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Smectic liquid crystals in random environments
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We study smectic liquid crystals in random environments, e.g., aerogel. A low-temperature analysis reveals
that even arbitrarily weakquencheddisorder~i.e., arbitrarily low aerogel density! destroys translational~smec-
tic! order, in agreement with recent experimental results. A harmonic approximation to theelastic energy
suggests that there may be no ‘‘smectic Bragg glass’’ phase in this system: even at zero temperature, it is
riddled with dislocation loops induced by the quenched disorder. This result would imply the destruction of
orientational~nematic! order as well, and that the thermodynamically sharp nematic–smectic-A transition is
destroyed by disorder. We show, however, that the anharmonic elastic terms neglected in the above approxi-
mate treatmentare important ~i.e., are ‘‘relevant’’ in the renormalization group sense!, and may, indeed,
stabilize the smectic Bragg glass and the sharp phase transition into it. However, they donot alter our
conclusion that translational~smectic! order is always destroyed. In contrast, we expect thatweak annealed
disorder should have noqualitativeeffects on the smectic order.@S0163-1829~99!09121-3#
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I. INTRODUCTION

A. Motivation and background

The effect of quenched disorder on condensed matter
tems is an important and challenging problem that contin
to be actively investigated, because of its relevance to
systems, which always contain some amount of random
homogeneity. Recently, much attention has focused on
random fieldXY model as a minimal model of a broad cla
of systems such as disordered Josephson junction arr1

roughening of crystal surfaces growing on a disorde
substrate,2 and the pinning of Wigner crystals, vortex lattice
in superconductors,3 or charge density waves.4 Another sys-
tem that is considerably less well understood is the superfl
transition, e.g., He4 in the random, ‘‘fractal-like’’ environ-
ment of aerogel.5 In apparent contradiction to the Harr
criterion,6 the disorder modifies the critical properties of t
transition~including the critical exponents!.

The central question addressed in all of the above stu
is: does a distinct low temperature ‘‘glass’’ phase exist
any of these disordered systems? And if so, what~if any!
static property distinguishes it from the high temperatu
conventional thermally disordered phase? The answer to
second question is clearly subtle: arguments dating bac
Larkin7 show that it is impossible to have long-ranged tra
lational order in three dimensions in a randomly pinned e
tic medium. Hence, the glass cannot be distinguished f
the high temperature ‘‘liquid’’ phase by long-ranged trans
tional order.

In the context of pinned vortex lattices in dirty type
superconductors, Fisher’s3 original argument for the exis
tence a vortex glass phase is based on a two~111!-
dimensional model in which the random pinning is releva
at low temperatures but becomes irrelevant at hig
temperatures.8 The low-temperature pinning relevant pha
PRB 600163-1829/99/60~1!/206~52!/$15.00
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is then identified as the glass phase, and the temperatu
which the pinning becomes irrelevant is the thermodyna
cally sharp glass transition temperature.

Unfortunately, this simple scenario cannot be directly c
ried over to three dimensions for vortex lattices~though, as
we shall show later, it almost can for smectics in aerogel!. In
three-dimensional vortex lattices~and other pinned isotropic
elastic media listed in the opening paragraph!, the aforemen-
tioned Larkin argument shows that disorder isalways rel-
evant ind53. Hence, its relevance cannot be used as a
terion for distinguishing the glass and liquid phases.

So what can? One appealing proposal is the ‘‘Bra
glass’’9–11 picture, in which the glass, while being elastical
disordered, is topologically ordered, and is therefore dis
guished from the liquid by being free of unbound dislocati
loops, which proliferate in the liquid. The glass transition
then identified as an ‘‘unbinding’’ of the dislocation loops

This transition is then, qualitatively, very similar to th
melting of the flux lattice in the absence of disorder, whi
can also be thought of as an unbinding of dislocation loo
The only difference is that in the glass problem, the fl
lattice is translationally disorderedbothabove andbelowthe
transition. The absence of defects below the transition, h
ever, means that the low temperature solid phase still h
finite shear modulus, leading to glassy behavior.

Another related system that has been experimentally
vestigated is nematic liquid crystals in aerogel near and
low the pure system’s nematic–smectic-A ~NA! transition
temperature.12 The mean-field theory of a bulk, pure smect
liquid crystal looks similar to that of anXY model, with a
complex scalar order parameterc characterizing the smecti
density wave. As was first noted by de Gennes13,14 a more
precise model must include the coupling ofc to the nematic
director fluctuationsdn, which takes the model out of theXY
universality class.14–16 Although the agreement between e
206 ©1999 The American Physical Society
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PRB 60 207SMECTIC LIQUID CRYSTALS IN RANDOM ENVIRONMENTS
periments and theory is far from perfect, thetheoreticalcon-
sensus is that the scaling near the NA transitionshouldcross
over from that of a three-dimensionalXY transition line~as
in a neutral superfluid! to invertedXY-like behavior with
anisotropic x-ray correlation length exponents.16

The goal of this paper is to investigate the effects of d
order on the liquid crystal phase diagram in the vicinity
and below the NA transition. Does the NA transition survi
in the presence of even weak disorder? If so, what is
nature of the low-temperature phase? A condensed repo
some of our results, the details and extensions of which
presented in this paper, has appeared in rec
publications.17,18

Our interest in this problem was stimulated by rece
experiments12,19–22that aim to answer these very question
In these experiments, a liquid crystal that exhibits a b
nematic–smectic-A transition is introduced into an aeroge
X-ray scattering measurements show that this systemnever
develops true smectic long-ranged~or even quasi-long-
ranged! order: the translational correlation lengthjX remains
finite at all temperatures. This length smoothly increases
temperature is lowered across the bulk NA transition te
perature, monotonically and slowly rising to some fin
asymptotic low-temperature limit, which doesnot appear to
be associated with any natural length scale of the aer
itself. Our theory predicts this x-ray correlation length as
scale at which the pinning disorder energy begins to do
nate over the smectic elastic energy; consistent with th
experimental observations, the smectic correlation lengt
not simply ‘‘pore’’ size of the aerogel.12 This behavior is
also in sharp contrast to the fast rise of the smectic corr
tion length to the nominal pore size at the bulk transiti
temperature that one would expect in more regularly por
materials, which can be understood as a bulklike sharp t
sition cutoff by the finite pore size. The specific heat in ae
gel was also measured and was found to exhibit a broade
but very well defined peak, near but slightly shifted dow
from the bulk transition temperatureTNA . These experimen
tal observations suggest the destruction of the NA transi
by the disorder imposed by the fractal aerog
environment.23 However, in contrast, recent experiments62

which study the NA transition in even lower density aeros
appear to show a true resolution limited heat capacity sin
larity, while displaying afinite x-ray smectic correlation
length indicative of short-range translational order. The
latter experimental findings appear to support the idea
the nematic–smectic-A transition in pure systems, when co
fined in a low density quenched random structure, is repla
by a new phase transition into a novel thermodynamica
stable phase with a finite smectic correlation length in b
the high- and low-temperature phases.

B. Summary, interpretation and consequences of the results

The main conclusion of our work is that, consistent w
these and many other experiments,12,19–22 the three-
dimensional smectic phase, as defined by the existenc
quasi-long-ranged translational order, is unstable to a
trarily weak quencheddisorder~i.e., arbitrarily low aerogel
or aerosil density!. Furthermore, we find that a neworienta-
tionally ordered low-temperature ‘‘smectic Bragg glas
-
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~SBG! phase replaces the smectic phase, and a therm
namically sharp nematic-to-SBG~N-SBG! transition can sur-
vive in the presence of arbitrarily weak disorder, if and on
if two universal positive definite anomalous exponentshB
andhK satisfy the bounds

hK1hB,2, ~1.1a!

hK,1, ~1.1b!

hB15hK.4. ~1.1c!

where the bounds in Eqs.~1.1a!,~1.1b! come from the re-
quirement of long-ranged orientational order and the con
tion for dislocations to remain confined, respectively. T
region in thehB ,hK plane that satisfies these three bounds
illustrated in Fig. 1.

These exponents areuniversal; i.e., the same forall smec-
tics in low density quencheddisordered media. Unfortu
nately, we have only been able to calculate them in a ra
poor approximation: ad552e expansion. Since we are in
terested ind53, the ostensibly small parametere in this
expansion is52, and so the expansion is expected to
rather poor. However, taking this expansion as our best e
mate~since it is ouronly estimate! of the values ofhB and
hK , we obtain, ind53, hB512/5, andhK52/5. These val-
ues, which are illustrated by the dot labeled ‘‘e expansion’’
in Fig. 1, violate the bounds in Eq.~1.1!, and, hence, imply
that the smectic Bragg glass phase doesnot exist, and that
the thermodynamically sharp NA transition is destroyed
the presence of any disorder, no matter how weak.

However, since the expansion parameter in this calcu
tion e552d52 in the physical case ofd53, this argument
that the transition and the SBG are destroyed is utterly
compelling. Fortunately, experiments~which we will de-
scribe shortly! well below the pure transition temperatur
TNA can measure the exponentshB and hK . With these
numbers in hand, the bounds given in Eqs.~1.1! would then
provide an unambiguous prediction as to whether or not
transition to the SBG isalwaysdestroyed by disorder.

The physical significance of these exponents is quite
triguing: they reflect ‘‘anomalous elasticity,’’ which, in thi
context, refers to the fact that the smectic bend moduluK
and the layer compression modulusB arenot constants in the
randomly pinned smectic, but, rather, singular functions

FIG. 1. The region indicates those values ofhB and hK for
which, in three dimensions, the long-range orientationally orde
‘‘smectic Bragg glass’’ phase is stable for sufficiently small diso
der ~sufficiently low density aerogel!.
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208 PRB 60LEO RADZIHOVSKY AND JOHN TONER
the wave vectork under consideration.K(k) and B(k) di-
verge and vanish respectively, ask→0, according to the
scaling laws

K~k!5K~k'j'
NL!2hK f K@kzjz

NL/~k'j'
NL!z#, ~1.2a!

B~k!5B~k'j'
NL!hBf B@kzjz

NL/~k'j'
NL!z#.

~1.2b!

Here kz and k' denote the projections ofk along and per-
pendicular to the mean normal to the smectic layers, res
tively, andK andB without argumentsk will here and here-
after denote the ‘‘bare’’ values of the smectic elastic mod
i.e., their values in the pure~bulk! smectic. The universa
exponentz is determined byhB andhK through Eq.~1.12b!.

The ‘‘nonlinear’’ length scalesj'
NL and jz

NL are the dis-
tances in the' andz directions, respectively, beyond whic
the disorder-driven anomalous elasticity is manifest. Tha
Eqs.~1.2! only hold fork'j'

NL!1 andkzjz
NL!1. If either of

these limits is violated, bothK andB arek independent~up
to logarithms!, as in pure smectics.24 In three dimensions
these nonlinear length scales are given by

j'
NL5S 64p

3 D 1/2 K5/4

B1/4Dh
1/2

, ~1.3a!

jz
NL5

64p

3

K2

Dh
. ~1.3b!

Expressions for these lengths for general dimensionalitd
>3 are given in Eqs.~6.6! and ~6.8a! of Sec. VI. In the
aboveDh is a measure of the strength of one of two types
disorder,~the other random ‘‘field’’ disorderDV being less
important in three dimensions! whose relation to various pa
rameters of the aerogel is given in Sec. II. For now, it s
fices to say thatDh is a monotonically increasing function o
the aerogel density, and we expect it to be a smooth, a
lytic, nonsingular, finite and nonvanishing function of tem
perature through the bulk NA transition temperatureTNA .
Since K is likewise well behaved throughTNA , jz

NL is as
well, a fact that we will make use of shortly.

Although we have been unable to calculate the sca
functions f K(x) and f B(x) exactly, we do know that they
have the simple property of makingK(k) andB(k) indepen-
dent ofkz when the scaling argumentkzjz

NL/(k'j'
NL)z is !1,

and independent ofk' in the opposite limit. This implies

K~k!}H k
'

2hK for kzjz
NL!~k'j'

NL!z,

kz
2hK /z for kzjz

NL@~k'j'
NL!z,

~1.4a!

B~k!}H k
'

hB for kzjz
NL!~k'j'

NL!z,

kz
hB /z for kzjz

NL@~k'j'
NL!z.

~1.4b!

This strong wave-vector dependence ofK andB ~driven by
disorder! is caused by the same mechanism that leads to
much weaker~logarithmic! but still singular divergence an
vanishing ofK and B ~driven by thermal fluctuations! that
occurs in disorder-free smectics:24 the anharmonic elasticity
of large fluctuations in the smectic layers.
c-
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As we will demonstrate in Sec. VI, the effects are larg
in the pinned smectic because the disorder induces la
roughness that is much larger than that due to thermal fl
tuations, thereby leading to the stronger diverging and v
ishing of K and B found here. The stability of the smecti
Bragg glass phase depends onhK andhB because the elasti
moduli K andB determineboth the size of the orientationa
fluctuations and the stability of the phase against the unb
ing of dislocations. Requiring that real space orientatio
fluctuations remain finite leads to Eq.~1.1a!, while disloca-
tions remain bound only if Eq.~1.1b! is satisfied. If the
bounds Eq.~1.1! are satisfied for a real smectic liquid cryst
confined inside a low density aerogel, then the resultingrA-T
phase diagram will be topologically identical to that di
played in Fig. 2. It is important to note that all of the resu
quoted here areequilibrium results. In contrast, in othe
pinned elastic media~e.g., Abrikosov flux lattices in dirty
superconductors and charge density waves in anisotr
metals!, it is often difficult to observe the true equilibrium
behavior due to the extremely slow dynamics of those s
tems, which cause them to drop out of equilibrium, as e
denced by strong hysteretic effects.3,4

In this sense, smectics, and liquid crystals in general,
pear to be far better systems for investigating theequilibrium
effects of quenched disorder, since they typically donot ex-
hibit hysteresis. This suggests that liquid crystals have int
sically faster dynamics than, e.g., vortex lattices in superc
ductors, or charge density wave systems in metals.

That this should be so is hardly surprising: liquid crysta
are, after all, ‘‘liquids’’ in the sense that, even in the tran
lationally ordered phases like smectics, molecules are q
free to move around. In contrast, the atoms in the conv
tional crystalline solids are essentially locked into latti
sites, from which they can only escape by thermally ac
vated hopping over substantial energy barriers. Even at ro
temperature, this hopping is extremely slow; the fact t

FIG. 2. A schematic~aerogel densityrA , temperatureT) phase
diagram for a smectic liquid crystal, confined inside a low dens
aerogel, validif and only ifall of the bounds, Eq.~1.1! are satisfied.
As discussed in the text the ‘‘smectic Bragg glass’’~SBG! and
‘‘nematic elastic glass’’~NEG! phases are, respectively, translatio
ally and orientationally disordered, but are topologically order
and are therefore distinct from each other and from the fully dis
dered ‘‘isotropic’’ phase. The dotted line within the SBG pha
represents a remnant of the disorder-driven pinning transition
Fig. 6, rounded by the anharmonic elasticity studied in Secs. V
VIII.



m

-
ti

um
e

rte

e

s
o

ni
an

e

a

ha
ha
-
al

t
D

.
n

ng

s

ti
o-
os
in
a

se
li
’’

c
e
a
na
on
as
ur

di

x
y

sl

ffi-

ms
rder
e. As
s-
s

th-

he

the

nd
in-

d
po-

by

to

PRB 60 209SMECTIC LIQUID CRYSTALS IN RANDOM ENVIRONMENTS
even ‘‘high-Tc’’ superconductors are much colder than roo
temperature exacerbates the problem further.

So, because of both their liquidlikemicrostructure and
microdynamics,and the fact that they are at a higher tem
perature than, e.g., superconductors, one might have an
pated that it would be far easier to observe the equilibri
effects of quenched pinning in liquid crystals than in oth
pinned elastic media studied to date. This belief is suppo
by experiments,27,19 and so we believe that theequilibrium
results we obtain here should be directly testable in exp
ments.

The theoretical analysis that leads to these conclusion
quite interesting and novel. Our first-principles analysis
smectics in aerogel demonstrates that the random pin
induced by the aerogel leads to only two potentially relev
types of random perturbations to the smectic: a randompo-
sitional field disorder~hereafter referred to simply as th
‘‘random field’’ and designated byDV), which represents the
aerogel’s tendency to force the smectic layers to sit at p
ticular positions, and a randomorientational field disorder
~hereafter called the ‘‘tilt’’ field, with designationDh), re-
flecting the aerogel’s proclivity for particularorientationsof
the nematogens and smectic layers. If we ignore the an
monic effects that lead to anomalous elasticity, we find t
the response of the smectic-A phase to the random field dis
order inthreedimensions is in very close mathematical an
ogy to that of theXY model intwo dimensions~2D!.8 While
this suggests that a nontrivial glassy phase might replace
smectic-A phase in analogy with the experience with the 2
XY model,8 the presence oftilt disorder ~which is always
generated by the random field! actually destroys this phase
Even in the regime where the random field by itself has
effect at long scales, the tilt disorder leads to short-ra
smectic order parameterc correlations, which fall off expo-
nentially in the direction of the layer normal and as a Gau
ian within the smectic layers~within a purelyharmonicelas-
tic model!. This absence of long-ranged order in the elas
model is a strong indication of its limitation and that disl
cation defects are likely to proliferate. Focusing on the m
important part of randomness, the tilt disorder, we find,
the approximation of ignoring elastic anharmonicities, th
disorderalwayscreates dislocations. The formalism we u
to demonstrate this is new, powerful and potentially app
cable to a wide variety of candidate ‘‘Bragg glass
systems.25

Once dislocations are present, the phase is best chara
ized as a nematic in a random tilt field. However, subsequ
examination of orientational fluctuations in this nematic le
to the conclusion that tilt disorder destroys the orientatio
order of the smectic layers as well. Whether an orientati
ally and translationally disordered low-temperature ph
distinct from the conventionally disordered high temperat
isotropic phase is a ‘‘nematic elastic glass’’~NEG!, sepa-
rated from it by adisclination unbinding transition, is the
subject of an active current investigation.26

Including anharmonic elastic effects considerably mo
fies this picture. Although spatial dimensionsd greater than 3
are clearly irrelevant to experiment, it is conceptually e
tremely useful~and fun! to generalize our model to arbitrar
spatial dimensions. We find that ford.7, both the random
field and the tilt disorder are irrelevant, and a stable, tran
ci-
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tionally ordered, nonglassy smectic phase exists for su
ciently weak disorder. For 5,d,7, tilt disorder remains
irrelevant, but the random field and the anharmonic ter
both become relevant, destroying smectic translational o
and leading instead to a stable smectic Bragg glass phas
in previously studied ‘‘vortex glass’’ models of pinned ela
tic media,28,9 here too we find that in all spatial dimension
5,d,7, real-space positional fluctuations diverge logari
mically with system size:

^u2~r !&5cd ln@L' f u~lLz /L'
2 !#, ~1.5!

whereL'(z) is the linear spatial extent of the system in t
' (z) direction,

l[AK

B
, ~1.6!

f u(x) is a universal scaling function, andcd is a universal
dimension-dependent constant proportional to 72d for d
near 7. As a result, translational correlations throughout
range of spatial dimensions 5,d,7 decay algebraically,

^rG* ~r !rG~0!&}r'
2h(d) f d~lz/r'

2 ! ~1.7!

with the exponenth(d) a universalfunction ofd, and f d(x)
a universal(d-dependent! scaling function.29

Unlike the vortex glass case, however, here we fi
anomalous elasticity in this dimension range as well, obta
ing

K~k!}u ln@k' f K~kz /lk'
2 !#ugK(d), ~1.8a!

B~k!}u ln@k' f B~kz /lk'
2 !#u2gB(d), ~1.8b!

where f K(x) and f B(x) are universal scaling functions, an
we have, rather remarkably, calculated the universal ex
nentsgK(d) andgB(d) exactlyfor all d in this range, 5,d
,7, finding

gK~d!5
1

2 S 2d2112d223

d216d213 D , ~1.9a!

gB~d!5
3

2 S d221

d216d213D . ~1.9b!

Note that both the fluctuations of̂u2(r )&} ln(L) and the
anomalous behavior ofK(k) and B(k) are very weakly di-
vergent functions of system sizeL and k respectively, de-
pending only logarithmically on these quantities. Ford,5,
these weak logarithmic divergences are overwhelmed
power-law divergences caused by thetilt disorder, withK(k)
andB(k) diverging and vanishing, respectively, according
Eq. ~1.2! with,

hK5
e

5
1O~e2!, ~1.10a!

hB5
6e

5
10~e2!, ~1.10b!

wheree[52d, and
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210 PRB 60LEO RADZIHOVSKY AND JOHN TONER
^u2~r !&5L'
2x f̃ uS ~Lz /jz

NL!

~L' /j'
NL!zD , ~1.11a!

}H Lz
2x/z for Lz /jz

NL!~L' /j'
NL!z,

L'
2x for Lz /jz

NL@~L' /j'
NL!z,

~1.11b!
with the universal roughnessx and anisotropyz exponents
given by

x5
hB1hK

2
, ~1.12a!

z522
hB1hK

2
. ~1.12b!

