-of-mass nemato-
results derived for the simplified models dot, in fact de- Sen molecular densitp(r) (which is liquidlike in the nem-

seribe our physical system. We have attempted to alert thatlc phasg begins to develop strong fluctuations dominated

reader everywhere results of a simplified models differ fromSy Fo'urler cgmponents that are Integer multlples of the

our actual predictions for the full theory. Only the latter, of SMeCtic ordering wave vectaf,=n2z/a (a is the layer

course, should be compared directly with experiments. ~ spacing parallel to the nematic directon. We take the
The remainder of this paper is organized as follows. Indominant lowest Fourier componeg(r) as the localcom-

Sec. II, we introduce and motivate our model for smectics inplex scalay order parameter which distinguishes the smectic-

disordered media, and discuss those aspects of the modalfrom the nematic phas€.lt is related to the densitp(r)

specific to aerogel. In Sec. lll, we derive an elastic low-by

temperature model of a randomly pinned smectic, at first

ignoring anharmonic elasticity and dislocations. Using renor- _

malization group methods, we study the stability of the p(r)=Rg po+e'%Ty(r)], (2.1

smectic phase within this model and these approximations.

In Sec. IV, we use the results of this RG treatment to calcu-

late various smectic correlation functions, still treating theWherepy is the mean density of the smectic.

elastic theory to harmonic order and ignoring dislocations. AS first discussed by de Gennesthe effective Hamil-

Section V incorporates the dislocations in tharmonic  tonian functionaH 44 ¢,n] that describes the NA transition

theory, and shows that, in that theory, in three dimensionsat long length scales, in bulk, pure liquid crystals, is
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_ ) ) Guided by these observations, we now proceed to con-
¢, [(V, —igesn)y|*+cy|V ¥l struct the disorder part of the effective Hamiltonian. Because

1
Hdg[lp,n]:ﬂ d’r
#(r) is related to the smectic densipfr) via Eq.(2.1), the

, 1 4 randomness can couple to it directly. In particular, symmetry
+tol 1%+ 5 9ol 1|+ Heln], (220 allows a coupling of the form
wheretox (T—TRAY/TRAS, TRAC is the NA transition tem- 1
o (T~ TRAY/TRA", TRA” IS the NA transitio Hdp=J dr| 5ot (p=po)*+U(Np|, (2.4
perature in the purébulk) system,én(r)=n(r)—n, is the 2

fluctuation of Athe local nematic direc}tm(r) away fromits  \\here both the randofi[ 5t(r)] and the random potential
average value, which we take to be, subscriptd andL  U(r) are proportional to the local aerogel densiy(r). We
denote the directions parallel and transverseﬁgo and  will take this aerogel density to be a quenched random vari-
Hg[n] is the Frank effective Hamiltonian that describes theable, and denote averages over it by a horizontal overbar.
elasticity of the nematic order director: This means in particular that the autocorrelation$tgf)
and U(r) will be proportional to those of the aerogel, and,
- 1 - - - hence, long-ranged for fractal aerogélThat is, we expect
HF[n]:f ddrE[KS(V-n)ZJr K(n-Vxn)?
U(NU(r)=Cy(r=r"),
+Kp(NX VXn)?], (2.3
whereKs, K., andK, are the bare elastic moduli for splay, Fupa(n)palr), @3
twist and bend of the nematic director field, respectively.
The minimal coupling betweem and is enforced by the
requirement of global rotational invariantelt is important -
to emphasize, however, that although the de Gennes Hamil- =Lipa(r)palr’), (2.6

tonianH 4¢ is closely analogous to that of a superconductor, herel dr i i ths that d d th
there are essential differences. The physical reality of thg/Nerely and! aré coupling strengths that depend on the

nematicén and the smecties order parameters, in contrast microscopic physics of 'the aerogel-smectic intgraption, but
to the gauge ambiguity in the definition of the vector poten-not at low aerogel density, on the aerogel density itself, nor

tial and the superconducting order parameter, selects the Ii(ﬂ)-n the smectic order parameter.
. 3/ oo A 5 The fractal structure of aerogel over a range of length
uid crystal gaug¥+>°® sn-ny=0 (since|ny|?=1) as the pre-

: \ ) ) , scales can be determined from the aerogel density-density
ferred physical gauge. The strict gauge mvarlaAncHgg IS" correlation functionpa(r) pa(0) measured in an x-ray scat-
already explicitly broken by the splay terty(V-n)? of the  tering experiment. Writing the aerogel density in dimen-
Frank Hamiltonian. This is one source of distinction betweergjgnjess (volume fraction units, the correlation function
a smecticA liquid crystal and a superconductor.

In fact, since the only true symmetry of the smedic-
liquid crystal is invariance undaglobal simultaneous rota-

i i i i0-r
tion of the smectic layergequivalent toyy— €' “ 1) and the the aerogel density.(L;), measured ataveraged ovéra

nema;c‘;idwectciran—aan: Oba_ltccorr;pllsTed by atconsftafm scale beyond which the aerogel ceases to be fractal. We call
spacg g=const, andnot arbitrary local gauge transiorma- ;¢ scaleL;. The aerogel is alsmot a fractal for lengths

tions, the requirement of gauge invariance severely over . .
N : . . ; smaller than a microscopic leng#h of the order the aerogel
restricts the allowed effective Hamiltonian. That is, the de P 9

Gennes model is more symmetric than is required by thestrand diameter. The Qensity of a struct'ure which is a fractal
physics of the NA transition, and a more general effectiveo.n. scale_saf<r<Lf, W'Fh fractal dimensiordy, is, .by de_:ﬂ-
Hamiltonian will allow for terms that break nonlinear gauge nition, glvden' by the ratio o_f tr:,e ”””?ber of occupied sites
invariance. All of the extension terms that can be added to dE(Lf/af) Fina vqumeV—Lf to t_h's yolume. Hence, the
Gennes model are, unfortunately, irrelevamhich is prob- ~ average aerogel densipa=pa(L) is given by

ably why de Gennes did not include them in his original

formulation. However, in light of the above remarks, the oa(Ly)
bending stiffnes&s in the smectic phade.e., the coefficient

of (V)] can differ from the corresponding coefficiet  Gjyen that a siter is occupied, the conditional probability
in the nematic phasfthe coeff|20|e2t of ¥-n)7], due to the  p(r r') that a siter’ is also occupied is, roughly, the typical
presence of terms like, e.dVi 4| in the smectic Hamil-  “mass” (actually total volumgof materialM(|r—r’|) con-
tonian, which violate local gauge invariance, imatt global  tained within a sphere of radiys—r’| centered on a point
rotation invariance. This is in contrast to what is usuallythat is also on the fractaldivided by the total volume
assumed in all the standard treatments of this problem, which_r'|d of that sphere. By definition,M(|r—r'|)~
take K and K, to be the sam& The importance of this a(|r—r’|/as)% (this is what we mean by the fractal dimen-
observation is that in mean-field theory it leads to a slopejon d.). Hence, the conditional probability i®(r,r’)
discontinuity inK¢(T) at theTjh , which is likely to persist  =M(|r—r’|)/|r—r’|9~(as/|r—r'|)97%. Combining this
in the theory that includes fluctuatioffs. with Eq. (2.7), we obtain

ot(r)ot(r')=Cy(r—r’),

pa(r)pa(r’) measures the probability that, given that a point
r is occupied, the point’ is also occupied. The probability
that an arbitrary point is occupied is clearly proportional to

d—dp

as

Ls

(2.7)
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d—d,:( a )d—dp In addition to the density coupling of EgR.4) and(2.9),
, (2.89  we expect that the long nematogenic molecules that make up
lr—r'] the smectic will tend to line up with the randomly oriented
d-de aerogel strand€ whose orientational correlations we expect
as to be short ranged. This interaction leads to an additional
QPA< |r—r’|> (2.8 orientationalrandom coupling of the form

a;

L¢

PA(r)pa(r’)=~

We will see in a moment that these long-ranged correlations 1 d s

have no effect on the long distance behavior of the smectic. Hdnzif d®r[g(r)-n]%, (2.19
Combining the random field energy E.4 with the

relation Eq.(2.1) between the smectic order parametesind ~ where the quenched fielg(r) is random and short-range

the densityp, we obtain correlated in direction

Hol1= [ oo a2+ Ve g+ v 9, G(1)G (1) =421 (219
(2.9 with strengthA 4 proportional to the local aerogel density.

] . As discussed in the Introduction, motivated by the experi-
where we have defined tteomplexrandom potentiaV(r),  mental observations, we assume that near the NA transition,
which acts on the NA order parametgras a random mag- in low-density aerogel samples, the nematic order is well-
netic field acts on a Spin, and is related to the potential diSdeve|0ped_ In this regime, we can consider small disorder-

ordert(r) by driven deviations from perfect nematic ordey=2z as small,
V(r)=U(r)e'%, (2.10  writing n(r) as

Note that, despite the long-ranged correlationdJgf), ﬁ(r)=2\/1—|5n|2+ on(r). 2.17
V(r) has only short-ranged correlations. To see this, consider

a double Fourier transform of thé(r)V*(r’) correlation ~Substituting this representation insit,, Eq.(2.19, and,
function given that| 5n|<1, keeping only up to quadratic termsdn,

and droppingén-independent terms, we obtain

VIOV (K = [ dfradre et WAV, .
Hgn~ Ef dr{—gy(r)?[sn|>+[g(r)- 6n]*+2h(r)- on},

=(2m)98%k+k")Cy(Kk), (2.10 (2.18
where where we have defined a quenched random tilt field
Cv(k):j d4(r — ek a0~ G U (), h(r)=g,(r)g(r). (2.19

It is easy to see that fasotropic disorderg(r), the terms
—Cy(k+q ?) 2.12 quadratic inén(r), above_, cancel each o_the_r on average and
U 0sh ' therefore only make unimportant contributions that are be-
andCy (k) is the Fourier transform of the —U correlation, yond quadratic order i@dn(r). As a consequence, for such
Eq. (2.5. Even though we expect this Fourier transformedisotropic disorder, the effective orientational disorder is
correlation functionC (k) to diverge ak—0, due to the given by the last term in Eq2.18
power-law spatial correlations id(r), there is no reason for

it to diverge ask—qoz, since the aerogel itself has no par- Hdn”f ddr h(r)- &n. (2.20
ticular spatial structure at the wavevector of the smectic or-

dering. Hence, we see from EQ.12) that theV-V autocor-  \yg expect that the random fielr) is related to the aerogel

relat|on' function remains finite ask—0. Thus, the density structure by the following correlation function:
correlations ofV(r) are short ranged, and hence we can ac-

curately capture the long distance physics of the problem by - r Y=a.(a.(r ra. (1
taking those correlations to be zero ranged, and writing (DN =0.Ngi(Ngr)g;(r),

VOV (1) =Wed(r—r), 2.13 =ThpA(NPAT DN (1), 021
where wheret(r) is the local tangent to the aerogel fibers, &hds
W= Cu(Qoi), (2.143 apA-indgpendent coupliqg _constar_lt that depends on the mi-
croscopic aerogel-smectic interaction.
ag\9 9 1 \% Since we expect this tangemfr) to have only short-
=TIy L_f ?‘10 , ranged correlation@vith range of order the orientational per-

(2.14b sistence length of the silica fibgrsthe above correlation
' function of the tilt disorder should also be short ranged. Fur-
as can be readily seen by Fourier transforming @c8). thermore, it must be isotropic. These considerations, taken
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together with the fractal nature of the aerogel, and(B®1), nicities (i.e., terms higher than quadratic in gradientsudf
lead to the following form for the correlation function of the We will also, in both this and the next section, neglect the

random tilt disordeh(r): effects of dislocations, and focus on three spatial dimensions.
ded All of these restrictions will be removed in later sections of
T o a F , the paper, as we build up to the full complexity of the dis-
hi(0)hi(r )_F“( L) s r=ra;, ordered smectic system.

We begin byassuminghe existence of smectic order and
=Ap8%r—r ") &ij (2.22 investigate if/when this assumption is violated because of the
interaction of the smectic with the random environment of
the aerogel. Within the ordered smectic phase, the fluctua-
tions are conveniently described in terms of the fluctuations
of the magnitude and phase ¢f It is easy to show that the
fluctuations of thenagnitudeof ¢ around the average value

(2.9, and (2.20, respectively. This total effective Hamil- |hol = Vto/go=const are “massive,” and can therefore be

tonian must be supplemented with correlation functions fOIsafer integrated out of the partition function, leading to only

- : finite, unimportant shifts in the effective elastic moduli. In
the randomT, (6t(r)), random field(V(r)), and random tilt ' .
(h(r)) disor(C:iers,(v)vhich are given (b)y Eq$2.6—(2.9), contrast, the phase @f is a U(1) massless Goldstone mode,

(2.13—(2.14), and(2.22, respectively. Finally, it is essential corresponding to spontaneously broken translational symme-

to keep in mind that, as discussed above, even for fractdlY: Itis the essential low energy phonon degree of freedom
aerogel, although thé correlations of the ,randm;,nfield of the smectic phase, describing the local displacement of the

St(r) are long rangedpower-law correlated those of the Smecﬁc Iaye_.\rs from Peffe_Ct periadic o_rder. In accord with
random fieldV(r) and the tilth(r) are short ranged, with this discussion, Qeep within the smectic phase, we can rep-
W<A,,. resent the smectic order parameter as

which is short ranged This defines the tilt field disorder
varianceAy, .

Thus our model of the NA transition in aerogel is charac-
terized by the effective Hamiltonian functiond =H g
+Hgp+Hgn, with Hyg, Hg,, andHg, given by Eqs(2.2),

Ill. SMECTIC PHASE AND ITS STABILITY (1) = o) €900, (3.1
WITHIN THE HARMONIC ELASTIC MODEL

In this section we study the disordered NA model, definedf@fely ignoring (actually integrating out the “massivg”
in the preceding section, within the low-temperature phasdluctuations in the magnitudpyo| of . It is important to
While it is tempting to directly analyze the moddl=Hy; ~ NOte that this can be done at any temperaheiewthe tran-
+Hg,+Hgn written in terms of the smectic order parameters't'on* _Wlthout anyq_ualltatlve consequences for phenomena
&, we will not do so here. Our motivation for this is twofold; ©¢curring on sufficiently long length scales, larger than a
(i) As discussed in the Introduction, even for the bulk Well-defined crossover length, (T). The elastic model is

(disorder-freg case the results obtain through such a directhen rigorously valid on length scales larger thgr(T) and
(de Gennes modelapproach, have, so far, failed to give breaks down on shorter scales, and therefore, of course can

predictions that agree with experiments even orbiig NA ~ Only make predictions about phenomefeag., length scales
transition. Having not fully understood the difficulties with Such asé¥) larger thané, (T). As T—Tya, &, (T) diverges
the bulk NA transition, we hesitate to use such a high-2nd the range dength scalesibout which the elastic model
temperaturé“soft-spin” ) analysis to study the significantly iS able to make predictions shrinks, being pushed out to in-
more complicated NA transition in the presence of disordefinite scales. Consequently, for example, sufficiently close to
(i.e., confined inside the aerogelii) While such a “soft:  Tna, i-€., for T>T, (see Fig. 3 such thate*—¢, from
spin” approach is often superior in understanding the critical@bove, our prediction fog*, based on the weak disorder
properties of theransitionand the high-temperature phase, it elastic theory is no longer strictly valid.
is significantly less successful in the analysis of the low- Using this low-temperature ansaté3.1) inside the
temperature phase. For example, itkisownto incorrectly  ¢-dependent part of the effective Hamiltonian, given by Egs.
predict the lower critical dimension in, e.g., the random field(2.2) and(2.9) and dropping constant terms, we find
Ising model, as well as completely missing the existence of
the Kosterlitz-Thouless transition in théY model. Since B B K
. L T N S

one of the main goals of the current initial investigation of H[u,6n]=f ddr[—|Viu—5n|2+ —(9,u)%+ —=(V-n)?
the disordered smectics problem is to ascertain the stability 2 2 2
and nature of the low-temperature phase, we leave the direct K K
de Gennes model approach to this problem to subsequent + —[(E.Vx Sn)2+ —b(ixVxﬁn)er h(r)-én
publications®? 2 2

Instead, here, as a first analysis of the problem, we choose
the elastic, low-temperature approach in terms of the Gold- —|golU(r)codqolu(r)+2z]} |, 3.2
stone phonon moda. The predictions of such an approach
for the ordered pure smectic phase are free of controversies,
and are in agreement with experiments on bulk smectics. whereB, =c, |0/?q3 and B=c|‘|¢o|2q3. We observe that

We will not, in either this or the next sectidi$ec. I1V), the fluctuation modeY , u— én) is “massive” and leads to
treat the full elastic model in all its complexity, but rather, the Anderson-Higgs mechanism, a hallmark of gauge theo-
begin by simplifying the model by ignoringlastic anharmo- ries. As a consequence, after a simple Gaussian integration
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over 6n, we find that at long length scaleén fluctuations
are constrained to follow | u. The resulting effective elastic
Hamiltonian is then obtained by the replacement

sn—V ,u, (3.3

everywhere in the Eq3.2). This is valid in the long wave-
length limit, to quadratic order in gradients aof and pro-
vided dislocations are confined. We obtain

H[u]=J ddr g(azu)z+§(Vfu)2+h(r).Vlu

(3.9

—|olU(r)coqgolu(r)+z]}

or, equivalently, in terms of¥/(r)
o B 2. Kooa o
H{u]= | d° §(azu) +§(VJ_U) +h(r)-V,u

—Iwol[V(r)ei%”““rV*(r)equ““)]} (3.5

In the aboveK =K, although, as discussed in the beginning
in a model of the NA transition that is more

of Sec. Il,
general than the de Gennes modélandK can differ by a
singular function of the reduced temperatUfe— Ty,|.

To compute self-averaging quantitiés.g., the disorder
averaged free energywe employ the replica “trick,®

which allows us to work with a translationally invariant field

theory at the expense of introducingeplica fields(with the
n— 0 limit to be taken at the end of the calculatjoRor the
free energy this procedure relies on the identity for the&)in(
function

) -1
—Tlim .

n—0

(3.9
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3" _,u,, Which is therefore a noninteracting field. This im-
plies an exact result th&t andB are not renormalized by the
disorder in this harmonic approximatiém,,, of course, will
be renormalized by the random-field nonlinearity.

It is easy to see that the random tilt disorder term with
coefficientA,, can be rewritten in Fourier space as

> qLE U= Upl= 2, Anaf[—1+n8ag]ualis,
(3.9

which, in then—0 limit leads to the quadratic part of the
Hamiltonian

A
O[ua] fddqz [(KQL+BqZ)5aB Thqu_ uauﬁ!

(3.10
from which the propagato@,4(q) defined through
(Ua(@)up(a))=Gap(a) 6% a+a’) (3.1
can be easily obtained
G ( )_ Taaﬁ Ahqi (3 12
«\d Kg*+Bg? (Kgi+Bg)?*’ '

using an identity for inverting matrices of the type

A z=ad,;+Db, (3.13
B B
namely,
Al 15 —b
“B— 3 %P a(a+bn)’
1 b
niog 5043— ; (314)

After replicating and integrating over the disorder using Egs.

(2.13, (2.14), and(2.22), we obtain

=f [du,Je HlUalT, (3.7

In three dimensions, foA,= A, =0 (disorder-free liquid
crysta) at low temperaturesT(<Tya), the smecticA phase
is described by a fixed plane, defined by the bare valués of
andB. Our initial goal is to establish how this fixed plane is

The effective translationally invariant replicated Hamiltonian destabilized by the disorder, i.e., by the random field and

H[u,] is given by

H[ua]— 1> —(vzu )2+ —(a U,) )

a=1
L LA,
— _ _ 2

_AVCOE{qO(ua_uB)]):|1 (3.9

where Ay =|,|?W. The statistical symmetry under global

random tilt terms. The calculation is a generalization of that
for the 2D random-fiel& Y modef+? to the anisotropic elas-
ticity of the smecticA in three dimensions. We employ the
standard momentum shell renormalization  group
transformatiorf® by writing the displacement field as

Ua(r)=ug (N +ug(r), (3.19

integrating perturbatively im\,, the high wave-vector part
u_(r), nonvanishing inside a thin cylindrical momentum
shell

Ae '<|q,|<A, (3.163

rotation forces the disorder generated replica off-diagonal

terms to be invariant undeu,(r)—u,(r)+@-r, . In the
replicated effective Hamiltonian E3.8) the nonlinearities

— o< g,<, (3.160

only depend on the difference between different replica fieldgnd rescaling the lengths and long wavelength part of the
and therefore do not depend on the “center of mass” fieldfields with
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ro=e'r, (3.173 AV
z=e"'7', (3.17h
us(r=e?lu,(r’), (3.179

so as to restore the ultraviolet cutoff backAo Because the
random-field nonlinearity is a periodic function, it is conve-
nient (but not necessajyo take the arbitrary field dimension
¢=0, thereby preserving the periodr2q, under the renor-

malization group transformatidtt.Under this transformation Tp TN A T
the resulting effective Hamiltonian functional can be restored
into its original form Eq.(3.8) with effective I-dependent FIG. 6. A fixed line characterizing the pinned glassy phase of a

COUpliI"Ig_S. We relegate the details Of these Calculations tﬂ]ree_dimensiona| smedctic in aerog@l): 1677+ KB/qg is the pin_
Appendix A, and focus here on the results. These can bging transition temperature, taking plaetthin the 3D SBG phase.
succinctly summarized in the renormalization group flowThis transition only survives within the harmonic elastic approxi-

equations mation.
dA (1) ) ~
dl :(2+ w— ﬂ)AV_AlAv: (318a AVEAlA\/, (32@
dK (1) whose recursion flow equation can be easily obtained by
T:(w_Z)K' (3.18b combining Eqs(3.183, (3.18b, and(3.189
dB(l) dA (1) -~
5 =(2- B, (3.180 dVI =(4—-nAy—A7,
dAn(l) ) ~ o~
T wAp+AAY, (3.180 =[4—75n—Ay]Ay. (3.21
where we have defined Obviously this flow equation is independent of the arbitrary
rescaling exponenb and has the same form as that foy,
asT Eq. (3.183, with w=2.
= 47JKB’ (3.193 From Eq.(3.21), we then find that fom<4 (large elastic

moduli and low temperatuye or, equivalently, below the
pinning transition temperaturg,, given by

4
do
A= (3.19h
87 A*VK"B . _1677' KB a2
c dg L |
(3.199

A= 6 3R’

AmAPVKTB the smectic A,=0) fixed plane is unstable to disorder.
and c is a dimensionless number of order 1. Note thatHOWGVGf, the initial runaway of disorder is halted by the
d#n(1)/d1=0, exactly. nonlinear terms iM,, which terminate the flow at a new

As discussed above, the symmetry of the effective Hamilfinite disorder fixed line,
tonianH in Eq. (3.8 guarantees that the flow equations for
K(l) andB(l) areexact(arising from simple length rescal-
ing with no diagrammaticcorrection$, ignoring (for now)
the effects of both anharmonic elastic terms and topological
defect loops inu; the latter become important at high tem- This new fixed line then describes a randomly pinned, glassy
peratures, where they induce the NA transition, by drivingsmectic-A phase, analogous to the 2D super-rough phase of
the bulk modulus to zero'®?|t is convenient to choose the crystal surface on a random substfaamd the 1 vortex
anisotropy exponent»=2, because such a choice keepsglass phase of flux-line vorticésonfined to a planein type
K(l) and B(l), Egs.(3.18h,(3.189, fixed under the RG. Il superconductor$ This RG flow structure is summarized in
Although itappearsfrom Eq.(3.183 that the glass transition Fig. 6.
temperaturgrelevance and irrelevance df,) depends on It is important to note that the transition &, illustrated
the arbitrary choice ob, it does not. This choice is actually in Fig. 6, is taking placevithin the SBG phase. That i$,, is
completely arbitrary and does not affect gplyysicalquan-  a transition from the T>T,) SBG phase, within which the
tities. This can be seen by looking at the prodanension- translational random field disorddy, is unimportant at long
lesscoupling constant scales, to the{<T,) SBG phase, in which is relevant

AN (T)y=4—1. (3.23
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and flows to a nontrivial fixed line. Thi§, pinning transi-  cogqy(u,, —up)] operator(the random field disordgis inde-
tion must not be confused with the dlstlnct higher temperapendentof A,, to all orders in perturbation theory ify,, .
ture transition, occuring just beloily, , in which the puta-  This can be easily seen to first order im,
tive unpinned T>T;) SBG “melts” into the NEG by

unbinding of dislocations. It is most certain that the transi- 3 2

tion atT,, derived here within the harmonic elastic approxi< Hiny = f d°r 2, (cogdo(Us—Up)])>,

mation, will be converted into a crossover by the neglected

elastic nonlinearities, analyzed in Secs. VI-VIIl. However, it Ay o
is possible that a rounded “ghost” of the transitiorTatwill =Re7f d3r2 e'qo(“a‘”,e)<e'qo(“a‘“ﬁ)>>
persist in our full theory and will therefore be experimentally B
observable. A

It is enlightening to contrast these RG flows, with their — _VJ' der> coggo(us—us) e fas
perturbative fixed line, Eq(3.23, at which the relevant T aB @ "B ’

flows of Ay terminate, with those of disorder—frebermgl A
sine-Gordon modelsge.g., thermal roughening transitioxi _Bv| 3 < <y1a—7l(1-8,
where the cosine coupling runs away to strong coupling at B J d rz cogdo(U, —Ug)1e b o,

low temperatures. In these latter systems the cosine potential (3.29
becomes relevant upon lowering the temperature, with thsv here
system settling down in one of the minima of tlueriodic

pinning potential. As the cosine coupling continues to grow, — 2 _ _

it further reduces thermal fluctuations, suppressing their abil- f %l Caa(r=0)-G, pr=0)l, (3.29
ity to average away its pinning effects, thereby further in-in G__(0) there is no implied sum over, and

creasing its pinning influence. Mathematically this manifests

itself in the positivenonlinear contribution to the flow equa- qu iqr

tion for the cosine coupling, which results in the absence of aﬁ(r) J’ -1 (27-; L2 Gop(@)e™”. (3.26
a stablefinite coupling fixed line. In contrast, for disordered

problems of the type considered here, as the disorder bdlsing

comes relevant at low temperatures and begins to grow, it

leads to fluctuationgroughening that are larger than those () —G,4(q) =
from purely thermal fluctuation’s.This disorder-enhanced “ ap
roughening subsequently leads to a more effective averagi
away of the pinning potential, thereby suppressing its effect

beyond a c_ertal_n strength. MgtheNmZatlcally this is capturen given in Eq.(3.193. Performing length rescalings, Eqs.
by thenegativesign of the nonlineaay, term in the flow Eq. (3.17), to restore the new cutofie™' back toA gives, to

(3.22), which results in the termination of the flow Ef\/ and  first order inAy, the flow equation fon\,, Eq.(3.183.
the glassy fixed line described by E@.23. To see that the recursion relation fax,, Eq. (3.21), is
The flow Eq.(3.2) also implies that the random-field independent ofA,, to all orders inAy, in this otherwise
disorder is irrelevant forp>4. Since the bulk modulu8  harmonic theory, one can return to the nonreplicated Hamil-
vanishes, whil&k remains finite througfy,, 7 diverges as  tonian, Eq.(3.5) and completely eliminate the random tilt
T—Tya, and hence, sufficiently close to the NA transition field h(r) via a change of variables
temperaturd , , We areguaranteedo have a range of tem-
peraturegwithin the smectic phag@ver which the random- u(r)y=u’(r)+1f(r), (3.28
field disorder is irrelevant. However, as we will see below,
because tilt disorded,, is a strongly relevant perturbation,
the three-dimensional quasi-long-range smectic orderjfor
>4 will be converted into short-range correlations, even
when the random field disordéy,, is irrelevant. (=BaZ+KVHf(r)=V, -h(r). (3.29
It is essential to stress that the renormalization group flow
diagram described abovee., relevance fom<4 and irrel- Inserting Eq.(3.28 into Eq. (3.5, and dropping terms that
evance forp>4 of the random-field disordgsurvives even only depend on the random tilt field(r), since, as discussed
despite the strong relevance and runaway of the random tikarlier, these have no effect any correlation functions, we
coupling Ay,. This occurs because the dimension of thehave

.
E—— Y 3.2
Kol B 1~ o) (320

NFhich is obviously independent of the tilt-disorder coupling
n, and Fourier transforming, we obtain thg-independent

with f(r) completely determined by the random tilt field
h(r) via

H= [ a2 (0,124 S (V224 h(r)-V '+ Bayf U +KVZFV2U" =gl [V (r)e9o! (D4 v7* (r)e~ 90t (0]
2 z 2 1 L z'Yz 1 1 0 ’

(3.30
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where we have definedt’ (r)=e'%'(V(r). Note that the the high-temperature phase: a runawasgfl) to infinity as
statisticsof V'(r) are exactly the same as tisétisticsof | . in the low-temperature phase, as opposed to a constant
V(r), since all we have done is added a new random phasghaﬂw) in the high-temperature pha&én our problem,

factor toV(r). But since the phase Af(r) was uniformly however, A, (1) runs away to infinity inboth phases, and

distributed between 0 and= the phase oV’ (r) will also ; . .
be. Hence, its statistics are the same. Therefore, the mod%§ymptot|cally in exactly the same wayne can see this by

Eq. (3.30 is only affected by the presence of the random tilt SOlving Eq.(3.33 with A\(1) replaced by its nonzero fixed
field h(r) through the terms point valueAy, given by Eq.(3.23, finding

2
Cqo

2
(o] ~
% e~ (8% (339

— d . ’ ’ 2 2. ~ ~
AH fd rIn(r)-V, u’+Ba,fa,u’ +KV2fv2u'], 5,4 C% )2
(3.31) A

which, after integration by parts, vanish by virtue of the yhich has the same asymptotic behavior as= (namely,
choice Eq.(3.29. Thus, the new Hamiltonian is unaffected X e?) as in the low-temperature phase. Nonuniversal con-
by the random fieldh(r). Since the partition function is ob- ~"0 '

viously invariant under a change of variables, it, and, thereStants(such ashpo) can tl)e different in the low-temperature
fore, the recursion relations for the parametBsk, and Phase, but the s_callr?@{) is not. We will see in the next
most importantlyA,,, cannot be affected biy(r), and hence section that this implies thaqual timecorrelation functions
are independent ak,,. The results described above for the SC@l€ in exactly the same way in both the pinnge-@) and
disordered three-dimensional smecticphase are quite NOnpPinned @>4) phase. The only difference between these
closely analogous to those of Cardy and Ostlund for randorfV0 Phases is in their dynamics, which are divergently
symmetry breaking fields in the two-dimensionY slower in the rgndﬁomly pinned phase, as we shall show in a
model® except that for pinned smectics, the random-fielgfuture p_Ub“C‘at'O”Z' _
disorder(the cosing is guaranteed to become irrelevant as.  Physically the strong relevance 4f, is expected, because
T Ty since 7(T—Tya) — . in the smecticA phase the rotational invariancespontane-
AsNéan be seen from the detailed renormalization grOUI5)uslybroken. Since each realization of the random tilt disor-
(RG) analysis of Appendix A and Eq3.18d, even if the der explicitly breaks the rotational invariandpreserving it
bareA,=0 (i.e., no initial tilt disordey, this type of disorder only statistically, the. smgctic layer orientation has a diver-
is generated by the random-field disordex,] after the gent_ response tdy, t_'lt dlsorder_. At long scales vyheréh
high-wave-vector degrees of freedom are integrated out. 15°0 Is no Iopger yahd,.th@uasrlong—re_mgeorder, |mpl|eq
contrast to the 2D random-fiellY model, where the gener- Y the nontrivial fixed line, Eq(3.23, will undergo a rapid
atedA,, disorder is only marginally relevant and only weakly crossover to short-range correlatlo_ns :,(a(r), even in the
affects the quasi-long-range ordé®@LRO) found for A, regime (7>4) where the 'ram'jor'n—fleld disordéwhich al-
=0 [converting Inf) phase correlations to(r)], for the 3D  Ways generates random tilfy) is irrelevant.
smecticA phase the\y tilt disorder is strongly relevant. As
we will see in the next section, the dimensionless coupling  |v. RANDOM TILT-ONLY HARMONIC ELASTIC

Ap(h=

that determines the effect of the tilt disorder is (TOPOLOGICALLY ORDERED ) MODEL
An=AA, (3.32 For finite Ay, both the random field4,,) and random tilt
. . ] (Ay) disorders must be treated simultaneously. Since, as de-
From the recursion relations E¢S8.189—(3.180 we find scribed above, our conclusions about the phase diagram for
- 5 A\, are not affected by the tilt disordéy;,, we can study the
dAh—ZZ ZCqOZZ 33 effect of A;, on smecticA order within the regimenp>4,
Tar cAnt Rz AV (333 \here the random-field disorder is irrelevant, In this regime,

_ ~ at long enough scales the smedhghase is effectively sub-
For n>4, Ay(1)—0 (as we have segnand sodAy/dl  jected to tilt disorder only. We can therefore safely Agt

=2A,,, which is trivially solved to give =0 and analyze exactly the remaining quadratic theory for
any value ofA, . As argued in the previous section, and to be
An(h=4A.e?, (3.349  shown in the next, the scaling of the results we find here will

5 also apply in the pinned phase whewez4 and the cosine
where A,, is the nonuniversal dimensionless “bare” cou- disorder is relevant.
pling, Eq. (3.32. Thus, we see that the tilt disorder is  Since, within the harmonic-elastic approximation of this
strongly relevant, in contrast to the behavior of the two-section, the effective Hamiltonian is quadratic in the dis-
dimensional random fielXY model® for which the tilt dis-  placement fieldsi, whenA, =0 all the correlation functions
order was marginal, in the RG sense, in the phase in whicban be computed exactly. In particular the quantity of inter-
the cosine was irrelevant. est is

For <4, Ay—A%>0, with A} given by Eq.(3.23.

Now, in t~he 2D random fielcKY model, the existence of a C(r, ,2)={[u(r,,z)—u(0,0)]%). (4.2)
nonzero A, in the low-temperature phase implied com-

pletely different behavior for the tilt coupling (1) than in  Fourier transforming the fields, we get
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’

. (%qudg, . (u(@u(g) Ap 2 5} _ 2
C(rL,z)—Zf (2m)? (1—¢€'d )m_ (4.2 ST 4AN|z|+r%In it Nz|>r?,
_ AL,<L?,

We can write the quenched and thermal averaged CA~<
(u(q)u(qg")) in terms of their replicated correlation function: Ap ;2 n( 2\/?\_|-z) \|z|<r?
16mBA3 * rp )’ -
(u(q)u(a"))=(ua(aua(a")), \ AL,<L?.

(4.7)

Note that, although in principle the second In|L,/Z) term
in the\|z|>r? expansion ofC, dominates thé\|z| term in

where no sum on is implied, and the replica propagator "€ thermodynamic limit,—ce (taking that limit at fixed |
G,p is given by Eq.(3.12. Using that equation, and Eg. a}nd 2), in practice, for any r_easonable s;z/stem size th_e
(4.3 for the correlation function, gives first (.)\|z|) term actually dominates ¥|z|/r{ gets apprecia-
bly bigger than 1.

An unusual feature of this result is that not only do the
mean squared fluctuations aof at a given point in space
diverge as a function of system size, but even rhlative
displacement of two points witlinite separations r(, ,z)
diverge as the system sizek (,L,) go to infinity. This is
because the mean squared real spaentational fluctua-

=5%0+0")G,.(0),
(4.3

C(r, ,2)=C+(r ,z)+Cu(r, ,2), (4.4

where we have separat&fr, ,z) into “thermal” C; and
“disorder” (frozen C, parts, given by

o ZTJ d%q,dg, 1—¢€'9" tions(|sn(r)|?) also diverge a& , ,—:
L 3 4 2
(2m)” Kai+Bq, (Jon(n]A=(V,un?),
T Zn T, 3 fdzCthIz qt
2m KB\ 12 A’ "] (2m)® (Kq!+Bg)?’
T 1_[-r? ___on &',
- R BT ki ~ 16n7BA ey
2m JKB In a 2E <4)\|Z|) , g >max[(\Ly) "ML Af
4.5 A, _
o 2—87782)\3ln(mm[ VAL,L D). (4.9
_ Although not experimentally relevant, it is instructive to
d?q, dq, qf(l—e‘q'r) generalize this calculation to spatial dimensidns3. Keep-
Ca=2Ay 27)° (Kq'+BP)?’ ing only the tilt disordeqwe will return to justify this later;
L z and repeating the calculation just presented, we find
- 2
Ay 2 IR
- —rila|Z| CA(r, ,z 4.9
32w52x3[4)‘|z|e ] alre 2)e Apr®79, \z|<r?, 49
,| _ [ —4\L, _ —ri which diverges at large distances for di<5. This diver-
+ri EI( 2 +Ei e gence signals the destruction by tilt disorder of {qaasiy
+ long-ranged smectic translational order 5. Note that
L, this divergence occurs even for arbitrarily weak disorder
+21In r—) , (4.6)  (i.e., arbitrarily smallA,). This agrees with the experimental
L

observation that, even when the aerogel density becomes
) . o ) very low, smectic translational order is still destroyed, as
where Ei(x) is the exponential integral function, and, as paniested in the nonzero width of the x-ray scattering peaks
promised, the effective dimensionless couplihg, defined associated with the smectic layering.

in Eq. (3.32, naturally appears above. In the above, we have How are these results, Et.1), for the equal time corre-
considered a finite system whose shape is a rectangular pastion functions modified by the presence of the cosiae-
allelepiped of linear dimensiorls; XL, XL,, L, being the  dom field disorder term in Eqs(3.4),(3.9? Aside from a
length of the system along the orderi(gy direction. Unless  temperature-dependent modification of the prefacigr

it has a huge aspect ratio, such that-LZ/A>L, , any — Ap+const(T,—T)?, belowd=5, they are not modified at
large systeml(, ,L,>\) will have AL ,< Lf. In this limit, all. We will now demonstrate this fact id=3, and defer to
the asymptotic behaviors @, are Sec. VIl the demonstration for8d<5.
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For »>4, the cosine clearly does not affect the long dis-correlation functions at small wave vector to those at large
tance behavior, since its coefficient, is irrelevant(i.e.,  wave vector, where perturbation theory should be reliable.
flows to zero under renormalizatiprFurthermore, we need Indeed, simply repeating for correlation functions the rescal-
not worry that it might bedangerouslyirrelevant, since we ings done earlier for the partition function, we can show that
have just calculated correlation functions witky set equal

to zero, and encountered no difficulties. Cpl0;B(0),K(0),Ap(0),A(0)]
What happens wity<4? Forn near 4 (4- n<<1), the

fixed point valueA¥ =4— 7 of A, is also<1, and our per- EM

turbative (in A,) renormalization group remains valid. We s%(q+q’)

can therefore use this RG to calculate the equal time corre-
lations for <4 and 4- »<<1. This calculation must itself

be done perturbatively il% , since the full Hamiltonian (4.10

=el?)IC glelq, ,e'a,;B(1),K(1),An(1),Ay(D].

with AV%O is not quadratic. However, such a perturbationyqy, in order to insure that the rescaled correlation function
theory diverges for small wave vectors whgrc4. Indeed, on the right-hand side of this expression can be safely evalu-

the growth under the RG of smally for »<4 is a signal  ated using perturbation theory &, (1), we will choosel
and a consequence of this divergence. Fortunately, we casuch thate'q, =A, the ultraviolet cutoff. With this choice,
use the renormalization group transformation to relate theve have

2+t w
Cag[q;B(O),K(O),Ah(o),Av(O)]=(I) Copl A (A1G ) az;BI™), K1), Ap(1%),Av(1%)], (4.11)
|
wherel*=In(A/q,), and B=B(0), K=K(0), A,=A(0), A\2-@
Ay=A(0). Note thatl* —» asq, —0. B(I*):(I) B, (4.143

To calculate the right-hand side of E¢.11) in perturba-

tion theory in Ay(I*), we expand the cosine in the full A\ @2
Hamiltonian Eq.(3.8) to quadratic order, obtaining, in Fou- K(I*):(—) K, (4.14h
rier space .
1 PITIR 2 A (|*)—Z“(|*) (4.149
= — h - T .
Hlu)=5 | | B rka) S lua) )
1 ! A\ cqj -
- 2 2 _ 2 |2 *2
+ Z(AthJFZAv%)a’BE:l lua(a)—ug(a)]?], (qi) Ap+ A2A1AV ,
4.1 ~
412 R
which we immediately recognize &entical to the tilt-only v(I™)= A1%) (4.149
Hamiltonian Eq.(3.10), exceptfor the replacement,— Ay, 1
+2Ay95/q? . Thus, we can immediately calculate the corre- A o2k
lation function on the right-hand side of E@..11) by simply - (_) v
making this replacement in the tilt only propagator Eg. a. A’
(3.12, obtaining whereA;=A,(I=0), and in this last equation we have as-
: . i : :
Capl AL (A/QL) G BO*),K(1%), A1), Ay(1%)] §umed thay, is smifﬁmently'small that* =In(A/q)) is suf
ficiently large that A\ (I*) will have flown to very near its
_ Tup n-dependent fixed point valu%* , as given by Eq(3.23.
K(*)A*+B(1*)(A/g,)*°dZ Likewise, in the expression fak(l), we have used the so-
o o lution Eq. (3.35 for An(l), the effective tilt coupling con-
Ap(I™)A=+2Ay(1") g stant, and again assumed th&t=In(A/q, ) is very large, so

(4.13 that the secondl{independentterm in Eq.(3.39 is negli-

gible compared to the first, exponentially growing term. Both
To finish writing this expression entirely in terms gf we  of these approximations become asymptoticakactasq,
need to calculate the Hamiltonian parametB($), K(l), —0, andl*, as a result;~<. Inserting these results for the
Ap(l), andAy(l) from the recursion relations Eg8.183a—  renormalized elastic and coupling constants into the expres-
(3.189 and evaluate them &t =In(A/q,). We find sion Eq.(4.13 for the rescaled correlation function, and us-

[K(I*)A*+B(1*)(Alq,)?°q?4)%
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ing that result in the matching formula Eq4.1) for the  phases, the existence of the transitionTat to the low-
original correlation function at small wave-vector yields, af-temperature translationally pinneg€4) phasecanstill in

ter a bit of algebra principle be detected in a static experiment. This can be seen
by noting that in the presence of such a transition, all
Cop(0;B,K,A,Ay) Ap-dependent physical quantities, which would otherwise be
smooth functions of temperature, avenanalyticin T at T,, .
Téup This is because of the additional contributionﬁﬁff in Eq.
:qu+Bq§ (4.15, f[eroportionaI to (K{‘,)Zoc|'2rp—T|2, that arises below
Tp, AP (T)=An+ const(T,—T)“. As a result, other physi-
. (An+CasAs2IA%A)G? +(203A% 1A (q, IA)* cal quantities derived from, will have a discontinuous sec-

, ond derivative. Although this is a quite subtle effect, it is an
unambiguous static experimental signature of the transition
(4.15 to the pinned smectic glass phaseTat T,,. However, as
briefly discussed just below Fig. 6, we demonstrate in Secs.
where all of the parameter&((B,Ap,,A;) in this expression v/|_v||| that this transition, derived here within the har-
arebare parametersi.e., evaluated dt=0). This expression  monic elastic theory, will be rounded once nonlinear elastic
is identical to the result in theAy irrelevant phase >4)  effects are taken into account. It is, however possible, that
except for:(i) the A¥(q, /A)* term, which is clearly negli- rounded remnants of the nonanalyticitiesTat, discussed
gible (as q, —0) relative to the f,+c gZA%%/A%A,)g?>  @bove, will still be experimentally observable.
term, and(ii) the enhancement of the strength of the tilt The static correlation function derived in Hg.13 shows
disorder according ty— A+ c q(ZJZT,Z/AZAl. The hereto- that long-ranged smectic translational order is destroyed in

fore neglected effects of thenharmonicterms coming from d=3. To make quantitative comparisons with experiments, it
: : - is useful to calculate translational correlation lenggfisand

the cosine on theescaledcorrelation functiorfand hence on 5. whose inverses will give the width of the brioadened

the original one, since they are related by the matching forsz > ™" \ - )

mula), should be even smaller siné%f, is <1 for 4— 7 x-ray diffraction peaks. These correlation lengths are the dis-

. . . L n ndz at which the mean red relative displace-
<1. As discussed earlier, this argumergnnotbe invali- tancesr, andzat which the mean squared relative displace

. . . 2
dated by possible infrared divergences in the perturbatiorr{nent correlation functiore(r, ,2) is of ordera’, wherea

theory, since we are calculating threscaled correlation =2m/qo s a lattice constant,
Y g : When there is no disordeA(,=0), the above criterion
function atlarge wave vector. The effects of these diver-

(Kg? +Bq?)?

gences on the short wavelength correlation functionsrare leads to

plicitly included in the matching expression E.11) T a2 KE

through our use of the renormalized parameters on the right- ¢ =aem K FT, (4.163
hand side, since these renormalizations include anharmonic

effects. =\EL (4.16bH

Hence, at long wavelengths, aside from the modification
of the prefactorA,— Ap+const(T,—T)? (for T<T,), we

X ) As discussed in the extensive literature on the subfect,
recover the same asymptotic form for thqual-timecorre-

X ) ) ) however, the slow(logarithmig divergence of the thermal
lation functions in the randomly pinnedp&4) and non- part C; of C implies that, for y<2, the x-ray scattering

pinned (7>4) phases. Although, strictly speaking, we havepeaks danot, in fact, become broad fdg, | <1/£™; instead,

only de_rived _this_ result neap=4, where our pertur_bation they become power-law divergences, rather than the Lorent-
theory is valid, it must apply throughout the entire low- ;345 one might otherwise expect.

temperature phase, sinoaly a phase transition can change  1he more strongly divergent pa@, of C doeslead to
the asymptotic scaling of the correlation functions. Barring enuine broadening qu|<1/§x where£”  are defined
the existence of such a phase transition controlled by som s those length scéldﬁe Va|LjéZS, off anidyzz) at which
strong coupling fixed point, which we of course cannot ruleC (r, ,2)=a’ Having co.r,nputec[: wﬁhin the elastically
out with the perturbative analysis performed here, our resultﬁgrm%’nic thebry we thereby find A

for the scaling behavior of the equal-timeu correlation '
functions should persist all the way down tg=0; i.e.,

throughout the smectic phase. gX:a287TKB’ 4.173

In any case, in this elastically harmonic phongmo- z Ap
dislocation$ model, there iguaranteedo be a pinned phase
below »=4 whosestatic correlation functions have (q) ~B2\3 12
dependencéaentical at long wavelengths, with those in the §f=4a —X) (4.17p
nonpinned phase abowg=4. The distinction between these Apin(2VNL/£Y)
phases lies in the temperature dependence of the parameters
in these static correlation functiorias we discuss below In fact, we powder average the x-ray scattering, since, as
and in their dynamical properties. we will show in a moment, the smectic in aerogel lacks

That is, it is important to note that in spite of the abovelong-ranged orientational order, as well as translational or-
finding that static correlation functiorscale (with position  der. The broading of x-ray scattering that results from this
or wave vector identically in both then>4 and <4 averaging will have its width determined entirely 5?‘:
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the correlation functions found above is modified by elastic
, (4.189  nonlinearities(which lead to anomalous elasticitywhich
8mKBa? also have a nontrivial effect on dislocations, as we demon-
strate in Sec. VILI.

_ Ay
Kpowde%(f?) 1=

a gratifyingly simple prediction.
Although it is more difficult to measure experimentally, it
is nonetheless of interest to calculate the harmonic orienta- V- DISLOCATIONS IN THE RANDOM TILT-ONLY

tional correlation Iengths‘f;;‘, which are defined as the val- HARMONIC MODEL

ues ofL, , beyond which the mean squared orientational | the previous sections, we have shown that there is no
fluctuations(| 5n|?) get to be of order 1. If we ignore dislo- |ong-ranged smectic translational order in the presence of the
cations and anharmonic elasticity, we can obtain theseandom pinning and tilting fields. However, this by itself is

lengths by simply equating the “pure phonon” result Eq. not sufficient to prove that there is no phase transition in this

(4.8) for (|4n|?) to 1. This gives model. Indeed, we know of many examples of transitions
« between two phases whidioth lack long-ranged order. The
(B*h:ae47782)\3/Ah:ae}‘§z/2a2, (4193  Kosterlitz-Thouless transition in thd=2 XY modef* is

perhaps the most famous example. In that problem, the tran-
a2 x ., sition is associated not with the disappearance of long-
Te"fz’a , (4.19h ranged order, but, rather, with the unbinding of neutral pairs
of topological defectgvorticeg with increasing temperature.