Here f̃ u(x) is another universal scaling function.
This result, Eq.~1.11!, for ^u2(r )& leads to a quantitative

experimentally testable prediction for the x-ray correlati
lengthjX, obtained by equatinĝu2(r )&5a2, wherea is the
smectic layer spacing, and solving forLz , with L'→`. This
solution for Lz is the x-ray correlation length that will b
obtained by scattering off a powder sample~which probably
means all samples, since, as discussed earlier, there is
ably no long-ranged orientational order ind53, given our
best estimates ofhB andhK). The value ofjX so obtained is

jX5H jz
NLS a

l D z/x

, l!a,

jz
NLS a

l D 2

, l@a.

~1.13!

This relation gives a way of experimentally measuring
exponentsz and x: since the bare compression modul
B(T) of the pure smectic is a strong function of temperat
T near the bulk smectic NA transition temperatureTNA , van-
ishing according toB(T)}uT2TNAuf̃, and since, further-
more, jz

X , a, and K vary smoothly throughTNA , a plot of
ln jX versus lnuT2TNAu should yield a straight line forT near
TNA , with a slopef̃z/2x, providedthat we stay far enough
below TNA that l!a, so that the first expression forjX in
Eq. ~1.13! applies. In deriving this result, we have used t
fact that l5AK/B}uT2TNAu2f̃/2. This prediction for the
x-ray correlation length, Eq.~1.13!, is schematically dis-
played in Fig. 3.

A detailed renormalization group analysis26 of the critical
behavior near the pure NA transition~details of which will
be presented elsewhere! shows that Eq.~1.13! breaks down
altogether at the temperatureT* , which lies below~and for
weak disorder very close to! the pureTNA . The correspond-
ing reduced temperaturet* [(TNA2T* )/TNA obeys

jcrit~ t* !5jX, ~1.14!

wherejX is given by the second line of Eq.~1.13!, and we
have defined a length scalejcrit(t) derived entirely from
properties of thepure system

jcrit~ t !5j'
0 S j'

pure~ t !

j'
0 D 21f̃/2n'

, ~1.15!
ob-

e

e

wherej'
pure(t) is the x-ray correlation length within the lay

ers of the pure system at a reduced temperaturet[(T
2TNA)/TNA abovethe pure transition temperatureTNA and
j'

0 [j'
pure(t;1) . Heren' is the x-ray correlation length ex

ponent for the pure system in the' direction, defined via
j'

pure(t)}t2n'.

Theoretically,16 f̃ is expected to be given byf̃5nXY
'0.67. Experimentally,30 the situation is more complicated
with f̃ showing no universality, for reasons that are s
unclear ~at least to us!. Hence, in extractingz/2x by the
above analysis, theexperimentallydetermined value off̃ of
the particular bulk smectic that is confined in the aerog
should be used. One should also be careful, in such a fi
treat TNA as a fitting parameter, since the presence of e
low density aerogel can presumable shift this tempera
slightly. Alternatively, one could avoid these complicatio
by studying the smectic outside the pure system’s criti
regime, but still reasonably close to the pureTNA , since in
this regime mean-field theory applies andf̃51.31

Once we know the ratioz/x, we know z and x them-
selves, since the relationz522x, implicit in Eqs. ~1.12!,
provides us with a second equation for the two unknownz
and x. If the roughness exponentx so obtained is.1, we
predict that orientational fluctuations diverge, and hen
long-range orientational order is destroyed. As a result, th
will be no ‘‘smectic Bragg glass’’ phase, and hence, no th
modynamically sharp transition associated with the pure
transition that occurs in the absence of disorder. In a
event, the prediction Eq.~1.13! for l@a will inevitably ap-
ply sufficiently close to the pureTNA , since B(T→TNA)
→0, while K(T→TNA) remains nonzero, and, hencel(T
→TNA)→`@a.

Should it prove that orientational orderis possible ind

FIG. 3. Finite, temperature-dependent x-ray correlation len
jX(T) for a smectic liquid crystal, confined inside a low dens
aerogel. The essential features of the x-ray correlation length
we predict are ~i! saturation asT→0 of jX(T) at a finite
rA-dependent value forarbitrarily low aerogel density~diverging as
rA→0), ~ii ! power-law scaling with thedisorder-freesmectic bulk
modulusB(T) @see Eq.~1.13!#, ~iii ! crossover from the exponen
z/x to 2 in Eq.~1.13! asTNA is approached from below and anom
lous elasticity becomes unimportant forjX, ~iv! crossover to genu-
ine critical behavior at the temperatureT* at whichjcrit(T* ) ~indi-
cated by the dotted curve belowTNA)5jX. In the low density
aerogels~e.g.,rA50.08 g/cm3) we findTNA2T* '3 K ~Ref. 20!.
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53 @i.e., that thed53 values of the universal exponentshB
andhK do satisfy the inequalities in Eq.~1.1!, which would
imply that the SBG phase is stable#, then single orientationa
domain scatteringis, in principle, possible. In such scatte
ing, jz

X which equalsjX as given by Eq.~1.13!, will be the
correlation length along the mean normal to the smectic
ers. The correlation lengthj'

X along the smectic layers i
then given by

j'
X5H j'

NLS a

l D 1/x

, l!a,

j'
NLS a

l D , l@a.

~1.16!

These x-ray correlation lengths shouldnot, however, be in-
terpreted as being the length scales beyond which sme
correlations cease. In fact, smectic behavior, by which
mean, e.g., the anomalous smectic elasticity, Eq.~1.2!, per-
sists out to much longer lengths. Specifically, in the' direc-
tion, it persists out to the shorter of the two lengthsjO and
j'

D . jO is the distance over which orientational orderwould
be well correlated in the absence of dislocations, whilej'

D is
the distance~in the' direction! below which dislocations
would remain bound in the absence of large orientatio
fluctuations. In actuality, only the prediction of thesmaller
of the two of these lengths is valid. We expect that wh
jO!j'

D , the large orientational fluctuations also induce d
location unbinding at about the same lengthjO . On the other
hand, in the opposite (jO@j'

D) limit, the dislocation unbind-
ing occurs first atj'

D , and on longer scales our system
indistinguishable from a nematic in a random orientatio
field. Whether the orientational order is stable or not in t
case must be reevaluated within an effective random-fi
nematic model using a Larkin7 type of analysis.26

The ‘‘orientational correlation length’’jO is given by

jO5j'
NLS jz

NL

l D 1/ @2~x21!#

, ~1.17!

while the ‘‘dislocation length’’ scalej'
D in the' direction is

given by

j'
D5j'

NLS lT2jz
NL

cK2a2d2D 1/ @2(hk21)#

, ~1.18!

whered is a microscopic length of order the layer spacinga,
and c(T) is a dimensionless constant.c(T) vanishes like
e2Ec /T as T→0 and diverges likeT/Ec(T)}uTNA2Tu2gt,
whereEc is the ‘‘core energy’’ of a dislocation line segme
of length d, and gt is the ‘‘line tension’’ critical exponent
describing howEc(T) vanishes asT→TNA from below. We
expect the resulting divergence ofc(T) to overwhelm the
corresponding divergence ofl(T), leading to aj'

D that gets
smaller asT→TNA from below. Clearly then, sufficiently
close toTNA , j'

D gets to be less thanj'
NL , the system enters

the strong-disorder regime, and the weak-disorder theory
have presented here no longer applies.

In the z direction, the orientational correlation length
also given byjO , while the dislocation length is given by
-

tic
e

l

n
-

l
s
ld

e

jz
D5jz

NLS lT2jz
NL

cK2a2d2D z/ @2(hk21)#

. ~1.19!

Note that the orientational correlation length given by E
~1.17! is always much greater than the nonlinear lengthj'

NL

in the weak disorder limit, in whichj'
NL→`. However, if we

hold the disorder strength fixed~i.e., hold Dh fixed!, and
approach the pure NA transition from below, we will alwa
eventually, at some temperatureT* ,TNA (T*→TNA in
weak disorder limit! leave this weak disorder regime~no
matter how weak the disorder is!, sincejz

NL , as given by Eq.
~1.3b!, does not change much asT→TNA

2 , while l(T
→TNA

2 )→`. So the ratiojO /j'
NL decreases without bound a

T→TNA
2 , and, hence eventually drops below 1, signaling o

entry into the strong disorder regime forT.T* ~see Fig. 3!.
This is not surprising: the smectic’s resistance to the pertu
ing effects of the disorder is provided, in part, byB; so when
B→0, as it does as the pure NA transition is approached,
disorder will eventually look ‘‘strong,’’ and our theory wil
no longer apply. As long as we are at temperaturesT far
enough belowTNA , however, our weak disorder results w
apply. As we weaken the disorder, by, e.g., reducing aero
density, we can apply our weak disorder theory closer
TNA .

The expression~1.17! for the orientational correlation
lengthjO only holds if the condition for thestability of the
long-ranged orientational order, Eq.~1.1a!, which is equiva-
lent to x,1, is violated @i.e., Eq. ~1.17! only holds for x
.1]. If x,1, jO is infinite. Likewise, Eqs.~1.18! and~1.19!
for j',z

D only hold if hK.1 ~i.e., if dislocationsare, in fact,
unbound!; otherwise, j',z

D are infinite. Clearly, if both
boundsx,1 andhK,1 are satisfied,all three lengths are
infinite, smectic behavior holds out to arbitrarily large leng
scales, and the smectic Bragg glass is a stable phas
weakly disordered smectic liquid crystals. A summary of t
many length scales in our theory for three dimensions
their hierarchy, in the weak disorder limit, is illustrated f
the case ofl!a in Fig. 4 and for the case ofl@a in Fig. 5.

FIG. 4. One possible hierarchy of important length scales in
problem of a three-dimensional weakly disordered smectic, v
for l!a, x.1, andhK.1. If insteadx,1 andhK,1, then the
putative SBG phase is stable andjO andj',z

D are infinite.

FIG. 5. The hierarchy of important length scales in the probl
of a three-dimensional weakly disordered smectic, valid forl@a,
x.1, andhK.1. If insteadx,1 and hK,1, then the putative
SBG phase is stable andjO andj',z

D are infinite.
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Just as the proposed ‘‘Bragg glass’’ phase of random

pinned elastic media is distinct from the liquid phase,9–11

here, too, the absence of long-ranged orientational order
not preclude a ‘‘nematic elastic glass’’ phase that would
separated from the high temperature ‘‘isotropic fluid’’ pha
by a thermodynamically sharp equilibrium phase transiti
That such a nematic elastic glass phase may indeed ex
suggested by dynamic light scattering experiments27,19 that
show a dramatic slowing down of director fluctuation rela
ations in liquid crystals in aerogel below a temperatureTNEG
near the bulk NI transition.

We are currently investigating theoretically the possibil
of such a nematic elastic glass phase, and initial results i
cate that such possibility is, in fact, allowed theoretical
Our results on this subject will appear in a futu
publication.26

The low-temperature analysis presented here is fur
supported by a complementary approach that investigate
stability of the NA transition to disorder from the high
temperature nematic phase.32 The results of this latter work
substantiate our findings that in three dimensions the
transition and the smectic-A phase are destroyed. Th
rounded remnant of this transitioncan, however, be studied
utilizing self-consistent methods previously successfully
plied to pure systems below the lower critical dimension33

This method predicts a Lorentzian-squared structure func
with a correlation length that monotonically, slowly in
creases through the bulk NA transition, in good agreem
with the x-ray measurements.20 The calculated specific hea
is also in qualitative agreement with the experiments,20,21

exhibiting a broad, well-defined peak at a temperat
slightly lower than the bulk transition temperature TNA .

As we hope the introduction made clear, the phenome
ogy of this system is extremely rich. Our organizational a
proach to presenting the derivation of these results is
following: starting from the full model, we first throw out a
but the simplest effects; only after developing a full und
standing of this simplified model do we, one at a time, re
troduce the complicating effects we had initially thrown o
building gradually toward the complexity of the full physic
model.

Since many of these complicating effects prove to be
portant, this approach has the drawback that some of
results derived for the simplified models donot, in fact de-
scribe our physical system. We have attempted to alert
reader everywhere results of a simplified models differ fr
our actual predictions for the full theory. Only the latter,
course, should be compared directly with experiments.

The remainder of this paper is organized as follows.
Sec. II, we introduce and motivate our model for smectics
disordered media, and discuss those aspects of the m
specific to aerogel. In Sec. III, we derive an elastic lo
temperature model of a randomly pinned smectic, at fi
ignoring anharmonic elasticity and dislocations. Using ren
malization group methods, we study the stability of t
smectic phase within this model and these approximatio
In Sec. IV, we use the results of this RG treatment to cal
late various smectic correlation functions, still treating t
elastic theory to harmonic order and ignoring dislocatio
Section V incorporates the dislocations in theharmonic
theory, and shows that, in that theory, in three dimensio
y
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dislocations always proliferate, even in the presence of a
trarily weak disorder, thereby destroying, within thehar-
monic approximation, both the smectic Bragg glass pha
and the thermodynamically sharp transition to it.

The effects of the previously ignored anharmonic elas
terms are shown to be very important in Sec. VI, whi
develops a renormalization group treatment of them in
model that neglects both the random field and dislocatio
but includes tilt disorder. The anomalous elasticity Eq.~1.2!
and theu-u correlation functions that follow from it are de
rived in this section. Given the importance of these elas
nonlinearities, we study their effects on dislocation unbin
ing and orientational order in Sec. VII by incorporatin
anomalous elasticity into the duality theory developed
Sec. V. We thereby derive the bounds Eq.~1.1a! and Eq.
~1.1b! on the anomalous exponentshB andhK for the stabil-
ity of the smectic Bragg glass phase. The irrelevance of
random field in a full, anharmonic theory belowd55 is
demonstrated by a functional renormalization group tre
ment in Sec. VIII, in which we also calculate exactly th
exponentsgB(d) andgK(d) that govern the anomalous ela
ticity for 5,d,7. In Sec. IX, we demonstrate that ind
53, dislocation unbinding isnot induced by the random field
alone. We conclude the main part of the manuscript w
Sec. X, where we discuss interpretation of our results
terms of past experiments and their implications for the
ture experiments, as well as many remaining interesting
important theoretical problems, some under current inve
gation. The details of the analysis of the random field dis
der in three dimensions, the functional renormalization gro
analysis in higher dimensions, an alternative derivation
the dislocation loop theory, and a fluctuation-correct
mean-field treatment of the dual model of randomly pinn
smectic are presented in Appendixes A, B, C, and D, resp
tively.

II. MODEL

Our theory of the disordered NA transition is based on
de Gennes model. Near the mean-field transition from
nematic to the smectic-A phase, the center-of-mass nema
gen molecular densityr(r ) ~which is liquidlike in the nem-
atic phase! begins to develop strong fluctuations dominat
by Fourier components that are integer multiples of
smectic ordering wave vectorq05n̂2p/a (a is the layer
spacing! parallel to the nematic directorn̂. We take the
dominant lowest Fourier componentc(r ) as the local~com-
plex scalar! order parameter which distinguishes the smec
A from the nematic phase.13 It is related to the densityr(r )
by

r~r !5Re@r01eiq0•rc~r !#, ~2.1!

wherer0 is the mean density of the smectic.
As first discussed by de Gennes,13 the effective Hamil-

tonian functionalHdG@c,n̂# that describes the NA transitio
at long length scales, in bulk, pure liquid crystals, is
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HdG@c,n̂#5
1

2E ddr Fc'u~“'2 iq0dn!cu21ciu“ icu2

1t0ucu21
1

2
g0ucu4G1HF@n#, ~2.2!

where t0}(T2TNA
pure)/TNA

pure, TNA
pure is the NA transition tem-

perature in the pure~bulk! system,dn̂(r )[n̂(r )2n̂0 is the
fluctuation of the local nematic directorn̂(r ) away from its
average valuen̂0, which we take to beẑ, subscriptsi and'

denote the directions parallel and transverse ton̂0, and
HF@n# is the Frank effective Hamiltonian that describes t
elasticity of the nematic order director:

HF@ n̂#5E ddr
1

2
@Ks~“•n̂!21Kt~ n̂•“3n̂!2

1Kb~ n̂3“3n̂!2#, ~2.3!

whereKs , Kt , andKb are the bare elastic moduli for spla
twist and bend of the nematic director field, respectively.

The minimal coupling betweenn andc is enforced by the
requirement of global rotational invariance.13 It is important
to emphasize, however, that although the de Gennes Ha
tonianHdG is closely analogous to that of a superconduct
there are essential differences. The physical reality of
nematicdn and the smecticc order parameters, in contra
to the gauge ambiguity in the definition of the vector pote
tial and the superconducting order parameter, selects the
uid crystal gauge34,35 dn•n̂050 ~sinceun0u251) as the pre-
ferred physical gauge. The strict gauge invariance ofHdG is
already explicitly broken by the splay termKs(“•n̂)2 of the
Frank Hamiltonian. This is one source of distinction betwe
a smectic-A liquid crystal and a superconductor.

In fact, since the only true symmetry of the smecticA
liquid crystal is invariance underglobal simultaneous rota-
tion of the smectic layers~equivalent toc→cei u•r') and the
nematic directordn→dn1u accomplished by a constant~in
space! u5const, andnot arbitrary local gauge transforma
tions, the requirement of gauge invariance severely ov
restricts the allowed effective Hamiltonian. That is, the
Gennes model is more symmetric than is required by
physics of the NA transition, and a more general effect
Hamiltonian will allow for terms that break nonlinear gau
invariance. All of the extension terms that can be added to
Gennes model are, unfortunately, irrelevant~which is prob-
ably why de Gennes did not include them in his origin
formulation!. However, in light of the above remarks, th
bending stiffnessK̃s in the smectic phase@i.e., the coefficient
of (¹'

2 u)2] can differ from the corresponding coefficientKs

in the nematic phase@the coefficient of (“•n̂)2], due to the
presence of terms like, e.g.,u¹'

2 cu2, in the smectic Hamil-
tonian, which violate local gauge invariance, butnot global
rotation invariance. This is in contrast to what is usua
assumed in all the standard treatments of this problem, w
take K̃s and Ks to be the same.14 The importance of this
observation is that in mean-field theory it leads to a slo
discontinuity inK̃s(T) at theTNA

mf , which is likely to persist
in the theory that includes fluctuations.36
il-
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Guided by these observations, we now proceed to c
struct the disorder part of the effective Hamiltonian. Becau
c(r ) is related to the smectic densityr(r ) via Eq. ~2.1!, the
randomness can couple to it directly. In particular, symme
allows a coupling of the form

Hdr5E ddr F1

2
dt~r !~r2r0!21U~r !rG , ~2.4!

where both the randomTc@dt(r )# and the random potentia
U(r ) are proportional to the local aerogel densityrA(r ). We
will take this aerogel density to be a quenched random v
able, and denote averages over it by a horizontal overba

This means in particular that the autocorrelations ofdt(r )
and U(r ) will be proportional to those of the aerogel, an
hence, long-ranged for fractal aerogel.37 That is, we expect

U~r !U~r 8![CU~r2r 8!,

5GUrA~r !rA~r 8!, ~2.5!

dt~r !dt~r 8![Ct~r2r 8!,

5G trA~r !rA~r 8!, ~2.6!

whereGU andG t are coupling strengths that depend on t
microscopic physics of the aerogel-smectic interaction,
not, at low aerogel density, on the aerogel density itself, n
on the smectic order parameter.

The fractal structure of aerogel over a range of len
scales can be determined from the aerogel density-den
correlation functionrA(r )rA(0) measured in an x-ray sca
tering experiment. Writing the aerogel densityrA in dimen-
sionless ~volume fraction! units, the correlation function
rA(r )rA(r 8) measures the probability that, given that a po
r is occupied, the pointr 8 is also occupied. The probability
that an arbitrary pointr is occupied is clearly proportional to
the aerogel densityrA(L f), measured at~averaged over! a
scale beyond which the aerogel ceases to be fractal. We
this scaleL f . The aerogel is alsonot a fractal for lengths
smaller than a microscopic lengthaf of the order the aeroge
strand diameter. The density of a structure which is a fra
on scalesaf,r ,L f , with fractal dimensiondF , is, by defi-
nition, given by the ratio of the number of occupied sitesN
;(L f /af)

dF in a volumeV5L f
d to this volume. Hence, the

average aerogel densityrA[rA(L f) is given by

rA~L f !'S af

L f
D d2dF

. ~2.7!

Given that a siter is occupied, the conditional probabilit
P(r ,r 8) that a siter 8 is also occupied is, roughly, the typica
‘‘mass’’ ~actually total volume! of materialM (ur2r 8u) con-
tained within a sphere of radiusur2r 8u centered on a pointr
that is also on the fractal, divided by the total volume
ur2r 8ud of that sphere. By definition,M (ur2r 8u)'
af

d(ur2r 8u/af)
dF ~this is what we mean by the fractal dimen

sion dF). Hence, the conditional probability isP(r ,r 8)
5M (ur2r 8u)/ur2r 8ud;(af /ur2r 8u)d2dF. Combining this
with Eq. ~2.7!, we obtain
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rA~r !rA~r 8!'S af

L f
D d2dFS af

ur2r 8u
D d2dF

, ~2.8a!

'rAS af

ur2r 8u
D d2dF

. ~2.8b!

We will see in a moment that these long-ranged correlati
have no effect on the long distance behavior of the smec

Combining the random field energy Eq.~2.4! with the
relation Eq.~2.1! between the smectic order parameterc and
the densityr, we obtain

Hdr@c#5E ddr
1

2
@dt~r !ucu21V~r !c1V* ~r !c* #,

~2.9!

where we have defined thecomplexrandom potentialV(r ),
which acts on the NA order parameterc as a random mag
netic field acts on a spin, and is related to the potential
orderU(r ) by

V~r ![U~r !eiq0z. ~2.10!

Note that, despite the long-ranged correlations ofU(r ),
V(r ) has only short-ranged correlations. To see this, cons
a double Fourier transform of theV(r )V* (r 8) correlation
function

V~k!V* ~k8![E ddrddr 8e2 ik•re2 ik8•r8V~r !V* ~r 8!,

5~2p!ddd~k1k8!CV~k!, ~2.11!

where

CV~k!5E dd~r 2r 8!ei (k1q0ẑ)•(r2r8)U~r !U~r 8!,

5CU~k1q0ẑ!, ~2.12!

andCU(k) is the Fourier transform of theU2U correlation,
Eq. ~2.5!. Even though we expect this Fourier transform
correlation functionCU(k) to diverge ask→0, due to the
power-law spatial correlations inU(r ), there is no reason fo
it to diverge ask→q0ẑ, since the aerogel itself has no pa
ticular spatial structure at the wavevector of the smectic
dering. Hence, we see from Eq.~2.12! that theV-V autocor-
relation function remains finite ask→0. Thus, the
correlations ofV(r ) are short ranged, and hence we can
curately capture the long distance physics of the problem
taking those correlations to be zero ranged, and writing

V~r !V* ~r 8!5Wdd~r2r 8!, ~2.13!

where

W5CU~q0ẑ!, ~2.14a!

5GUS af

L f
D d2dFS 1

afq0
D dF

,

~2.14b!

as can be readily seen by Fourier transforming Eq.~2.8!.
s
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In addition to the density coupling of Eqs.~2.4! and~2.9!,
we expect that the long nematogenic molecules that mak
the smectic will tend to line up with the randomly oriente
aerogel strands,38 whose orientational correlations we expe
to be short ranged. This interaction leads to an additio
orientational random coupling of the form

Hdn5
1

2E ddr @g~r !•n̂#2, ~2.15!

where the quenched fieldg(r ) is random and short-rang
correlated in direction

gi~r !gj~r 8!̄5Dgdd~r2r 8!d i j , ~2.16!

with strengthDg proportional to the local aerogel density.
As discussed in the Introduction, motivated by the expe

mental observations, we assume that near the NA transi
in low-density aerogel samples, the nematic order is w
developed. In this regime, we can consider small disord
driven deviations from perfect nematic ordern̂05 ẑ as small,
writing n̂(r ) as

n̂~r !5 ẑA12udnu21dn~r !. ~2.17!

Substituting this representation insideHdn , Eq. ~2.15!, and,
given thatudnu!1, keeping only up to quadratic terms indn,
and droppingdn-independent terms, we obtain

Hdn'
1

2E ddr $2gz~r !2udnu21@g~r !•dn#212h~r !•dn%,

~2.18!

where we have defined a quenched random tilt field

h~r ![gz~r !g~r !. ~2.19!

It is easy to see that forisotropic disorderg(r ), the terms
quadratic indn(r ), above, cancel each other on average a
therefore only make unimportant contributions that are
yond quadratic order indn(r ). As a consequence, for suc
isotropic disorder, the effective orientational disorder
given by the last term in Eq.~2.18!

Hdn'E ddr h~r !•dn. ~2.20!

We expect that the random fieldh(r ) is related to the aeroge
density structure by the following correlation function:

hi~r !hj~r !5gz~r !gi~r !gz~r 8!gj~r 8!,

5GhrA
2~r !rA

2~r 8!tz~r !t i~r !tz~r 8!t j~r 8!,
~2.21!

wheret(r ) is the local tangent to the aerogel fibers, andGh is
a rA-independent coupling constant that depends on the
croscopic aerogel-smectic interaction.

Since we expect this tangentt(r ) to have only short-
ranged correlations~with range of order the orientational pe
sistence length of the silica fibers!, the above correlation
function of the tilt disorder should also be short ranged. F
thermore, it must be isotropic. These considerations, ta
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together with the fractal nature of the aerogel, and Eq.~2.21!,
lead to the following form for the correlation function of th
random tilt disorderh(r ):

hi~r !hj~r 8!5GhS a

L D d2dF

dd~r2r 8!d i j ,

[Dhdd~r2r 8!d i j , ~2.22!

which is short ranged. This defines the tilt field disorde
varianceDh .

Thus our model of the NA transition in aerogel is chara
terized by the effective Hamiltonian functionalH5HdG
1Hdr1Hdn , with HdG, Hdr , andHdn given by Eqs.~2.2!,
~2.9!, and ~2.20!, respectively. This total effective Hamil
tonian must be supplemented with correlation functions
the randomTc „dt(r )…, random field„V(r )…, and random tilt
„h(r )… disorders, which are given by Eqs.~2.6!–~2.8!,
~2.13!–~2.14!, and~2.22!, respectively. Finally, it is essentia
to keep in mind that, as discussed above, even for fra
aerogel, although the correlations of the randomTc field
dt(r ) are long ranged~power-law correlated!, those of the
random fieldV(r ) and the tilt h(r ) are short ranged, with
W!Dh .

III. SMECTIC PHASE AND ITS STABILITY
WITHIN THE HARMONIC ELASTIC MODEL

In this section we study the disordered NA model, defin
in the preceding section, within the low-temperature pha
While it is tempting to directly analyze the modelH5HdG
1Hdr1Hdn written in terms of the smectic order parame
c, we will not do so here. Our motivation for this is twofold
~i! As discussed in the Introduction, even for the bu
~disorder-free! case the results obtain through such a dir
~de Gennes model! approach, have, so far, failed to giv
predictions that agree with experiments even on thebulk NA
transition. Having not fully understood the difficulties wit
the bulk NA transition, we hesitate to use such a hig
temperature~‘‘soft-spin’’ ! analysis to study the significantl
more complicated NA transition in the presence of disor
~i.e., confined inside the aerogel!. ~ii ! While such a ‘‘soft-
spin’’ approach is often superior in understanding the criti
properties of thetransitionand the high-temperature phase
is significantly less successful in the analysis of the lo
temperature phase. For example, it isknown to incorrectly
predict the lower critical dimension in, e.g., the random fie
Ising model, as well as completely missing the existence
the Kosterlitz-Thouless transition in theXY model. Since
one of the main goals of the current initial investigation
the disordered smectics problem is to ascertain the stab
and nature of the low-temperature phase, we leave the d
de Gennes model approach to this problem to subseq
publications.32

Instead, here, as a first analysis of the problem, we cho
the elastic, low-temperature approach in terms of the Go
stone phonon modeu. The predictions of such an approac
for the ordered pure smectic phase are free of controver
and are in agreement with experiments on bulk smectics

We will not, in either this or the next section~Sec. IV!,
treat the full elastic model in all its complexity, but rathe
begin by simplifying the model by ignoringelastic anharmo-
-

r

al

d
e.

r

t

-

r

l

-

f

f
ty
ct
nt

se
-

s,

nicities ~i.e., terms higher than quadratic in gradients ofu).
We will also, in both this and the next section, neglect t
effects of dislocations, and focus on three spatial dimensio
All of these restrictions will be removed in later sections
the paper, as we build up to the full complexity of the d
ordered smectic system.

We begin byassumingthe existence of smectic order an
investigate if/when this assumption is violated because of
interaction of the smectic with the random environment
the aerogel. Within the ordered smectic phase, the fluc
tions are conveniently described in terms of the fluctuatio
of the magnitude and phase ofc. It is easy to show that the
fluctuations of themagnitudeof c around the average valu
uc0u5At0 /g05const are ‘‘massive,’’ and can therefore b
safely integrated out of the partition function, leading to on
finite, unimportant shifts in the effective elastic moduli.
contrast, the phase ofc is a U~1! massless Goldstone mod
corresponding to spontaneously broken translational sym
try. It is the essential low energy phonon degree of freed
of the smectic phase, describing the local displacement of
smectic layers from perfect periodic order. In accord w
this discussion, deep within the smectic phase, we can
resent the smectic order parameter as

c~r !5uc0ueiq0u(r ), ~3.1!

safely ignoring ~actually integrating out the ‘‘massive’’!
fluctuations in the magnitudeuc0u of c. It is important to
note that this can be done at any temperaturebelowthe tran-
sition, without anyqualitativeconsequences for phenomen
occurring on sufficiently long length scales, larger than
well-defined crossover lengthj* (T). The elastic model is
then rigorously valid on length scales larger thanj* (T) and
breaks down on shorter scales, and therefore, of course
only make predictions about phenomena~e.g., length scales
such asjX) larger thanj* (T). As T→TNA

2 , j* (T) diverges
and the range oflength scalesabout which the elastic mode
is able to make predictions shrinks, being pushed out to
finite scales. Consequently, for example, sufficiently close
TNA

2 , i.e., for T.T* ~see Fig. 3!, such thatjX→j* from
above, our prediction forjX, based on the weak disorde
elastic theory is no longer strictly valid.

Using this low-temperature ansatz~3.1! inside the
c-dependent part of the effective Hamiltonian, given by E
~2.2! and ~2.9! and dropping constant terms, we find

H@u,dn#5E ddr FB'

2
u“'u2dnu21

B

2
~]zu!21

Ks

2
~“•dn!2

1
Kt

2
~ ẑ•“3dn!21

Kb

2
~ ẑ3“3dn!21h~r !•dn

2uc0uU~r !cos$q0@u~r !1z#%G , ~3.2!

where B'5c'uc0u2q0
2 and B5cuuuc0u2q0

2. We observe that
the fluctuation mode (“'u2dn) is ‘‘massive’’ and leads to
the Anderson-Higgs mechanism, a hallmark of gauge th
ries. As a consequence, after a simple Gaussian integra
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over dn, we find that at long length scales,dn fluctuations
are constrained to follow“'u. The resulting effective elastic
Hamiltonian is then obtained by the replacement

dn→“'u, ~3.3!

everywhere in the Eq.~3.2!. This is valid in the long wave-
length limit, to quadratic order in gradients ofu, and pro-
vided dislocations are confined. We obtain

H@u#5E ddr FB

2
~]zu!21

K

2
~¹'

2 u!21h~r !•“'u

2uc0uU~r !cos$q0@u~r !1z#%G ~3.4!

or, equivalently, in terms ofV(r )

H@u#5E ddr FB

2
~]zu!21

K

2
~¹'

2 u!21h~r !•“'u

2uc0u@V~r !eiq0u(r )1V* ~r !e2 iq0u(r )#G . ~3.5!

In the aboveK5Ks , although, as discussed in the beginni
of Sec. II, in a model of the NA transition that is mo
general than the de Gennes model,K andKs can differ by a
singular function of the reduced temperatureuT2TNAu.

To compute self-averaging quantities~e.g., the disorder
averaged free energy! we employ the replica ‘‘trick,’’39

which allows us to work with a translationally invariant fie
theory at the expense of introducingn replica fields~with the
n→0 limit to be taken at the end of the calculation!. For the
free energy this procedure relies on the identity for the lnx)
function

F̄52T ln Z52T lim
n→0

Zn21

n
. ~3.6!

After replicating and integrating over the disorder using E
~2.13!, ~2.14!, and~2.22!, we obtain

Zn5E @dua#e2H[ua]/T. ~3.7!

The effective translationally invariant replicated Hamiltoni
H@ua# is given by

H@ua#5E ddr F (
a51

n S K

2
~¹'

2 ua!21
B

2
~]zua!2D

1
1

T (
a,b51

n S Dh

4
u“'~ua2ub!u2

2DVcos@q0~ua2ub!# D G , ~3.8!

where DV5uc0u2W. The statistical symmetry under glob
rotation forces the disorder generated replica off-diago
terms to be invariant underua(r )→ua(r )1u•r' . In the
replicated effective Hamiltonian Eq.~3.8! the nonlinearities
only depend on the difference between different replica fie
and therefore do not depend on the ‘‘center of mass’’ fi
.

al

s
d

(a51
n ua , which is therefore a noninteracting field. This im

plies an exact result thatK andB are not renormalized by the
disorder in this harmonic approximation.2 Dh , of course, will
be renormalized by the random-field nonlinearity.

It is easy to see that the random tilt disorder term w
coefficientDh can be rewritten in Fourier space as

Dh

2
q'

2 (
a,b

uua2ubu25(
a,b

Dhq'
2 @211ndab#uaub ,

~3.9!

which, in then→0 limit leads to the quadratic part of th
Hamiltonian

H0@ua#5
1

2E ddq(
a,b

n F ~Kq'
4 1Bqz

2!dab2
Dh

T
q'

2 Guaub ,

~3.10!

from which the propagatorGab(q) defined through

^ua~q!ub~q8!&5Gab~q!dd~q1q8! ~3.11!

can be easily obtained

Gab~q!5
Tdab

Kq'
4 1Bqz

2
1

Dhq'
2

~Kq'
4 1Bqz

2!2 , ~3.12!

using an identity for inverting matrices of the type

Aab5adab1b, ~3.13!

namely,

Aab
215

1

a
dab2

b

a~a1bn!
,

5
n→0

1

a
dab2

b

a2 . ~3.14!

In three dimensions, forDh5DV50 ~disorder-free liquid
crystal! at low temperatures (T,TNA), the smectic-A phase
is described by a fixed plane, defined by the bare values oK
andB. Our initial goal is to establish how this fixed plane
destabilized by the disorder, i.e., by the random field a
random tilt terms. The calculation is a generalization of th
for the 2D random-fieldXY model8,2 to the anisotropic elas
ticity of the smectic-A in three dimensions. We employ th
standard momentum shell renormalization gro
transformation,40 by writing the displacement field as

ua~r !5ua
,~r !1ua

.~r !, ~3.15!

integrating perturbatively inDV the high wave-vector par
ua

.(r ), nonvanishing inside a thin cylindrical momentu
shell

Le2 l,uq'u,L, ~3.16a!

2`,qz,`, ~3.16b!

and rescaling the lengths and long wavelength part of
fields with
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r'5elr'8 , ~3.17a!

z5ev lz8, ~3.17b!

ua
,~r !5ef lua~r 8!, ~3.17c!

so as to restore the ultraviolet cutoff back toL. Because the
random-field nonlinearity is a periodic function, it is conv
nient ~but not necessary! to take the arbitrary field dimensio
f50, thereby preserving the period 2p/q0 under the renor-
malization group transformation.41 Under this transformation
the resulting effective Hamiltonian functional can be resto
into its original form Eq.~3.8! with effective l-dependent
couplings. We relegate the details of these calculations
Appendix A, and focus here on the results. These can
succinctly summarized in the renormalization group flo
equations

dDV~ l !

dl
5~21v2h!DV2A1DV

2 , ~3.18a!

dK~ l !

dl
5~v22!K, ~3.18b!

dB~ l !

dl
5~22v!B, ~3.18c!

dDh~ l !

dl
5vDh1A2DV

2 , ~3.18d!

where we have defined

h5
q0

2 T

4pAKB
, ~3.19a!

A15
q0

4

8pL4AK3B
, ~3.19b!

A25
c q0

6

4pL6AK3B
, ~3.19c!

and c is a dimensionless number of order 1. Note th
dh( l )/dl50, exactly.

As discussed above, the symmetry of the effective Ham
tonianH in Eq. ~3.8! guarantees that the flow equations f
K( l ) andB( l ) areexact~arising from simple length resca
ing with no diagrammaticcorrections!, ignoring ~for now!
the effects of both anharmonic elastic terms and topolog
defect loops inu; the latter become important at high tem
peratures, where they induce the NA transition, by driv
the bulk modulusB to zero.16,42It is convenient to choose th
anisotropy exponentv52, because such a choice kee
K( l ) and B( l ), Eqs. ~3.18b!,~3.18c!, fixed under the RG.
Although it appearsfrom Eq.~3.18a! that the glass transition
temperature~relevance and irrelevance ofDV) depends on
the arbitrary choice ofv, it does not. This choice is actuall
completely arbitrary and does not affect anyphysicalquan-
tities. This can be seen by looking at the properdimension-
lesscoupling constant
d

to
e

t

l-

al

D̃V[A1DV , ~3.20!

whose recursion flow equation can be easily obtained
combining Eqs.~3.18a!, ~3.18b!, and~3.18c!

dD̃V~ l !

dl
5~42h!D̃V2D̃V

2 ,

5@42h2D̃V#D̃V . ~3.21!

Obviously this flow equation is independent of the arbitra
rescaling exponentv and has the same form as that forDV ,
Eq. ~3.18a!, with v52.

From Eq.~3.21!, we then find that forh,4 ~large elastic
moduli and low temperature!, or, equivalently, below the
pinning transition temperatureTp , given by

Tp5
16pAKB

q0
2

, ~3.22!

the smectic (DV50) fixed plane is unstable to disorde
However, the initial runaway of disorder is halted by th
nonlinear terms inD̃V , which terminate the flow at a new
finite disorder fixed line,

D̃V* ~T!542h. ~3.23!

This new fixed line then describes a randomly pinned, gla
smectic-A phase, analogous to the 2D super-rough phas
crystal surface on a random substrate2 and the 111 vortex
glass phase of flux-line vortices~confined to a plane! in type
II superconductors.3 This RG flow structure is summarized i
Fig. 6.

It is important to note that the transition atTp , illustrated
in Fig. 6, is taking placewithin the SBG phase. That is,Tp is
a transition from the (T.Tp) SBG phase, within which the
translational random field disorderDV is unimportant at long
scales, to the (T,Tp) SBG phase, in whichDV is relevant

FIG. 6. A fixed line characterizing the pinned glassy phase o
three-dimensional smectic in aerogel.Tp516pAKB/q0

2 is the pin-
ning transition temperature, taking placewithin the 3D SBG phase.
This transition only survives within the harmonic elastic appro
mation.
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and flows to a nontrivial fixed line. ThisTp pinning transi-
tion must not be confused with the distinct higher tempe
ture transition, occuring just belowTNA , in which the puta-
tive unpinned (T.Tp) SBG ‘‘melts’’ into the NEG by
unbinding of dislocations. It is most certain that the tran
tion at Tp , derived here within the harmonic elastic appro
mation, will be converted into a crossover by the neglec
elastic nonlinearities, analyzed in Secs. VI–VIII. However
is possible that a rounded ‘‘ghost’’ of the transition atTp will
persist in our full theory and will therefore be experimenta
observable.

It is enlightening to contrast these RG flows, with the
perturbative fixed line, Eq.~3.23!, at which the relevant
flows of D̃V terminate, with those of disorder-freethermal
sine-Gordon models~e.g., thermal roughening transition!,43

where the cosine coupling runs away to strong coupling
low temperatures. In these latter systems the cosine pote
becomes relevant upon lowering the temperature, with
system settling down in one of the minima of thisperiodic
pinning potential. As the cosine coupling continues to gro
it further reduces thermal fluctuations, suppressing their a
ity to average away its pinning effects, thereby further
creasing its pinning influence. Mathematically this manife
itself in thepositivenonlinear contribution to the flow equa
tion for the cosine coupling, which results in the absence
a stablefinite coupling fixed line. In contrast, for disordere
problems of the type considered here, as the disorder
comes relevant at low temperatures and begins to grow
leads to fluctuations~roughening! that are larger than thos
from purely thermal fluctuations.2 This disorder-enhance
roughening subsequently leads to a more effective avera
away of the pinning potential, thereby suppressing its effe
beyond a certain strength. Mathematically, this is captu
by thenegativesign of the nonlinearD̃V

2 term in the flow Eq.

~3.21!, which results in the termination of the flow ofD̃V and
the glassy fixed line described by Eq.~3.23!.

The flow Eq. ~3.21! also implies that the random-fiel
disorder is irrelevant forh.4. Since the bulk modulusB
vanishes, whileK remains finite throughTNA , h diverges as
T→TNA

2 , and hence, sufficiently close to the NA transitio
temperatureTNA , we areguaranteedto have a range of tem
peratures~within the smectic phase! over which the random-
field disorder is irrelevant. However, as we will see belo
because tilt disorderDh is a strongly relevant perturbation
the three-dimensional quasi-long-range smectic order foh
.4 will be converted into short-range correlations, ev
when the random field disorderDV is irrelevant.

It is essential to stress that the renormalization group fl
diagram described above~i.e., relevance forh,4 and irrel-
evance forh.4 of the random-field disorder! survives even
despite the strong relevance and runaway of the random
coupling Dh . This occurs because the dimension of t
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cos@q0(ua2ub)# operator~the random field disorder! is inde-
pendentof Dh , to all orders in perturbation theory inDV .
This can be easily seen to first order inDV

^2H int&5
DV

T E d3r(
ab

^cos@q0~ua2ub!#&. ,

5Re
DV

T E d3r(
ab

eiq0(ua
,

2ub
,)^eiq0(ua

.
2ub

.)&. ,

5
DV

T E d3r(
ab

cos@q0~ua
,2ub

,!#e2 f ab,

5
DV

T E d3r(
ab

cos@q0~ua
,2ub

,!#e2h l (12dab),

~3.24!

where

f ab5q0
2@Gaa

. ~r 50!2Gab
. ~r 50!#, ~3.25!

in Gaa
. (0) there is no implied sum overa, and

Gab
. ~r !5E

Le2 l

L d2q'

~2p!2E
2`

` dqz

2p
Gab~q!eiq–r. ~3.26!