In the next section, we will show that, unsurprisingly, these It is reasonable, therefore, to ask whether the same thing
lengths give the distance beyond which dislocations unbind¢an happen in our model: are topological defétts, smec-
invalidating the purely elastic phonon theory studied in thistic dislocation loops still bound even in the translationally
section. disordered phase we have discussed? If they were, then an
Thus, orientational order persists outrtmichlarger dis- ~ €quilibrium phase transition would be required to produce
tances than translational order, in the limit of weak disordethe expected high temperature phase, in which dislocations
where all the correlation lengths get large. Indeed, in thisare unbound.
limit the orientational correlation lengths grow exponentially ~ Of course, the divergences that destroy long-ranged order
with the translational ones. This qualitatively agrees withare much strongepower-law in our model ford<<5 than in
experimental determinations of the orientational correlatiorthe 2D XY model, where they are logarithmic. However,

length, as indirectly inferred from specific heat data and rethere are examples of phases much more strongly disordered
lated measurement8. than the Kosterlitz-Thouless phase in which topological de-

In Sec. VI, we will show that anharmonic elastic effects, fects nonetheless remain boutidFurthermore, there has
which we have ignored up to now, change the relation bebeen considerable speculation recehtly that a “Bragg
tween the x-ray correlation lengtff’ and the orientational glass” phase might exist in pinned superconducting flux-line
correlation Iengthsg(fyz from exponential to power law. lattices. This “Bragg glass” would be a phase in which the

However, the fact that® , both remains X continues to random pinning destroyed the translational order of the flux
hold vaIi’dating our uselgf clastic theo(whzich was predi- lattice, but didnotinduce dislocations in the lattice. It seems

cated on the assumption that orientational fluctuations arguite reasonable, therefore, to ask whether an analogous

small, to calculate the x-ray correlation lengths. In any Casephase occurs in smectics. This section addresses this ques-

it would be very interesting to measure the relation betweert\'on’ and shows analytically that smectic Bragg glass does

translational and orientational correlation lengths as a funchot occur ind=3 (within a model withharmonicelasticity.

tion of temperature We will show later that this result maybe invalidated by
All of the above results apply subject to our two initial ela_?ﬂc atnh?rmonl_c thffeCtS' viic th is the “tilt onlv”
assumptions(1) that dislocations weraot generated by the g Ie?)ar '29 Eom ofour Engy Ic 'thefc)hry IS de : otny
disorder, and?2) that anharmonic terms in theasticHamil- m? \?’ y which we m:aré_ 3.5 V&” I'e rar;]_ on;] poten-
tonian could be neglected. In the next section, we will show/@ (r) set to zero. As IScussed ear |er,'t IS t eory cor-
that, if we continue to assuni@), assumptior(1) is wrong: rectly repr.oduces all of the static corr_elatlon functions in
in the harmonicelastic approximation, ind@dislocationsare ~ P°th the pinned (T<T,) and the nonpinnedT(>Ty) re-
created even by arbitrarily weak disorder. gimes. However, in view of the very strong irrelevance of

However, the effects of these dislocations turn out, in the®v 10 the static correlation function iboth phases in the
weak disorder limit, to be felt only on length scales longer. Phonon only” approximation, it seems quite plausible that

than the smaller of the orientational lengif, and the dis- it is also irrelevant when dislocations are included. Indeed
\Z

. o D ‘ we will prove this in Sec. IX.
location unbinding Ieng_tkEL’Z, both Qf which aremuch SettingV(r) =0 in the Hamiltonian Eq(3.5) reduces it to
longer than the translational correlation lengths. Thus, our .

; . . .~ a quadratic theory

above calculations of the correlation lengths remain valid.
However, in the presence of these unbound dislocation B K
loops, the smectiq glass phase is destroyed. !t may bg re- H[u]=j ddr[g(azu)% E(Vfu)2+ h(r).VLu}
placed by a nematic glass phase, however, as discussed in the 5.1
Introduction. The static properties of our system in the pres- '
ence of dislocations are analytically accessible, and we andhe effect of dislocations on such a theory can then be

lyze them in the next section. Furthermore, the behavior ofreated using the techniques that many auftidfs*®have

2
oh_&

z I

8mB2\3/Ay, _
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the “charge” or number of excess layers associated with the

+H-|-|-|—H-|—|'|’H‘H—H‘|’|‘|‘|‘|“H‘H‘|'|'|' dislocation. Note thaWN; is independent ofs;, since the

1—H—H—H—H—I—|;t ||||||||I|||||I|||||I|||||||I||i_| charge of a given line is constant along the line defect. Fur-
A e - thermore, Eq(5.3) implies that

LU IR o E S VUV
R V-m(r)=0, (5.6

FIG. 7. Anedgedislocation in the smectic liquid crystal, with which simply means that dislocation lines cannot end in the
the core coming out of the page at the position indicated by the lazpulk of the sample; they must either form closed loops or
“T" symbol. extend entirely through the system.

Now, our procedure for adding dislocation lines to our
applied to a variety of disorder free systems, including smecprevious pure phonon model E@G.1) is the following stan-
tics. dard one. We separate the field- Vu into phonon(single-

Most aspects of this procedure are already described quitgalued and dislocatior(singulay parts
well in the literature; therefore, our explanation will be brief
until we come to those points that are affected by the pres- V=Vt Vg, (5.7

ence of the disorder. We begin by recalling the definition of . . N . .
dislocations in smectic¥. Thegsimglest typegis an edge dis- where the dislocation pat minimizes® the elastic Hamil-

ocaton ustated n Fi. 7 e
This is the edge of an extra smectic layer inserted into the., .~ .~ /° . . . PP '
his uniquely determinesy(r) given the dislocation con-

smectic. Clearly, a pure edge dislocation must form a close ) X -
loop lying in the smectic plane, as illustrated in Fig. 8. More igurationm(r). We then insert the decomposition H§.7)

generally, dislocations can tip out of the plane of the smectié)ack into the elastic Hamiltonian E(b.1). As a result of the

layers. An extreme case is a screw dislocation, which rungonst_rucnon thatvg(r) minimizes Eq._(5.1), all the cross
perpendicularto the layers. couplings betweeng(r) andvy(r) vanish. We are thus left

Mathematically a dislocation is a line, or, more generally,WIth a decoupled .elastlc Hamlltoman f"".‘(r.)’ which we
a curve, with the property that when the gradient of the dis<an use as a basis for studying the statistical mechanics of
placemenu is integrated around any curve that encloses théjlsll_ocatlons. impl hi d The Eul
dislocation, the result is not zero, as it would be in a dislo—L et us now |mp§m_entd L IS proceaure. 1 e kuler-
cation free system, but rather an integral multipleof the ~ -29range equation, obtained by minimizing E8.1), is

layer spacinga. Mathematically, this means (Baﬁ—KVj)ud(r)nLVL~h(r)=0. (5.9
é Vu-di=aN (5.2) Rewriting this in terms of/y4(r)=Vugy(r) gives
o . 1
or, in differential form; azvé—)\ZVfVL~vé+ gvl -h(r)=0, (5.9
VXxv=m, 5.3 wherex?=K/B.
where we have defined In Fourier space, this becomes
v=Vu, (5.9 1
ai+rfaia vg+ ga-h(@=0. (510
and

The constraint Eq(5.3 becomes, in Fourier space,

-3 [ ant(s)STr-ns)ds. 69 |
iqXvg=m, (5.11
wheres; parametrizes théth dislocation loopyi(s;) is the  which has the general solution
position of that loop{;(s;) is its local unit tangent, anill,
igxXm
Vg= 7 +q¢, (5.12

where ¢ is the smooth elastic distortion around the disloca-
tion line, to be determined by the Euler-Lagrange equation
(5.9). Inserting the above expression fgf into Eqg. (5.10

and solving for¢ gives

iq(1—N\20°%) e, ;gim; .h
¢:_ qz( qLZ) ZIjQI i %F ' (5.13)
I‘qq q

where we have defined the inverse of the smectic propagator

FIG. 8. A three-dimensional illustration of dislocation loop in

— 2 4
the smectic liquid crystal. Tq=0q;+\q . (5.149



PRB 60 SMECTIC LIQUID CRYSTALS IN RANDOM ENVIRONMENTS 225

Inserting this into Eq.(5.12 and then substituting this where the sum ovefm} is now unconstrained. The con-
final expression fowy into the original elastic Hamiltonian straint V-m(r)=0 is enforced by integration ovef(r),
Eq. (5.1 gives the defect interaction Hamiltonian since

Hy= j
d q
(5.15 where thes is a Kronecker delta, sinom d?/a, and, hence,

2 .
whereP::(q) = 85 — i q/q? , a(q) (not to be confused with V-md*/a, are integer valued.
i ij 4479, ) .
the lattice spacing) is a Fourier transform of the quenched _ 'NOW We can “integrate (actually sum by parts, and
field related to the original random tilt fieki(q) via rewrite

h 2mdé(r) i6(r)V-m(r)d?/a
szPﬁmi<q>m,-(—q>+m(q>-a(-m}, AV-min)}= [ TG OT o, 22
q

gxh (zxqg)g-h

q2 quZ

> 6(r)V-m(r)=—2, m(r)-Va(r)+surface terms.
(5.23

and we have dropped unimportant terms that depend only oRUr next step is to introduce a dummy gauge fiéldo
the quenched random variabléand not onm). The first ~Mediate the long-ranged interaction between defect loops in
(h-independentterm in this expression E¢5.15 is just the ~ the Hamiltonian Eq(5.19. This is accomplished by rewrit-
usual smectic dislocation energy for a pure systém. ing the partition function as

To treat this model, we perform a duality transformation.
We begin by putting the model on a simple cubic lattite Z=H f deo(r)dA(r) Z e SIMOAl5(V.A)S(A,),
make the model well defined at short distanc@sw, m(r) r {m(n)}

a(q) =i

qz(l—xqul, (5.16

is defined on the sitess of the lattice, and takes on values (5.24
with
a
m(r) = gz[ne(r).ny(r).ny(r)], (5.17) 1 Td? _
s=?2 m(r)- —|7va(r)+d3[|A(r)+a(r)]
r
where then;’s are integers, and is the cubic lattice constant .
used in the discretization. The partition function for this o 1 | AP
model is then +E°§f|m| + 2T % qu Al%, (5.29
, wherea is the quenched gauge field defined in Eg16). It
Z[h(g)]= > e S, (5.18 s straightforward to check that, upon performing the Gauss-

{m(o} ian integral overA, subject to the indicated constraints

where V-A=A,=0, we recover the original long-ranged interac-

tion between dislocation lines in E(p.15.

1 a4 The two goals of all of these manipulations have now

Im]= T Hg[m]+ Ec; > Im(n|?|, (5.19  been achieved: the sum ¢ém(r)} is now unconstrained, and
r the sum on each site over(r) is now decoupled from that

on every other site. Furthermore, this sum is readily recog-
nized to be nothing more than the “periodic Gaussian”
made famous by Villaifi® The partition function Eq(5.24
can thus be rewritten

and the sum is over all discrete configurationgro$ given
by Eq. (5.17), satisfying the dislocation line continuity con-
straint

V-m=0, (5.20

z=]11 fde(r)dAuw[V-A(r)]é(Az)
where the divergence now representsatiice divergence, r
Hq is given by Eq.(5.15, and we have added a core energy
term E.=,|m(r)|?, to account for energies near the core of Xexr{ v
the defect line that are not accurately treated by our con- P
tinuum elastic theory. We call the reader’s attention to the
fact that the partition function still depends implicitly on the
configuration of the random tilt-disorder fielfls} througha
n Eg.;()?(.)lczéd, we enforce the constralhtm=0 by intro- \(/jvh_ere the well-known z-periodic Villain potentialV(x),

. . . . o efined by
ducing a new auxiliary fieldd(r), rewriting the partition
function Eq.(5.18 as o
e*Vp(X)E E e*anC/T‘Fan (5.27)

n=-—o

N ad }
O(r+x)—6(r)— ?[Ai(r)—lai(r)]

! I 2}, (5.26)

1 q
2T Eq: Kq? A

Z=H fde(r) E e—S[m]+i2re(r)v-m(r)d2/a,
r {m(r)} has the usual property that themaller E./T is (i.e., the

(5.20)  higher the temperature in the original random-tilt smectic
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mode), the sharper the potential minima. Thrasing the  with Sgiven by Eq.(5.28), is thus an implicit function of the
temperature in the original model is equivalentldavering  random tilt field configuratior(r).

the temperature in the dual model E§.26). It is precisely As in the previous section, we will cope with this depen-
this familiar temperature inversion associated with dualitydence ofZ on the quenched field(r) using the replica trick.
that leads to amverted XYtransition for three-dimensional Doing so leads us to calculate

disorder-free superconductbtsand bulk smectic?® It also

plays an important role here, as we shall see in a moment. _ n
Standard universality arguments imply that replacing the Zn:j [da] H [di,][dA,]
periodic potentiaV,(x) in Eg. (5.26 by any other nonsin- at
gular periodic function should not change the universality x e~ SlvaAadp[a]5(V-A,) S(AY), (5.32

class of the transition. In particular, we could replaggx) _
by cosk). The resultant model would be precisely the “fixed with
length” version of the “soft spin,” or Landau-Ginsburg-

i i “action” c ad ad
Wilson model, with thecomplex“action S = {E v ?(iAawLa) lﬂZ'(V_?(iAa'f'a) "
ra
S=> ¢ V+ad('A+a) P (v ad('A+a) W r
= — — (i . — — (I
Tl T T il Ul [+ 2 oo A (533
q,« ar
r
|2+ ulylt |+ 2 = [A(@)]?, (5.28  The probability distributiorP[a] of the fielda in Eq. (5.32
T 2TKq
1

is Gaussian, sincais linear inh and the distribution oh is

wherey(r) is a complex “disorder” parameter field whose Gaussian, defined by E.22). Thus, the distributiorP[a]
phase isd(r); the reduced temperatutequartic couplingu,  is completely specified by the averaggq)a;(—a). This is

andc(T) are parameters of the model with easily evaluated, using the relation E§.16 betweena(q)
andh(q). We find

d?Vp(x)
(M=~ 7O><0(1)' (5298 a(g)a;(—a)=hi(a)ha(—q) (5.349
~EIT < €ikiGk  €zkilk
[2e7E T T<E, (5.298 x( ~ —%qu(l—szﬁ))
TIE,, T>E.. ' q «d

; > h €imndm  €zmlm
perature axis, the reduced temperatuis a monotonically "¢ T
decreasingunction of the temperatur€ (of the original dis- q q@
location loop mode| which vanishes at the mean-field tran-

sition temperaturd ;e of the fixed length model E(5.26). N ( Pij +Q§(ﬁ(1—)\2(ﬁ)2pﬁ
— 2h

Because of the duality transformation’s inversion of the tem- -
qnqz(l_)\ qL) ’

Universality also implies that this “soft-spin” model ? 22

should be in the same universality class as the fixed length q (5.34H

model Eq.(5.26. We shall, therefore, henceforth work with

model Eq.(5.28), because it is more straightforward to ana-where €;j is the usual fully antisymmetric third rank unit

lyze perturbatively. tensor. To obtain the second equality we have used
As we undertake that analysis, it is important to keep inh,(q)h,(—q)=A,d,,, and defined the standard transverse

mind that, as a consequence of the duality inversion of thgrojection operators

temperature axis, therderedphase of the dual model Eq.

(5.28 corresponds to thel_isprdergd(i.e.,‘ dislocation loops Pij= & —aid; /9%, (5.353

unbound phase of the original dislocation loop gas model.

That is, the low dual-temperature phase described by Pi=(1-6,)(1-8,)(8;—q-qi/g?).  (5.35H
((r))#0, (5.30  We now need merely to consider the statistical mechanics of

the model defined by Eq$5.32,(5.33, in the limit n—0.
corresponds to thdisordereddislocation-unbound phase of From previous classic workd®>*®we have considerable
the smectic liquid crystal. In the absence of disordar ( experience analyzing the critical properties of gauge theories
=0) this model is exactly the dual version of the NA dislo- of the type defined by the action in EG.33. As we know
cation loop model derived and studied by one of Us. from work on the zero field normal-to-superconductor

Disorder is included in Eq(5.28 through the quenched transition’® and the analogous analysis of the bulk, clean
gauge-fielda(r), which is related to the random tilt field nematic-to-smectié: transitions:® there are two possible re-
h(r) by Eq.(5.16. The partition function gimes:(i) the extreme type | regime, in whiah<1, and, as
a result, they fluctuations are subdominant to those of the
gauge fieldA, allowing a mean-field treatment @f. In this

= —S[yA ] .
Z[h] J[dw][dA]e o(V-A)8(A,), (5.3 case the remaining gauge field fluctuations can be treated
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oW, wherel is an infrared cutoff(e.g., the lateral extent of the
smectic layersanda is the ultraviolet cutoffe.g., the size of
5Tdual— _ + the liquid crystal mo[ecule& 10 _A). _ .
c = The unusuahegative(d=3) divergent correction toin

. . L g. (5.39 implies that thedual order parameter is always in
theF:Sdu%eEﬁ;n::;Séfgtrlirgs I?aegiggn:(;n:trfjél\j\?a:gr;%ri??rl:ztiion Olts orderedphase, which, in turn, implies that the dislocation
dual T, . In d<3 these drive the transition temperature in the origi- loops of the orlglnal smectic m.OdeI are alwaysbound .
nal smectic model 1 0. thereby destroying the topological order of.the smectic
Bragg glass, even a@t=0, for any amount of disorder, no
exactly (i) The type Il regime, in whichu>1 andboth y matter how small. This conclusion, of course, only holds
and A fluctuations must be tr'eated within a considerablyv.\”thln t_he harmonicelastic approximation mao_le in this sec-
more involved RG analysis tion, with the treatment that approximately includes these
A complete analysis of the critical properties of this smec—norl]t“inse?r:] ecl)?f;ft ?geﬁé‘:‘egmg? ;Tﬂi euC.hV{L.e dual disordered
tic dislocation loop unbinding transition, described by the P 9 : :
action in Eq.(5.33, is beyond the scope of the present gauge model, Ec(5.28)3 can be e?“.e”deq to any dlmen5|_on_,
' it rigorously only describes the original disordered smectic in

paper’® Here our goal is to determine the stability of the . o> . .
; - ; 1=3, the dimension in which the duality correspondence
topologically ordered smectic Bragg glass phase to dlsordel\?vas established between the two models. However, if one

induced dislocation loop unbinding. To answer this question . : .
it is sufficient to study the effect of diagrammatic correctionstan entertain the idea that the relation betwee_n the two r_nod-
els extends tal>3, then we have found a quite nontrivial

on the reduced dual temperatureas we demonstrate in de- o ; . : .
tail in Appendix D for the type | limit, delaying the analysis result for this higher-dimensional disordered smectic. For 3
' <d=5 the disordered smectic will then have strongly diver-

of the type Il limit to a future publicatio”® By computing . ) ] =) -
the disorder-averaged free energy, we find thagither re- gent displacement fluctuations E@L.9), but will maintain
' topological order, i.e., no condensation of dislocation loops

ime the lowest order contribution to the renormalizkdl : . . . .
g takes place in this range of dimensitfor d>3). From this

temperaturety comes from the average of the “diamag- =" ; A ) i . .
neti([:)” terms R g g point of view this higher-dimensional disordered smectic is
in fact a true “Bragg” glass*!
242
cad —
8S= —— A% —|a?)|¥?, 5.3
2T° Zr (<| | > | | )llM (5-39 VI. ANOMALOUS ELASTICITY IN THE TILT-ONLY

. . . . . . MODEL OF DISORDERED SMECTICS
graphically illustrated in Fig. 9. Generalizing t dimen-

sions these give Up to now we have analyzed disordered smectics ignoring
elastic anharmonieffects. These effects are important even
in pure smectics, as was discovered some time ago by Grin-
' stein and Pelcovit§GP).2* As reported in a recent pap&t,
we have discovered that ilisorderedsmectics these elastic
_ ] (5.3 anharmonicities play an even more important role; specifi-
where the first term in the square brackets comes from th@a"y, we find disorder-driverpower law divergences, in
first graph in Fig. 9, with the internal wiggly line represent- contrast to the weak, thermally-drivelpgarithmic diver-
ing A, fluctuations, while the second comes from the secongyences that occur in pure smectiésere we provide details
graph with the internal dotted line representing the quenchegs these calculations, describe their effect on the analysis of
gauge fielda. The negative sign of the disorder contribution previous sections, and discuss them in the context of recent
leads to anincreasein thedual T, and can be traced back to experimentd?19-22
the fact that the actio®, Eq. (5.33, is complex. The anomalous elasticity opure (bulk) smecticé* is
The Second, disorder, term in thIS integl’al dominates th%haracterized by |ayer Compressiona| and tilt momk)
first aquO. Indeed, this integl’al diVergeS in the infrared for and K(k) which vanish and diverge, respective'y, at |Ong

KTa?  Angza?
Iy  oT;

(d—2)ca?d? [ diq
T2 (2m)9

tR:t0+

d<3 wavelengths K—0). This beautiful result is actually a gen-
- 8 o1 eral property of all one-dimensional crystals, in which the
f 4¢ az4: ch qd-1 Q_Locf d direction of the 1D ordering wave vector is chosgponta-
qqZ(q§+ )\qu)Z L Qio Qi ' neously As a consequence of thigpontaneoudreaking of

(5.38 rotational symmetry(a property possessed by smectics but
not, e.g., charge density wayefn the presence of fluctua-
where the first proportionality follows from the fact that the tions a Compression can be relieved by Smoothing out these
dominant regime of the integral ove, is 9,~\q°, as can  fluctuations, thereby leading to an effective compressional
be easily seen by contour integration. This divergence immodulus B(k) that vanishes at long wavelengths. This is
plies that the renormalizedual temperaturepg, is driven to  very similar to the ability of free dislocations in a solid to
— (note the signby the disorder ird<3. Indeed, we find relieve an imposed shear. Similarly, in the presence of fluc-
ind=3 tuations, a bending of smectic layers necessarily leads to a
compression, which implies an effective tilt modulkigk)
which diverges at long wavelengths. This phenomenon is
(5.39 : .
also analogous to the thermally driven anomalous elasticity

2A2

tr="to— Trhln(L/a)xO(l),
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of polymerized membranes, in which the bending rigidity
modulus diverges, and the shear and bulk moduli vanish at
long length scale®%*
Although quite fascinating, the anomalous elasticity of
GP for pure 3D smectics is somewhat academic, because for
d=3 the nonlinearities responsible for the anomalous elas- F|G. 10. Feynman graph that renormalizes the elastic méduli
ticity are marginally irrelevant, and therefore lead to weaklyg and the tilt-disorder variancy, .
(logarithmically) k-dependent elastic moduli. These, in prac-
tice, are quite difficult to detect experimentally, and haveallows us to work with a translationally invariant field theory
never been observed in bulRure smectics. at the expense of introducing replica fields(with the n
As mentioned above, the main ingredients necessary for, |imit to be taken at the end of the calculatiodfter
the existence of anomalous elasticity appntaneouslpro-  yeplicating and integrating over the disordsr), and using

ken rotational invariance, and the presence of fluctuationgzq. (6.2), we obtain an effective translationally invariant rep-
i.e., wrinkles in the smectic layers—both of which exist |jicated Hamiltonian

(even at zero temperatyrén smectics in random environ-

ments. In this section, we demonstrate the existence of 100

anomalous elasticity that is significantly stronger, in all spa- H[u,]= > E

tial dimensiongd<5, than the marginal anomalous elasticity ra=1

of thermal smectics. This stronger anomalous elasticity is A n
. . h

driven by quenched disorder, and controlled by a new, zero- - > Vi u, V,ug (6.3

temperature fixed point that is perturbatively accessible in 2T ) alp=1

d=5—¢€. One can physically appreciate why this elastlcfrom which the noninteracting propagatoG,,4(q)

anomaly is so much stronger in smectics with quenched dis-_ “Lu,(g)us(—a))o WhereV is the system volumecan
order by realizing that the quenched disordered quctuationB_e easiI; c()]bta'?neojieg Sec. I) y

are more divergentat long wavelengthsthan their thermal
counterpartgsee e.g., Eq94.5 and(4.6)]. _ 2 2