Using

Gaa~q!2Gab~q!5
T

Kq'
4 1Bqz

2 ~12dab!, ~3.27!

which is obviously independent of the tilt-disorder couplin
Dh , and Fourier transforming, we obtain theDh-independent
h given in Eq. ~3.19a!. Performing length rescalings, Eq
~3.17!, to restore the new cutoffLe2 l back toL gives, to
first order inDV , the flow equation forDV , Eq. ~3.18a!.

To see that the recursion relation forDV , Eq. ~3.21!, is
independent ofDh to all orders in DV , in this otherwise
harmonic theory, one can return to the nonreplicated Ham
tonian, Eq.~3.5! and completely eliminate the random ti
field h(r ) via a change of variables

u~r ![u8~r !1 f ~r !, ~3.28!

with f (r ) completely determined by the random tilt fie
h(r ) via

~2B]z
21K¹'

4 ! f ~r !5“'•h~r !. ~3.29!

Inserting Eq.~3.28! into Eq. ~3.5!, and dropping terms tha
only depend on the random tilt fieldh(r ), since, as discusse
earlier, these have no effect onanycorrelation functions, we
have
H5E ddr FB

2
~]zu8!21

K

2
~¹'

2 u8!21h~r !•“'u81B]zf ]zu81K¹'
2 f ¹'

2 u82uc0u@V8~r !eiq0u8(r )1V8* ~r !e2 iq0u8(r )#G ,
~3.30!
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where we have definedV8(r )[eiq0f (r )V(r ). Note that the
statisticsof V8(r ) are exactly the same as thestatisticsof
V(r ), since all we have done is added a new random ph
factor to V(r ). But since the phase ofV(r ) was uniformly
distributed between 0 and 2p, the phase ofV8(r ) will also
be. Hence, its statistics are the same. Therefore, the m
Eq. ~3.30! is only affected by the presence of the random
field h(r ) through the terms

DH5E ddr @h~r !•“'u81B]zf ]zu81K¹'
2 f ¹'

2 u8#,

~3.31!

which, after integration by parts, vanish by virtue of t
choice Eq.~3.29!. Thus, the new Hamiltonian is unaffecte
by the random fieldh(r ). Since the partition function is ob
viously invariant under a change of variables, it, and, the
fore, the recursion relations for the parametersB, K, and
most importantlyDV , cannot be affected byh(r ), and hence
are independent ofDh . The results described above for th
disordered three-dimensional smectic-A phase are quite
closely analogous to those of Cardy and Ostlund for rand
symmetry breaking fields in the two-dimensionalXY
model,8 except that for pinned smectics, the random-fie
disorder~the cosine! is guaranteed to become irrelevant
T→TNA

2 sinceh(T→TNA)→`.
As can be seen from the detailed renormalization gro

~RG! analysis of Appendix A and Eq.~3.18d!, even if the
bareDh50 ~i.e., no initial tilt disorder!, this type of disorder
is generated by the random-field disorder (DV) after the
high-wave-vector degrees of freedom are integrated out
contrast to the 2D random-fieldXY model, where the gener
atedDh disorder is only marginally relevant and only weak
affects the quasi-long-range order~QLRO! found for Dh
50 @converting ln(r) phase correlations to ln2(r)], for the 3D
smectic-A phase theDh tilt disorder is strongly relevant. As
we will see in the next section, the dimensionless coupl
that determines the effect of the tilt disorder is

D̃h[A1Dh , ~3.32!

From the recursion relations Eqs.~3.18a!–~3.18d! we find

dD̃h

dl
52D̃h1

2cq0
2

L2 D̃V
2 . ~3.33!

For h.4, D̃V( l )→0 ~as we have seen!, and sodD̃h /dl

52D̃h , which is trivially solved to give

D̃h~ l !5D̃he2l , ~3.34!

where D̃h is the nonuniversal dimensionless ‘‘bare’’ co
pling, Eq. ~3.32!. Thus, we see that the tilt disorder
strongly relevant, in contrast to the behavior of the tw
dimensional random fieldXY model,8 for which the tilt dis-
order was marginal, in the RG sense, in the phase in wh
the cosine was irrelevant.

For h,4, D̃V→D̃V* .0, with D̃V* given by Eq. ~3.23!.
Now, in the 2D random fieldXY model, the existence of a
nonzero D̃V* in the low-temperature phase implied com

pletely different behavior for the tilt couplingD̃h( l ) than in
se

el

-

m

p

In

g

-

h

the high-temperature phase: a runaway ofD̃h( l ) to infinity as
l→` in the low-temperature phase, as opposed to a cons
D̃h( l→`) in the high-temperature phase.2 In our problem,
however,D̃h( l ) runs away to infinity inboth phases, and
asymptotically in exactly the same way. One can see this by
solving Eq.~3.33! with D̃V( l ) replaced by its nonzero fixed
point valueD̃V* given by Eq.~3.23!, finding

D̃h~ l !5F D̃h1
cq0

2

L2 ~D̃V* !2Ge2l2
cq0

2

L2 ~D̃V* !2, ~3.35!

which has the same asymptotic behavior asl→` ~namely,
D̃h0e2l) as in the low-temperature phase. Nonuniversal c
stants~such asD̃h0) can be different in the low-temperatur
phase, but the scaling (e2l) is not. We will see in the next
section that this implies thatequal timecorrelation functions
scale in exactly the same way in both the pinned (h,4) and
nonpinned (h.4) phase. The only difference between the
two phases is in their dynamics, which are divergen
slower in the randomly pinned phase, as we shall show
future publication.26

Physically the strong relevance ofDh is expected, becaus
in the smectic-A phase the rotational invariance isspontane-
ouslybroken. Since each realization of the random tilt dis
der explicitly breaks the rotational invariance~preserving it
only statistically!, the smectic layer orientation has a dive
gent response toDh tilt disorder. At long scales whereDh
'0 is no longer valid, thequasi-long-rangeorder, implied
by the nontrivial fixed line, Eq.~3.23!, will undergo a rapid
crossover to short-range correlations ofc(r ), even in the
regime (h.4) where the random-field disorder~which al-
ways generates random tiltDh) is irrelevant.

IV. RANDOM TILT-ONLY HARMONIC ELASTIC
„TOPOLOGICALLY ORDERED … MODEL

For finite Dh both the random field (DV) and random tilt
(Dh) disorders must be treated simultaneously. Since, as
scribed above, our conclusions about the phase diagram
DV are not affected by the tilt disorderDh , we can study the
effect of Dh on smectic-A order within the regimeh.4,
where the random-field disorder is irrelevant. In this regim
at long enough scales the smectic-A phase is effectively sub
jected to tilt disorder only. We can therefore safely setDV
50 and analyze exactly the remaining quadratic theory
any value ofDh . As argued in the previous section, and to
shown in the next, the scaling of the results we find here w
also apply in the pinned phase whereh,4 and the cosine
disorder is relevant.

Since, within the harmonic-elastic approximation of th
section, the effective Hamiltonian is quadratic in the d
placement fieldsu, whenDV50 all the correlation functions
can be computed exactly. In particular the quantity of int
est is

C~r' ,z!5^@u~r',z!2u~0,0!#2&. ~4.1!

Fourier transforming theu fields, we get
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C~r' ,z!52E d2q'dqz

~2p!3
~12eiq•r !

^u~q!u~q8!&

d3~q1q8!
. ~4.2!

We can write the quenched and thermal avera
^u(q)u(q8)& in terms of their replicated correlation function

^u~q!u~q8!&5^ua~q!ua~q8!&,

5d3~q1q8!Gaa~q!,
~4.3!

where no sum ona is implied, and the replica propagato
Gab is given by Eq.~3.12!. Using that equation, and Eq
~4.3! for the correlation function, gives

C~r' ,z!5CT~r' ,z!1CD~r' ,z!, ~4.4!

where we have separatedC(r' ,z) into ‘‘thermal’’ CT and
‘‘disorder’’ ~frozen! CD parts, given by

CT52TE d2q'dqz

~2p!3

12eiq•r

Kq'
4 1Bqz

2
,

5
T

2pAKB
gTS zl

r'
2 ,

r'

a D ,

5
T

2pAKB
F lnS r'

a D2
1

2
EiS 2r'

2

4luzu D G ,
~4.5!

and

CD52DhE d2q'dqz

~2p!3

q'
2 ~12eiq•r !

~Kq'
4 1Bqz

2!2
,

5
Dh

32pB2l3 H 4luzue2r'
2 /4luzu

1r'
2 FEiS 24lLz

L'
2 D 1EiS 2r'

2

4luzu D
12 lnS L'

r'
D G J , ~4.6!

where Ei(x) is the exponential integral function, and,
promised, the effective dimensionless couplingD̃h , defined
in Eq. ~3.32!, naturally appears above. In the above, we ha
considered a finite system whose shape is a rectangular
allelepiped of linear dimensionsL'3L'3Lz , Lz being the
length of the system along the ordering~z! direction. Unless
it has a huge aspect ratio, such thatLz;L'

2 /l@L' , any
large system (L' ,Lz@l) will have lLz!L'

2 . In this limit,
the asymptotic behaviors ofCD are
d

e
ar-

CD'5
Dh

32pB2l3 F4luzu1r'
2 lnULz

z UG , luzu@r'
2 ,

lLz!L'
2 ,

Dh

16pB2l3
r'

2 lnS 2AlLz

r'
D , luzu!r'

2 ,

lLz!L'
2 .

~4.7!

Note that, although in principle the second (r'
2 lnuLz/zu) term

in the luzu@r'
2 expansion ofCD dominates theluzu term in

the thermodynamic limitLz→` ~taking that limit at fixedr'

and z), in practice, for any reasonable system sizeLz , the
first (luzu) term actually dominates ifluzu/r'

2 gets apprecia-
bly bigger than 1.

An unusual feature of this result is that not only do t
mean squared fluctuations ofu at a given point in space
diverge as a function of system size, but even therelative
displacement of two points withfinite separations (r' ,z)
diverge as the system sizes (L' ,Lz) go to infinity. This is
because the mean squared real spaceorientational fluctua-
tions ^udn(r )u2& also diverge asL',z→`:

^udn~r !u2&5^u“'u~r !u2&,

5DhE d2q'dqz

~2p!3

q'
4

~Kq'
4 1Bqz

2!2 ,

5
Dh

16p2B2l3E
q'.max[(lLz)

21/2,L'
21]

d2q'

q'
2 ,

5
Dh

8pB2l3 ln~min@AlLz,L'# !. ~4.8!

Although not experimentally relevant, it is instructive
generalize this calculation to spatial dimensionsd.3. Keep-
ing only the tilt disorder~we will return to justify this later!,
and repeating the calculation just presented, we find

CD~r' ,z!}H Dhuzu(52d)/2, luzu@r'
2 ,

Dhr'
52d , luzu!r'

2 ,
~4.9!

which diverges at large distances for alld,5. This diver-
gence signals the destruction by tilt disorder of the~quasi-!
long-ranged smectic translational order ford,5. Note that
this divergence occurs even for arbitrarily weak disord
~i.e., arbitrarily smallDh). This agrees with the experimenta
observation that, even when the aerogel density beco
very low, smectic translational order is still destroyed,
manifested in the nonzero width of the x-ray scattering pe
associated with the smectic layering.

How are these results, Eq.~4.1!, for the equal time corre-
lation functions modified by the presence of the cosine~ran-
dom field! disorder term in Eqs.~3.4!,~3.8!? Aside from a
temperature-dependent modification of the prefactorDh
→Dh1const(Tp2T)2, belowd55, they are not modified a
all. We will now demonstrate this fact ind53, and defer to
Sec. VIII the demonstration for 3,d,5.
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For h.4, the cosine clearly does not affect the long d
tance behavior, since its coefficientDV is irrelevant ~i.e.,
flows to zero under renormalization!. Furthermore, we need
not worry that it might bedangerouslyirrelevant, since we
have just calculated correlation functions withDV set equal
to zero, and encountered no difficulties.

What happens withh,4? Forh near 4 (42h!1), the
fixed point valueD̃V* 542h of D̃V is also!1, and our per-

turbative ~in D̃V) renormalization group remains valid. W
can therefore use this RG to calculate the equal time co
lations for h,4 and 42h!1. This calculation must itsel
be done perturbatively inD̃V* , since the full Hamiltonian

with D̃VÞ0 is not quadratic. However, such a perturbati
theory diverges for small wave vectors whenh,4. Indeed,
the growth under the RG of smallD̃V for h,4 is a signal
and a consequence of this divergence. Fortunately, we
use the renormalization group transformation to relate
ll
-

re

q

-

e-

an
e

correlation functions at small wave vector to those at la
wave vector, where perturbation theory should be reliab
Indeed, simply repeating for correlation functions the resc
ings done earlier for the partition function, we can show th

Cab@q;B~0!,K~0!,Dh~0!,DV~0!#

[
^ua~q!ub~q8!&

d3~q1q8!

5e(21v) lCab@elq' ,ev lqz ;B~ l !,K~ l !,Dh~ l !,DV~ l !#.

~4.10!

Now, in order to insure that the rescaled correlation funct
on the right-hand side of this expression can be safely ev
ated using perturbation theory inD̃V( l ), we will choosel
such thatelq'5L, the ultraviolet cutoff. With this choice
we have
Cab@q;B~0!,K~0!,Dh~0!,DV~0!#5S L

q'
D 21v

Cab@L,~L/q'!vqz ;B~ l * !,K~ l * !,Dh~ l * !,DV~ l * !#, ~4.11!
s-

-

th

e
res-
s-
where l * [ ln(L/q'), and B[B(0), K[K(0), Dh[Dh(0),
DV[DV(0). Note thatl *→` asq'→0.

To calculate the right-hand side of Eq.~4.11! in perturba-
tion theory in DV( l * ), we expand the cosine in the fu
Hamiltonian Eq.~3.8! to quadratic order, obtaining, in Fou
rier space

H@ua#5
1

2Eq
F ~Bqz

21Kq'
4 ! (

a51

n

uua~q!u2

1
1

2
~Dhq'

2 12DVq0
2! (

a,b51

n

uua~q!2ub~q!u2G ,

~4.12!

which we immediately recognize asidentical to the tilt-only
Hamiltonian Eq.~3.10!, exceptfor the replacementDh→Dh

12DVq0
2/q'

2 . Thus, we can immediately calculate the cor
lation function on the right-hand side of Eq.~4.11! by simply
making this replacement in the tilt only propagator E
~3.12!, obtaining

Cab@L,~L/q'!vqz ;B~ l * !,K~ l * !,Dh~ l * !,DV~ l * !#

5
Tdab

K~ l * !L41B~ l * !~L/q'!2vqz
2

1
Dh~ l * !L212DV~ l * !q0

2

@K~ l * !L41B~ l * !~L/q'!2vqz
2#2

. ~4.13!

To finish writing this expression entirely in terms ofq, we
need to calculate the Hamiltonian parametersB( l ), K( l ),
Dh( l ), andDV( l ) from the recursion relations Eqs.~3.18a!–
~3.18d! and evaluate them atl * 5 ln(L/q'). We find
-

.

B~ l * !5S L

q'
D 22v

B, ~4.14a!

K~ l * !5S L

q'
D v22

K, ~4.14b!

Dh~ l * !5
D̃h~ l * !

A1~ l * !
, ~4.14c!

5S L

q'
D vFDh1

c q0
2

L2A1
D̃V*

2G ,
DV~ l * !5

D̃V~ l * !

A1~ l * !
, ~4.14d!

5S L

q'
D v22 D̃V*

A1
,

whereA1[A1( l 50), and in this last equation we have a
sumed thatq' is sufficiently small thatl * 5 ln(L/q') is suf-
ficiently large that D̃V( l * ) will have flown to very near its
h-dependent fixed point valueD̃V* , as given by Eq.~3.23!.

Likewise, in the expression forD̃h( l ), we have used the so
lution Eq. ~3.35! for D̃h( l ), the effective tilt coupling con-
stant, and again assumed thatl * 5 ln(L/q') is very large, so
that the second (l -independent! term in Eq.~3.35! is negli-
gible compared to the first, exponentially growing term. Bo
of these approximations become asymptoticallyexactasq'

→0, andl * , as a result,→`. Inserting these results for th
renormalized elastic and coupling constants into the exp
sion Eq.~4.13! for the rescaled correlation function, and u
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ing that result in the matching formula Eq.~4.11! for the
original correlation function at small wave-vector yields, a
ter a bit of algebra

Cab~q;B,K,Dh ,DV!

5
Tdab

Kq'
4 1Bqz

2

1
~Dh1cq0

2D̃V*
2/L2A1!q'

2 1~2q0
2D̃V* /A1!~q' /L!4

~Kq'
4 1Bqz

2!2
,

~4.15!

where all of the parameters (K,B,Dh ,A1) in this expression
arebareparameters~i.e., evaluated atl 50). This expression
is identical to the result in theDV irrelevant phase (h.4)
except for:~i! the D̃V* (q' /L)4 term, which is clearly negli-

gible ~as q'→0) relative to the (Dh1c q0
2D̃V*

2/L2A1)q'
2

term, and~ii ! the enhancement of the strength of the
disorder according toDh→Dh1c q0

2D̃V*
2/L2A1. The hereto-

fore neglected effects of theanharmonicterms coming from
the cosine on therescaledcorrelation function~and hence on
the original one, since they are related by the matching
mula!, should be even smaller, sinceD̃V* is !1 for 42h
!1. As discussed earlier, this argumentcannot be invali-
dated by possible infrared divergences in the perturba
theory, since we are calculating therescaled correlation
function at large wave vector. The effects of these dive
gences on the short wavelength correlation functions areim-
plicitly included in the matching expression Eq.~4.11!
through our use of the renormalized parameters on the ri
hand side, since these renormalizations include anharm
effects.

Hence, at long wavelengths, aside from the modificat
of the prefactorDh→Dh1const(Tp2T)2 ~for T,Tp), we
recover the same asymptotic form for theequal-timecorre-
lation functions in the randomly pinned (h,4) and non-
pinned (h.4) phases. Although, strictly speaking, we ha
only derived this result nearh54, where our perturbation
theory is valid, it must apply throughout the entire low
temperature phase, sinceonly a phase transition can chang
the asymptotic scaling of the correlation functions. Barri
the existence of such a phase transition controlled by s
strong coupling fixed point, which we of course cannot ru
out with the perturbative analysis performed here, our res
for the scaling behavior of the equal-timeu-u correlation
functions should persist all the way down toh50; i.e.,
throughout the smectic phase.

In any case, in this elastically harmonic phonon~no-
dislocations! model, there isguaranteedto be a pinned phas
below h54 whosestatic correlation functions haver (q)
dependenceidentical, at long wavelengths, with those in th
nonpinned phase aboveh54. The distinction between thes
phases lies in the temperature dependence of the param
in these static correlation functions~as we discuss below!
and in their dynamical properties.

That is, it is important to note that in spite of the abo
finding that static correlation functionsscale ~with position
or wave vector! identically in both theh.4 and h,4
r-

n

t-
ic

n

e

ts

ters

phases, the existence of the transition atTp to the low-
temperature translationally pinned (h,4) phasecan still in
principle be detected in a static experiment. This can be s
by noting that in the presence of such a transition,
Dh-dependent physical quantities, which would otherwise
smooth functions of temperature, arenonanalyticin T at Tp .
This is because of the additional contribution toDh

eff in Eq.

~4.15!, proportional to (D̃V* )2}uTp2Tu2, that arises below
Tp , Dh

eff(T)5Dh1const(Tp2T)2. As a result, other physi-
cal quantities derived fromDh will have a discontinuous sec
ond derivative. Although this is a quite subtle effect, it is
unambiguous static experimental signature of the transi
to the pinned smectic glass phase atT5Tp . However, as
briefly discussed just below Fig. 6, we demonstrate in Se
VI–VIII that this transition, derived here within the har
monic elastic theory, will be rounded once nonlinear elas
effects are taken into account. It is, however possible, t
rounded remnants of the nonanalyticities atTp , discussed
above, will still be experimentally observable.

The static correlation function derived in Eq.~4.15! shows
that long-ranged smectic translational order is destroyed
d53. To make quantitative comparisons with experiments
is useful to calculate translational correlation lengthsj'

X and
jz

X , whose inverses will give the width of the broaden
x-ray diffraction peaks. These correlation lengths are the
tancesr' andz at which the mean squared relative displac
ment correlation functionC(r' ,z) is of ordera2, wherea
52p/q0 is a lattice constant.

When there is no disorder (Dh50), the above criterion
leads to

j'
T5aepa2AKB/T, ~4.16a!

5Aljz
T. ~4.16b!

As discussed in the extensive literature on the subjec14

however, the slow~logarithmic! divergence of the therma
part CT of C implies that, forh,2, the x-ray scattering
peaks donot, in fact, become broad foruq'u,1/jT; instead,
they become power-law divergences, rather than the Lor
zians one might otherwise expect.

The more strongly divergent partCD of C doeslead to
genuine broadening, foruqu,1/j',z

X , wherej',z
X are defined

as those length scales~i.e., values ofr' and z) at which
CD(r' ,z)5a2. Having computedCD within the elastically
harmonic theory, we thereby find

jz
X5a2

8pKB

Dh
, ~4.17a!

j'
X54aS pB2l3

Dhln~2AlLz/j'
X!