As diF;cussed atgthe ?and of Sec. Ill, in dimensials5 Cap(@)=TG(Q)Fapt AnALG(A), ©.4
we expect that the random field disorder to be significantlywith G(q)=1/(Kq? + Bg?).
less important than the random tilt disorder for the properties \ve first attempt to assess the effects of the anharmonici-
of smectics with quenChEd disorder. We therefore eXpect thﬁeS, disorder and thermal fluctuations by performing a
effective elastic Hamiltonian in E¢3.4) with U(r)=0 to be  simple perturbation expansion in the nonlinearitiesipti,,].
a good starting point for the description of smectics confinedrhe |owest order correctiosB to the bare elastic compres-

inside low-density aerogels. However, such a model missesional modulusB comes from a part of the diagram in Fig.
an important ingredient: nonlinear elasticity which takes intojo. A standard analysis gives

account the underlying rotational invariance of the smectic
phase?* hidden by thespontaneoushoice of the layers to B2 > , , s
stack along the direction. A careful analysis, starting with oB=— 7L [TG(a)*+2ApaiG(a)"]aL, (6.58
the de Gennes model, that keeps track of such elastic non-
m—BZAth %f> ddilqi qi

1 2
K(ij_ua)z_’_ B( azua_z(vj_ua)z) }

linearities, leads ¢

K B 1 2 27 d-1 (Kg*+Bg?)®’
N R R _ 2 . (27)94-1 (Kq] +Bq;
H[u]—Hz(Vlu) + z(azu 2(VLu) +h(r)-V, uj, (6.5b
(6.1 3C B\ 1/2
X . . . . . d-1 5—d
as the proper rotationally invariant elastic Hamiltonian for ~— EEBA*‘ W) L>~¢ (6.50

the disordered smectic. This form guarantees that a uniform

rotation of sme;ctic_: Iaysers cost.s zero energy in the .absence Nhere we have dropped the subdominant thermal part, fo-
the random tilt field> The field h(r)=g,(r)g(r) is the ¢ seq ond<5, which allows us to drop the uv-cutoffA()
quenchgd random'nlt cﬁsorder, de_fmgd in Sec. Il. As d's'dependent part which vanishes far—, and cutoff the
cussed in that section, it has a vanishing average and Gausgyergent contribution of the long wavelength modes via the
ian s_tatlsncs,_completely characterized by the two-point COlnfrared cutoff restrictiorg, > 1/L, whereL is the linear ex-
relation function tent of the system. The consta@f=27Y%[(2)9(d/2)]

—_— , is the surface area of d-dimensional sphere divided b

hi(Dhy () =Apd%(r=r") 8, 6.2 (2m)¢9. Clearly the anhamonicities becor%e important Whyen
which we take to be short-ranged for the reasons discussed the fluctuation corrections to the elastic constgets., 6B
detail in Sec. II. abovg become comparable to the bare values. The diver-

To compute self-averaging quantitiés.g., the disorder gence of this correction ds— signals the breakdown of

averaged free enerpyand to assess the importance of theconventional harmonic elastic theory on length scales longer
nonlinearities at long scales it is convenig¢htit not neces- than a crossover scatg'-, which we define as the value of
sary to employ the replica “trick’®® that relies on the iden- L at which |sB(£\Y)|=B. In d dimensions, this definition
tity InZ=lim,_o(Z"—-1)/n. As discussed in Sec. lll, this gives
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512\ 1/(5-d) AN ¢ B
ne_ 16(5—d)/+< | 66 9:() =0, ", (6.123
3C4_,BY2A,
which for physical 3D smectics is given by 9o(1) =g, . (6.12h
64 K52 | 1 is just th ling that b levantdr 3 and
N | 04T for d=3 ©.7) 91 is just the coupling that becomes relevantdr3 an
L 3 BYp,| : ' was discovered by Grinstein and Pelcovits to lead to anoma-

lous elasticity in pure thermal smectics. It is, however, only
We can also obtain a nonlinear crossover length inzhe marginally irrelevant ind=3 and therefore only leads to
direction weak anomalous elasticity in physical 3D smecfits con-

trast, the upper critical dimensiot,. below whichg, be-

comes relevant id,.=5, and we therefore expect a signifi-

) cantly stronger anomalous elasticity, that should be

_ 64K for d=3 (6.8 experimentally observable, tisordered3D smectics. These
3Ay ' ' observations imply that temperature is a strongly irrelevant

_ 12 v s . , , variable near the disorder dominated fixed point and does not

wherex=(K/B)™, by imposing the infrared cutoff in the ooy pack in a dangerous way. We will therefore Bet0 in

direction. . . all subsequent calculations.
To understand the physics beyond this crossover scale— \y/a now turn to the RG computation of the one-loop

l.e., to make sense of the r?pparent inlirargd divergencesdfouraiiaphical corrections to the flow of the couplings defined
in Eq. (6.50—we turn to the renormalization group. As dis- op,4ve The required integration over the high wave-vector

cussed 'F S?C' ll, we et:mplc])cy the:ét&ndard .Porﬁﬁntlém she omponents ofi, can only be accomplished perturbatively
renormalization group transformationpy writing the dis- ;"1 honlinearities oH[u]. Since the most relevant cou-

i =us(nN+u’ i i - L~ ) :
placement field asi,(r) =u, (r) + u, (1), integrating pertur pling g, becomes important fod<<5, we will control the

batively in the nonlinear couplin@® the high wave-vector . ) L
> : . . . P infrared divergences by performing an expansionein5
partu, (r) with support in Fourier space in an infinitesimal —d

cyllndrlcal shell (\e™'<q, <A and —=<g,<=), and.re- The change in the Hamiltonian due to integrating out
scaling the lengths and long wavelength part of the fields a8 ese short length modes is
in Egs. (3.17 with r =rle!, z=z'e®, and u(r)
=e?!u/(r"), so as to restore the ultraviolet cutoff back/to
The underlying rotational invariance insures that the graphi- 1
cal corrections preserve the rotationally invariant operator SH[u;]=(H;[u; +u_ 1)~ — =(HuS+u ]S - -,
[9,u—3(V, u)?], renormalizing it as a whole. It is therefore 2T 6.1
convenient(but not necessayyto choose the dimensional 6.13
rescaling that also preserves this operator. It is easy to see
that this choice leads to whereH;[u’ +u_ ] is the nonlinear part of the Hamiltonian
H, Eq. (3.8), which contains three- and four-point vertices.
p=2-o. (6.9 The averages above are performed with the quadratic part of

This rescaling then leads to the zeroth order RG flow of théd: Ed. (3.8), using the propagatd®,s(d), Eg. (6.4), with

M= (92, (6.89

effective couplings only an infinitesimal cylindrical shelii.e., no cutoff ong,)
of modesu_, integrated out. The superscripdenotes a cu-
K(l)=Keld=1-ol (6.10a  mulant average. It is easy to verify that the first termsti
(first order inH;) does not lead to corrections of the elastic
B(l)=Beld3-3) (6.100  constants. Aside from correcting the free energy, it generates

an operatofinear in [d,u— 3(V, u)?] which corresponds to
Ay Ay (A4 1-a)l a renormalization of the smectic wave vectpt These cor-
T|O=lF : (6.100  rections turn out to be finitéirrelevan) neard=5, and we
will therefore not keep track of them here.
From these dimensional couplings one can construct two The renormalization oK, B andA,, comes from the sec-
other effective dimensional couplings ond term in Eq.(6.13, for example, from parts which are
second order in the three-point vertex, with four of the six

~ (B vz fields contracted. The generic diagram that corrects the elas-

9=k3) (6.113  ic moduli and the disorder variance is illustrated in Fig. 10,
with the part diagonal in the replica indicesg (i.e., part

- B\ 12 proportional tod,z) renormalizingkK and B, and the part

gZEAh(F) : (6.110  independent ofy, B correctingAy,.

For the calculation obB, the loop integrals can be per-
whose flows are independent of the arbitrary rescaling expdformed at vanishing external momentum, and after a short
nentsw and ¢, and are given by calculation one finds
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B2 > tion function at large wavevectors, which can be easily cal-
oB=— 7J [TG(a)?+2A497G(a)%]q? culated in a controlled perturbation theory. This relation for
a G(k) is
d-1 6
—_B2A fw %rd . ar G(k, ,k;,K,B,gy)
"Jow2m) (2mat (Kai+B)®

=eBtd-olgk, ' ke K(1),B(1),g5(1)), (6.20

where the prefactor on the right-hand side comes from the

%_ﬂ‘,g?Bdl' (6.1 dimensional rescalingremembering the momentum con-
serving § function), after using the exact rotational Ward
identity ¢=2—w, and we have “traded-in” the disorder
9ariableAh for the dimensionless coupling,. To establish
the anomalous behavior a&f, we look atk,=0. We then

12 choose the rescaling variall& such that

Cq_ A5 (6.15

where going from the first line to second line above we
dropped the irrelevant finite temperature part, and defined
dimensionless coupling constant

B
g9.=A4y K5

k e =A. (6.21)

Similar, but more involved calculations fét and A}, give L.
hd We also choosé, sufficiently small such thag,(1*) has

1 reached our nontrivial fixed poirg} . Eliminatingl* in fa-
oK~ 3592Kdl, (6.163  vor of k, , we then obtain
3+d—w
Ap) 1 [An G(k, ,0K,B,gy) = — G(A,0K(I1*),B(1%),g%).
5 ? %@gz ? dI’ (6.161:) 1 YN, Y2 kJ_ Yy 1] 192
(6.22

which lead to the following RG flow equations:
g g Since the right-hand side is evaluated with the transverse

dB(l) 3 wave vector at the Brillouin zone boundary, it is easily
gr | d+3=3w—20a(1) |B(I),  (6.178  evaluated perturbatively for a small fixed point coupliip.
To lowest order we obtain
dK(l) ( 1 ) B
— = d=1-w+ 2g,(1) |K(), Alk,)¥+a-e
i w0+ 5582(1) | K(1) 6(K, 0K, B.gy)~— AT .
(617b A4K(A/ki)(dflfw+gzl32)
(6.233
dAy(1) 1
a d+1—w+agz(l) An(l). 1
(6.179 ~ Kk k! (6230

These, together, lead to the RG flow of the dimensionles§vhere we integrated E¢6.17b to obtainK (1*), and defined
couplingg, defined in Eq(6.19 the anomalous tilt modulus which diverges at long length
dgy(1) scales

5
dl :EQZ(I)_3_292(|)27 (618)

K(k,)=K(k, /A)~ 7, (6.24)

where we remind the reader that in this sectien5—d. As  yith an anomalous exponent
required, the flow ofy, is independent of the arbitrary choice

of the anisotropy rescaling exponeat The RG flow Eq. 1,
(6.18 shows that the Gaussiag} =0 fixed point becomes K=3592 (6.253
unstable ford<5, and the low-temperature phase is con-
trolled by a stable, nontrivial, glassy=0 fixed point at 1
i =5€ (6.25bH
gz :€E. (6.19
The existence of this nontrivial fixed point leads to anoma- 5 for d=3. (6.259

lous elasticity. To see this it is convenient to use our RG

results to evaluate the connected disordered averaged two- Similar calculations for the other coupling constants and
point u(k) correlation function G(k)=(Ju(k)|®)  other directions ok show that, in general,

—(u(k)){u(—k)). As discussedand utilized in Sec. Ill,

the power of the renormalization group is that it establishes a K(k)=K(k &)~ f [k (k, €4, (6.263
connection between a correlation function at a small wave
vector (which is impossible to calculate in perturbation B(k)=B(k, &N)7efg[ k&0t (k, €M),

theory due to the infrared divergengde the same correla- (6.26bH
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An(k)=An(k, €M) 778 f 5[koE5 1 (k, €11, &= (aIN) KAy, (6.323
(6.260
— Ix £NL
with the anisotropy exponent =(a/\)xgr, (6.32h
(=2 (ng+ m0)12, (6.29 Wwhere
which would =2 in the absence of anharmonic effects, x=(ng+ n¢)/2, (6.33
3 and this result should be contrasted with the expression for
78=769%2 (6.283  the x-ray correlation lengtheX, Eq. (4.173, calculated

within the harmonic theory, i.e., ignoring the anomalous
6 elasticity. Note that this x-ray correlation length is finite even
=g € (6.28h asT—0, as illustrated in Fig. 3. This result is consistent with

the experimental observatith?° that the x-ray correlation
length for smectics in aerogel saturates at some finite value at

=" for d=3 low temperatures. Note also that this length should be differ-
S ' ent for different smectics in the same aerogel, siBgeK,
(6.280  and A, will change from smectic to smectic. Since, as dis-
and cussed in Sec. I, we expedt, to be a monotonically in-
creasing function of the aerogel density, with a simplest
1, aerogel model giving\,,<p,, EQ.(2.8b), the aerogel density
WA:6—492v (6.299 dependence oEf could test the prediction of Eq6.32.
Likewise, thetemperaturedependence o‘ff could be used
1 to determine the ratid/y, since thebulk K(T) and B(T)
=10 (6.29B  that implicitly appear in Eq(6.32) have temperature depen-
dences that can be extracted from measurementsidmma-
1 terials.
=— for d=3. (6.290 Note also that this correlation length is longer than the
S nonlinear crossover length far<a (i.e., for largeB). For

Of course, we do not completely trust the extrapolation of\>2 (smallB), C(2) reachesa” beforez reachest}", and
these smalk results down tee=2 (d=3). However, since hence anharmonic effects are unimportant. In this case, the
by definition dg,/dl=0 at the nontrivial fixed point, this correlation_lengthé( can be determined in the harmonic
condition implies arexactrelation between the anomalous theory [which amounts to evaluating the integral in Eq.
exponents (6.37) with K(k), B(k), andAp(k) replaced by their con-
stant(bare valuesk, B, andA]. As shown in Sec. IV, this

B _m. 5 gives &=a?BK/A,=(a/\)?EN", which is, reassuringly,

Smdt =75t 5 630 much less tharey™ in the limit a<<\ in which we have

hich i ious isfi h | asserted it applies.
which is obviously satisfied by the anomalous exponents, | this section, in our treatment of elastic nonlinearities

Egs. (6.250,(6.28h,(6.29h, computed here to first order in o have ignored dislocations, which in Sec. V we have
e. This Ward |d§nt|ty bgtween the anomalous EXponents calhqyn to unbind in darmonictheory, for arbitrarily weak
be equally easily obtained from a self-consistent integragjisorger. However, as we have shown in that section, their

equation for theu-u correlations functions, using renormal-
. ; X . effects are only felt on length scales greater th&
ized wave-vector-dependent elastic moduli and disorder y 9 g

variance?® = (a%/\) €' wheret, is a parameter of ordK, which

At length scales beyond\" and &M, the elasticity and IS much longer, in the weak disorded(—0, & —)
fluctuations of the disordered smectic are controlled by oufimit, than the translational correlation lengghl found here.
glassy fixed point. One of the important consequences can Haowever, it is nevertheless important to study the simulta-
seen in the layer fluctuations, which can be inferred fromn€ous effects of anomalous elasticity and dislocations. We
X-ray scattering experiments. For instance, layer displacedo this in Sec. VII by reconsidering the criterion for disloca-

ment fluctuations a|ong are described by tion Unbinding, studied in Sec. V, now in the presence of
anomalous elasticity. We will find that anomalous elasticity
C(z)=([u(0, ,z)—u(Ol,O)]z), leads to shortening cgE, which nonetheless remains much
longer thangﬁ. Hence, for low density aerogels, our predic-
NJ d% 2[1-cogk,2)]An(K)k? 63D tions for £ and the anomalous elasticity studied here remain
(2m® [K(oki+BROKI? valid.

Finally, our entire discussion so far has focused only on
One can then naturally define the x-ray translational correlathe effects oforientationaltilt disorder. In Sec. VIII we will
tion Iengthgi‘ as the length along at whichC(z= §§()Ea2, consider thetranslational disorder(i.e., random pinning of
wherea is the smectic layer spacing. A simple calculation, the positions of the layersnd will demonstrate that it iess
using Eqgs(6.263—(6.269 leads in 3D to important, at long wavelengthg d<5), than the orienta-
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tional disorder. Thus, the results described herein are directiywhere A,(q) is given by Eq.(6.269, c is given by Eq.
applicable to real smectics, where both kinds of disorder aré5.29, and\?(q)=K(q)/B(q), with K(q) and B(q) given

present. by Egs.(6.269 and(6.26b, respectively. In writing Eq(7.1)
we have anticipated that the integral is dominated by region
VIl. EFFECTS OF ANOMALOUS ELASTICITY 9,4, , as can be seen from E(.3), below.
ON DISLOCATION UNBINDING AND SMECTIC Imposing an infrared cutoffj, >L - on the wave-vector
CORRELATIONS integral in Eq.(7.1), wherelL is the lateral () real-space

linear extent of the system, and changing variables in that
In Sec. VI we established that, at least at the “phonon-integral as follows:

only” level, the anharmonic terms in the elastic energy are QL

extremely important belowl=5. We therefore need to also w=1 (7.29
consider the effects of anharmonic elastidiyd the result- 0 A

ing anomalous elasticijyon dislocations and smectic corre- g,= == N (7.2b
lation functions. L (&)X

with y=(7g+ nx)/2, we find that

A. Dislocations and orientational order
. . . . ( L )ycazdzAh
In this subsection we incorporate anomalous elasticityst~ —
into our duality model and use it to derive a criterion, in
terms of the anomalous exponentg and 7 , for the dislo- R £\ ad
cation unbinding to take place in the presence of anomalous j Q, ™ Q; fa(Q,/Q1)d"Q
elasticity. Combining these results with an analysis of orien- LA>Q, >1[ Q2+ Q% (Q,/Q%)/f5(Q,/Q%) 12’
tational order we establish bounds apg and 7 for the
stability of the smectic Bragg glass phase. However, since (7.3
we do not know the numerical values @t and 7k in d with
=3, we cannot say whether or not, in the full, anharmonic
theory, dislocations are, in fact, unbound. y={+m+1-d (7.4
Unfortunately, a fullanharmonictheory of dislocations is In deriving Eg. (7.4), we have used the scaling relation
simply intractable. In particular, the fact that, in an anhar-{=2—(#ng+ 7x)/2, and Eq.(6.30 defined in Sec. VI.
monic theory, the interaction energy between dislocations Now, it is equally straightforward to show, by anisotropic
cannotbe written as a sum of pairwise interactiofsince ~ power counting, that the integral ov& in Eq. (7.3 is con-
their fields do not simply addmakes it impossible to even vergent in the ultraviolet when>0, and is therefore inde-
write down a general expression for the energy of an arbipendent of its upper cutott A, for L—. As a result, for
trary dislocation configuration. At best, one might hope to bey>0, the correction to the reducetlial temperaturet de-
able to write down the energy for a few simple, high sym-Pends onL only through the overall prefactdr”, i.e.,
metry configurationse.g., a single, straight dislocation line L\ 7 ca?d2A
Such specialized results would be of no use in a full statis- St~ <_> W—th(l), (7.5

NL)AT?
1

I T

tical theory of defect unbinding, which requires consider- N

ation of very complicated, tangled configurations of disloca-

. ) ; h and therefore, fory>0, diverges with system size.
tions, Wh'c.h' for entropic reasons, _domlnate the free eNergy  as discussed in our original treatment of duality, such an
near the dislocation binding transition. Furthermore, e¥en

. X ) infinite downward renormalization oft in the dual model
onecouldwrite down the anharmonic energy for an arb|traryimp|ies that dislocations aralwaysunbound, even at zero

dislocation configuration, it would presumably be anhar-iemperature, even for arbitrarily weak disorder. Thus, our
monic in the dislocation fieldm(r), and hence, those fields criterion for determining whether or not dislocations are al-
could not be decoupled by a simple Hubbard-Stratonovichways unbound id=3 is very simple: ify, as given by Eq.
trick, as they can in the harmonic approximation. (7.4), is >0, dislocationsare always unbound, ando stable
For all of these reasons, a completely honest treatment ®ragg glass phase exists, whileyik 0, dislocations will be
dislocations in the full, anharmonic model is impossible, atbound, and a stable Bragg glass phasié exist, at least at
least for mere mortals like us. Rather than despair, howevesufficiently low temperatures and weak disorder.
we will use a slightly dishonedt.e., uncontrolleg approxi- So it behooves us to determing in d=3. Using
mation: we will simply replace the elastionstants KandB, {=2—(ng+ n¢)/2, and the exact scaling relation E§.30
and tilt disorder variancd, in our expression Eq5.37) for ~ betweenn, , g, and»y, we can rewrite Eq(7.4) in terms
the renormalized dislocation unbinding transition temperaof », and»y as
ture, with the renormalized, wave-vector-dependent moduli

K(a), B(q), andA,(q), derived from the anharmonic, tilt- y=2(m—1). (7.6
only elastic theory of Sec. VI. Using oure-expansion result Eq1.103 for 7k, we obtain
Doing so, we obtain for the downward renormalization of
the dual transition temperature y= z(g —1/4+0(&?), (7.78
ca’d? [ An(q)gidg
dt=—0(1) X f . @D __®
™ J (a2 +\*(a)at)? 5=0 (7.79
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the last equality holding id=3 (e=2), if we drop the Imposing an infrared cutoff;, >L !, and power counting
unknownO(€?) term. This resulappearsto imply that dis-  on this integral exactly as we just did in evaluating Eq3),
locations are bound, and the smectic Bragg glassablein ~ we find that

three dimensions. Of course, it is always risky to quantita-

tively extrapolate an expansion for smallout to e=2, but YRR

this is the best we can do ih=3. And it seems to suggest {Ion(r)[erL®, (7.10
that the smectic Bragg glasssgablein d=3.

Independent of thes-expansion, our result implies the with
strict necessary, but not sufficienbndition for the stability
of the smectic Bragg glass phase 6=—d—=3+n,+2ng+3¢. (7.1
nk<l. (7.9 Using {=2—(7ng+ nk)/2 and the exact scaling relation Eq.