D 1/2

. ~4.17b!

In fact, we powder average the x-ray scattering, since
we will show in a moment, the smectic in aerogel lac
long-ranged orientational order, as well as translational
der. The broadring of x-ray scattering that results from thi
averaging will have its width determined entirely byjz

X :
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kpowder>~jz
X!215

Dh

8pKBa2
, ~4.18!

a gratifyingly simple prediction.
Although it is more difficult to measure experimentally,

is nonetheless of interest to calculate the harmonic orie
tional correlation lengthsj',z

O,h , which are defined as the va
ues of L',z beyond which the mean squared orientatio
fluctuations^udnu2& get to be of order 1. If we ignore dislo
cations and anharmonic elasticity, we can obtain th
lengths by simply equating the ‘‘pure phonon’’ result E
~4.8! for ^udnu2& to 1. This gives

j'
O,h5ae4pB2l3/Dh5aeljz

X/2a2
, ~4.19a!

jz
O,h5

a2

l
e8pB2l3/Dh5

a2

l
eljz

X/a2
, ~4.19b!

In the next section, we will show that, unsurprisingly, the
lengths give the distance beyond which dislocations unb
invalidating the purely elastic phonon theory studied in t
section.

Thus, orientational order persists out tomuch larger dis-
tances than translational order, in the limit of weak disor
where all the correlation lengths get large. Indeed, in th
limit the orientational correlation lengths grow exponentia
with the translational ones. This qualitatively agrees w
experimental determinations of the orientational correlat
length, as indirectly inferred from specific heat data and
lated measurements.20

In Sec. VI, we will show that anharmonic elastic effec
which we have ignored up to now, change the relation
tween the x-ray correlation lengthjz

X and the orientationa
correlation lengthsj',z

O from exponential to power law
However, the fact thatj',z

O both remain@jz
X continues to

hold, validating our use of elastic theory~which was predi-
cated on the assumption that orientational fluctuations
small!, to calculate the x-ray correlation lengths. In any ca
it would be very interesting to measure the relation betw
translational and orientational correlation lengths as a fu
tion of temperature.

All of the above results apply subject to our two initi
assumptions:~1! that dislocations werenot generated by the
disorder, and~2! that anharmonic terms in theelasticHamil-
tonian could be neglected. In the next section, we will sh
that, if we continue to assume~2!, assumption~1! is wrong:
in theharmonicelastic approximation, in 3d dislocationsare
created even by arbitrarily weak disorder.

However, the effects of these dislocations turn out, in
weak disorder limit, to be felt only on length scales long
than the smaller of the orientational lengthj',z

O and the dis-
location unbinding lengthj',z

D , both of which aremuch
longer than the translational correlation lengths. Thus,
above calculations of the correlation lengths remain va
However, in the presence of these unbound disloca
loops, the smectic glass phase is destroyed. It may be
placed by a nematic glass phase, however, as discussed
Introduction. The static properties of our system in the pr
ence of dislocations are analytically accessible, and we a
lyze them in the next section. Furthermore, the behavio
a-

l

e

e
d,
s

r

n
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,
n
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e
r

r
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n
e-
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-
a-
f

the correlation functions found above is modified by elas
nonlinearities~which lead to anomalous elasticity!, which
also have a nontrivial effect on dislocations, as we dem
strate in Sec. VII.

V. DISLOCATIONS IN THE RANDOM TILT-ONLY
HARMONIC MODEL

In the previous sections, we have shown that there is
long-ranged smectic translational order in the presence of
random pinning and tilting fields. However, this by itself
not sufficient to prove that there is no phase transition in t
model. Indeed, we know of many examples of transitio
between two phases whichboth lack long-ranged order. The
Kosterlitz-Thouless transition in thed52 XY model44 is
perhaps the most famous example. In that problem, the t
sition is associated not with the disappearance of lo
ranged order, but, rather, with the unbinding of neutral pa
of topological defects~vortices! with increasing temperature

It is reasonable, therefore, to ask whether the same th
can happen in our model: are topological defects~i.e., smec-
tic dislocation loops! still bound even in the translationall
disordered phase we have discussed? If they were, the
equilibrium phase transition would be required to produ
the expected high temperature phase, in which dislocat
are unbound.

Of course, the divergences that destroy long-ranged o
are much stronger~power-law! in our model ford,5 than in
the 2D XY model, where they are logarithmic. Howeve
there are examples of phases much more strongly disord
than the Kosterlitz-Thouless phase in which topological
fects nonetheless remain bound.45 Furthermore, there ha
been considerable speculation recently9–11 that a ‘‘Bragg
glass’’ phase might exist in pinned superconducting flux-l
lattices. This ‘‘Bragg glass’’ would be a phase in which th
random pinning destroyed the translational order of the fl
lattice, but didnot induce dislocations in the lattice. It seem
quite reasonable, therefore, to ask whether an analog
phase occurs in smectics. This section addresses this q
tion, and shows analytically that smectic Bragg glass d
not occur ind53 ~within a model withharmonicelasticity!.
We will show later that this result maybe invalidated b
elastic anharmonic effects.

The starting point of our analytic theory is the ‘‘tilt only’
model, by which we mean Eq.~3.5! with the random poten-
tial V(r ) set to zero. As discussed earlier, this theory c
rectly reproduces all of the static correlation functions
both the pinned (T,Tp) and the nonpinned (T.Tp) re-
gimes. However, in view of the very strong irrelevance
DV to the static correlation function inboth phases in the
‘‘phonon only’’ approximation, it seems quite plausible th
it is also irrelevant when dislocations are included. Inde
we will prove this in Sec. IX.

SettingV(r )50 in the Hamiltonian Eq.~3.5! reduces it to
a quadratic theory

H@u#5E ddr FB

2
~]zu!21

K

2
~¹'

2 u!21h~r !•“'uG .
~5.1!

The effect of dislocations on such a theory can then
treated using the techniques that many authors44,46–48 have



e

u
ef
re
o

s-

th
se
re
ct
un

lly
is
th
lo

the

ur-

the
or

ur

.

t

s of

r-

a-
ion

ator

laz

in

224 PRB 60LEO RADZIHOVSKY AND JOHN TONER
applied to a variety of disorder free systems, including sm
tics.

Most aspects of this procedure are already described q
well in the literature; therefore, our explanation will be bri
until we come to those points that are affected by the p
ence of the disorder. We begin by recalling the definition
dislocations in smectics.47 The simplest type is an edge di
location, illustrated in Fig. 7.

This is the edge of an extra smectic layer inserted into
smectic. Clearly, a pure edge dislocation must form a clo
loop lying in the smectic plane, as illustrated in Fig. 8. Mo
generally, dislocations can tip out of the plane of the sme
layers. An extreme case is a screw dislocation, which r
perpendicularto the layers.

Mathematically a dislocation is a line, or, more genera
a curve, with the property that when the gradient of the d
placementu is integrated around any curve that encloses
dislocation, the result is not zero, as it would be in a dis
cation free system, but rather an integral multipleN of the
layer spacinga. Mathematically, this means

R “u•dl5aN ~5.2!

or, in differential form:

“3v5m, ~5.3!

where we have defined

v5“u, ~5.4!

and

m~r !5(
i
E aNi t i~si !d

3@r2r i~si !#dsi , ~5.5!

wheresi parametrizes thei th dislocation loop,r i(si) is the
position of that loop,t i(si) is its local unit tangent, andNi

FIG. 7. An edgedislocation in the smectic liquid crystal, with
the core coming out of the page at the position indicated by the
‘‘ T’’ symbol.

FIG. 8. A three-dimensional illustration of dislocation loop
the smectic liquid crystal.
c-

ite

s-
f

e
d

ic
s

,
-
e
-

the ‘‘charge’’ or number of excess layers associated with
dislocation. Note thatNi is independent ofsi , since the
charge of a given line is constant along the line defect. F
thermore, Eq.~5.3! implies that

“•m~r !50, ~5.6!

which simply means that dislocation lines cannot end in
bulk of the sample; they must either form closed loops
extend entirely through the system.

Now, our procedure for adding dislocation lines to o
previous pure phonon model Eq.~5.1! is the following stan-
dard one. We separate the fieldv5“u into phonon~single-
valued! and dislocation~singular! parts

v5vp1vd , ~5.7!

where the dislocation partvd minimizes49 the elastic Hamil-
tonian Eq. ~5.1!, subject to the constraint of Eq.~5.3!
(“3v5m). ~For an alternative derivation see Appendix C!
This uniquely determinesvd(r ) given the dislocation con-
figurationm(r ). We then insert the decomposition Eq.~5.7!
back into the elastic Hamiltonian Eq.~5.1!. As a result of the
construction thatvd(r ) minimizes Eq.~5.1!, all the cross
couplings betweenvd(r ) andvp(r ) vanish. We are thus lef
with a decoupled elastic Hamiltonian form(r ), which we
can use as a basis for studying the statistical mechanic
dislocations.

Let us now implement this procedure. The Eule
Lagrange equation, obtained by minimizing Eq.~5.1!, is

~B]z
22K¹'

4 !ud~r !1“'•h~r !50. ~5.8!

Rewriting this in terms ofvd(r )[“ud(r ) gives

]zvd
z2l2¹'

2
“'•vd

'1
1

B
“'•h~r !50, ~5.9!

wherel2[K/B.
In Fourier space, this becomes

qzvd
z1l2q'

2 q'•vd
'1

1

B
q'•h~q!50. ~5.10!

The constraint Eq.~5.3! becomes, in Fourier space,

iq3vd5m, ~5.11!

which has the general solution

vd5
iq3m

q2
1qf, ~5.12!

wheref is the smooth elastic distortion around the disloc
tion line, to be determined by the Euler-Lagrange equat
~5.8!. Inserting the above expression forvd into Eq. ~5.10!
and solving forf gives

f52
iqz~12l2q'

2 !ezi jqimj

Gqq2
2

q'•h

BGq
, ~5.13!

where we have defined the inverse of the smectic propag

Gq[qz
21l2q'

4 . ~5.14!
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Inserting this into Eq.~5.12! and then substituting this
final expression forvd into the original elastic Hamiltonian
Eq. ~5.1! gives the defect interaction Hamiltonian

Hd5E
q
FKq'

2

2Gq
Pi j

'mi~q!mj~2q!1m~q!•a~2q!G ,
~5.15!

wherePi j
'(q)5d i j

'2qi
'qj

'/q'
2 , a(q) ~not to be confused with

the lattice spacinga) is a Fourier transform of the quenche
field related to the original random tilt fieldh(q) via

a~q!5 i Fq3h

q2
2

~ ẑ3q!q•h

Gqq2
qz~12l2q'

2 !G , ~5.16!

and we have dropped unimportant terms that depend onl
the quenched random variables~and not onm). The first
(h-independent! term in this expression Eq.~5.15! is just the
usual smectic dislocation energy for a pure system.48

To treat this model, we perform a duality transformatio
We begin by putting the model on a simple cubic lattice~to
make the model well defined at short distances!; now, m(r )
is defined on the sitesr of the lattice, and takes on values

m~r !5
a

d2 @nx~r !,ny~r !,nz~r !#, ~5.17!

where theni ’s are integers, andd is the cubic lattice constan
used in the discretization. The partition function for th
model is then

Z@h~q!#5 (
$m(r )%

8 e2S[m] , ~5.18!

where

S@m#[
1

T FHd@m#1Ec

d4

a2 (
r

um~r !u2G , ~5.19!

and the sum is over all discrete configurations ofm’s given
by Eq. ~5.17!, satisfying the dislocation line continuity con
straint

“•m50, ~5.20!

where the divergence now represents alattice divergence,
Hd is given by Eq.~5.15!, and we have added a core ener
term Ec( rum(r )u2, to account for energies near the core
the defect line that are not accurately treated by our c
tinuum elastic theory. We call the reader’s attention to
fact that the partition function still depends implicitly on th
configuration of the random tilt-disorder fields$h‰ througha
in Eq. ~5.15!.

To proceed, we enforce the constraint“•m50 by intro-
ducing a new auxiliary fieldu(r ), rewriting the partition
function Eq.~5.18! as

Z5)
r
E du~r ! (

$m(r )%
e2S[m] 1 i (ru(r )“•m(r )d2/a,

~5.21!
on

.

f
n-
e

where the sum over$m‰ is now unconstrained. The con
straint “•m(r )50 is enforced by integration overu(r ),
since

d@“•m~r !#5E
0

2pdu~r !

2p
eiu(r )“•m(r )d2/a, ~5.22!

where thed is a Kronecker delta, sincem d2/a, and, hence,
“•m d2/a, are integer valued.

Now we can ‘‘integrate’’ ~actually sum! by parts, and
rewrite

(
r

u~r !“•m~r !52(
r

m~r !•“u~r !1surface terms.

~5.23!

Our next step is to introduce a dummy gauge fieldA to
mediate the long-ranged interaction between defect loop
the Hamiltonian Eq.~5.15!. This is accomplished by rewrit
ing the partition function as

Z5)
r
E du~r !dA~r ! (

$m(r )%
e2S[m,u,A]d~“•A!d~Az!,

~5.24!

with

S5
1

T (
r

Fm~r !•S 2 i
Td2

a
“u~r !1d3@ iA~r !1a~r !# D

1Ec

d4

a2 umu2G1
1

2T (
q

Gq

Kq'
2 uAu2, ~5.25!

wherea is the quenched gauge field defined in Eq.~5.16!. It
is straightforward to check that, upon performing the Gau
ian integral overA, subject to the indicated constrain
“•A5Az50, we recover the original long-ranged intera
tion between dislocation lines in Eq.~5.15!.

The two goals of all of these manipulations have no
been achieved: the sum on$m(r )% is now unconstrained, and
the sum on each site overm(r ) is now decoupled from tha
on every other site. Furthermore, this sum is readily rec
nized to be nothing more than the ‘‘periodic Gaussia
made famous by Villain.50 The partition function Eq.~5.24!
can thus be rewritten

Z5)
r
E du~r !dA~r !d@“•A~r !#d~Az!

3expF2(
r ,i

VpFu~r1 x̂i!2u~r !2
ad

T
@Ai~r !2 iai~r !#G

2
1

2T (
q

Gq

Kq'
2 uAu2G , ~5.26!

where the well-known 2p-periodic Villain potentialVp(x),
defined by

e2Vp(x)[ (
n52`

`

e2n2Ec /T1 ixn ~5.27!

has the usual property that thesmaller Ec /T is ~i.e., the
higher the temperature in the original random-tilt smec
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model!, the sharper the potential minima. Thusraising the
temperature in the original model is equivalent tolowering
the temperature in the dual model Eq.~5.26!. It is precisely
this familiar temperature inversion associated with dua
that leads to aninverted XYtransition for three-dimensiona
disorder-free superconductors15 and bulk smectics.16 It also
plays an important role here, as we shall see in a mome

Standard universality arguments imply that replacing
periodic potentialVp(x) in Eq. ~5.26! by any other nonsin-
gular periodic function should not change the universa
class of the transition. In particular, we could replaceVp(x)
by cos(x). The resultant model would be precisely the ‘‘fixe
length’’ version of the ‘‘soft spin,’’ or Landau-Ginsburg
Wilson model, with thecomplex‘‘action’’

S5(
r

F c

2 S“1
ad

T
~ iA1a! Dc* •S“2

ad

T
~ iA1a! Dc

1tucu21uucu4G1(
q

Gq

2TKq'
2 uA~q!u2, ~5.28!

wherec(r ) is a complex ‘‘disorder’’ parameter field whos
phase isu(r ); the reduced temperaturet, quartic couplingu,
andc(T) are parameters of the model with

c~T!5
d2Vp~x!

d2x U
x50

3O~1!, ~5.29a!

'H 2e2Ec /T, T!Ec ,

T/2Ec , T@Ec .
~5.29b!

Because of the duality transformation’s inversion of the te
perature axis, the reduced temperaturet is a monotonically
decreasingfunction of the temperatureT ~of the original dis-
location loop model!, which vanishes at the mean-field tra
sition temperatureTMF of the fixed length model Eq.~5.26!.

Universality also implies that this ‘‘soft-spin’’ mode
should be in the same universality class as the fixed len
model Eq.~5.26!. We shall, therefore, henceforth work wit
model Eq.~5.28!, because it is more straightforward to an
lyze perturbatively.

As we undertake that analysis, it is important to keep
mind that, as a consequence of the duality inversion of
temperature axis, theorderedphase of the dual model Eq
~5.28! corresponds to thedisordered~i.e., dislocation loops
unbound! phase of the original dislocation loop gas mod
That is, the low dual-temperature phase described by

^c~r !&Þ0, ~5.30!

corresponds to thedisordereddislocation-unbound phase o
the smectic liquid crystal. In the absence of disordera
50) this model is exactly the dual version of the NA disl
cation loop model derived and studied by one of us.16

Disorder is included in Eq.~5.28! through the quenched
gauge-fielda(r ), which is related to the random tilt field
h(r ) by Eq. ~5.16!. The partition function

Z@h#5E @dc#@dA#e2S[c,A,h]d~“•A!d~Az!, ~5.31!
y

.
e

y

-

th

-

n
e

.

with Sgiven by Eq.~5.28!, is thus an implicit function of the
random tilt field configurationh(r ).

As in the previous section, we will cope with this depe
dence ofZ on the quenched fieldh(r ) using the replica trick.
Doing so leads us to calculate

Zn̄5E @da# )
a51

n

@dca#@dAa#

3e2Sr [ca ,Aa ,a] P@a#d~“•Aa!d~Az
a!, ~5.32!

with

Sr5(
r ,a

F c

2S“1
ad

T
~ iAa1a! Dca* •S“2

ad

T
~ iAa1a! Dca

1tucau21uucau4G1(
q,a

Gq

2TKq'
2 uAa~q!u2, ~5.33!

The probability distributionP@a# of the fielda in Eq. ~5.32!
is Gaussian, sincea is linear inh and the distribution ofh is
Gaussian, defined by Eq.~2.22!. Thus, the distributionP@a#
is completely specified by the averageai(q)aj (2q). This is
easily evaluated, using the relation Eq.~5.16! betweena(q)
andh(q). We find

ai~q!aj~2q!5hl~q!hn~2q! ~5.34a!

3S e iklqk

q2
2

ezkiqk

Gqq2
qlqz~12l2q'

2 !D
3S e jmnqm

q2
2

ezm jqm

Gqq2
qnqz~12l2q'

2 !D ,

5DhS Pi j

q2
1

qz
2q'

2 ~12l2q'
2 !2Pi j

'

Gq
2q2 D ,

~5.34b!

where e i jk is the usual fully antisymmetric third rank un
tensor. To obtain the second equality we have u
hl(q)hn(2q)5Dhd ln , and defined the standard transver
projection operators

Pi j 5d i j 2qiqj /q2, ~5.35a!

Pi j
'5~12d iz!~12d jz!~d i j 2qi

'qj
'/q'

2 !. ~5.35b!

We now need merely to consider the statistical mechanic
the model defined by Eqs.~5.32!,~5.33!, in the limit n→0.

From previous classic works15,51,16we have considerable
experience analyzing the critical properties of gauge theo
of the type defined by the action in Eq.~5.33!. As we know
from work on the zero field normal-to-superconduct
transition,15 and the analogous analysis of the bulk, cle
nematic-to-smectic-A transitions,16 there are two possible re
gimes:~i! the extreme type I regime, in whichu!1, and, as
a result, thec fluctuations are subdominant to those of t
gauge fieldA, allowing a mean-field treatment ofc. In this
case the remaining gauge field fluctuations can be tre
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exactly. ~ii ! The type II regime, in whichu.1 andboth c
and A fluctuations must be treated within a considera
more involved RG analysis.

A complete analysis of the critical properties of this sme
tic dislocation loop unbinding transition, described by t
action in Eq. ~5.33!, is beyond the scope of the prese
paper.26 Here our goal is to determine the stability of th
topologically ordered smectic Bragg glass phase to disor
induced dislocation loop unbinding. To answer this questi
it is sufficient to study the effect of diagrammatic correctio
on the reduced dual temperaturet, as we demonstrate in de
tail in Appendix D for the type I limit, delaying the analys
of the type II limit to a future publication.26 By computing
the disorder-averaged free energy, we find that ineither re-
gime the lowest order contribution to the renormalizeddual
temperaturetR comes from the average of the ‘‘diama
netic’’ terms

dS5
ca2d2

2T2 (
r

~^uAu2&2uau2!ucu2, ~5.36!

graphically illustrated in Fig. 9. Generalizing tod dimen-
sions these give

tR5t01
~d22!ca2d2

T2 E ddq

~2p!d FKTq'
2

Gq
2

Dhqz
2q'

2

q2Gq
2 G ,

~5.37!
where the first term in the square brackets comes from
first graph in Fig. 9, with the internal wiggly line represen
ing Aa fluctuations, while the second comes from the seco
graph with the internal dotted line representing the quenc
gauge fielda. The negative sign of the disorder contributio
leads to anincreasein thedual Tc , and can be traced back t
the fact that the actionSr Eq. ~5.33!, is complex.