(6.30, we can rewrite this as

If, on the other hand, this condition is violated, then dis-
Iochtions will unbinql on length scales longer tl*g%, Where 5= g+ 7c—2, (7.123
&7 is the value ofL in Eq. (7.5 such that the correctioft
becomes ofO(t). This gives the value off quoted in the
Introduction, withc(T) given by Eq.(5.29. We note that, =2(x—1). (7.129
althoughA(T)—w as T—Tya from below, so does(T),
since the renormalized dislocation core energy vanishes dthus, stability of long-rangedrientationalorder, and hence,
Tna. We expect the divergence of T) to overwhelm that Stability of the smectic Bragg glass phase itself, requites
of \(T), leading to a dislocation length that gets ever shorter<0., or
as T—Tya from below. Eventually, as we approadiy,

from below,giD , as given by Eq(1.18, will get smaller than 7t Pc<2, (7.13
NL- at this point, we are in the strong coupling regime, and
our weak-disorder results no longer apply. which, not coincidentally, is equivalent to the condition that

There is another Criterion, in addition to E(:YS), that the anisotropy exponerﬁ>1_ The reason that these two
must be satisfied for the smectic Bragg glass to be stable igonditions are equivalent is clear. As we go down in dimen-
d=3: Iong—ranged orientationalorder must exist. This is Si0n1 78 and 7K grow, and the anisotropy exponeg]tde_
clear, since we have implicitly assumed the existence of sucgreases below 2, with the system becoming more isotropic.
order throughout our calculatiofe.g., in writihngn=z+6n  The dimension at which the orientational order disappears
andassuming on|<1). Surely, if the layer orientations are must beexactlythe dimension at which the system becomes
not ordered, the layers themselves cannot retain their integompletely isotropic, i.e.{=1, since, without orientational
rity (i.e., remain undislocatedSo long-ranged orientational order, there can be no distinction between different direc-
order must be preserved for the smectic Bragg glass phase tions. Thus, the lower critical dimension for orientational
be stable. An obvious corollary of this conclusion is thatorder is given byl =2—(7g+ 7¢)/2=1, which implies7g
orientationalfluctuations(| sn(r)|?) must remainfinite (as  + 7x=2, the borderline of the inequality E¢7.13.
the system sizé.—o) for the smectic Bragg glass to be If the condition Eq.(7.13 is violated, then for length
stable. scales beyond the orientational correlation length,

We will now show that within a 5-d= e expansion, this

condition is definitelynot satisfied: orientational fluctuations NL\ 1/[2(x—1)]
do diverge ind=3. Hence, thee expansion implies that gozgﬁL(i) ) (7.19
[notwithstanding the resulty<0, Eg. (7.7)] the smectic A

Bragg glass phase i®t stable in three dimensions.
To show this, we use the fact th@n(r)=V, u(r) to  obtained by equating on(r)|?) to 1, the orientational order
write is destroyed, our smectic description breaks down, no stable
SBG exists, and the system is isotropic. On the other hand, if
- dig ——— condition in Eq.(7.13 holds, i.e.,x<1, &g is infinite and
o= [ s o, (799 SBG s stable
The length scaleg\- and ¢, derived in Sec. VI and in
ddq this section, respectively, lead to nontrivial, and in principle
= J _dqi<|u(q)|2>, (7.9b experimentally measurable, crossover behavior. At the short-
(2) est length scales}, > 1/&\" | nonlinear elasticity is unimpor-
tant and the dominant modes correspondq;&)\qf. At
_J d’q An(a)q? longer scales, fog, <1/&"" this quadratic behavior crosses
) @M B(g)E+K(@)qt]?] over to g,éNt~(q, &Y€, controlled by the nontrivial
(7.99 anomalous elasticity fixed point studied in Sec. VI. The an-
isotropy exponent satisfies K ¢<2 if Eq. (7.13 is satis-
where we have kept only the dominant, disorder inducedied and orientational order is stable, but is less than 1 if this
term in (u(q)|?), Eqg. (3.12, in writing the last equality. ~condition is violated and is finite. In this latter case, the
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q, C<1 , tions from those derived for the elastically harmonic model
e of Sec. IV. We study these effects in this subsection.

e We focus on the smectic layer displacement correlation

L 2 function defined by Eq(4.1)

e C(r,,z)={[u(r,,z2)—u(0,01%. (7.1

(Se}! e QE ........................... To computeC(r, ,z), we proceed as in Sec. IV, except that
/ instead of using the bare values of elastic mo#ylB, and

/ tilt-disorder varianceA,,, we will use their wavevector-

dependent counterparts(k), B(k), and Ay(k), given in

Egs. (6.26. We expect this procedure to take into account

i —_ the long length scale effects of anharmonic elasticity. We

3 € q, obtain

N

FIG. 11. Crossover in the dominant wave-vector regimes in d 2
d°% 2[1-cogk-r)]JAn(k)k
q, .9, plane, for{<1. c(r, *Z)~J . [ 5(4 )] h(2 )2 1
(2m)°  [K(K)K]+B(k)k]
anomalous elasticity scaling,£y-~ (g, £'")¢ crosses over (7.18

to the isotropic scaling|,~q, for lengths scales longer than \yhere we have only kept the dominant disorder-induced con-
o . This orientational crossover length scale is, reassuringlytribution. Performing an asymptotic analysis similar to that
precisely the orientational correlation length given in EQ.of the previous subsection, we find that the harmonic elastic-
(7.14), obtained from the condition of|on(r)|y=1. It is ity result, Eq.(4.9) is replaced by

important to note that, even fgr< 1, in the dominant regime

of wave vectors follq|>1/¢o, the conditiong,<q, is al- ( z )(”B+ s

e ; - Z/ N> (r, 1ENY)E
ways satisfied. Hence, even in the absence of long-ranged NL z L1617)%
orientational order beyong, , this justifies our use, through- C(r, ,2)=\2 z

- - . . 1 773+ 7K
out the smectic regime|q|>1/Zp), of the approximation NL NLy 7
q,<d, , which is indeed the usual approximation one makes NL , 2/&m<(r /€)%,
in treating smectic elasticity. These dominant wave-vector L (7.19
regimes inq, ,q, plane, various important length scales, and '
the corresponding crossovers are illustrated in Fig. 11. valid for d<5 and on scales beyond the crossover scales

Combining the stability conditions Eq7.8) and Eq. &), when the smectic elasticity is controlled by the non-

(7.13 with the rigorous bound trivial anomalous fixed point with nonvanishing , 7, , and
the anisotropy exponedt=2— (ng+ ny)/2<2.
7t Sn>4 (7.19 The above result for smectic layer undulations has obvi-

ous implications for the smectic order paramétg(r) ] cor-
relations. Within the Debye-Waller approximation, which
amounts to ignoring higher order cumulants, the smectic cor-
relation function is given by

that follows from requiringn,>0 in the exact scaling rela-
tion Eg. (6.30 in d=3, we find that the three-dimensional
smectic Bragg glass phase can only be stable wigand
7k lie in the shaded quadrilateral in Fig. 1.

Our e-expansion results from Eq$6.259 and (6.280, S(r, ,2)=(¢* (1) (0)), (7.203
extrapolated tal=3

> ~ e~ (9g/2C() (7.20bh
MK=g» (7.16a It is short-ranged, confirming our earlier claims about the
destruction(in d<5) of the long-range smectic order by an
12 arbitrarily small amount of tilt disorder, even in the presence
78=g (7.16h  of anharmonic elasticity.

Although the anomalous elasticity does not prevent the

lie well outside this stable region. Whether this extrapolationdestruction of the long-ranged smectic order, it does lead to
can be trusted iml=3 is, of course, an open questione  SOMe physically appealing features in the above expression
are therefore left, despite our best efforts as displayed in thife" S(71,2), andC(r), Eq. (7.19, which are absent when
manuscript, unable to decide whether or not the smecti¢hese glasuc anharmonic effects are not takgn into account.
Bragg glass phase actually exists ir=@. This question can !n pa(tlcular, we obsgrve that at the lower-critical dlmensmn
therefore only be answered by experiments. in which the orientational order bet_:omes sho.rt rangﬂi_,
ne+ nx—2 and {—1), the smectic correlation function
S(r) is isotropic and decays as a Gaussian along hathd
r, . In this case of short-ranged orientational order this faster
In addition to having important effects on dislocation un-than exponential decay of smectic correlations of course only
binding, as demonstrated in the previous subsection, anhapersists up to the orientational correlation length, beyond
monic elasticity also changes the smectic correlation funcwhich we expect the order to decay simply exponentially.

B. Smectic correlation functions
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VIIl. ANOMALOUS ELASTICITY AND TRANSLATIONAL

PERIODIC DISORDER IN 3 <D<7

Our implicit justification for this was that inl=3, in har-
monic elastic theory, the eigenvalg for the nth harmonic

The analysis of nonlinear elasticity of the preceding two(WIth wave Vectomq)

sections was confined to the tilt-only model in which the
randomfield disorder is neglected. In this section we study
the effect of the periodic field disorder in the presence of
anharmonic elasticity and show that, for di<5, and, in
particular ind= 3, such random-field disorder

H;f:—%f d%[g|U(r)cognge(u(r)+2)] (8.3

is given by a simple generalization of

i 1 d n o
Hr:——f dr|yolU(r)cogaou(r)+2)] (8.1
1= 7 | ol 9o [see Eq(3.2D] to be
has no effect on the long-wavelength “pure phonon” tilt- An=4—7n°. ®.9

only disorder theory; that is, as long as dislocations are

bound, the anomalous elastic theory of the previous sectiofs |ong asy is fixed under the RG flow, this shows that the

is correct ind<<5. In the next sectiofSec. IX), we show that  higher harmonics of the random pinning potential are less

periodic disorder does not induce dislocation unbinding.  relevant, i.e., they are irrelevant at the point at which the
We begin by showing that the periodic disorder itself in-|owestn=1 harmonic becomes relevant. However, here we

duces anomalous elasticity in all spatial dimensidrs?.
Fortunately, the induced correctionsBandK, and to theu
fluctuations themselves, are so weakly logarithmig in all
spatial dimensiond<7 that, as soon a$<5, they are com-
pletely overwhelmed by th@ower-law divergent fluctua-
tions and renormalizations induced by ttié disorder that

we studied in Sec. VI. These latter fluctuations and renormal:
izations therefore dominate, and are unaffected by the pre
ence of the periodic random field disorder. Therefore, onc
again, the static correlations that we derived in Sec. VI fromI
the 5« expansion on the tilt-only disorder model are correct,

in the long-wavelength limit, even for the full model.

To derive these results, we consider the full disordere
smectic phonon model. In addition to the two types of dis-

order (random tilt and periodic random field disordgrde-
scribed by the effective Hamiltonian in E(.8), this model
also includes the anharmonic elasticifyonsidered in the
previous section in the tilt-only phonon mogebut still ig-
nores unbound dislocations. Generalizing 238 to anhar-
monic elasticity,

argue that ind dimensionsy(l) flows according to

dn(l)

TZ—H(U”('), (8.6

with the “thermal eigenvalue”6>0 for d>d. with d.>3.

é/_\/e can demonstrate this explicitly in three limiting cases
éiescribed below.

The first is the truncated model E@.8) analyzed in Sec.
II, which ignores anharmonic elasticity. Using the exact ex-
pressions, Eq93.18h,(3.18¢ for the flow of K andB (see

&jiscussion in Sec. I]] and the constancy af, under the RG,

inside », Eq. (3.193, we obtain

(8.7

Oharmonic=d— 3,

exactly in this elasticallyharmonicmodel.
We can also comput@ neard=5 in a model defined by

as we did in Sec. VI for the tilt-only model the Hamiltonian in Eq(6.3) that includes anharmonic elas-

we obtain the effective Hamiltonian for such a phonon modefiCity but leaves out the random field disordex(), which

of disordered smectic
n 2
K B 1
_ d N2, v2, 2 _- 2
H—fd rLZl[Z(Vlua) +2(ﬁzua 5(V.u,) ) }
1 n
+?a,2ﬁ=1 ( 4 |VL(ua_

_Avcoi%(ua_u,e)]”- (8.2

To study the long distance behavior of this model in general
dimensiong, for reasons that we now explain, we must first

generalize it further.

is, as we show below, subdominant fd«5. In this case,
combining Egs.(6.173,(6.17h with the flow of q, (gov-
erned by the eigenvalu¢=2— w) and the fixed point value
for g,, Eq. (6.19), inside Eq.(3.193, we obtain

€
3_ 55

0d~>5_:d_ 2

(8.8

exact to orderes=5—d.

Finally, as we will show in this sectiofwith details given
in Appendix B for 5<d<7,
04_7-(1)=d—=3+0O(1N), (8.9

In these three regimes fa>d.~3, 6>0, which leads to

First, recall that in the Sec. Ill derivation of the model, the (I —%)—0. Based on Eq(8.5), the implication of this is

periodicity of the smectic phase required the translationathat the spectrum of random field harmonicligenerate
disorder(i.e., the random field\,/) to be a function that is i.e., an infinite class of operatonsﬁ,f, Eq. (8.3, are all
invariant under discrete translations by smectic lattice conequally relevant and must be treated simultaneously. Since
stanta (i.e., periodic with perioda). In writing down Eqg. these higher harmonics are generated by the RG, we are
(8.2), we took this function to be thewestcosine harmonic. forced to consider a more general model
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H

L O[K B 1 2
d _(v2 2, — _= 2
d r[gl[z(vlua) + 5| =5 (V1) ) }

J

+

1 o (1 ,
T2, | 780U Ul Vi (Ua=up)

(8.10

where A, (u,—ug) and Ay(u,—Uug) are arbitraryperiodic
functions(with perioda, wherea is the smectic layer spac-
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is the appropriate measure of random field disorder,
e=7—d,

KD
ho T
D= KB
(8.15h

and primes in Eq(8.13 indicate a partial derivative with

ing), describing the field-dependent variances of the tilt and€spect tau.

translational disorders. Rather than following the flow for an

infinite number of couplinggone for each Fourier compo-
nent of the random potentialsve apply functional RG

Note that we have written the flow equations Kofl) and
B(l) in generald, rather than specializing td=7— €. The
reason for this is that foall d>5 (i.e., wherever we can

(FRG) methods developed by Fisher in the context of theignoretilt disordey, the recursion relations Eqé8.11) and

random field Ising anKY models® to our study of disor-
dered smectics.

A. Functional RG for 5<d<7:
irrelevance of randome-tilt disorder

We integrate out the short scale phonon modes within a
infinitesimal momentum shell near the uv cutoff and stud

(8.12 become asymptoticallgxact as A”(0,1)/A\%(1)—0,
which, as we will show in a moment, it always does for 5
<d<7.

To demonstrate the above assertion we first assiame
verify a posteriori) that neard=7, the flow equations
(8.1)—(8.13 lead to a perturbative fixed point at which

viu,l Hoo)EZ\’}(u) is a universal function of order with

how the elastic moduB(l), K(1) and the disorder variance @ finite (negative second derivativeAy,, (0)~—q30(e).

function Ay(u,l) evolve under this RG transformation. As
discussed in detail in Sec. VI, the tilt disord®y, [character-
ized by the dimensionless coupling, Eq. (6.19] is irrel-
evant by simple power counting fa>5. We will show at

the end of Appendix B that this conclusion persists, even in

Then, combining Eq98.11),(8.12 into a recursion relation
for A(l), as defined by Eq8.153, we obtain

d?+6d—13
2(d’-1)

AL0))
XD

dn
=

(8.1

the presence of random-field disorder, although the argument

is subtler. Hence for §d<7 we can focus on the random-

which, assuming thak! (0] —o)—AY, (0)<O0, has the so-

field-only model of a randomly pinned smectic. We relegateution

the details of the FRG procedure to Appendix B. Ferd

<7, the results are summarized by the FRG flow equations

dK d_3+(d2—12d+23)3(’,(o,|) 61
di 2(d2—1)N2(1) . @1D
dB 3 Ay0))
az — +§ )\2(|) , (8.12
and
a,ZV(u,|)=eZV(u,|)+il)M u,l)
Uo
3(d?—6d+11)..,
—mAv(OJ)Av(u,I)
1. - -
+E[M(u,l)]Z—AC(u,I)Ac(O,I),
(8.13
where
d-7
Ay(u,h)= Co-1h (8.14)

4\/K§(I)B(I)AV(U’|)

M) =AoVI+ Ty, (8.17)
with
Ao=\(1=0), (8.183
| A3 d?-1
o A7, (0)] d?+6d—13
(8.180

The main result of this analysis is that at large length
scales)>1,, \?(l) growsas auniversalfunction of|

d*+6d—13 .

N(l—m)= =1 [AY, (0)]1.

(8.19
Hence, as asserted above \&§¢l) grows, the graphical cor-
rections to the flow ofK(l) and B(l) diminish, Egs.
(8.11),(8.12 become asymptoticallgxact and the third term
in Eq. (8.13 vanishes as— . All this is still subject to the
assumption thad!, (0)#0.

We can begin demonstrating this latter assumption by
combining Egs.(8.11),(8.12 into a recursion relation for
7(l), given by Eq(8.15h. Comparing the resulting equation
with the generic flow equation fop(l), Eq. (8.6), we find
that 6(1) (for 1>1,) is given by auniversalfunction
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d?-3d+5
d?+6d—-13

1 B(1)=e“"3'B(1), (8.24b

0(l)=d—3— T (8.20

where the physically measurable modaijj(I) andK (1) are
We note that besides being universé(l) is furthermore
independent of the fixed point vaItZd’,*(O), aslong as it is Kp(l):KO( 1+ l_
finite. As a result of Eq(8.20 we conclude that fod> 3, lo
7(l) is strongly irrelevant. Physically, this reflects the strong
irrelevance of thermal fluctuations for>3, with the prop-
erties of the pinned smectic determined by a competition
between elastic and random pinning enerdlesth infinitely )
larger than the thermal energyT). As a result, the second With
term on the right hand side of E¢.13 flows to zero expo-
nentially fast, and can therefore be dropped. Likewise, the
1/\(1)2 term in Eq.(8.13 also vanishes ds— (albeit more
slowly), and can also be neglected. This leads to a closed
recursion relation foA\(u,!), which has been extensively
studied in the context of the random fieddy modef® and 3
other pinned periodic medrd:® ve(d)=3
The fixed point solution\ , (u) is readily found by setting
8,Ay(u,1)=0, which leads to an ordinary differential equa- In the range of interest the exponentg(d) and yg(d) are
tion for Ay, (u): monotonically decreasing and increasing functionsl,ofe-
spectively, and do not change significantly fo8<7:
~ 1. - - vk (B)=1/7, y(7)=1/13, yg(5)=6/7, yg(7)=12/13. As
GAV*(U)+E[A('/*(U)]Z—A('/*(U)A('/*(O):O- advertised, we therefore finfor 5<d<7) that the ran-
(8.21) domly pinned smectic exhibits logarithmically weak anoma-
lous elasticity, with the bend moduld, diverging and the
The exact form ofzv*(u) is not important for our con- compression modquBp vanishing logarithmically at large
clusions(except for one exponentall that matters is that a length scaleg'—c. _
fixed point solutionAy, (u) exists(which it does for 5<d With these results in hand, we can calculate the corre-
<7). However, for completeness we summarize the fixegSPonding smectic time-persistent correlation function

point results forA,, (u). Focusing, for convenience, on the
randomfield correlatorAg, (u)=AY, (u), which satisfies C(k)=

YK

, (8.253

- 7B

B,(1) =B, 1+||—) , (8.25h
0

1 ( —d?+ 12d—23>
(8.26

(D=3 "@i6d-13

d’-1 )
. (8.27

d?+6d—13

(u(k))(u(k"))
Sk+k') (628

X X’ R/ X _ X —
Ap (WHAR (W AR, (WLAR (W= Ar (0)]=0, which determines the long-range spatial smectic correlations.

(822 Following the RG matching method, described in detail in
we obtain Sec. VI, we relateC(k) at the small wave vectors of interest
1 5 to us, to the same quantity computed in the effective theory
Ar, (U)=—min € “[qou—(2n+1) 72— ™ with rescaled-dependent couplings and evaluated at larger
* nez 0616 18}’ wave vectore'k, ,e®'k,:
(8.9 C(k)=el@"1ro)lcrek, ,e“'k,,B(1),K(1),Ay(u,)]
which has cusps at=n2w/gy=na, n integer. It is easy to e ' SV (8' 29
show® that at T=0 (=0) the cusp nonanalyticity in '
Ar, (u) develops atfinite “time” I, while for finite Here let us consider the Iimkz<)\kf. Now, we set(for

T(7%#0) this singularity is cutoff within a boundary layer of conveniencew=2 and choose'” =A/k, . The latter con-
thickness~ 7(1)/eqq at the valueA}, (0))~e?w2/97(l). dition guarantees that no infrared divergences appear in the
perturbative calculation of the right-hand side of Eg.29

< . 2/0n2 : (since it is done at large wave vecter k, =A at the Bril-
(8.23, thatAv, (0)=— em*/905<0, thereby, together with louin zone boundany At these short length scales\ (1),

Eq. (8.19, demonstrating thah?(l—»)—x, as assumed . ;
egrligar s?—|avir1g establisghed thEaTaxi)s;ance of the zerophonon displacementsare genEJmel)(/ smo()al]ll and the random
: i X . potential varianceA,(u,—ug) [Eqg. (8.10] can be safely
e sl 2 o SXPAA 1 & CONVIGent pomer Series-y. Expanc:
UL ing the Hamiltonian Eq(8.10 to the lowesf{quadrati¢ non-

turn to the implications (.Df these resglts for the elastic PTOP%ivial order maps the full nonlinear FRG problem at these
erties of the randomly pinned smectic. . .
. L7 . high wave vectors onto the random tilt-only model E8§.3)
Using Egs.(8.159—(8.18h inside the flow equations for with effective k-dependent coupling& (I*), B(I*), and
K(1) andB(1), Egs.(8.11,(8.12, and solving for these elas- it & - ° P piing : '
tic moduli, we obtain n (™) given by

K(1)=e@ 3K (1), (8.243 ART(1%) == 2A3(01*)/A?, (830

We also see from the solution fdkg, (u)=AY, (u), Eq.
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[Ay(0)*)<0, as we show beloy Using this effective ~ The superuniversal smectic Bragg glass phase found in
theory and Eqs(3.11),(3.12 to compute the right-hand side this section is quite exotic. However, since it only exists for
of Eqg. (8.29, and takingk, sufficiently small, so that* is ~ 5<d<7, it unfortunately has little experimental relevance
sufficiently large to guarantee that the fixed point Bj23  for physical three-dimensional disordered smectics. Further-

is reached, we readily obtain more, because theeriodic disorder-driven layer fluctuations

and the related anomalous elasticity diverge dagarithmi-

—2el@+ DI AT Q%) cally, while thetilt disorder, which becomes relevant for

C(k)=~ - > , <5, leads to power-law roughness, E4.9), the former is

d-3)l d—3)I* Jal% | 2
[Kp(1*)e@™ A%+ B (1*) e~ et k7)? completely swamped by the latter i< 5.
(8.31a
_ m 7-d B. Functional RG for 3<d<5:
- —8Ay,(0) Bp(l )Kp(l ) KL irrelevance of random-field disorder
4 2 :
[Kp(l*)kL—'_BP(I*)kz]zcd*l (8.31h The above claim can readily be demonstrated by extend-

ing the functional renormalization group analysis presented
To obtain Eq(8.31h above, we used E@8.14) to relateA,, ~ @bove and in Appendix B td<<5. The resulting set of flow

3 : tions forK(l), B(l), andA(u,l), valid for d<5 [as-
to Ay and Eq.(8.29 to express our results in terms of the equa A —h )
phys\fcal elastic moduk , andB,,. Comparing our final ex- suming _the validity of theelasticmodel, Eq.(8.10), i.e., that
pression forC(k) with the expression for this quantity in dislocations are bourjds
Gaussian theory E(3.12) justifies our callingk ,(I*) and
Bp(1*) the “physical” K and B of the nonlinear theory of

[ 2_ AN
the randomly pinned smectic. Using E¢8.29 for these, in dK() =ld-3+ ig(o |)+(d 12d+23)Ay(01)
the limit |*>1,, with I* =In(A/k, ), andk,<\k? we find the d | 327 2(d2=1)\%(1) ’
anomalousmoduli (8.395
K(k)o[In(k, /A)| 7@, (8.323
B(K) [ In(k, /)] 7@ eazn 9By g0 30 3AMONI (©.36
+ ' ' dl 169( 22 | :
Similar analysis for an arbitrary direction ik, -k, space )
leads to Eqs(1.8), advertised in the Introduction.
The Fourier transform o€(k) measures the spatial pho- 1
non correlations AAp(ul)=d-1+ &g(u,l))Ah(u,l)
C(r)=([u(r,,2)—u(0,,0)1%), 7()
+| —2+D(u) |AR(u,l)
dk qO
- (2mp 2 cosken]eto. oA, (W 2VKITBIIAS9C,
(8.33 (8.37

Using Eq.(8.31b, but ignoring the subdominafin(inr)]  \where we have defined
corrections arising from weak anomalous elasticity, we ob-

tain for z=0 B(l) \ 2 s
g(u,=Ap(u,l) K5(1) Cy-1A">, (838
L0 —8AY, (0) d% VB(k)K(k)3k/™d
L Cy s kl<rjl(277)d[K(k)kf+B(k)k§]2 the “position-dependent diffusivity
~ D(u)=c,[Al, (u)—Al, (0)], (8.39
_4A(I/*(0) dd_lkJ_ 1 ( 2[ V*( V* ]
~TCc.. ‘- *lﬁ F andc andc, are dimensionless constants of order unity. Note
d-1 L<r(2m) L that these recursion relations reduce to those of the tilt-only
) model considered in Sec. VI, if we take the tilt disorder
_Aem In(r, /a) 834 An(ul) to be a constant independent of and drop the
2 1 . . . . . h
905 random field disorder. In these relations, for convenience, we

have chosen the anisotropy exponent 2, so that, as dis-

We therefore find that throughout the range of dimension%usSed earlierg, does not renormalize

5<d<7, the smectic displacementsgrow logarithmically The recursion relation for the dimensionless random field

(up to InIn corrections due to anomalous elasticityith a . ~ .
universal amplitude determined by E.23. This super- dlsorQerAV is given by Eq.(8.13. Note that since we are

universal logarithmic roughness is analogous to that previlow interested ird<5, Ay may grow quite largésince its
ously found for the random fiel&XY modef® and for the linear eigenvalug=7—d is no longer smal so we cannot
Abrikosov vortex lattice in a dirty superconductor. neglect theO(Af,) nonlinearities in Eq(8.13. Because we
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do not know these, we cannot actually calculate the fixed

point functionA, (u) thatA(u,l) flows to upon renormal- a9(u,l)=
ization. However, as id>5, we do not need to. Rather, we

5 Ay, (0)
5—-d- 3—29(U,|)+C3)\2—(|) a(u,l)

only need to argue that it exists, is finite, and that its second () (Z(’,’*(u))z
derivative at the originAY, (0) is finite and negative. =t D(u))g”(u,l)+c2—,

To make this argument, we first note that if we drop the %o A0
second and third terms on the right-hand side of Bql3 (8.40

and ignore higher order nonlinear terms, the resulting eqUaihere we have definect = 3/4+ (d2— 12d+ 23)[2(d?
tion certainly has a fixed point solution; namely, our explicit _ 1)]. Similarly, from Eqs (g 35),(8.36), we obtain the re-
solution Eq.(8.23. Now let us consider the effects of the cursic;n equatio}1 for 3/2(|)'Eé(|)’/K'(|) '

other terms. Thep(l) term can onlyreduceA,, being a

“diffusive” type of term. So, while it may driveﬁ_v(u,l) to dA"%(1) __ 1g(o,l))\‘2(l)+a11(’, (O 4(1),

zero ad —oo, it certainly cannothave the opposite effect of dl 32 *

driving Ay to infinity. Hence Ay, (u), and therefore, (8.4

Z(’,*(O), remain finite in the presence of this term. wherea, is a constant whose numerical values is unimpor-
If we assume thal,,, (u) is finite, we can shova poste-  tant for our argument.

riori that the third term renormalizes exponentigily renor- We will now prove that ford<5, at long scaledlargel),

malization group “time”1) to zero, since, as we will show 9(u,l) flows to g3=32(5-d)/5 the constant,
in a moment,\(l)—o exponentially inl. This should be u-independent fixed point value of the dimensionless cou-

contrasted with the behavior of this term irc8l<7, where  Pling g, Eq. (6.19, that we found in our earlier, tilt-only

it vanished much more slowlfas 1I) as|—=. The more treatment of the disordered smectic, described in Sec. VI.

rapid vanishing of this term id<5 is a consequence of the ~ To see this, we write

stronger renormalization d andK due to thetilt disorder N

field (Ap,), which becomes relevant fat<5. 9(u,h=gz +ag(u,l), (8.42a
The crucial point here is that this much stronger renormal-

ization of B andK due to this relevance of the tilt field\(,)

doesnot destabilize thél, fixed point. Since this relevance

of the tilt field is the only qualitative difference betweédn (8.42b

>5 andd<5, showing that it does not destabilize thg  and expand the recursion relation E8.40 to linear order in

fixed point by itself shows that there is no more reason tasg(u,l), obtaining

doubt the stability of this fixed point fod<<5 than for 5

32
=€(5—d)+5g(u,l),

<d<7. Indeed, if anything, the argument s¢rengthened 5 S(u)
since the 2 (l) term vanishes even more rapidly fd< 5. 969(u,1)=[d=5+D(u)d,]6g(u,1) + N2(1)
Hence, the only possible problem can come from the un- (8.43

known higher(than secondorder terms im,, in Eq.(8.13.
Not knowing these terms, we cannot make a very compellin
argument that they do not destabilize the fixed point. How- e - 2

ever, the same objection could have been raisedfeb but S(u)=c39; Ay, (0) +c[Av, (W], (8.4
well below 7. Indeed, an analogous objection can be raisegng have dropped the(l) term which decays away expo-
for any fixed point that is found in am expansion once one nentially to 0 ad — .

goes well below the upper-critical dimension. We simply 14 demonstrate the stability of the tilt-onlyindependent
assume(as is done in all standare expansionsthat the  fixed point, we now only need to show that E§.43 im-
stability of the FRG fixed point, rigorously derived fer  pjies thatsg(u,l) decays to 0 ak— . To do this we expand

—0, persists well below the upper-critical dimension, i-e-!b‘g(u,l) in eigenfunctions of the operat®@(u)4?; that is,

So it seems plausible to assume that a finite fixed point
function Ay, (u), with finite A}, (0)<0, exists ford<5. ”
Let us now investigate the consequences of this assumption. 8g(u)=2 ga(ldn(u), (8.49
We will see in a moment that they are virtually nonexistent: n=0
the asymptotic RG flows d8(l), K(l), andAn(l), and long  where¢,(u) are periodic functions of with perioda satis-
distance behavior of the static smectic correlation functionsgying the eigenvalue equation
that they imply, areexactlythose we found in Sec. VI, where
we neglected the periodic potential altogether. d2¢,(u)

To see this, let us tak&,(u,l) to have flown to its fixed D(u) du?
point, and combine the recursion relations ), K(I),
and A, (u,l) into recursion relations for the dimensionless It is straightforward to see that all of the eigenvallgs
coupling function g(u,l), defined in Eq.(8.38, which are=<0, provided thatD(u)=0 for all u, as it is in 7—e€
evolves under the RG transformation according to dimensions, where we can explicitly calculate it. We will

avhere we have defined the “source term”

=I'én(u). (8.49
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assume tha (u) continues to be=0 for d<5, and, in fact,
all the way down to the physical dimensidrs 3.
Using the orthogonality of theéb,(u) basis, with

ah(U)pr(U)
fowdu—lném, (8.47
and
_ (2a(w)
= fo D(w) u, (8.48
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(u(q)u(aq’))
@ s%q+q)
A d+1 T
:(i) K(I*)A*+B(1*)(A/q,)*q?
An(1%)AZ2=2A7(0)*
h(1™) v(0J™) (854

IR A+ B )(Alq,) a2’

with I* =In(A/q,). This only differs from our expression for
this correlation function in the tilt-only model, E(6.31), by

cursion relations for thé-dependent expansion coefficients of the second term. Using

gn(1) in Eq. (8.495

dgy() S,
di —(d—5+Fn)gn(I)+m, (8.49
where the source term is given by
_ (2S(u) ¢n(u)
=fowdu. (85@

Now, since all of thd",, are<0, and we are considering
d<5, and since, as we show momentariyl)— as|
—oo, we see that all of they,(l) flow to zero asl—o,
provided only that all of theS,, Eq. (8.50 are finite. We
leave the demonstration of the latter ficas a straightfor-
ward homework exercise. Hence as asseéd,|) flows to
a stable fixed poing* (u)=g3 =32(5—-d)/5, identical to
that found in the tilt-only model of Sec. VI.

It is now easy to complete the proof, by demonstrating via

Eq. (8.19 that near this fixed poink~?(l) flows rapidly to
Zero:

A~2(1)=\"2(0)e" (795732} (8.513

=\"%(0)e TG dAIL (8.51b
Although this result holds only neat=5, it is straightfor-
ward to generalize the above analysis to arbitrdty5, by
relating the graphical corrections ® and K to the exact
anomalous exponentgg and 7 of the tilt-only model. We
find thatg,(l — ) again flows to the same fixed point value

it would have in the absence of the periodic potential, while

X ~2(1) now flows to zero as

A "2(1)=N"2(0)e (st 7!, (8.52
So in all dimensionsi<5, A ~2(1) flows exponentially to

zero, in contrast to 5£d<7, wherex ~2(l) vanishes slowly,

as 1l. This completes tha posterioriargument in our ear-

lier demonstration thah(u,!) flows to a finite fixed point
and that the tilt disorderg(u) flows to a stable,

An(H=0g5(l KEA) (8.55a9
h( _92( )Bllz(l)cd_lAd_5v .
. K5/2(|)
—0 BlIZ(I)Cd_lAd75’
(8.55H
and
7—d
Ay(u,l) — K¥2(1)BY2(1)Ay, (u), (856
1o Ca-1

it is easy to show that the ratio of this{,(0,*) term to
An(I,)A?% s

A, (0) B(l,)  const
g5 Ko\,

which vanishes ag, —0 andl, —, sincex 2(l,) does.

To summarizeeverypossiblestatic effect of the periodic
potentialA, vanishes, as—, like A “2(l), which vanishes
exponentially ad —«. Hence, the periodic potentidthe
random field disordgrhas no effect on angtatic properties
of the disordered smectic id<<5. Our tilt-only model is
sufficient to treat those.

All of the above arguments, of course, only apply if we
ignore dislocations. In the next section we include these in
our analysis.

(8.57

IX. FAILURE OF PERIODIC POTENTIAL
TO INDUCE DISLOCATION UNBINDING

In Secs. Ill, IV, and VIII we have demonstrated that in
three-dimensionalor more generally ford<<5) randomly
pinned smectics, the tilt disordeA() asymptotically leads
to significantly larger layer disordering than the random field
displacement disorderA({,). We thereby argued that static
correlation functions for a general disordered smectic can be
accurately computed within a tilt-disorder-only model, stud-

u-independent fixed point identical to that found for the tilt- ied in Secs. IV-VII. However, the validity of these argu-
only model. ments and the conclusions that follow from them critically
All that remains to complete our argument that the ran+ely on the stability of theelastic model within which these
dom periodic potential has no effect on the static propertiesssessments are made. That is, it is in principle possible that
of disordered smectics id<<5 is to consider the correlation although the periodic disorder is less important than the ran-
functions themselves. Using yet again the trajectory integratlom tilt pinning in disordering smectic layers in tlastic
matching formalism, we can show that model, it could nevertheless drive dislocation unbinding,



PRB 60 SMECTIC LIQUID CRYSTALS IN RANDOM ENVIRONMENTS 241

thereby invalidating the elastic model and the conclusions
drawn from it.

Therefore, to make the arguments of the previous sections
complete, it is essential to assess whether the random-field
disorder QAy) alone can drive proliferation of dislocation
loops, and this is the subject of current section. To this end
we adapt Fisher® real space renormalization group analy-
sis to disordered smectics and show that the random periodic
disorderalone doesnot induce a proliferation of dislocation
loops in three-dimensional smectics, thereby concluding our
justification for the tilt-only model of randomly pinned
smectics.

We first review Fisher’s analysis as it applies to the three-
dimensional random-fielKY model. Recall that within a
defect-free model the elastic energy is balanced against the
pinning energy, both much larger than the thermal energy
kgT. The compromise in this competition leads to phase FIG. 12. lllustration of the optimization of a topological defect
variations that grow logarithmically with distance and typical loop on length scal@,. The full and dashed large loops represent
ground-state energies that varylaas whereL is system size the topological defect line before and after optimization on scale
and @ is (minug of the thermal eigenvalue exponent, which, Aw. respectively, and the small circles are the isotropic correlated

due to statistical symmetry, is given exactly by regions corresponding to displacemewts
O, =d—2. (9.1 w?
v OEsyretct™ EA_ 9.3
w

We wish to know whether it energetically pays for the sys-

tem to insert a vortex loop. Confining our discussiondto gives
=3, a vortex loop of length. will cost the system elastic
energy Eq~JLInL, where the multiplicative logarithm is AP~ ew®?, (9.9
associated with the long-rangfer phase deformation around
the vortex line andl is the spin-wave stiffness. For such a
randomly placed vortex loop, which relieves strains by al-
Iovying_spin rotations of order 2, the system can typically Ay~ 2w (9.5
gain disorder energ¥ jisorger~ L~ L. Hence, this crude ar-

gument would suggest that, because of the additional multiUsing this in the expression for the pinning energy, we get
plicative logarithmic factor inEg, it never pays to insert the best pinning energy gain of

arbitrarily large vortex loops into the random-fieldY U

model. However, as argued by Fisher, a judicious optimiza- OBpin~—€ w. (9.6
tion of the vortex loop location and conformation can doassogiating this energetic reduction with the renormalization
better erj_ergetlcally, and therefore_ itis essentlal to include iRy the vortex line tensior(l) gives

the stability analysis the energy minimization over the vortex

which predicts the aspect ratio of the energetically most fa-
vorable deformation of the vortex loop

position.and conformation. _ _ SEert SE iy 3y

To this end we start out with a circular vortex loop and, as Se=—————=JIn2— ——, (9.7
. A . ; . A 23y
illustrated in Fig. 12, try to lower its energy by moving vari- w €

gus segmentst:)f Ienglmwl of it Erst by a dlslt.anc.ew, thfenhbyl. where the first term arises from the elastic energy increase
w, etc. We then calculate the renormalization of the liney o 5 the factor of 2 increase in length scale. This result

tensione(l) by pinning at scale '%v. The idea is that each implies the RG recursion relation
roughly spherical region of siag is statistically independent
of all the others; each gains a pinning energy of the order de(l) 1
w’=wd"2=w (in d=3). So the total pinning energy gained =

from optimizing the conformation of the vortex loop on scale
w is given by

G 9.8

Clearly, if the bare vortex line tensia{0)= ¢ is sufficiently
large, the line tensior(l) at scalee' grows asl (=InL),

OBpin™ =W\ Nspheres (9.23 and therefore it is energetically unfavorable for vortex loops
to unbind. This therefore argues for the stability of the topo-
——w ﬂ (9.2b logically ordered “Bragg” glass phase in a weakly disor-
w’ ' dered three-dimensional random-fiedd model.
We now extend this analysis to smectics pinned by a ran-
~— JA W. (9.29  dom periodic potential, with the main difference from the

random-fieldX'Y model being the anisotropy of the smectic
Balancing this energy against the stretching energy necessasyate. We begin by calculating the thermal eigenvalue expo-
to deform the vortex loop nents— 6. As was the case for the random-fiefdr model,



242

FIG. 13. lllustration of smectic anisotropic cigar-shaped corre-

lation regions inside the dislocation optimization lendtl for a
displacementv alongz of a dislocation running perpendicular zo
(case 1

statistical symmetry guarantees that the smectic elastic

moduli B and K are not renormalized by disord® This
therefore implies that th&@ exponent can be computesk-

actly by estimating the elastic energy due to layer displace-

mentu of order a lattice constar@@(a) inside an anisotropic
volumeL, XL, X(L,~L?).

E~Bf dzdfr, (9,u)?, (9.93

oL Lf%, (9.9
LL

~(L,)° (9.909

In this estimate Eq(9.9) we have used the fact that, in the
harmonicsmectic elastic theory, distances in thdirection
scale like the square of those in thedirections. In three

dimensions, we therefore find that the ground state of a ran-

domly pinned, elasticalljharmonicsmectic is described by

(9.10

Osmectic=0-
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SE i~ —w? A (9.113
P Lo (w)’ '
A

0 w
~ W0\ =, (9.11b

Jw

A1/2

~— ﬁ (9.110

Balancing this against the dislocation stretching energy,
which, as always, is

W2
OE streter™ EA_ , (9.12
w
we get
A= 23032, (9.13

We note thatA,>L , (w)~ \w, consistent with the assump-
tion of many “bubbles” per segmend,,, on which this
calculation of 6E;;, was based. This leads to

A1/2
w
SE pin~ et (9.143
~ — 312 (9.14bh

and predicts a change of the line tension at seatgven by

_ OEpin

Se= A, (9.15a

1
e¥w
Note that in the above we have ignored the elastic energy,
because we do not need it to prove the stability of smectic

“Bragg” glass. Even without thestabilizing contribution of
the elastic energy, Eq9.15 implies

(9.15h

We now need to estimate the pinning energy gain from

introducing a dislocation loop and optimizing its configura-
tion, analogously to the analysis for a vortex loop above. The
main difference here, however, is that, because of the anisot-
ropy of the smectic phase, there are three dislocation lin

optimization cases to considdf) vertical (alongz) w dis-
placement of a horizontdperpendicular t@) segmenii.e.,
an edge dislocatign(2) horizontalw displacement of a hori-
zontal segment(3) horizontalw displacement of a vertical
segmenii.e., a screw dislocation

A. Case 1: Vertical displacement of a horizontal dislocation
(wl|z)

de(l) 1

dl __6(|)1/3 B

(9.19

Clearly, if the baree(1=0)= ¢ is big enoughg(l—x) will
be nonzero. Henceeriodic disordey by itself, cannot un-
bind horizontal loops by displacing them vertically.

B. Case 2: Horizontal displacement of a horizontal dislocation
(wlz)

As illustrated in Fig. 14, here, the volume of the corre-
lated regions isvxX wXxw?, with the long axis along. The
width of the correlated volumalong A, is noww, so we

Because of the elastic anisotropy of the smectic state, iRgye
contrast to the spherical correlated volumes of the random-

field XY model, here correlated regions are cigar-shaped
rected along 2z) characterized by dimensions
L, (w) XL, (w)Xw, with L, (w)~ w, as shown in Fig. 13.

(9.1

A
SEpin~—\/ WW

The corresponding pinning energy change due to optimizaEquating this energy to the dislocation stretching energy

tion of a dislocation segment of length,, is given by

ew?/A,,, we find
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z ) T
1
|_ W
I, A ;‘!
4 H Y
b v
| K Aw
| :f’,i
FIG. 14. lllustration of smectic anisotropic cigar-shaped corre- 'H‘.
lation regions inside the dislocation optimization lengtf for both :Oll
the displacementv and the dislocation running perpendicularzo \,‘"‘
i.e., alongr, (e.g., alongx andy) (case 2. "b i
Ay~ €235, (9.18 —jw—
which, upon inserting intéE;,, Eq.(9.17), gives FIG. 15. lllustration of smectic anisotropic cigar-shaped corre-
lation regions inside the dislocation optimization lengt} for dis-
SE pin~ €'Aw3 (9.19  placementv alongr, and dislocation running alorg i.e. alongr
o (case 3.
and implies
1
OE,; _
_ Z%pin =——, (9.24h
Se= A, (9.203 Y32
which implies
1
~— 9.20
W ( b de(l) e ?
_ a0 =——E(I)1,3 (9.2
This leads to
whose solution fore(l), again, is stable als— .
de(l) 1

_ o413 9.21) _ Since in aII_ thrt_ae cases we find that the effective disloca-
dl e(H1B ’ ' tion line tension is finite at long scales, we conclude that
periodic random-field disordealone cannot unbind disloca-
which also demonstrates that therenésdivergent downward tion loops in such a randomly pinned smectic.
renormalization ofe, implying that in the presence of only
periodic disorder, horizontal dislocation loops wilbt un-

; ’ : ‘ X. EXPERIMENTAL PREDICTIONS AND FUTURE
bind by displacing horizontally.

RESEARCH DIRECTIONS

C. Case 3: Horizontal displacement of a vertical dislocation Our re_sults imply many unequivocal dramatlc predlctlon§
(WL 7) for experiments. The first and most unequivocal of these is
that long-ranged, and even quasi-long-ranged, smectic trans-
Finally we consider optimizing a-directed screw dislo- |ational order is destroyed by the presence of eaitrarily
cation, by displacing it horizontally. This corresponds to aweak quenchediisorder. Furthermore, the decay of smectic
correlated region of volume/xwxw?, but, in contrast to  translational order induced by such disorder is far more rapid
case 2, with the axis alongy,, being the long dimensiow?,  than in previously studied “Bragg glass” systefiS ' be-
as illustrated in Fig. 15. As a result, we have ing exponential, rather than algebraic. The experimental sig-
nature of this is equally unequivocal: broad x-ray scattering
[Aw peaks with finite peak height, as opposed to the infinitely
OBpin~ w2’ (9.22 sharp, divergent peaks associated with quasi-long ranged or-
der in thermal smectics. This qualitative prediction is born
which when balanced against the dislocation stretching enout by all experiments on smectics in aerogel to date: all
ergy gives show only broad, finite height x-ray scattering peaks, which
can be fit by assuming a finite x-ray correlation lentfth.
Ay~ €Pw?, (9.23 In strong contrast tauenched(frozen disorder of this
. . type, it is straightforward to show analytically that weak
We note th"’.lt fore>1 this Aw s much greater thamv?, syhport-ranged ar?nealed disorder, in whichythe r)zimdom en-
consistent with the assumption that goes into @R2). This

) vironment can rearrange to accomodate the smectic’s prefer-
gives ence for an ordered state, has qoalitative effect on the
long scale properties of liquid crystal phases. Such weak
Se~ %’ (9.2439  annealed disorder only leadsftnite renormalizations of the

w effective parameters in our mod&lConsequently, the smec-



244 LEO RADZIHOVSKY AND JOHN TONER PRB 60

tic phase, its quasi-long-ranged smectic translational ordedependentand therefore nonunivergatxponents, andiii)
and the transition into it arstable to weak annealedisor- in aerosils beyond a critical density they find a behavior that
der, which might arise, for example, due to a low concentrais qualitatively similar to smectics confined in aerogels.
tion of microscopic inclusions. It is important to note that in aerogels and aerosils, in
Of course, strictly speaking, all physical random confin-contrast to what one might have naively expected, the smec-
ing structure are elastic, even aerogel, and therefore are atlié correlation length iswot limited by some sort of “finite
to deform to some extent in response to the smectic, whicfize” effect associated with the “pore size” of the aerogel.
resists distortions. It is easy to see that this additional “elas] hat is, the smectic confined in aerogel does act as if it
tic compliance” ingredient can be described as an anneale2S Simply been broken up into many small volumes which
component of the disorder, in addition to the quenched par‘ijo not _mtEr_a_ct with ?ach other.
that is the main subject of our work. In light of the qualita- If this “finite size scenariowere the case, one would
tive unimportance of weak annealed disorder, discussef*Pect to see the smectic translational correlation leggth
above, our theory for purely quenched random structures imdroW With decreasing temperature ‘Bapproached the pure
mediately extends to deformable structures, which ardVA transition temperatur@y,° from above exactly as it did
quenched for large deformations, i.e., described by a finité" the pure(bulk) smectic. Indeed, one would expect it to
shear modulus. track its temperature-dependent vaIg&m(T) in the pure
A notable example of liquid crystals confined in randomsystem until T got close enough ta}s° that §§ure(T)=
structures in which these elastic annealed features appear %Taééroge(T) =Lp, the “pore size” of the aerogel. At this point
the recent experiments on smecticsgrosil®%? Sincetypi-
cal weak hydrogen bonds that link the aerosil network to-

fgetr:_er hafv?hbond—brﬁakirlg er;ergies of orklgT,_ta Ilz;lr_ge This is emphaticallynot what is seen in experiments on
raction of the aerosil network can rearrange itself in re- o 1421020 pathor the growth of¢X continues right

sponse to stresses imposed on it by the smectic and thereﬁ¥0 hTP9e and onl wrat i i ¢ I
come to thermal equilibrium with it. However, rougn ' na, and only saturates at some temperature we

measurement? show that even these tenuous, weaklyP€loW TRa": This is completely consistent with our picture,
bonded structures are characterized by a small biie N Which £* is determined by a competition between the
shear modulus. Hence even aerosils are unable to perforffectic elasticity, which tries to keep the system ordered,
arbitrary rearrangements to equilibrate with the orderednd the random forces exerted by the aerogel strands, which
smectic. Therefore, while they have a large annealed COmp(_gi_lsorder it. In this picture, the saturation gf with decreas-
nent, aerosils contain a small quenched component, whicig temperature occurs nabove K, but, rather, welbe-
dominates the qualitative physics of the confined smecticdow TRa°; specifically, at the temperature at which the smec-
We therefore expect a destruction of the quasi-long-rangetic elastic compression modul(T) saturates.
translational order for smectics confined in aerosils, with the Liquid crystals have also been confined in other random
x-ray correlation length obeying our predictions for low den-but significantly more ordered structures. Some examples are
sity aerogels. Anoporé® and Vycor®* which in contrast to the tenuous
However, there are three important consequences of th@erogel strand structure present on all scales, consist of a
large annealed disorder component present in aerosils. Firggndom distribution of empty pores, with fairly regular wall
while weak annealedlisorder should only lead to a finite structure and much narrower pore size distribution. Even
renormalization of effective parametesttongannealed dis- these systems can in principle be understood within the gen-
order can destroy the quasi-long-ranged smectic order bgral model presented here. However, they fall into the strong
driving some of the effective elastic moduli negative. Sec-disorder regime of our model, and we are therefore unable to
ondly, given the empirical fact that tHaulk NA transition  utilize our weak disorder approach to make quantitative pre-
appears to display nonuniversal behavitwe would expect dictions, aside from the observation that the quasi-long-
this nonuniversality to also manifest itself for smectics “con- ranged smectic order should be destroyed in these systems as
fined” in low-density aerosils, where the effective model well, consistent with experiments.
parameters are functions of aerosil density due to the pres- The qualitative agreement between our theory and experi-
ence of the annealed disorder component. Thirdly, becauggent can be made quantitative through our expression Eq.
of this large annealed disorder component in aerosils and @.13, which relatest® to the smectic elastic constaB(T).
correspondingly small quenched component, we expect aerds discussed in the Introduction, this expression implies that
sils to be described by significantly smaller values of oursufficiently far belowTRx® (where our weak disorder theory
effective quenched disorder parametAssand A,, than for  applies, a simple power-law relation betwe&f(T) and the
aerogels of the same solid volume fraction. Consequently,bare” layer compressional moduluB,,{T) of the pure
experiments in aerosils are more appropriate for exploringystem holds:
our weak quenched disorder theory and to search for the

&4(T) would abruptly saturate, and remain constarit@for
all lower temperatures.

delicate and “fragile” SBG and NEG phases. E(T) o[ Bpard T) 1%, (10.13
These nontrivial qualitative predictions are clearly in

agreement with the experimental observations of smectics %[ Bpard T)J¥X Y2,

confined in aerosil&? (i) for low aerosil densities these ex- (10.1b

periments observe significantly longéthan in equivalent
volume fractions aerogelsfinite smectic x-ray correlation The bareB,,,{ T) can be determined in a number of ways.
lengths,(ii) they measure heat capacities with aerosil densityOne way is simply to measure the layer compressional
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modulusBy,{ T) of a pure(bulk, aerogel-frepsample of the Fortunately, the above-described experimental determina-
same smectic liquid crystal material, and pray that this is notion of x could answer this question, since one of the bounds
changed when the smectic is placed in aerogel. HoweveEd. (1.1a is simply y<1. Thus, if the x-ray measurements,
since prayers are not always answered, a direct, simultaneodgscribed above, fing<1, a SBG phase can exist, and a

in situ determination ofB,{T) in the smectic inside the thermodynamically sharp remnant of the pure system’s NA
aerogel is clearly desirable. transition could be seen in sufficiently low density aerogels.