The second, disorder, term in this integral dominates
first asq→0. Indeed, this integral diverges in the infrared f
d<3

E ddq
qz

2q'
2

q2~qz
21l2q'

4 !2 }E dd21q'

q'
8

q'
10

}E dd21

q'
2

,

~5.38!

where the first proportionality follows from the fact that th
dominant regime of the integral overqz is qz;lq'

2 , as can
be easily seen by contour integration. This divergence
plies that the renormalizeddual temperaturetR is driven to
2` ~note the sign! by the disorder ind<3. Indeed, we find
in d53

tR5t02
ca2d2Dh

lT2 ln~L/a!3O~1!, ~5.39!

FIG. 9. Feynman diagrams that dominate the renormalizatio
the reduceddual temperaturet, leading to anupward shift in the
dual Tc . In d<3 these drive the transition temperature in the ori
nal smectic model to 0.
-

t

r-
,

e

d
d

e

-

whereL is an infrared cutoff~e.g., the lateral extent of the
smectic layers! anda is the ultraviolet cutoff~e.g., the size of
the liquid crystal molecules'10 Å ).

The unusualnegative(d53) divergent correction tot in
Eq. ~5.39! implies that thedual order parameter is always i
its orderedphase, which, in turn, implies that the dislocatio
loops of the original smectic model are alwaysunbound,
thereby destroying the topological order of the smec
Bragg glass, even atT50, for any amount of disorder, no
matter how small. This conclusion, of course, only hol
within the harmonicelastic approximation made in this se
tion, with the treatment that approximately includes the
nonlinear elastic effects given in Sec. VII.

It is important to note that although the dual disorder
gauge model, Eq.~5.28!, can be extended to any dimensio
it rigorously only describes the original disordered smectic
d53, the dimension in which the duality corresponden
was established between the two models. However, if
can entertain the idea that the relation between the two m
els extends tod.3, then we have found a quite nontrivia
result for this higher-dimensional disordered smectic. Fo
,d<5 the disordered smectic will then have strongly dive
gent displacement fluctuations Eq.~4.9!, but will maintain
topological order, i.e., no condensation of dislocation loo
takes place in this range of dimension~for d.3). From this
point of view this higher-dimensional disordered smectic
in fact a true ‘‘Bragg’’ glass.9–11

VI. ANOMALOUS ELASTICITY IN THE TILT-ONLY
MODEL OF DISORDERED SMECTICS

Up to now we have analyzed disordered smectics ignor
elastic anharmoniceffects. These effects are important ev
in pure smectics, as was discovered some time ago by G
stein and Pelcovits~GP!.24 As reported in a recent paper,18

we have discovered that indisorderedsmectics these elasti
anharmonicities play an even more important role; spec
cally, we find disorder-drivenpower law divergences, in
contrast to the weak, thermally-drivenlogarithmic diver-
gences that occur in pure smectics.24 Here we provide details
of these calculations, describe their effect on the analysi
previous sections, and discuss them in the context of re
experiments.12,19–22

The anomalous elasticity ofpure ~bulk! smectics24 is
characterized by layer compressional and tilt moduliB(k)
and K(k) which vanish and diverge, respectively, at lon
wavelengths (k→0). This beautiful result is actually a gen
eral property of all one-dimensional crystals, in which t
direction of the 1D ordering wave vector is chosensponta-
neously. As a consequence of thisspontaneousbreaking of
rotational symmetry~a property possessed by smectics b
not, e.g., charge density waves!, in the presence of fluctua
tions a compression can be relieved by smoothing out th
fluctuations, thereby leading to an effective compressio
modulus B(k) that vanishes at long wavelengths. This
very similar to the ability of free dislocations in a solid t
relieve an imposed shear. Similarly, in the presence of fl
tuations, a bending of smectic layers necessarily leads
compression, which implies an effective tilt modulusK(k)
which diverges at long wavelengths. This phenomenon
also analogous to the thermally driven anomalous elasti

of
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of polymerized membranes, in which the bending rigid
modulus diverges, and the shear and bulk moduli vanis
long length scales.52–54

Although quite fascinating, the anomalous elasticity
GP for pure 3D smectics is somewhat academic, becaus
d53 the nonlinearities responsible for the anomalous e
ticity are marginally irrelevant, and therefore lead to wea
~logarithmically! k-dependent elastic moduli. These, in pra
tice, are quite difficult to detect experimentally, and ha
never been observed in bulk~pure! smectics.

As mentioned above, the main ingredients necessary
the existence of anomalous elasticity arespontaneouslybro-
ken rotational invariance, and the presence of fluctuatio
i.e., wrinkles in the smectic layers—both of which ex
~even at zero temperature! in smectics in random environ
ments. In this section, we demonstrate the existence
anomalous elasticity that is significantly stronger, in all sp
tial dimensionsd,5, than the marginal anomalous elastic
of thermal smectics. This stronger anomalous elasticity
driven by quenched disorder, and controlled by a new, ze
temperature fixed point that is perturbatively accessible
d552e. One can physically appreciate why this elas
anomaly is so much stronger in smectics with quenched
order by realizing that the quenched disordered fluctuati
are more divergent~at long wavelengths! than their thermal
counterparts@see e.g., Eqs.~4.5! and ~4.6!#.

As discussed at the end of Sec. III, in dimensionsd,5
we expect that the random field disorder to be significan
less important than the random tilt disorder for the proper
of smectics with quenched disorder. We therefore expect
effective elastic Hamiltonian in Eq.~3.4! with U(r )50 to be
a good starting point for the description of smectics confin
inside low-density aerogels. However, such a model mis
an important ingredient: nonlinear elasticity which takes in
account the underlying rotational invariance of the sme
phase,24 hidden by thespontaneouschoice of the layers to
stack along theẑ direction. A careful analysis, starting wit
the de Gennes model, that keeps track of such elastic
linearities, leads to24

H@u#5E
r
FK

2
~¹'

2 u!21
B

2 S ]zu2
1

2
~“'u!2D 2

1h~r !•“'uG ,
~6.1!

as the proper rotationally invariant elastic Hamiltonian
the disordered smectic. This form guarantees that a unif
rotation of smectic layers costs zero energy in the absenc
the random tilt field.55 The field h(r )[gz(r )g(r ) is the
quenched random tilt disorder, defined in Sec. II. As d
cussed in that section, it has a vanishing average and Ga
ian statistics, completely characterized by the two-point c
relation function

hi~r !hj~r 8!5Dhdd~r2r 8!d i j , ~6.2!

which we take to be short-ranged for the reasons discusse
detail in Sec. II.

To compute self-averaging quantities~e.g., the disorder
averaged free energy! and to assess the importance of t
nonlinearities at long scales it is convenient~but not neces-
sary! to employ the replica ‘‘trick’’39 that relies on the iden
tity ln Z5limn→0(Zn21)/n. As discussed in Sec. III, this
at
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allows us to work with a translationally invariant field theo
at the expense of introducingn replica fields~with the n
→0 limit to be taken at the end of the calculation!. After
replicating and integrating over the disorderh(r ), and using
Eq. ~6.2!, we obtain an effective translationally invariant re
licated Hamiltonian

H@ua#5
1

2Er
(
a51

n FK~¹'
2 ua!21BS ]zua2

1

2
~“'ua!2D 2G

2
Dh

2TEr
(

a,b51

n

“'ua•“'ub ~6.3!

from which the noninteracting propagatorGab(q)
[V21^ua(q)ub(2q)&0 ~whereV is the system volume! can
be easily obtained~see Sec. III!,

Gab~q!5TG~q!dab1Dhq'
2 G~q!2, ~6.4!

with G(q)51/(Kq'
4 1Bqz

2).
We first attempt to assess the effects of the anharmon

ties, disorder and thermal fluctuations by performing
simple perturbation expansion in the nonlinearities ofH@ua#.
The lowest order correctiondB to the bare elastic compres
sional modulusB comes from a part of the diagram in Fig
10. A standard analysis gives

dB52
B2

2 E
q

.

@TG~q!212Dhq'
2 G~q!3#q'

4 , ~6.5a!

'2B2DhE
2`

` dqz

2p E. dd21q'

~2p!d21

q'
6

~Kq'
4 1Bqz

2!3 ,

~6.5b!

'2
3

16

Cd21

52d
BDhS B

K5D 1/2

L52d, ~6.5c!

where we have dropped the subdominant thermal part,
cused ond,5, which allows us to drop the uv-cutoff (L)
dependent part which vanishes forL→`, and cutoff the
divergent contribution of the long wavelength modes via
infrared cutoff restrictionq'.1/L, whereL is the linear ex-
tent of the system. The constantCd52pd/2/@(2p)dG(d/2)#
is the surface area of ad-dimensional sphere divided b
(2p)d. Clearly the anhamonicities become important wh
the fluctuation corrections to the elastic constants~e.g.,dB
above! become comparable to the bare values. The div
gence of this correction asL→` signals the breakdown o
conventional harmonic elastic theory on length scales lon
than a crossover scalej'

NL , which we define as the value o
L at which udB(j'

NL)u5B. In d dimensions, this definition
gives

FIG. 10. Feynman graph that renormalizes the elastic modulK,
B and the tilt-disorder varianceDh .
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j'
NL5S 16~52d!K5/2

3Cd21B1/2Dh
D 1/(52d)

, ~6.6!

which for physical 3D smectics is given by

j'
NL5F64p

3

K5/2

B1/2Dh
G 1/2

, for d53. ~6.7!

We can also obtain a nonlinear crossover length in thz
direction

jz
NL5~j'

NL!2/l, ~6.8a!

5
64pK2

3Dh
for d53, ~6.8b!

wherel[(K/B)1/2, by imposing the infrared cutoff in thez
direction.

To understand the physics beyond this crossover sca
i.e., to make sense of the apparent infrared divergences fo
in Eq. ~6.5c!—we turn to the renormalization group. As di
cussed in Sec. III, we employ the standard momentum s
renormalization group transformation,40 by writing the dis-
placement field asua(r )5ua

,(r )1ua
.(r ), integrating pertur-

batively in the nonlinear couplingB the high wave-vector
part ua

.(r ) with support in Fourier space in an infinitesim
cylindrical shell (Le2 l,q',L and 2`,qz,`), and re-
scaling the lengths and long wavelength part of the fields
in Eqs. ~3.17! with r'5r'8 el , z5z8ev l , and ua

,(r )
5ef lua8 (r 8), so as to restore the ultraviolet cutoff back toL.
The underlying rotational invariance insures that the grap
cal corrections preserve the rotationally invariant opera
@]zu2 1

2 (“'u)2#, renormalizing it as a whole. It is therefor
convenient~but not necessary! to choose the dimensiona
rescaling that also preserves this operator. It is easy to
that this choice leads to

f522v. ~6.9!

This rescaling then leads to the zeroth order RG flow of
effective couplings

K~ l !5Ke(d212v) l , ~6.10a!

B~ l !5Be(d1323v) l , ~6.10b!

S Dh

T D ~ l !5S Dh

T De(d112v) l . ~6.10c!

From these dimensional couplings one can construct
other effective dimensional couplings

g̃1[S B

K3D 1/2

, ~6.11a!

g̃2[DhS B

K5D 1/2

, ~6.11b!

whose flows are independent of the arbitrary rescaling ex
nentsv andf, and are given by
—
nd

ll

s

i-
r

ee

e

o

o-

g̃1~ l !5g̃1e(32d) l , ~6.12a!

g̃2~ l !5g̃2e(52d) l . ~6.12b!

g̃1 is just the coupling that becomes relevant ind,3 and
was discovered by Grinstein and Pelcovits to lead to ano
lous elasticity in pure thermal smectics. It is, however, on
marginally irrelevant ind53 and therefore only leads t
weak anomalous elasticity in physical 3D smectics.24 In con-
trast, the upper critical dimensionduc below which g̃2 be-
comes relevant isduc55, and we therefore expect a signifi
cantly stronger anomalous elasticity, that should
experimentally observable, indisordered3D smectics. These
observations imply that temperature is a strongly irrelev
variable near the disorder dominated fixed point and does
feed back in a dangerous way. We will therefore setT50 in
all subsequent calculations.

We now turn to the RG computation of the one-loo
graphical corrections to the flow of the couplings defin
above. The required integration over the high wave-vec
components ofua can only be accomplished perturbative
in the nonlinearities ofH@u#. Since the most relevant cou
pling g̃2 becomes important ford,5, we will control the
infrared divergences by performing an expansion ine55
2d.

The change in the Hamiltonian due to integrating o
these short length modes is

dH@ua
,#5^Hi@ua

,1ua
.#&.2

1

2T
^Hi

2@ua
,1ua

.#&.
c
•••,

~6.13!

whereHi@ua
,1ua

.# is the nonlinear part of the Hamiltonia
H, Eq. ~3.8!, which contains three- and four-point vertice
The averages above are performed with the quadratic pa
H, Eq. ~3.8!, using the propagatorGab(q), Eq. ~6.4!, with
only an infinitesimal cylindrical shell~i.e., no cutoff onqz)
of modesua

. integrated out. The superscriptc denotes a cu-
mulant average. It is easy to verify that the first term indH
~first order inHi) does not lead to corrections of the elas
constants. Aside from correcting the free energy, it gener
an operatorlinear in @]zu2 1

2 (“'u)2# which corresponds to
a renormalization of the smectic wave vectorq0. These cor-
rections turn out to be finite~irrelevant! neard55, and we
will therefore not keep track of them here.

The renormalization ofK, B andDh comes from the sec
ond term in Eq.~6.13!, for example, from parts which ar
second order in the three-point vertex, with four of the s
fields contracted. The generic diagram that corrects the e
tic moduli and the disorder variance is illustrated in Fig. 1
with the part diagonal in the replica indicesa,b ~i.e., part
proportional todab) renormalizingK and B, and the part
independent ofa,b correctingDh .

For the calculation ofdB, the loop integrals can be per
formed at vanishing external momentum, and after a sh
calculation one finds
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dB52
B2

2 E
q

.

@TG~q!212Dhq'
2 G~q!3#q'

4 ,

'2B2DhE
2`

` dqz

2p E. dd21q'

~2p!d21

q'
6

~Kq'
4 1Bqz

2!3 ,

'2
3

16
g2Bdl, ~6.14!

where going from the first line to second line above
dropped the irrelevant finite temperature part, and define
dimensionless coupling constant

g2[DhS B

K5D 1/2

Cd21Ld25. ~6.15!

Similar, but more involved calculations forK andDh give

dK'
1

32
g2Kdl, ~6.16a!

dS Dh

T D'
1

64
g2S Dh

T Ddl, ~6.16b!

which lead to the following RG flow equations:

dB~ l !

dl
5S d1323v2

3

16
g2~ l ! DB~ l !, ~6.17a!

dK~ l !

dl
5S d212v1

1

32
g2~ l ! DK~ l !,

~6.17b!

dDh~ l !

dl
5S d112v1

1

64
g2~ l ! DDh~ l !.

~6.17c!

These, together, lead to the RG flow of the dimensionl
couplingg2 defined in Eq.~6.15!

dg2~ l !

dl
5eg2~ l !2

5

32
g2~ l !2, ~6.18!

where we remind the reader that in this sectione552d. As
required, the flow ofg2 is independent of the arbitrary choic
of the anisotropy rescaling exponentv. The RG flow Eq.
~6.18! shows that the Gaussiang2* 50 fixed point becomes
unstable ford,5, and the low-temperature phase is co
trolled by a stable, nontrivial, glassyT50 fixed point at

g2* 5
32

5
e. ~6.19!

The existence of this nontrivial fixed point leads to anom
lous elasticity. To see this it is convenient to use our R
results to evaluate the connected disordered averaged
point u(k) correlation function G(k)}^uu(k)u2&
2^u(k)&^u(2k)&. As discussed~and utilized! in Sec. III,
the power of the renormalization group is that it establishe
connection between a correlation function at a small w
vector ~which is impossible to calculate in perturbatio
theory due to the infrared divergences! to the same correla
a

s

-

-

o-

a
e

tion function at large wavevectors, which can be easily c
culated in a controlled perturbation theory. This relation
G(k) is

G~k' ,kz ,K,B,g2!

5e(31d2v) lG„k'el ,kze
v l ,K~ l !,B~ l !,g2~ l !…, ~6.20!

where the prefactor on the right-hand side comes from
dimensional rescaling~remembering the momentum con
serving d function!, after using the exact rotational War
identity f522v, and we have ‘‘traded-in’’ the disorde
variableDh for the dimensionless couplingg2. To establish
the anomalous behavior ofK, we look atkz50. We then
choose the rescaling variablel * such that

k'el* 5L. ~6.21!

We also choosek' sufficiently small such thatg2( l * ) has
reached our nontrivial fixed pointg2* . Eliminating l * in fa-
vor of k' , we then obtain

G~k' ,0,K,B,g2!5S L

k'
D 31d2v

G„L,0,K~ l * !,B~ l * !,g2* ….

~6.22!

Since the right-hand side is evaluated with the transve
wave vector at the Brillouin zone boundary, it is eas
evaluated perturbatively for a small fixed point couplingg2* .
To lowest order we obtain

G~k' ,0,K,B,g2!'
~L/k'!31d2v

L4K~L/k'!(d212v1g2* /32)
,

~6.23a!

[
1

K~k'!k'
4 , ~6.23b!

where we integrated Eq.~6.17b! to obtainK( l * ), and defined
the anomalous tilt modulus which diverges at long leng
scales

K~k'!5K~k' /L!2hK, ~6.24!

with an anomalous exponent

hK5
1

32
g2* , ~6.25a!

5
1

5
e, ~6.25b!

5
2

5
, for d53. ~6.25c!

Similar calculations for the other coupling constants a
other directions ofk show that, in general,

K~k!5K~k'j'
NL!2hK f K@kzjz

NL/~k'j'
NL!z#, ~6.26a!

B~k!5B~k'j'
NL!hBf B@kzjz

NL/~k'j'
NL!z#,

~6.26b!
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Dh~k!5Dh~k'j'
NL!2hD f D@kzjz

NL/~k'j'
NL!z#,

~6.26c!

with the anisotropy exponent

z[22~hB1hK!/2, ~6.27!

which would52 in the absence of anharmonic effects,

hB5
3

16
g2* , ~6.28a!

5
6

5
e, ~6.28b!

5
12

5
for d53,

~6.28c!

and

hD5
1

64
g2* , ~6.29a!

5
1

10
e, ~6.29b!

5
1

5
for d53. ~6.29c!

Of course, we do not completely trust the extrapolation
these smalle results down toe52 (d53). However, since
by definition dg2 /dl50 at the nontrivial fixed point, this
condition implies anexact relation between the anomalou
exponents

52d1hD5
hB

2
1

5

2
hK , ~6.30!

which is obviously satisfied by the anomalous expone
Eqs. ~6.25b!,~6.28b!,~6.29b!, computed here to first order i
e. This Ward identity between the anomalous exponents
be equally easily obtained from a self-consistent integ
equation for theu-u correlations functions, using renorma
ized wave-vector-dependent elastic moduli and disor
variance.26

At length scales beyondj'
NL and jz

NL , the elasticity and
fluctuations of the disordered smectic are controlled by
glassy fixed point. One of the important consequences ca
seen in the layer fluctuations, which can be inferred fr
x-ray scattering experiments. For instance, layer displa
ment fluctuations alongz are described by

C~z![^@u~0' ,z!2u~0',0!#2&,

'E ddk

~2p!d

2@12cos~kzz!#Dh~k!k'
2

@K~k!k'
4 1B~k!kz

2#2
, ~6.31!

One can then naturally define the x-ray translational corr
tion lengthjz

X as the length alongz at whichC(z5jz
X)[a2,

wherea is the smectic layer spacing. A simple calculatio
using Eqs.~6.26a!–~6.26c! leads in 3D to
f

s,

n
l

r

r
be

e-

-

,

jz
X5~a/l!z/xK2/Dh , ~6.32a!

5~a/l!z/xjz
NL , ~6.32b!

where

x[~hB1hK!/2, ~6.33!

and this result should be contrasted with the expression
the x-ray correlation lengthjz

X , Eq. ~4.17a!, calculated
within the harmonic theory, i.e., ignoring the anomalou
elasticity. Note that this x-ray correlation length is finite ev
asT→0, as illustrated in Fig. 3. This result is consistent w
the experimental observation12,20 that the x-ray correlation
length for smectics in aerogel saturates at some finite valu
low temperatures. Note also that this length should be dif
ent for different smectics in the same aerogel, sinceB, K,
and Dh will change from smectic to smectic. Since, as d
cussed in Sec. II, we expectDh to be a monotonically in-
creasing function of the aerogel densityrA , with a simplest
aerogel model givingDh}rA , Eq.~2.8b!, the aerogel density
dependence ofjz

X could test the prediction of Eq.~6.32!.
Likewise, thetemperaturedependence ofjz

X could be used
to determine the ratioz/x, since thebulk K(T) and B(T)
that implicitly appear in Eq.~6.32! have temperature depen
dences that can be extracted from measurements onbulk ma-
terials.