This could be done by determining the squared magnitud®@" the other hand, it proves to be>1, no sharp transition
of the smectic order paramete#|? from, e.g., the integrated should be seen. This is a deflnlt_e, falsifiable predlctlp_n that
intensity under thébroadenegismectic x-ray peak. In mean- could be tested experimentally: ¥>1, no sharp transition

field theory, which should hold for bare quantities suffi- should be seen. The converse conclusion, tha’kﬂ’ a
ciently far belowT Byud T) | /2. Thus, we should, in sharp transition should be seen, need not hold, since it is
NA » Phbar . ’ )

. : . . possible thajy<<1, but the boundyc <1 is violated. For the
this mean-field regime, observe a universal powerz—llavx; relagame reason, even if the current experimental evidence that
tion E/efvi/een the x-ray correlation lengtff and |¥|% & 016 isno transition even for arbitrarily low density aerogel
oc| gy #X L, Note. that in the absence SE anomalous elasticity ,5|q4s up, we camot conclude thaty>1.
the second regime of E4L.13 [ £*=£)"(a/\)?] would ap- It is also important to note, that despite the absence of the
ply, and we would get*<Bec|4|?, the last proportionality Jong-ranged ordered smectic phasésipossible, as always,
holding only in the mean-field regime. Thumy departure to have a thermodynamically shafjrst-order transition
of the £*-B relation from linearity is evidence for anomalous within the disorderednemati¢ phase. At such a transition,
elasticity. Furthermore, observing such a power-law relatiorwhich would be from a nematic with a short smectic corre-
determinesy. lation length to a nematic with longé@out still finite) smectic
Preliminary analysis ofX versusB data®® as determined correlation length, thermodynamic quantitiesuch as the
above, supports the relation E(L0.D), with y=0.8+0.1.  heat capacity could displaying sharp nonanalytic features
Note thaty< 1, favoringstability of the smectic Bragg glass (such as latent heatWe believe that the recent calorimetry
phase, although we have, as yet, no experimental way afxperiments on 70.4/aerogel samples by Haga and Garland

determining if the other necessary relation for the stability ofare examples of such a first order transitfbris a conse-
the SBG, namelyy«<1, is satisfied. guence of our main result that only short range smectic order

While our prediction foré¥(T) is not as quantitative as 1S Possible for smectics confined in quenched random envi-
we would like, since we do not have quantitatively reliable’onments, we unambiguously predict a broad, finite x-ray
predictions for¢ and y in d=3 (our 5—d= e-expansion scattering peak for the system studied by Haga and Garland.
results not being quantitatively trustworthy whes-2), it If the SBG phaseloesprove to be possible, then we can

nonetheless makes it possible, by experimentally determir]! akg far more detailed tests of our predictions. In partlc_ular,
: o ; he simple fact that the SBG phase has long-ranged orienta-
ing ¢/ x for one smectic inone aerogel, to predict the tem-

wre d d X £ e | low d tional order is, in itself, a striking prediction that could be
perature dependence gt for any smectic inany low den- —aqteq very easily by looking at optical birefringence in
sity aerogel. Furthermore, oncd y is known, { and y

s smectics in aerogel. The existence of such long-ranged order
separately are also known, sin¢e=2—x. Knowledge of  \oyld make possible even more quantitative tests for our
these exponents then makes other predictions possible.  predictions of anomalous elasticity, by making it possible to
In particular, it leads to our s_e_cond_ prediction which con-qaasure director fluctuationsn; (q) on;(—q)) by light
cerns whether or not the transitidwhich replaces the NA - gcattering. Since these are related to smectic layer fluctua-

transition in bulk smectigsfrom the nematic to the low- tions by the usual smectic relatiofn(r)=Vu(r), we can
temperature phas@vhich replaces the ordered smettis  jmmediately write

destroyed by disorder. Surprisingly, this question can, in
principle, have a different answer than the question of

whether or not smectic translational order is destroyed. This (dni(a) 6n,—(—q)>=qiq,—<|u(q)|2>, (10.23
is because our analysis shows that, even though smectic

translational ordeis alwaysdestroyed, a distinct “smectic Ah(Q)QiQ;QfV

Bragg glass” phasdSBG), in which dislocations remain = > e
bound and long-rangedrientational (nemati¢ order per- [B(a)g; +K(a)a, ]

sists, maybe possible in the presence of sufficiently weak

disorder. If it is, then a thermodynamically sharp transition kaT O QY

into it (with decreasing temperatyreeplaces the NA transi- 8" i ,

tion of the pure system, as this phase itself replaces the B(q)q§+ K(q)qf
smectic-A phase. Consequently, an exotic and quite unique (10.2b

feature of this transition is that, while thermodynamic quan-

tities (e.g., heat capacitydisplay singularities at the transi- wherei andj run over all indices but, andV is the volume
tion to the putative smectic Bragg glass, the x-ray scatteringf the system. The first, quenched, term in this expression,
peak remains broad through the transition. UnfortunatelyEg. (10.2h, dominates ag— 0; thus fitting this piece to the
whether or not thisSBG) phase exists, in principle, depends observed light scattering would enable a direct experimental
on whether or not the imprecisely known anomalous expomeasurement df(q), B(qg), andA(q), and, hence, a direct
nentszg and 7k satisfy the bounds Ed1.1). test of the scaling predictions E(f.26) for these quantities,
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as well as a determination of the anomalous expongpts  with the remnant off, below Ty, (see Fig. 6, defined by
78, and 77, . For instance, if we take in the x—z plane,  the temperature at which the pure smectic order parameter
Eq. (10.2 implies correlation exponeny passes 4.
NL Presumably, there are experiments that could test our pre-
—<|5nx(q)|z>=qx—4— m+2m<fn ng;L . (103 di_ctions for the orientational corr_elgtion qugﬂ@, but we
(g, &5 will be unable to make such predictions until we have devel-
o oped a theory of the nematic elastic glass behavior that holds
Thus, a log-log plot of | n,(q)|) for g,=0 has slope-4

: ) ! . on longer length scales. This is a topic for future reseétch.
—na+ 27k . The simple observation that this slope is not

' ) o There are a number of other promising areas for future
—4 would confirm the existence of anomalous elasticity, byre

howing that d ~0. The determinati fih search. One is the subject of smectic order instdstiched
snowing thaty, and i were 71. The determination o1 e jerogels, which we are currently studyffgn that system
anisotropy exponent by collapsing the plots of| 5n,(q)|“)

¢ oty ofa.’ Id then fi 4 0 we have shown that uniaxially stretching or compressing the
versm:sqx lc_)r a V?”t? y %qthS wou endlx 78 EnK(.6 31(1); aerogel matrix can stabilize the smectic Bragg glass phase.
\(/av)(()i(i 4 S;ﬁ?aén?)r:)ev%:aog tﬁir desgﬁéti?(])% a;g ﬁ:](Ké" t?]lree. expo—The universality class of the resultant SBG now depends
nents. That the results satisfied our bounds (&) for the upon whether the aerogel is stretched or compressed: in the

stability of the SBG phase would then provide a nontrivialiOrrner case, ,',t lies in the _umversallty class of the so—cal[ed
check on the consistency of our theory. vortex glass” phase, which has recently been much dis-

A more stringent test could be provided by measuring thefuSsed in the context of the random fieldf modef®**and
secondkgT term in Eq.(10.2. Although, as mentioned ear- rgndomly pinned Abrikosov vqrtex Iatnc@svyhﬂg compres-
lier, this term is subdominant to the first, disorder term, itSion leads to a totally novel kind of=1 Lifshitz SBG.”
could nonetheless be resolved my'e_dependerﬁght scat- A detailed discussion of this problem is in preparal%n.
tering. The reason for this is that the first, disorder term of We expect a new glass phase similar in many respects to
Eq. (10.2 represents thetatic, time-persistent response of the “m=1" glass described above, but in a different univer-
the smectic to the random tilt field of the aerogel, whilesality class, to occur when “discotics{i.e. liquid crystals
the kgT term represents thermal fluctuations about thiswith two solidlikedirections andne liquidlike are absorbed
disorder-determined smectic layer configuration. That isjnto unstressederogel. Work on this interesting problem is
if we consider the unequal time correlation function also currently underwa¥.

(dn;(q,t)on;(—q,0)), we expect It is also interesting to consider what happens thales-
teric liquid crystal confined in aerogéf. Although the sym-

Ah(q)qiqjqf \% metry of such a system identicalto that of a smectic stud-

2 442 ied here, the addition of another long length saalemely,
[B(@)a;+K(a)q.] the cholesteric pitchmay make it possible to access a novel
keTqq: F(q,0V type of “random manifold” regime of pinned elastic media.

+ B %9 19, , Probably the most interesting and challenging problem is

B(9)92+K(a)q? the theory of dynamics of these smectic Bragg glass systems,

(10.49  which would enable a detailed understanding of recent dy-

wheref(q,t) is a function we do not know, but which pre- namic light scattering experimenit$.If the smectic Bragg

sumably will have some sort of slow, “glassy” decay, van- glass phase exists, which we are quite certain it does in
ishing ast— o, and going to 1 as—0, thereby recovering SMeCtCS in anisotropic aerogels and discotics in isotropic
the equal-time correlation function, E6L0.2. Using these ~@aerogels; it should have slow glassy dynamics similar to

(oni(q,t)én;(—q,0))=

two limits immediately implies those observed by Bellinet al!® Given its unusuaktatic
properties(e.g., anomalous elasticjtyits dynamics may be
lim (6n;(q,t) n;(—q,0)) —(ni(q,0) 6n;(—q,0)) quite unusual, even for glasses.
toe As noted in the Introduction, here we have studied smec-

tics in aerogel by perturbing around the low temperature
_ keTaq;V 10 translationally and orientational ordered smectic phase.
N B(q)q§+ K(q)qf ' (105 However, anot_her approach to thi_s problem, more convenient
to understanding the effects of disorder near and above the
which allows a completely independent determinatiompef  bulk NA transition, is based on the de Gennes md@@&his
and ng from the approach based strictly on the equal-timecomplementary high-temperature approach makes it possible
correlation function described earlier. Consistency of the twdo predict, e.g., the rounded specific heat and x-ray scattering
approaches would demonstrate the validity of the exact scapeaks observed in many experiments on smectics in
ing relation betweery, ng, and 7, . aerogeft?19-22
We remind the avid experimentalist that the entire above Finally, we note that the formalism we developed in Sec.
discussiononly applies if the SBG phase is stable. If the V for disordered smectics can be applied to a variety of other
SBG phase doesot exist, then our experimental predictions disordered problems, including gauge glasses, randomly
are reduced to Ed1.13 for the x-ray correlation length, the pinned Abrikosov vortex lattices and other pinned periodic
anomalous elasticity lengths given by Ed4.3), and the media. These applications will be discussed in a future
“ghost” of nonanalyticity in T in these lengths, associated publication?®
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APPENDIX A: DETAILS OF THE d=3 SINGLE vector partu” out of Z™:
HARMONIC RENORMALIZATION GROUP ANALYSIS

Here we present the details of the derivation of the renor- Z“=J [duS[du>JeHolua Tuzl—Halug+ugl -~ (ABg)
malization group flow equations Eq®8.183,(3.18b for the
three-dimensional disordered smectic model, in the harmonic
elastic approximation defined by the replicated Hamiltonian :j [duj]e*Ho[u;lfﬁHIUZ], (A5b)
Eq. (3.9
where SH[u}] is obtained by integrating out the short

HLu.]=Holu.]+Haluel, (AL yavevector degrees of freedom
where the quadratidl o[ u,] and the interactioil [ u,] parts
of the Hamiltonian are respectively given by e—&H[uj]Ef [du>]e—H0[uj]—HA[ua<+ua>] (A63)
1 n
- d 4 2 2 <, >
Ho—gf d qaZB [(Ka| +Ba;) dap— Andl JUalp, =75 (e Halug+ugly_ (A6b)
(A2a)

: 25| 1M ) L T
Hy=— [ @' 3 Aucodaolu(n—ug(r)]
(A2b) - (A6c)

In the above and throughout, in the interaction téim, we The perturbative correction to the nonconstant part of the

have for convenience excluded the=§ term inside the effective Hamiltonian can therefore be expressed in terms of
summation. This exclusion is indicated by a prime, and is P

justified since thex= B term is a constant. Also for simplic- a cumulant expansion
ity, throughout this appendix we have Set1; the factors 1
of T can be easily restored by the replacemiént K/T, B 5H[ua<]=(HA[ua<+ui]}i—E(HA[ua<+uj]2>°>+ e
—BIT Ay—A,/T? andAy— Ay /T2 FromH,, the propa-

gatorG,4(q) can be easily obtained, (A7)
where
Gap(@)=Gr(0) apt Ga,(a), (A33) . . N
<HA[ua +ua]2>;:<HA[ua+ua]2>>_<HA[ua+ua]>> .
I B (A8)
Kg*+Bg? (Kqi+Bagp?’ To first order in the interaction,, we obtain
(A3b)

!
In three dimensions, a direct perturbative calculation in<HA>>:_AVf dgr;ﬁ (cogdo(Ua—up)])=,
Ay, is divergent in the thermodynamic limit even for an ar-
bitrarily small A,. Nevertheless, physical observables can o
be computed utilizing standard methods of the renormaliza- = —AVRef d3r > el%(Ua ~Ug)(gitolUa ~Ug)y
tion group? in which one avoids infrared divergences by a*p
integrating out degrees of freedom a momentum “shell” at a
time. In this procedure, the goal is to establish how the ef- —_A f d3r E ' codq (u<_u<)]e7qgfa,8
fective Hamiltonian functional changes after the renormal- v aZp 0t Fa T8 ’
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a' B’ = iq(uZ(r)fu>(r))+iq’(u>,(r’)7u>,(r')) c
=—A\,f d*r X " cogqo(u; —uj)le” " dap), Sif (or)=(e 5 . 2 Me
a#

(A9) — e (Tap Tarp)
with 7 as given in Eq(3.193, where X[e—qq'(GZa,(ér)+GZB,(6r)—GZB,((Sr)—G;a,((Sr))
fap=GCaa(r=0)=G,4(r=0), (A10) -1],
in G__(0) there isno implied sum overe and :e—fﬁ(fawfafﬁf)

A dzqL = dqg, ) X[e*QQ'Gi(ﬁf)(ﬁaa’*5;;5'*5015’*53&’)_1]
G- (r =f —f —G,a(qe'd’. (A1l '
aﬁ( ) Aefl(z'n-)z L2 B(Q) ( ) (Al?)

Usin
? where to obtain the last equation above we used(Ega).
1 The real space propagator of the short wavelength modes
Gaa(Q)—Gaﬁ(Q)Im(l_5aﬁ)a (A12)  G3(sr) is by definition a partial Fourier transform of the
+ z propagator in momentum space, E¢s3a),(A3b), which for
which is obviously independent of the tilt-disorder varianceinfinitesimal renormalization group transformation is inte-
Ay, and Fourier transforming the last equality in £412), grated only over an infinitesimal shell of wave vectors

we obtain Ae %'<(q, <A. This implies that the exponential in the last
equation can be expanded in powers of an infinitesimal
a3 G7 (r) proportional tod!
n= . (A13)
47KB
Hence, for an infinitesimadl the “graphical” correction to Sg;}ﬁ/(gr):e‘Qé(faB+fa’/;') —40q'G7 (85 Spur
Ay to first order inAy, is
4
q
SAY=—nAyal. (A14) + ?O[Gi(ér)]z

We now proceed to compute the correctiongk u; | to
second order id,,, which we anticipate will result in higher X (Saar+ Oppr— Sapr— Opar)®+ |,
order corrections to the random field disor@y,,, as well
as a correction to tilt disorder variangg, . We compute (A18a)

(HE)S=(Ha[u; +u; 192, 2
=e %faptfa's)[— 400’ GT (8F) S

=AY 2 T -, + 204G (8r) ]2
M a+B,a"#8’
(A15) X (B + e Opgr— 200 8 + -1,
where [,=fd®r, the prime on the sum now excludes= 3 (Al18b)

and/ora’ =B’ terms, and
” where to obtain the first terms in the respective square brack-
Tog (r=r")=(cogdo(u,(r)—ug(r))] ets of Eqs(A18a),(A18b), above, we anticipated th&{/*
% CO (P —up (r' NS, will be summed ovelg andq’, which allowed us to make
$do(Uar (1) =g (r')])> simplifying changes in summation variablesa’, 3,8’ . In-

serting this last expression EA18b) into ngﬁ'(ér), Eq.

1 B in! n_ !
=7 >, (elUa-ugI+ia lua () -ug (e - (A16), and performing the sum over,q’, we obtain
a.9’
Il 2>
LIS gaio-u o1 o -up ) Tof (or)=qge™ 90T (O~ %ap=2a47)
9.9’

X[2G7(86) 8uerA L (r,1")

xSEL (r—r"). (A16)
b + 8L GT (8 1%(Saar + Suar Sppr

In the above expression tlggandq’ variables independently

range over two valuestqo, and S%f (8r) (with Sr=r

—r’') is the result of the cumulant average ovej fields

given by where

— 28, 855 ALE (1], (A19)
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AL (11" =cog ol (1) = (1) —ug, (') +uy, ()] e 3 codau(usin-uz(n)
= c0g do(U; (1)~ U (1) +ug, (1) ey
S A20) —uz () +up ()], (A24a)

Naively, it appears that thé,;, 8,5, and —26,5/ 6455 _ / < < <, <,
terms above contribute to theﬁrenorfnalizationAQf fo sﬁgc- Ilb_;ﬁ cog o(U, (1) —ug(r) —ug (r)+ug(r))].
ond order in Ay. However, upon summation over (A24b)
a,B,a’,B’, these terms, in fact, vanish, because in the sum
over replica indices we exclude the diagonal teems and  Since the functionG?(&r) multiplying the above expres-
a'=pg’". If we had kept these diagonal contributions in oursions is a short-ranged function @f (with range on the
definition of H,, a (somewhat less obviouscancellation ~ order A%, the inverse of the ultra-violet cutof), we can
would have taken place between various terms with the finadafely expand the above expressions in powerarof
results, of course, unchanged. Inserting the resulting expres-
sion Eq.(A19) into Eq. (A15), we obtain
lia=" 2" cogdo(u; (r)—ug(r)—ug(r+ar)
(H3)S =11+1,+13, (A21) azp’ B p'

+us(r+or)],
where we have defined three contributions{ttbi)c> , P ( )l

’ 9620 ~ ! < <
I1=A\2,J S gRe 2957 iﬁzﬁﬂ)ﬂ cog o(Uj (1) —us, (1)
IO a#B,a+ B a* g,
< <
X[2G7(8r)+ 03[ G7(8r)]?] +ar-V[u, (r)—ug(mDl,

X cog do(u; (N —ug (N —uz (r')+ug(r')Nl,

~ ! _ <oy <
(A224) ~B§B, (n—2)cog qo(us (r) g (r)]
+irrelevant terms, (A25)
=83 3 qge i)
1.0 o+ B,a% B’ where the “irrelevant terms” are of the form of a product of

cogdg(ug(r)—ug,(r))] and derivatives ol (r)—u(r),

_ > 2 > 2
X[ =267 (o) +qplGr (or)]'] and are clearly less important at long length scales than the

xcogqo(ug (1) —ug (N +uz(r)=ug (r')NHI}, term that we have kept. Similarly fd,, we obtain
(A22b)
l1p= 2 " cog do(Ug (1) —Uj(r)—ug (r+r)
a* B
—A2 " gle—20567 (OG> 2
=83, 3, ader e Oncr o0y Fuz(r o)),
x{cog go(us(r)—uz(r)—us(r)+uz(r’ '
{cog qo( (1) 5( ) 2 (1) B( )] %; coiqo(ér-V[uj(r)—u;(r)])],
+cog go(uy, (1) —ug (r)+uy (r)—uz (1)1}, “p i
(r220 =3 1= e Viugn - us (0]
a*t B 2 “ p
We now carefully analyze each of the above terms. Although )
naivelyl, andl, appear as three-replica terms, in fact, as we tirrelevant terms. (A26)
will see below,l; renormalizes botiA,, and A,,, andl, is
irrelevant. Performing similar local expansion in powers &f of the
|, naturally splits up into @3=p' term and everything terml,, Eq.(A22b), itis easy to see tha} contributes terms
else: of the form of a product cge(2u; (1) —ug(r)—uy ()]
and derivatives ol (r) — u;,(r), which areall irrelevant at
Co2a> long scales, near the glass transition temperature, and we
Il:A\Z/Jr &qge 28T O 2G7 (8r) + g G (or)]%} therefore drop them.
' Finally, the analysis of3 is also very similar. Theecond
X (11a+11p), (A23) cosine in Eq.(A22¢) generates a higher harmonic and is

therefore irrelevant as in the analysis Igf while the first
where cosine gives
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’ 5 2n>
13=A$f 2, " age %CTOGT (or))7
r,or a#pB
X cog go(uy; (1) —uj (r)—ug (r+8r) +uj (r+6r))]
’ 5 2n>
~A€f 2, " dge” 0T OLGr (ar))7
r,or a#p

a5

x| 1= 7|5F'V[U§(r)—u§(r)]|2 +irrelevant terms.

(A27)
Putting all this together into EQA21) and dropping ir-

relevant and constant terndahich renormalize the constant
part of the free energywe obtain

2~>
(H3)S ~ ~ AZe~ 24607 )

x| >

ra+p

(A(Z—n)COiqo(UE(r)—u;(r))]

1
+ Ecijﬁi[UZ(r)—UZ(V)]ﬁj[UE(r)—U;(T)] :
(A28)

where we have defined

Azqéf&{zeiwmqS[G?(ar)]z}, (A29a)

CnEZqéfﬁr{Gi(5r)+qé[6$(5r)]2}5ri5rj _
(A29b)

The first term inA andC;; is just a Fourier transform of
G7 (r) evaluated atj=0. Because the propagatGr (q) of

the high wave-vector modes by definition only has supporf’

near the lattice cutoftj, =A, with G5 (q=0)=0, the first
terms inA andC;; vanish. With this simplificatioA andC;;
can be evaluated via contour integration.