Note also that this correlation length is longer than t
nonlinear crossover length forl,a ~i.e., for largeB). For
l@a ~small B), C(z) reachesa2 beforez reachesjz

NL , and
hence anharmonic effects are unimportant. In this case,
correlation lengthjz

X can be determined in the harmon
theory @which amounts to evaluating the integral in E
~6.31! with K(k), B(k), and Dh(k) replaced by their con-
stant~bare! valuesK, B, andDh]. As shown in Sec. IV, this
gives jz

X5a2BK/Dh5(a/l)2jz
NL , which is, reassuringly,

much less thanjz
NL in the limit a!l in which we have

asserted it applies.
In this section, in our treatment of elastic nonlineariti

we have ignored dislocations, which in Sec. V we ha
shown to unbind in aharmonic theory, for arbitrarily weak
disorder. However, as we have shown in that section, th
effects are only felt on length scales greater thanjz

D

5(a2/l)eljz
X/a2

, wheret0 is a parameter of orderBK, which
is much longer, in the weak disorder (Dh→0, jz

X→`)
limit, than the translational correlation lengthjz

X found here.
However, it is nevertheless important to study the simu
neous effects of anomalous elasticity and dislocations.
do this in Sec. VII by reconsidering the criterion for disloc
tion unbinding, studied in Sec. V, now in the presence
anomalous elasticity. We will find that anomalous elastic
leads to shortening ofjz

D , which nonetheless remains muc
longer thanjz

X . Hence, for low density aerogels, our predi
tions forjz

X and the anomalous elasticity studied here rem
valid.

Finally, our entire discussion so far has focused only
the effects oforientationaltilt disorder. In Sec. VIII we will
consider thetranslational disorder~i.e., random pinning of
the positions of the layers! and will demonstrate that it isless
important, at long wavelengths~in d,5), than the orienta-
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tional disorder. Thus, the results described herein are dire
applicable to real smectics, where both kinds of disorder
present.

VII. EFFECTS OF ANOMALOUS ELASTICITY
ON DISLOCATION UNBINDING AND SMECTIC

CORRELATIONS

In Sec. VI we established that, at least at the ‘‘phono
only’’ level, the anharmonic terms in the elastic energy a
extremely important belowd55. We therefore need to als
consider the effects of anharmonic elasticity~and the result-
ing anomalous elasticity! on dislocations and smectic corre
lation functions.

A. Dislocations and orientational order

In this subsection we incorporate anomalous elasti
into our duality model and use it to derive a criterion,
terms of the anomalous exponentshB andhK , for the dislo-
cation unbinding to take place in the presence of anoma
elasticity. Combining these results with an analysis of ori
tational order we establish bounds onhB and hK for the
stability of the smectic Bragg glass phase. However, si
we do not know the numerical values ofhB and hK in d
53, we cannot say whether or not, in the full, anharmo
theory, dislocations are, in fact, unbound.

Unfortunately, a fullanharmonictheory of dislocations is
simply intractable. In particular, the fact that, in an anh
monic theory, the interaction energy between dislocati
cannot be written as a sum of pairwise interactions~since
their fields do not simply add! makes it impossible to eve
write down a general expression for the energy of an a
trary dislocation configuration. At best, one might hope to
able to write down the energy for a few simple, high sy
metry configurations~e.g., a single, straight dislocation line!.
Such specialized results would be of no use in a full sta
tical theory of defect unbinding, which requires consid
ation of very complicated, tangled configurations of disloc
tions, which, for entropic reasons, dominate the free ene
near the dislocation binding transition. Furthermore, eveif
onecouldwrite down the anharmonic energy for an arbitra
dislocation configuration, it would presumably be anh
monic in the dislocation fieldsm(r ), and hence, those field
could not be decoupled by a simple Hubbard-Stratonov
trick, as they can in the harmonic approximation.

For all of these reasons, a completely honest treatmen
dislocations in the full, anharmonic model is impossible,
least for mere mortals like us. Rather than despair, howe
we will use a slightly dishonest~i.e., uncontrolled! approxi-
mation: we will simply replace the elasticconstants KandB,
and tilt disorder varianceDh in our expression Eq.~5.37! for
the renormalized dislocation unbinding transition tempe
ture, with the renormalized, wave-vector-dependent mo
K(q), B(q), andDh(q), derived from the anharmonic, tilt
only elastic theory of Sec. VI.

Doing so, we obtain for the downward renormalization
the dual transition temperature

dt52O~1!3
ca2d2

T2 E Dh~q!qz
2ddq

@qz
21l2~q!q'

4 #2
, ~7.1!
tly
re

-
e

y
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-
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where Dh(q) is given by Eq.~6.26c!, c is given by Eq.
~5.29!, andl2(q)[K(q)/B(q), with K(q) and B(q) given
by Eqs.~6.26a! and~6.26b!, respectively. In writing Eq.~7.1!
we have anticipated that the integral is dominated by reg
qz!q' , as can be seen from Eq.~7.3!, below.

Imposing an infrared cutoffq'.L21 on the wave-vector
integral in Eq.~7.1!, whereL is the lateral (') real-space
linear extent of the system, and changing variables in t
integral as follows:

q'[
Q'

L
, ~7.2a!

qz[
Qz

Lz

l

~j'
NL!x

, ~7.2b!

with x[(hB1hK)/2, we find that

dt'2S L

j'
NLD g

ca2d2Dh

lT2

3E
LL.Q'.1

Q
'

2hD Qz
2 f D~Qz /Q'

z !ddQ

@Qz
21Q'

2z f K~Qz /Q'
z !/ f B~Qz /Q'

z !#2
,

~7.3!

with

g5z1hD112d. ~7.4!

In deriving Eq. ~7.4!, we have used the scaling relatio
z522(hB1hK)/2, and Eq.~6.30! defined in Sec. VI.

Now, it is equally straightforward to show, by anisotrop
power counting, that the integral overQ in Eq. ~7.3! is con-
vergent in the ultraviolet wheng.0, and is therefore inde
pendent of its upper cutoffLL, for L→`. As a result, for
g.0, the correction to the reduceddual temperaturet de-
pends onL only through the overall prefactorLg, i.e.,

dt'2S L

j'
NLD g

ca2d2Dh

lT2 3O~1!, ~7.5!

and therefore, forg.0, diverges with system size.
As discussed in our original treatment of duality, such

infinite downward renormalization oft in the dual model
implies that dislocations arealwaysunbound, even at zero
temperature, even for arbitrarily weak disorder. Thus, o
criterion for determining whether or not dislocations are
ways unbound ind53 is very simple: ifg, as given by Eq.
~7.4!, is .0, dislocationsare always unbound, andno stable
Bragg glass phase exists, while ifg,0, dislocations will be
bound, and a stable Bragg glass phasewill exist, at least at
sufficiently low temperatures and weak disorder.

So it behooves us to determineg in d53. Using
z522(hB1hK)/2, and the exact scaling relation Eq.~6.30!
betweenhD ,hB , andhK , we can rewrite Eq.~7.4! in terms
of hD andhK as

g52~hK21!. ~7.6!

Using oure-expansion result Eq.~1.10a! for hK , we obtain

g52S e

5
21D1O~e2!, ~7.7a!

52
6

5
,0, ~7.7b!
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the last equality holding ind53 (e52), if we drop the
unknownO(e2) term. This resultappearsto imply that dis-
locations are bound, and the smectic Bragg glass isstablein
three dimensions. Of course, it is always risky to quant
tively extrapolate an expansion for smalle out to e52, but
this is the best we can do ind53. And it seems to sugges
that the smectic Bragg glass isstablein d53.

Independent of thee-expansion, our result implies th
strict necessary, but not sufficientcondition for the stability
of the smectic Bragg glass phase

hK,1. ~7.8!

If, on the other hand, this condition is violated, then d
locations will unbind on length scales longer thanj'

D , where
j'

D is the value ofL in Eq. ~7.5! such that the correctiondt
becomes ofO(t). This gives the value ofj'

D quoted in the
Introduction, withc(T) given by Eq.~5.29!. We note that,
althoughl(T)→` as T→TNA from below, so doesc(T),
since the renormalized dislocation core energy vanishe
TNA . We expect the divergence ofc(T) to overwhelm that
of l(T), leading to a dislocation length that gets ever sho
as T→TNA from below. Eventually, as we approachTNA

from below,j'
D , as given by Eq.~1.18!, will get smaller than

j'
NL ; at this point, we are in the strong coupling regime, a

our weak-disorder results no longer apply.
There is another criterion, in addition to Eq.~7.8!, that

must be satisfied for the smectic Bragg glass to be stab
d53: long-ranged orientationalorder must exist. This is
clear, since we have implicitly assumed the existence of s
order throughout our calculation~e.g., in writing n̂5 ẑ1dn
andassumingudnu!1). Surely, if the layer orientations ar
not ordered, the layers themselves cannot retain their in
rity ~i.e., remain undislocated!. So long-ranged orientationa
order must be preserved for the smectic Bragg glass pha
be stable. An obvious corollary of this conclusion is th
orientationalfluctuations^udn(r )u2& must remainfinite ~as
the system sizeL→`) for the smectic Bragg glass to b
stable.

We will now show that within a 52d5e expansion, this
condition is definitelynot satisfied: orientational fluctuation
do diverge in d53. Hence, thee expansion implies tha
@notwithstanding the resultg,0, Eq. ~7.7!# the smectic
Bragg glass phase isnot stable in three dimensions.

To show this, we use the fact thatdn(r )5“'u(r ) to
write

^udn~r !u2&5E ddq

~2p!d ^udn~q!u2&, ~7.9a!

5E ddq

~2p!d q'
2 ^uu~q!u2&, ~7.9b!

5E ddq

~2p!d

Dh~q!q'
4

@B~q!qz
21K~q!q'

4 #2
,

~7.9c!

where we have kept only the dominant, disorder induc
term in ^uu(q)u2&, Eq. ~3.12!, in writing the last equality.
-

-

at

r

d

in

ch

g-

to
t

d

Imposing an infrared cutoffq'.L21, and power counting
on this integral exactly as we just did in evaluating Eq.~7.3!,
we find that

^udn~r !u2&}Ld, ~7.10!

with

d52d231hD12hB13z. ~7.11!

Using z522(hB1hK)/2 and the exact scaling relation Eq
~6.30!, we can rewrite this as

d5hB1hK22, ~7.12a!

52~x21!. ~7.12b!

Thus, stability of long-rangedorientationalorder, and hence
stability of the smectic Bragg glass phase itself, required
,0, or

hB1hK,2, ~7.13!

which, not coincidentally, is equivalent to the condition th
the anisotropy exponentz.1. The reason that these tw
conditions are equivalent is clear. As we go down in dime
sion, hB and hK grow, and the anisotropy exponentz de-
creases below 2, with the system becoming more isotro
The dimension at which the orientational order disappe
must beexactlythe dimension at which the system becom
completely isotropic, i.e.,z51, since, without orientationa
order, there can be no distinction between different dir
tions. Thus, the lower critical dimension for orientation
order is given byz522(hB1hK)/251, which implieshB
1hK52, the borderline of the inequality Eq.~7.13!.

If the condition Eq.~7.13! is violated, then for length
scales beyond the orientational correlation length,jO ,

jO5j'
NLS jz

NL

l D 1/ @2(x21)#

, ~7.14!

obtained by equatinĝudn(r )u2& to 1, the orientational orde
is destroyed, our smectic description breaks down, no st
SBG exists, and the system is isotropic. On the other han
condition in Eq.~7.13! holds, i.e.,x,1, jO is infinite and
SBG is stable.

The length scalesj'
NL andjO , derived in Sec. VI and in

this section, respectively, lead to nontrivial, and in princip
experimentally measurable, crossover behavior. At the sh
est length scales,q'@1/j'

NL , nonlinear elasticity is unimpor-
tant and the dominant modes correspond toqz;lq'

2 . At
longer scales, forq',1/j'

NL this quadratic behavior crosse
over to qzjz

NL;(q'j'
NL)z, controlled by the nontrivial

anomalous elasticity fixed point studied in Sec. VI. The a
isotropy exponentz satisfies 1,z,2 if Eq. ~7.13! is satis-
fied and orientational order is stable, but is less than 1 if t
condition is violated andjO is finite. In this latter case, the
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anomalous elasticity scalingqzjz
NL;(q'j'

NL)z crosses over
to the isotropic scalingqz;q' for lengths scales longer tha
jO . This orientational crossover length scale is, reassurin
precisely the orientational correlation length given in E
~7.14!, obtained from the condition of̂udn(r )u2&51. It is
important to note that, even forz,1, in the dominant regime
of wave vectors foruqu.1/jO , the conditionqz!q' is al-
ways satisfied. Hence, even in the absence of long-ran
orientational order beyondjO , this justifies our use, through
out the smectic regime (uqu.1/zO), of the approximation
qz!q' , which is indeed the usual approximation one mak
in treating smectic elasticity. These dominant wave-vec
regimes inq' ,qz plane, various important length scales, a
the corresponding crossovers are illustrated in Fig. 11.

Combining the stability conditions Eq.~7.8! and Eq.
~7.13! with the rigorous bound

hB15hK.4 ~7.15!

that follows from requiringhD.0 in the exact scaling rela
tion Eq. ~6.30! in d53, we find that the three-dimension
smectic Bragg glass phase can only be stable whenhB and
hK lie in the shaded quadrilateral in Fig. 1.

Our e-expansion results from Eqs.~6.25c! and ~6.28c!,
extrapolated tod53

hK5
2

5
, ~7.16a!

hB5
12

5
, ~7.16b!

lie well outside this stable region. Whether this extrapolat
can be trusted ind53 is, of course, an open question.We
are therefore left, despite our best efforts as displayed in
manuscript, unable to decide whether or not the sme
Bragg glass phase actually exists in d53. This question can
therefore only be answered by experiments.

B. Smectic correlation functions

In addition to having important effects on dislocation u
binding, as demonstrated in the previous subsection, an
monic elasticity also changes the smectic correlation fu

FIG. 11. Crossover in the dominant wave-vector regimes
q' ,qz plane, forz,1.
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tions from those derived for the elastically harmonic mod
of Sec. IV. We study these effects in this subsection.

We focus on the smectic layer displacement correlat
function defined by Eq.~4.1!

C~r' ,z!5^@u~r',z!2u~0,0!#2&. ~7.17!

To computeC(r' ,z), we proceed as in Sec. IV, except th
instead of using the bare values of elastic moduliK, B, and
tilt-disorder varianceDh , we will use their wavevector-
dependent counterpartsK(k), B(k), and Dh(k), given in
Eqs. ~6.26!. We expect this procedure to take into accou
the long length scale effects of anharmonic elasticity. W
obtain

C~r' ,z!'E ddk

~2p!d

2@12cos~k•r !#Dh~k!k'
2

@K~k!k'
4 1B~k!kz

2#2
,

~7.18!

where we have only kept the dominant disorder-induced c
tribution. Performing an asymptotic analysis similar to th
of the previous subsection, we find that the harmonic elas
ity result, Eq.~4.9! is replaced by

C~r' ,z!'l25 S z

jz
NLD ~hB1hK! /z

, z/jz
NL@~r' /j'

NL!z,

S r'

j'
NLD hB1hK

, z/jz
NL!~r' /j'

NL!z,

~7.19!

valid for d,5 and on scales beyond the crossover sca
jz,'

NL , when the smectic elasticity is controlled by the no
trivial anomalous fixed point with nonvanishinghB ,hK , and
the anisotropy exponentz[22(hB1hK)/2,2.

The above result for smectic layer undulations has ob
ous implications for the smectic order parameter@c(r )# cor-
relations. Within the Debye-Waller approximation, whic
amounts to ignoring higher order cumulants, the smectic c
relation function is given by

S~r' ,z![^c* ~r !c~0!&, ~7.20a!

'e2~q0
2/2!C(r ). ~7.20b!

It is short-ranged, confirming our earlier claims about t
destruction~in d,5) of the long-range smectic order by a
arbitrarily small amount of tilt disorder, even in the presen
of anharmonic elasticity.

Although the anomalous elasticity does not prevent
destruction of the long-ranged smectic order, it does lead
some physically appealing features in the above expres
for S(r' ,z), and C(r ), Eq. ~7.19!, which are absent when
these elastic anharmonic effects are not taken into acco
In particular, we observe that at the lower-critical dimensi
in which the orientational order becomes short ranged~i.e.,
hB1hK→2 and z→1), the smectic correlation function
S(r ) is isotropic and decays as a Gaussian along bothz and
r' . In this case of short-ranged orientational order this fas
than exponential decay of smectic correlations of course o
persists up to the orientational correlation length, beyo
which we expect the order to decay simply exponentially

n
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VIII. ANOMALOUS ELASTICITY AND TRANSLATIONAL
PERIODIC DISORDER IN 3 <D<7

The analysis of nonlinear elasticity of the preceding t
sections was confined to the tilt-only model in which t
randomfield disorder is neglected. In this section we stu
the effect of the periodic field disorder in the presence
anharmonic elasticity and show that, for alld,5, and, in
particular ind53, such random-field disorder

H1
rf52

1

TE ddr uc0uU~r !cos@q0„u~r !1z…# ~8.1!

has no effect on the long-wavelength ‘‘pure phonon’’ ti
only disorder theory; that is, as long as dislocations
bound, the anomalous elastic theory of the previous sec
is correct ind,5. In the next section~Sec. IX!, we show that
periodic disorder does not induce dislocation unbinding.

We begin by showing that the periodic disorder itself
duces anomalous elasticity in all spatial dimensionsd,7.
Fortunately, the induced corrections toB andK, and to theu
fluctuations themselves, are so weak~only logarithmic! in all
spatial dimensionsd,7 that, as soon asd,5, they are com-
pletely overwhelmed by thepower-law divergent fluctua-
tions and renormalizations induced by thetilt disorder that
we studied in Sec. VI. These latter fluctuations and renorm
izations therefore dominate, and are unaffected by the p
ence of the periodic random field disorder. Therefore, o
again, the static correlations that we derived in Sec. VI fr
the 5-e expansion on the tilt-only disorder model are corre
in the long-wavelength limit, even for the full model.

To derive these results, we consider the full disorde
smectic phonon model. In addition to the two types of d
order ~random tilt and periodic random field disorders!, de-
scribed by the effective Hamiltonian in Eq.~3.8!, this model
also includes the anharmonic elasticity~considered in the
previous section in the tilt-only phonon model!, but still ig-
nores unbound dislocations. Generalizing Eq.~3.8! to anhar-
monic elasticity, as we did in Sec. VI for the tilt-only mode
we obtain the effective Hamiltonian for such a phonon mo
of disordered smectic

H5E ddr H (
a51

n FK

2
~¹'

2 ua!21
B

2 S ]zua2
1

2
~“'ua!2D 2G

1
1

T (
a,b51

n S Dh

4
u“'~ua2ub!u2

2DV cos@q0~ua2ub!# D J . ~8.2!

To study the long distance behavior of this model in gene
dimensionsd, for reasons that we now explain, we must fi
generalize it further.

First, recall that in the Sec. III derivation of the model, t
periodicity of the smectic phase required the translatio
disorder~i.e., the random fieldDV) to be a function that is
invariant under discrete translations by smectic lattice c
stant a ~i.e., periodic with perioda). In writing down Eq.
~8.2!, we took this function to be thelowestcosine harmonic.
f

e
n

l-
s-
e

,

d
-

l

l
t

al

-

Our implicit justification for this was that ind53, in har-
monic elastic theory, the eigenvalueln for thenth harmonic
~with wave vectornq0)

Hn
r f 52

1

TE ddr uc0uU~r !cos@nq0„u~r !1z…# ~8.3!

is given by a simple generalization of

l1542h, ~8.4!

@see Eq.~3.21!# to be

ln542hn2. ~8.5!

As long ash is fixed under the RG flow, this shows that th
higher harmonics of the random pinning potential are le
relevant, i.e., they are irrelevant at the point at which
lowestn51 harmonic becomes relevant. However, here
argue that ind dimensionsh( l ) flows according to

dh~ l !

dl
52u~ l !h~ l !, ~8.6!

with the ‘‘thermal eigenvalue’’u.0 for d.dc with dc.3.
We can demonstrate this explicitly in three limiting cas
described below.

The first is the truncated model Eq.~3.8! analyzed in Sec.
III, which ignores anharmonic elasticity. Using the exact e
pressions, Eqs.~3.18b!,~3.18c! for the flow of K andB ~see
discussion in Sec. III!, and the constancy ofq0 under the RG,
insideh, Eq. ~3.19a!, we obtain

uharmonic5d23, ~8.7!

exactly, in this elasticallyharmonicmodel.
We can also computeu neard55 in a model defined by

the Hamiltonian in Eq.~6.3! that includes anharmonic elas
ticity but leaves out the random field disorder (DV), which
is, as we show below, subdominant ford,5. In this case,
combining Eqs.~6.17a!,~6.17b! with the flow of q0 ~gov-
erned by the eigenvaluef522v) and the fixed point value
for g2, Eq. ~6.19!, inside Eq.~3.19a!, we obtain

ud→525d232
e5

2
~8.8!

exact to ordere5[52d.
Finally, as we will show in this section~with details given

in Appendix B! for 5,d,7,

ud→72~ l !5d231O~1/l !, ~8.9!

In these three regimes ford.dc'3, u.0, which leads to
h( l→`)→0. Based on Eq.~8.5!, the implication of this is
that the spectrum of random field harmonics isdegenerate,
i.e., an infinite class of operatorsHn

rf , Eq. ~8.3!, are all
equally relevant and must be treated simultaneously. S
these higher harmonics are generated by the RG, we
forced to consider a more general model
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H5E ddr H (
a51

n FK

2
~¹'

2 ua!21
B

2 S ]zua2
1

2
~“'u!2D 2G

1
1

T (
a,b51

n S 1

4
Dh~ua2ub!u“'~ua2ub!u2

2DV~ua2ub! D J , ~8.10!

where Dh(ua2ub) and DV(ua2ub) are arbitraryperiodic
functions~with perioda, wherea is the smectic layer spac
ing!, describing the field-dependent variances of the tilt a
translational disorders. Rather than following the flow for
infinite number of couplings~one for each Fourier compo
nent of the random potentials! we apply functional RG
~FRG! methods developed by Fisher in the context of
random field Ising andXY models56 to our study of disor-
dered smectics.