For A we easily find

A=dy J [cHENE (A30a)
or
-, S [ S g
~ % re-d (2m)%) 27w P07 v
(A30b)
_ f dz%f“% 1
B a(2m?) .27 (K?+BD)?’
(A300)
4
o
=——4l A30
8wA*K3B (A309)
=A,4l. (A30e)
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The evaluation oC;; is similar but a little more involved.
Because of the anisotropic scaligg~q? <g? enforced by
the quadratic part of the elastic Hamiltonian, E8.9), it is
clear that we are only interested @; with i,j taking on
valuesx,y, for which

cﬁjEzqgfﬁr[ei(5r)]25rﬁ5rjL : (A31a)

=C, 5,

(A31b)
where the second equation follows by rotational invariance
in the xy plane, which enforce€,,=C,,=C, and C,,

=Cy,=0, with

C,=a§ f d?rdz r2[G7(r, ,2)]?, (A323)
6
C(p
=—l, A32b
47A%JK3B ( )
=A,6l. (A320)

In the abovec is a dimensionless constant of order 1. Now
comparing the expression fgH3)S , Eq. (A28), with the
“bare” Hamiltonian, Eq.(3.8), we find

(2) 1 2
A== S(2=nAALA, (A33a)
= —AAZ4l,
n—0
SAR=A,AZ6!. (A33b)

We note that the graphical correction to the random field
disorder Ay, is stabilizing (negative, leading to a stable
Cardy-Ostlund—like glassy fixed linéFig. 6), only for n

0 (n<2), which can be physically understood from the
discussion given in Sec. lll.

After the above integration of the short wavelength modes
u_ , the effective Hamiltonian is a functional of the long
wavelength modesi; , which have an ultraviolet cutoff
Ae”! that is different from the cutoffA of the original
theory. Therefore, in order to identify the new effective cou-
pling constantsAy(1),An(l), ..., weneed to perform the
second part of the renormalization group transformation, that
involves the rescaling of variables, which restores the cutoff
in the effective theory back td. The rescaling that accom-
plishes this is

!

r,=rle

ey
z=7'e",

us(r)=e?u,(r’). (A34)

Because the random-field nonlinearity is a periodic function,
it is convenient(but not necessayyto take the arbitrary field
dimensiong =0, thereby preserving the periodr2q, under
the renormalization group transformatibnunder this trans-
formation the resulting effective Hamiltonian functional can
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be restored into its original form, Eq3.8), with effective = —up) are taken into account. Hence, for the remainder of this
[-dependent couplings that satisfy differential recursion relasubsection, confining our discussion to dimensiai¥s5,
tions, Eqs.(3.18. where random tilt disorder is irrelevant, we leave it out of
our analysis.
APPENDIX B: DETAILS OF THE 3 <D<7 FUNCTIONAL The logic of the renormalization group analysis here is the
RENORMALIZATION GROUP ANALYSIS, same as that used in Appendix A: we separate the fields
INCLUDING ANHARMONIC ELASTICITY into high and low wave-vector components andu , re-

Ispectively, and perturbatively integrate th§ out of the
replicated partition function. At leading order, the correction
to the quadratic Hamiltoniahl is formally given by a cu-
mulant expansion

In this appendix we present the details of the functiona
renormalization grougFRG) calculation for the effective
replicated HamiltonianH=Hy+H,,, given by Eq.(8.10,
with the quadratic part

1
n <71_/u4. < >IN _ T /M. < >72\C 4 L.
Ho[Ua]= %j ddrzl [K(Vfua)2+ B(O”zua)z], (Bl) 5H[Ua]—<H|m[Ua +ua]>> 2<H|nt[ua +ua] >>+ ’

(B3)
and the anharmonic part of the effective Hamiltontdp,  where, as in Appendix A, we have sBt1, but, in contrast
=HanwtHy given by to the calculations there, have not excluded diagonal terms in

L n B the replica sum.
_ d 2 4 We first focus on the contributions to the random field
Ha“h_if d rgl [_ BIa(V. Ua) ™ 7 (V. Ua)"), disorderA(u). We begin by noting that the renormalization
(B2a) of Ay/(u) getsno contributions from the elastic anharmonici-
ties 9,u,(V,u,)? and (V, u,)? i.e., from the vertices in
B g "1 5 Hann EQ. (B28). This is because the graphs that look like
HA—f d ra;ﬂ ZAh(Ua_UB)WL(Ua_UBH they might renormalizé(u,—ug) haveq's on the external
’ legs and hence renormaliomly the tilt disorder(and other
less relevant operatgrswhich, as we discussed above, is
' (B2b) irrelevant ford>5, which is the case we are considering
here.

which incorporates both the elastic anharmonicities, previ- To first order in the disordef(u,—ug), keeping only
ously studied in Sec. VI, and the random field and tilt disor-the relevant, nonconstant terms, we obtain

ders of a randomly pinned smectic liquid crystal. The result
of the analysis presented below is the set of the FRG flow
equations given in Eq$8.11)—(8.13 of Sec. VIII. SHEY= _aEB fr<Av(ua_UB)>>'
Our RG analysis will closely follow the approach pre- '
sented in the previous RG sections, in particular paralleling 1
the calculation and notation for a single harmonic disorder in ~—3 > J’A(’,(uj— ug){(ug —uz)?-,
three dimensions, presented in Appendix A. The difference ap Jr
here is that we are interested in the effect of disorder in

_AV(uuz_uﬁ)

dimensions higher than 3. As a result, as discussed in detail ~_ _ , Cy-1AT® D fA”(u<—u<) (B4)
in Sec. VI, in these higher dimensions all harmonics of the 2JBK ap )i Ve TEY

random pinning potential are equally relevant and need to be

kept track of by studying the evolution of arbitrary periodic Which when compared to the definition Bfy gives
functionsAy(u,—ug) andAy(u,—ug) under the RG trans- i

formation. Furthermore, in contrast to Appendix A, here, in SAD(u)~dl Ca-1 AT(w) (B5)
addition, we are including anharmonic nonlinearities, which v 2BK VAES

lead to the weak logarithmic anomalous elasticity discussed

in Sec. VIII for 5<d<7, and to the power-law anomalous With the primes indicating a partial derivative with respect to

elasticity ford<5 discussed in Sec. VI. u. To obtain the final result above, we used the Gaussian part
of the total effective Hamiltonian

1. Assuming tilt disorder is irrelevant for d>5

1

We have argued in Secs. Ill and 1V, that, although in a HGaus?Efr[g [B(dUa)*+K(VEUL)?]
full model of a randomly pinned smectic both random tilt
and field disorders are present, fox8<5, the random tilt " )
disorder always dominates over the random figddriodio _HEB Ay(0)(ug—up) ] (B6)
disorder. However, as the power-counting suggests,dfor
>5, the random tilt disorder becomes irrelevant and smectito calculate
correlations are dominated by the random field disorder. In -
the second subsection of this appendix we will explicitly >_ >y 2\ _ _
demonstrate that this conclusion remains valid even when ((Ug—up)D- zfq [lua(@ ) =(ua(@us(=a)]
potentially singular diagrammatic corrections t,(u, (B7)



252
using the corresponding propagator
2A%(0)
[BaZ+Kai]*

obtained fromH g,,ssby manipulations virtually identical to
those described earlier for the tilt-only model, Sec. VI.
The contribution to second order i, (u) is given by

Sup
BaZ+Kq?

(Un(Qug(—a))= (B8)

SHP~— :

A(,/[ujl(rl)_uzl(rl)]
a1,B1.02.B;

ri,ro

AUz, (r2) — g (1)1 Z252(r, 1), (BY)

where

15282 = (g, (r) = g, (r) 12Uz, (1) — U (1) 13)S,
(B10a
=([ug (r)—ug (r)llug (ra)—uz (r2)])2,
(B10b)

:(5ala2+ 5[3152_ 501132_ 5ﬁla2)2[G?(rl_ r2)]2;
(B10¢

2
_4(5a1a2 5“1“26B1B2_25“1325B1ﬁ2)[6$(5r)] y
(B10d)

Or=r 1=
Gaussian random variablea,b,c,d)

(abcdy=(ab)(cd)+(ac)(bd)+(ad)(bc), (B11

to go from Eq.(B103 to Eq.(B10b), and used the symmetry
of the summand iH{, Eqg. (B9) undera, B interchange
to get Eq.(B10d).

Substituting the last expression fo"?gﬂz Eq.(B10d), into

(2) above and using the short- range propertyGaf(or)
to expandrl asr,=r,+ 6r, keeping only the most relevant
terms, we obtain

SHP~- 581G, 2 :A [us(r—ug(n1?
—2A7[ug (r)—ug(r)]AY(0)

+Ey AUz () —ug (NIAY[uZ (N —u5 (D]},

(B12)
where the constar®, is defined by
Goo1 = [ (67 (o0 (B13a
or
A d¥ig, (= dg,
= B13b
fAeS,(ZW)d_l > [GT (@] (B13b)
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r,, we used the Wick decomposition theorem for

PRB 60

_fA dd—qu » daq, 1
" ie a2mi 1) 27 (Kal+ B
(B139
_cd_lAd‘75| (B13d)
8JKB

It is easy to see by power-counting that the three-replica
(lash term in SH'P, Eq. (B12) is irrelevant relative to the
two-replica terms and can therefore be neglected. Comparing
the resulting expression fasH(® with H,, Eq. (B2b) we

find

C._ Ad77
SA@ (u)~ 8l —=%

8VK’B

[AY(U)2=2A0(U)AY(0)].
(B14)

Combining the first and second order contributiona{gu),
Egs. (B5),(B14), with the length and field rescalings, Eq.
(A34), necessary to bring the ultraviolet cutoff backowe
obtain the recursion relation fax,(u) given by

(d+1)Ay(u,)+ (l)A
Qo

AAy(u,l)= u,l)

1
| SAY(UNT? = Af(u,HAG(O))

" Cd,]_Ad_7
NEOEIDR

where, for simplicity, in the above we have set the field
rescaling$=0 and usedv=2.

We now turn to the renormalization of the elastic moduli
B and K. As discussed in Sec. lll, statistical symmetry for-
bids renormalization of these by disorder aloftiee same
argument applies to th€Y spin stiffness in the random field
XY mode). However, anharmonic elasticity, special to
smectic liquid crystals, conspires with the random field
Ay(u) to renormalizeB andK.

Calculations very similar to those for the tilt-only model
treated in Sec. VI show that the graphical correction8to
andK found in that section can be taken over for the random
field disorder, with the identification

(B15)

A= —2A7(0)/A2 (B16)
In addition to a detailed perturbative RG calculation, this can
also be easily seen by comparing

Ay(u,—up)~ cons& W(0)(u,~ug)?,  (B17)
to the disorder part of the the tilt-only Hamiltonian.
Using this mapping we immediately find

g 3+d2— 12d+ 23
B 8(d2—1)

B

1/2
o= ﬁ) AY(0)Cq_1 A7 |K

(B18a
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v o wherecy=3/4+ (d?—12d+23)[2(d*—1)].
m:[d_3+ 3 F) AY(0)Cy- 1A }B- The solution to this inhomogeneous linear partial differ-
(B18b) ential equation can, as usual, be written as a sum of the
solution to thehomogeneouequation obtained by dropping
Now identifying the dimensionless measure of the randonthe last term, plus any solution of the inhomogeneous equa-
field disorder tion. The solution to the homogeneous equation can be writ-
ten as an expansion in a complete basis

~ Cd_lAd—7 3
Atu D= e men v (819 Ghond 1) = 2, Gn(1) (W), (B24)

and using it inside EqgB15), (B18a, and (B18b), we ob-  Where the set,(u) are the eigenfunctions of the operator

tain the FRG flow Eqs(8.13, (8.1, and (8.12 given in  D(u)d; defined and discussed in Sec. VIII.
Sec. VIII. The expansion coefficientg,(I) can be readily found
from Eq.(B23) to be

2. Proving that tilt disorder is irrelevant for d>5

. . . . i il | ,CB|Z(’/*(0)|
In the previous subsection we have ignored the tilt disor- gn(l)=gn(0)e " exp — Odl 20 )
der for d>5, arguing for its irrelevance based on power- (")

counting in these higher dimensions. However, theper- (B25)
naturally alert reader might be concernéds we were at with
first) that the singular behavior @ (u), Eq. (8.23 [in par-

ticular, the divergence of its fourth derivative with respect to

u, ZS”)(U,I) asl— o] could potentially invalidate the simple which is positive for alh for d>5, and we have dropped the
power-counting argument that tilt disorder is irrelevant for 5(l) term, which vanishes exponentially fastlas. Since
d>5. Here, we demonstrate that this does not happen, bthe second exponential in E¢B25) is a monotonically de-
deriving afunctional renormalization group recursion rela- creasing function ol, everyg,(l), and, hence, the entire
tion for A (u,l) to linear order inA(u,l) itself at the(FRG) homogeneous solution EGB24) for g(u,l), vanishes a$
fixed pointA¥ (u), Eq.(8.23 found in Sec. VIIl. We obtain  —.

Thus, the only possible problem with neglecting tilt dis-
order (for d>5) must come from thenhomogeneousolu-

AL (U, =(d=1)An(u,l)+ Ll) + D(u)) Af(u,l) tion for g(u,l). We will now show that this vanishes as well,
0 thereby proving that tilt disorder is irrelevant fde>5. We
~m _ do this by finding an asymptoti¢argel) solutiong,(u,l) to
2 k3 5-d |
FC(Av, (W)TVKHDB(DA>H/Cy-1, the full, inhomogeneous equation of the form
(B20) .
_ 2 fn(u)

where we have defined the “position-dependent diffusivity” ai(u,h= & T (B27)

D(u)=c,[A{, (u)—Ay, (0)], (B21) which clearly vanishes ds—.

Inserting Eq.(B27) into Eq. (B23), and keeping in mind
that 1A2(l) is itself <1/, asl — [see Eq(8.17)], we find
an equation forf ;(u) by equating coefficients of the leading
order 1l terms on both sides of EqB23). The resulting
equation reads

andc andc, are dimensionless constants of order unity.
As in the tilt-only model, the important quantity proves
not to beAy(u,l), but rather the dimensionless combination

_ B(D | 45 cA(d)|AL, (0)]2
g(u,l)=Ah(u,I)(K5—(|)) Cyq 1A, (B22) D(u)fg(u)_(d_5)f1(u)=_M
|AV*(O)|
whose recursion relation readily follows from those Kdil ), (B28)
B(l), andA(u,l), Egs.(B183), (B18b), and(B20), respec- where we have definef\(d)=(d?—1)/(d?*+6d—13) and

tively, used Eq.8.17 for A(I). Oncef,(u) is known, the remain-
ing f,’s for n>1 can be determined by equating coefficients
T of 1/1" on both sides of Eq(B23) after inserting the ansatz
49(u,l)=( 5—d+c3 }:/;(l) ) (u,h) Eq. (B27). This gives

~ , D(u)fr(u)—(d—5)f,(u)=(c3A(d)+1—n)f,_4(u).
[AV(W)] (B29)

NA(1)

i?+D(u))g”(u,l)+c
Ao

+

Now, to complete the proof thay,(u,l) vanishes ad
(B23) —oo, we need merely show that dl}’s obtained from Eg.
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(B28) and Eq.(B29) are finite for alln. If f;(u) is finite, then  are also finite. This therefore demonstrates ti{at,1) van-
clearly f,(u) is also finite, since no derivatives df,(u) ishes ad — o, proving our assertion that tilt disorder is ir-
[which could potentially diverge if(u) is cusped appear relevant ford>5.

in Eq. (B29). This finiteness argument then obviously recur-

sively carries through via EqB29) to all of other f,(u)’s. APPENDIX C: DERIVATION OF SMECTIC “COULOMB
Although f;(u) can be found explicitly applying standard GAS” DISLOCATION THEORY,
integration methods to EqB28), our only goal here is to WITHOUT EULER-LAGRANGE EQUATION
demonstrate thdt; (u) is finite. To do this we simply expand ) ) ) o
f,(u) in eigenfunctionsp,(u) of the operatonD(u)aﬁ: In thls_appendlx we derive the Coulpmb gas descrlptl_on
of smectic dislocation loops characterized by an effective
o Hamiltonian, Eq.(5.15. However, here, in contrast to the
fi(u)= >, a,én(u). (B30)  derivation of the main text, we accomplish thigthoutmini-
n=0 mizing the Hamiltonian with respect to smooth smectic de-
formations.

Inserting this expansion into E4B28), multiplying both

sides byg¢,,(u), integrating fromu=0 to u=a, and using
the eigenvalue equation, E(.46) and the orthogonality re-
lation Eq.(8.47), we obtain

Our starting point is the elastic Hamiltonian for a tilt-only
model of a randomly pinned smectic, given in E§.1)

B K
H[u]= ddr[—(azu)2+—(vzu)2+h(r)-v u}
cA(d) f 2 27 N

am= — Sm, (B31) (CyY
(d=5+|T'y)[AV4 (0)] : , o - .
We include dislocations in above description by allowing the
where the source layer displacement(r) to be a multi-valued function, such
that
2 AT, (W) pm(u)
Ef 1AV W en(w) | (B32) VxVu=m. (C2)
0 ImD(u)

o ) ) ) We then decompos¥u into a sum of a singularpurely
was shown to be finite for aln (includingm=0) in Sec.  transversepartvy satisfying

VIII.
Hence,f(u) will be finite for all u, providedthat the sum V Xvg=m, (C3

u X" (0 and a nonsingular, purely longitudinal pafu,, according
So(w) _BLOL - aas g

Z’o d—5+|,|  cA(d)
converges for alll. VU=Vat VUp. C4
To prove that it does, let us follow the obvious conventionThe difference between this approach and our earlier deriva-
of ordering the eigenmodeassuch thaiI',| is a monotoni- tion in Sec. V is in our arbitrary choice of the separation of
cally increasing function ofi. Then, for largen, we can use Vu into phonon and dislocation parts. In Sec. V, we chgse
the WKB solution for the eigenfunctiong,,(u) to minimize H given m; here, we simply choose it to be
purely transverse. We will now demonstrate that this differ-

v —_— ! ence between these twabitrary choices has no effect on
én(u)=D""(u)sin nqeD fo D%y (B34)  the final answer, as it should not.
(u Substituting this decomposition intd[u], Eq. (C1), we
and eigenvalue¥, obtain
Fn:_anzqg, (B35) Htm[upan]:Hel[up]+Hv[Vd]+Hint[upde]v (CH

where we have defined the suitably averaged diffusion Con\{vhere(dropme the subscripd on v),

stant B K
. Hvzf dr| Svi+ 5 (Vo vi)?+h(r)-v |, (C6a
— [1(a du
== ——| , B36
afo Dl’z(u’)l (B39 ./B , K )
=J dor EUZ-F E(azvz) +h(r)-v, |, (C6b

to prove the convergence of the sum in E@33). Equation
(B34) shows thaip,(u) is bounded from above for all (by and
[max,D(u)]¥4, which in turn implies that th&,’s are also

"

bounded abovésince A(, (u) is finite for all u, and so is H. ZJ drTBu.a.u+K(V., -v. )V2u c7
#,(u)] asn—oo. Then using Eq(B35) for theT,,, we see int [BuodutK(V,-vi)Viul - (C73
that the largen behavior of the summand in EGB33) is
bounded above by consi?. Hence, the sum converges, and

— d _ 2
so f4(u) is in fact finite for allu; consequently alf,(u)’s _f d*r[Bu,d,u—Kdw,Viul. (C7b
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In going from Eq.(C6a to Eg.(C6b) and from Eq.(C73 to 1 ( n
Eq. (C7b, we used the purely transverse property vof Z“=N— [da][] [dA,]e Smil¥Acdl (DY)
V.v=0, or equivalently, a =1

V.-V, +3dp,=0, (ce  Wwith

to eliminatev, in favor of v,.
We now integrate over the single-valued phonon degre A al=S[.A. a
of freedomu,. After a simple Gaussian integration, some%mfw' @ 3]=S{¥:Aq 2]
algebra, and Fourier transformation, we obtain an effective I'2g2
Hamiltonian +2> ———Pla(q)a;(—0), (D2)

4 a 2Ahchqz
K
Hd=f{%Ivzmwb(q»h(—q)}, (C9)
q q

1
vl 5[ |5 lafnlal
Where,Fq:q§+ )\qu , andb(q) is given by e

9 +2i> A,-al|y)?
bi(@=| PLy(@)+£-Phy(@ |usy(@, (€10 2 Acalyl
q
i 1
with +5 2 (G (QP(DA(@A(~a)
Ll G
T i °f QJ -1 i
PLi(@=8j= gz (C113 +Ga ()P () ai(@)ay(—a)].
L (D3)
pt..(q):quql, (C11p  The prime on the integral in E¢D1) indicates that it is
N q: constrained to be taken only over ttransverseparts ofA,,

nda, V is the volume of the systerhl, is the normalization
actor coming from the probability distribution af and will

be chosen such th@i"—1 asn—0, and

the transverse and longitudinal projection operators in th
space () perpendicular ta.

Now Fourier transforming Eq(C3), and solving it for
v(q), keeping in mind thav is purely transverse, we find

r
. -1_ 'q
vi(Q) =i €M /0. (C12 GAl_K_qz’ (D4a)
1L
Using this solution to eliminates inside Hy, Eg. (C9),
above, in favor of the dislocation density, we obtain the 292
final expression for the dislocation loop Hamiltonian, Eq. G- l= qd D4b
. . a 2 21 ( )
(5.19, quoted in the main text. AnQia;
APPENDIX D: ANALYSIS OF ELUCTUATIONS can be .read off from qu533) and (5340, taklng the
IN THE DUAL MODEL OF DISORDERED SMECTICS appropriate long wavelength limit in the latter.
IN TYPE | LIMIT The great virtue of the effective “actionS,y is that it is

. _ _ quadraticin A, anda and therefore allows exact evaluation

In this appendix we analyze the type | regime of the dualof the functional integrals over them in E¢D1). Taking
disordered smectic liquid crystal model derived and studiedhese Gaussian integrals, we obtain
in Sec. V. In this regime, we will compugxactlythe effec-
tive free energy and as a by-product obtain from it the fluc-
tuation corrections to the reduced dual transition temperan Z"=—V
ture, given in Eq(5.37).

Our starting point is the replicated dual “actior®; given (d—2)
in Eq. (5.33, together with the quenched “gauge field’ +— fln[G;l(q)—n|¢|2]
variance, given by Eq5.34h. We build on the ideas devel- q
oped in Ref. 15, generalizing them here to disordered sys- _
tems. As discussed in these references and in Sec. V, in tr\]/(\éhere the factors O‘,j, 2 COI’I.’eSF,J’OHd to the fact that there

X A . ared— 2 transverse ‘“gauge-field” components &f, anda,
type | regime the order parameteris significantly stiffer g . i :
! due to the transversality constraint on the functional integral
than the gauge field and can therefore be accurately treated .
in a mean-field approximation. This amounts to takifng) discussed above. L
. ' : We observe that, as expected, the normalization fadjor

to be constant in space. The constans then calculated by e .

Oy . for the probability distribution of, given by
minimizing the resultant free energy, which can now be
computed exactly without further approximations. As is d—2?
clear from the discussion in Sec. V, to do so, we must cal- InNy= —V( )f m[G;l(q)] (D6)
culate 2 Jq '

n(d—2) _
n(t]yl+ulyl) + — fqln[GAl<q>+|w|2]

~InN,, (D5)
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guarantees that B1—0 asn—0, IncorporatingN, into Eq.
(D5) gives

d—2
InZ"= —Vn{(t|l//|2+u|lﬂ|4)+ %qun(sﬁq)ﬂwﬁ)
d-2
+% ln(l—nGa(q)lwlz)} ©7)
q

Expanding this im, we find

d—2
ol uluf*+ 5 [ 6, )+ )
q

InZ"=-Vn

d—2
- T|¢|2Jan(CI) +0(n?). (D8)

InZ"
) , (D9Db)

=Iim(—kBT .

n—0

=kBTV{tRI P2+ ulyl?

d—2
+qu|n(c;;1+|¢|2)} (D9c)

where the renormalized reduced temperatgrés given by

d-2
tr=t=——] Ga(a), (D10
q
which, using Eq.D4by), is precisely the result used in Eq.
(5.37 of Sec. V to assess the stability of the disordered
smectic to dislocation unbinding. Thus, the result of our
more rigorous and systematic perturbation theory is recov-
ered by this fluctuation corrected mean field theory. The an-

Now using the standard replica expression for the averagBealed term in Eq(D9c) is analogous to the term that leads

free energy, we finally obtain

_ Z-1
FMF: I|m _kBT (D9a)
n—0 n

to a fluctuation-driven first-order transition in type |
superconductors, Here, however, its effects are innocuous:
expanding the integrand i|? leads only to a finite renor-
malization oft, plus a non-analyti¢y|9"* piece, which only
leads to a finite renormalization ofin d=3.
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