A. Functional RG for 5 <d<7:
irrelevance of random-tilt disorder

We integrate out the short scale phonon modes within
infinitesimal momentum shell near the uv cutoff and stu
how the elastic moduliB( l ), K( l ) and the disorder varianc
function DV(u,l ) evolve under this RG transformation. A
discussed in detail in Sec. VI, the tilt disorderDh @character-
ized by the dimensionless couplingg2, Eq. ~6.15!# is irrel-
evant by simple power counting ford.5. We will show at
the end of Appendix B that this conclusion persists, even
the presence of random-field disorder, although the argum
is subtler. Hence for 5,d,7 we can focus on the random
field-only model of a randomly pinned smectic. We releg
the details of the FRG procedure to Appendix B. For 5,d
,7, the results are summarized by the FRG flow equati

dK

dl
5Fd231

~d2212d123!D̃V9 ~0,l !

2~d221!l2~ l !
GK, ~8.11!

dB

dl
5Fd231

3

2

D̃V9 ~0,l !

l2~ l !
GB, ~8.12!

and

] lD̃V~u,l !5eD̃V~u,l !1
h~ l !

q0
2 D̃V9 ~u,l !

2
3~d226d111!

2~d221!l2~ l !
D̃V9 ~0,l !D̃V~u,l !

1
1

2
@D̃V9 ~u,l !#22D̃V9 ~u,l !D̃V9 ~0,l !,

~8.13!

where

D̃V~u,l ![
Cd21Ld27

4AK3~ l !B~ l !
DV~u,l ! ~8.14!
d

e

n
y

n
nt

e

s

is the appropriate measure of random field disord
e[72d,

l~ l !5AK~ l !

B~ l !
, ~8.15a!

h~ l !5
q0

2 T

4pAK~ l !B~ l !
,

~8.15b!

and primes in Eq.~8.13! indicate a partial derivative with
respect tou.

Note that we have written the flow equations forK( l ) and
B( l ) in generald, rather than specializing tod572e. The
reason for this is that forall d.5 ~i.e., wherever we can
ignore tilt disorder!, the recursion relations Eqs.~8.11! and
~8.12! become asymptoticallyexact as D̃9(0,l )/l2( l )→0,
which, as we will show in a moment, it always does for
,d,7.

To demonstrate the above assertion we first assume~and
verify a posteriori) that near d57, the flow equations
~8.11!–~8.13! lead to a perturbative fixed point at whic
D̃V(u,l→`)[D̃V* (u) is a universal function of ordere with

a finite ~negative! second derivativeD̃V*
9 (0)'2q0

2O(e).
Then, combining Eqs.~8.11!,~8.12! into a recursion relation
for l( l ), as defined by Eq.~8.15a!, we obtain

dl

dl
52

D̃V9 ~0,l !

l~ l ! S d216d213

2~d221! D ~8.16!

which, assuming thatD̃V9 (0,l→`)→D̃V*
9 (0),0, has the so-

lution

l~ l !5l0A11 l / l 0, ~8.17!

with

l0[l~ l 50!, ~8.18a!

l 05
l0

2

uD̃V*
9 ~0!u

d221

d216d213
.

~8.18b!

The main result of this analysis is that at large leng
scales,l @ l 0 , l2( l ) growsas auniversalfunction of l

l2~ l→`!5
d216d213

d221
uD̃V*

9 ~0!u l . ~8.19!

Hence, as asserted above, asl2( l ) grows, the graphical cor-
rections to the flow ofK( l ) and B( l ) diminish, Eqs.
~8.11!,~8.12! become asymptoticallyexact, and the third term
in Eq. ~8.13! vanishes asl→`. All this is still subject to the
assumption thatD̃V*

9 (0)Þ0.
We can begin demonstrating this latter assumption

combining Eqs.~8.11!,~8.12! into a recursion relation for
h( l ), given by Eq.~8.15b!. Comparing the resulting equatio
with the generic flow equation forh( l ), Eq. ~8.6!, we find
that u( l ) ~for l @ l 0) is given by auniversalfunction
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u~ l !5d232S d223d15

d216d213D 1

l
. ~8.20!

We note that besides being universal,u( l ) is furthermore
independent of the fixed point valueD̃V*

9 (0), aslong as it is
finite. As a result of Eq.~8.20! we conclude that ford.3,
h( l ) is strongly irrelevant. Physically, this reflects the stro
irrelevance of thermal fluctuations ford.3, with the prop-
erties of the pinned smectic determined by a competit
between elastic and random pinning energies~both infinitely
larger than the thermal energykBT). As a result, the secon
term on the right hand side of Eq.~8.13! flows to zero expo-
nentially fast, and can therefore be dropped. Likewise,
1/l( l )2 term in Eq.~8.13! also vanishes asl→` ~albeit more
slowly!, and can also be neglected. This leads to a clo
recursion relation forD̃V(u,l ), which has been extensivel
studied in the context of the random fieldXY model56 and
other pinned periodic media.57,9

The fixed point solutionD̃* (u) is readily found by setting
] lD̃V(u,l )50, which leads to an ordinary differential equ
tion for D̃V* (u):

eD̃V* ~u!1
1

2
@D̃V*

9 ~u!#22D̃V*
9 ~u!D̃V*

9 ~0!50.

~8.21!

The exact form ofD̃V* (u) is not important for our con-
clusions~except for one exponent!; all that matters is that a
fixed point solutionD̃V* (u) exists ~which it does for 5,d
,7). However, for completeness we summarize the fix
point results forD̃V* (u). Focusing, for convenience, on th
randomfield correlatorD̃F* (u)[D̃V*

9 (u), which satisfies

eD̃F* ~u!1@D̃F*
8 ~u!#21D̃F*

9 ~u!@D̃F* ~u!2D̃F* ~0!#50,
~8.22!

we obtain

D̃F* ~u!52min
nPZ

e

q0
2H 1

6
@q0u2~2n11!p#22

p2

18J ,

~8.23!

which has cusps atu5n2p/q05na, n integer. It is easy to
show56 that at T50 (h50) the cusp nonanalyticity in
D̃F* (u) develops at finite ‘‘time’’ l, while for finite
T(hÞ0) this singularity is cutoff within a boundary layer o
thickness;h( l )/eq0 at the valueD̃F*

9 (0,l )'e2p2/9h( l ).

We also see from the solution forD̃F* (u)5D̃V*
9 (u), Eq.

~8.23!, that D̃V*
9 (0)52ep2/9q0

2,0, thereby, together with
Eq. ~8.19!, demonstrating thatl2( l→`)→`, as assumed
earlier. Having established the existence of the ze
temperature fixed point for 5,d,7, characterized by the
universal form of the disorder correlator, Eq.~8.23!, we now
turn to the implications of these results for the elastic pr
erties of the randomly pinned smectic.

Using Eqs.~8.15a!–~8.18b! inside the flow equations fo
K( l ) andB( l ), Eqs.~8.11!,~8.12!, and solving for these elas
tic moduli, we obtain

K~ l !5e(d23)lKp~ l !, ~8.24a!
n

e

d

-

-

-

B~ l !5e(d23)lBp~ l !, ~8.24b!

where the physically measurable moduliBp( l ) andKp( l ) are

Kp~ l !5K0S 11
l

l 0
D gK

, ~8.25a!

Bp~ l !5B0S 11
l

l 0
D 2gB

, ~8.25b!

with

gK~d!5
1

2 S 2d2112d223

d216d213 D ~8.26!

and

gB~d!5
3

2 S d221

d216d213D . ~8.27!

In the range of interest the exponentsgK(d) andgB(d) are
monotonically decreasing and increasing functions ofd, re-
spectively, and do not change significantly for 5,d,7:
gK(5)51/7, gK(7)51/13, gB(5)56/7, gB(7)512/13. As
advertised, we therefore find~for 5,d,7) that the ran-
domly pinned smectic exhibits logarithmically weak anom
lous elasticity, with the bend modulusKp diverging and the
compression modulusBp vanishing logarithmically at large
length scalesel→`.

With these results in hand, we can calculate the co
sponding smectic time-persistent correlation function

C~k![
^u~k!&^u~k8!&

dd~k1k8!
, ~8.28!

which determines the long-range spatial smectic correlatio
Following the RG matching method, described in detail
Sec. VI, we relateC(k) at the small wave vectors of intere
to us, to the same quantity computed in the effective the
with rescaledl-dependent couplings and evaluated at lar
wave vectorselk' ,ev lkz :

C~k!5e(d211v) lC@elk' ,ev lkz ,B~ l !,K~ l !,DV~u,l !#.
~8.29!

Here let us consider the limitkz!lk'
2 . Now, we set~for

convenience! v52 and chooseel* 5L/k' . The latter con-
dition guarantees that no infrared divergences appear in
perturbative calculation of the right-hand side of Eq.~8.29!
~since it is done at large wave vectorel* k'5L at the Bril-
louin zone boundary!. At these short length scales (L21),
phonon displacementsu are genuinely small and the rando
potential varianceDV(ua2ub) @Eq. ~8.10!# can be safely
expanded in a convergent power series inua2ub . Expand-
ing the Hamiltonian Eq.~8.10! to the lowest~quadratic! non-
trivial order maps the full nonlinear FRG problem at the
high wave vectors onto the random tilt-only model Eq.~6.3!
with effective k-dependent couplingsK( l * ), B( l * ), and
Dh

eff( l * ) given by

Dh
eff~ l * !522DV9 ~0,l * !/L2, ~8.30!
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@DV9 (0,l * ),0, as we show below#. Using this effective
theory and Eqs.~3.11!,~3.12! to compute the right-hand sid
of Eq. ~8.29!, and takingk' sufficiently small, so thatl * is
sufficiently large to guarantee that the fixed point Eq.~8.23!
is reached, we readily obtain

C~k!'
22e(d11)l* DV9 ~0,l * !

@Kp~ l * !e(d23)l* L41Bp~ l * !e(d23)l* e4l* kz
2#2

,

~8.31a!

'
28D̃V*

9 ~0!ABp~ l * !Kp~ l * !3 k'
72d

@Kp~ l * !k'
4 1Bp~ l * !kz

2#2Cd21

.

~8.31b!

To obtain Eq.~8.31b! above, we used Eq.~8.14! to relateDV

to D̃V and Eq.~8.25! to express our results in terms of th
physical elastic moduliKp andBp . Comparing our final ex-
pression forC(k) with the expression for this quantity i
Gaussian theory Eq.~3.12! justifies our callingKp( l * ) and
Bp( l * ) the ‘‘physical’’ K and B of the nonlinear theory of
the randomly pinned smectic. Using Eqs.~8.25! for these, in
the limit l * @ l 0, with l * 5 ln(L/k'), andkz!lk'

2 we find the
anomalousmoduli

K~k!}u ln~k' /L!ugK(d), ~8.32a!

B~k!}u ln~k' /L!u2gB(d). ~8.32b!

Similar analysis for an arbitrary direction ink'-kz space
leads to Eqs.~1.8!, advertised in the Introduction.

The Fourier transform ofC(k) measures the spatial pho
non correlations

C~r ![^@u~r',z!2u~0',0!#2&,

'E ddk

~2p!d
2@12cos~k•r !#C~k!.

~8.33!

Using Eq. ~8.31b!, but ignoring the subdominant@ ln(ln r)#
corrections arising from weak anomalous elasticity, we
tain for z50

C~r',0!'
28D̃V*

9 ~0!

Cd21
E

k',r'
21

ddk

~2p!d

AB~k!K~k!3 k'
72d

@K~k!k'
4 1B~k!kz

2#2
,

'
24D̃V*

9 ~0!

Cd21
E

k',r'
21

dd21k'

~2p!d21

1

k'
d21

,

5
4ep2

9q0
2 ln~r' /a!. ~8.34!

We therefore find that throughout the range of dimensi
5,d,7, the smectic displacementsu grow logarithmically
~up to ln ln corrections due to anomalous elasticity!, with a
universal amplitude determined by Eq.~8.23!. This super-
universal logarithmic roughness is analogous to that pr
ously found for the random fieldXY model28 and for the
Abrikosov vortex lattice in a dirty superconductor.9
-

s

i-

The superuniversal smectic Bragg glass phase foun
this section is quite exotic. However, since it only exists
5,d,7, it unfortunately has little experimental relevan
for physical three-dimensional disordered smectics. Furth
more, because theperiodicdisorder-driven layer fluctuation
and the related anomalous elasticity diverge onlylogarithmi-
cally, while the tilt disorder, which becomes relevant ford
,5, leads to power-law roughness, Eq.~4.9!, the former is
completely swamped by the latter ind,5.

B. Functional RG for 3<d<5:
irrelevance of random-field disorder

The above claim can readily be demonstrated by exte
ing the functional renormalization group analysis presen
above and in Appendix B tod,5. The resulting set of flow
equations forK( l ), B( l ), and Dh(u,l ), valid for d,5 @as-
suming the validity of theelasticmodel, Eq.~8.10!, i.e., that
dislocations are bound# is

dK~ l !

dl
5Fd231

1

32
g~0,l !1

~d2212d123!D̃V9 ~0,l !

2~d221!l2~ l !
GK,

~8.35!

dB~ l !

dl
5Fd232

3

16
g~0,l !1

3

2

D̃V9 ~0,l !

l2~ l !
GB, ~8.36!

lDh~u,l !5S d211
1

64
g~u,l ! DDh~u,l !

1S h~ l !

q0
2 1D~u! DDh9~u,l !

1c@D̃V*
- ~u!#2AK~ l !3B~ l !L52d/Cd21 ,

~8.37!

where we have defined

g~u,l ![Dh~u,l !S B~ l !

K5~ l ! D
1/2

Cd21Ld25, ~8.38!

the ‘‘position-dependent diffusivity’’

D~u![c2@D̃V*
9 ~u!2D̃V*

9 ~0!#, ~8.39!

andc andc2 are dimensionless constants of order unity. No
that these recursion relations reduce to those of the tilt-o
model considered in Sec. VI, if we take the tilt disord
Dh(u,l ) to be a constant independent ofu, and drop the
random field disorder. In these relations, for convenience,
have chosen the anisotropy exponentv52, so that, as dis-
cussed earlier,q0 does not renormalize.

The recursion relation for the dimensionless random fi
disorderD̃V is given by Eq.~8.13!. Note that since we are
now interested ind,5, D̃V may grow quite large~since its
linear eigenvaluee572d is no longer small!, so we cannot
neglect theO(D̃V

3) nonlinearities in Eq.~8.13!. Because we
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do not know these, we cannot actually calculate the fix

point functionD̃V* (u) that D̃V(u,l ) flows to upon renormal-
ization. However, as ind.5, we do not need to. Rather, w
only need to argue that it exists, is finite, and that its sec

derivative at the origin,D̃V*
9 (0) is finite and negative.

To make this argument, we first note that if we drop t
second and third terms on the right-hand side of Eq.~8.13!
and ignore higher order nonlinear terms, the resulting eq
tion certainly has a fixed point solution; namely, our expli
solution Eq.~8.23!. Now let us consider the effects of th

other terms. Theh( l ) term can onlyreduce D̃V , being a

‘‘diffusive’’ type of term. So, while it may driveD̃V(u,l ) to
zero asl→`, it certainlycannothave the opposite effect o
driving D̃V to infinity. Hence D̃V* (u), and therefore,
D̃V*

9 (0), remain finite in the presence of this term.

If we assume thatD̃V* (u) is finite, we can showa poste-
riori that the third term renormalizes exponentially~in renor-
malization group ‘‘time’’ l ) to zero, since, as we will show
in a moment,l( l )→` exponentially inl. This should be
contrasted with the behavior of this term in 5,d,7, where
it vanished much more slowly~as 1/l ) as l→`. The more
rapid vanishing of this term ind,5 is a consequence of th
stronger renormalization ofB andK due to thetilt disorder
field (Dh), which becomes relevant ford,5.

The crucial point here is that this much stronger renorm
ization ofB andK due to this relevance of the tilt field (Dh)
doesnot destabilize theD̃V fixed point. Since this relevanc
of the tilt field is the only qualitative difference betweend

.5 andd,5, showing that it does not destabilize theD̃V
fixed point by itself shows that there is no more reason
doubt the stability of this fixed point ford,5 than for 5
,d,7. Indeed, if anything, the argument isstrengthened,
since the 1/l( l ) term vanishes even more rapidly ford,5.

Hence, the only possible problem can come from the
known higher~than second! order terms inD̃V , in Eq.~8.13!.
Not knowing these terms, we cannot make a very compel
argument that they do not destabilize the fixed point. Ho
ever, the same objection could have been raised ford.5 but
well below 7. Indeed, an analogous objection can be ra
for any fixed point that is found in ane expansion once one
goes well below the upper-critical dimension. We simp
assume~as is done in all standarde expansions! that the
stability of the FRG fixed point, rigorously derived fore
→0, persists well below the upper-critical dimension, i.
for d,5.

So it seems plausible to assume that a finite fixed p
function D̃V* (u), with finite D̃V*

9 (0)<0, exists ford,5.
Let us now investigate the consequences of this assump
We will see in a moment that they are virtually nonexiste
the asymptotic RG flows ofB( l ), K( l ), andDh( l ), and long
distance behavior of the static smectic correlation functi
that they imply, areexactlythose we found in Sec. VI, wher
we neglected the periodic potential altogether.

To see this, let us takeD̃V(u,l ) to have flown to its fixed
point, and combine the recursion relations forB( l ), K( l ),
and Dh(u,l ) into recursion relations for the dimensionle
coupling function g(u,l ), defined in Eq. ~8.38!, which
evolves under the RG transformation according to
d

d

a-
t

l-

o

-

g
-

d

,

t

n.
:

s

] lg~u,l !5S 52d2
5

32
g~u,l !1c3

D̃V*
9 ~0!

l2~ l !
D g~u,l !

1S h~ l !

q0
2 1D~u! Dg9~u,l !1c

„D̃V*
- ~u!…2

l2~ l !
,

~8.40!

where we have definedc3[3/41(d2212d123)/@2(d2

21)#. Similarly, from Eqs.~8.35!,~8.36!, we obtain the re-
cursion equation for 1/l2( l )[B( l )/K( l )

dl22~ l !

dl
52

7

32
g~0,l !l22~ l !1a1D̃V*

9 ~0!l24~ l !,

~8.41!

wherea1 is a constant whose numerical values is unimp
tant for our argument.

We will now prove that ford,5, at long scales~largel ),
g(u,l ) flows to g2* 532(52d)/5, the constant,
u-independent fixed point value of the dimensionless c
pling g2, Eq. ~6.15!, that we found in our earlier, tilt-only
treatment of the disordered smectic, described in Sec. V

To see this, we write

g~u,l !5g2* 1dg~u,l !, ~8.42a!

5
32

5
~52d!1dg~u,l !,

~8.42b!

and expand the recursion relation Eq.~8.40! to linear order in
dg(u,l ), obtaining

] ldg~u,l !5@d251D~u!]u
2#dg~u,l !1

S~u!

l2~ l !
,

~8.43!

where we have defined the ‘‘source term’’

S~u![c3g2* D̃V*
9 ~0!1c@D̃V*

- ~u!#2, ~8.44!

and have dropped theh( l ) term which decays away expo
nentially to 0 asl→`.

To demonstrate the stability of the tilt-onlyu-independent
fixed point, we now only need to show that Eq.~8.43! im-
plies thatdg(u,l ) decays to 0 asl→`. To do this we expand
dg(u,l ) in eigenfunctions of the operatorD(u)]u

2 ; that is,
we write

dg~u,l ![ (
n50

`

gn~ l !fn~u!, ~8.45!

wherefn(u) are periodic functions ofu with perioda satis-
fying the eigenvalue equation

D~u!
d2fn~u!

du2 5Gnfn~u!. ~8.46!

It is straightforward to see that all of the eigenvaluesGn
are <0, provided thatD(u)>0 for all u, as it is in 72e
dimensions, where we can explicitly calculate it. We w
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assume thatD(u) continues to be>0 for d,5, and, in fact,
all the way down to the physical dimensiond53.

Using the orthogonality of thefn(u) basis, with

E
0

afn~u!fn8~u!

D~u!
du5I ndnn8 , ~8.47!

and

I n[E
0

afn
2~u!

D~u!
du, ~8.48!

standard projection analysis leads to a set of decoupled
cursion relations for thel-dependent expansion coefficien
gn( l ) in Eq. ~8.45!

dgn~ l !

dl
5~d251Gn!gn~ l !1

Sn

l2~ l !
, ~8.49!

where the source term is given by

Sn[E
0

aS~u!fn~u!

I nD~u!
du. ~8.50!

Now, since all of theGn are<0, and we are considerin
d,5, and since, as we show momentarily,l( l )→` as l
→`, we see that all of thegn( l ) flow to zero asl→`,
provided only that all of theSn , Eq. ~8.50! are finite. We
leave the demonstration of the latter fact58 as a straightfor-
ward homework exercise. Hence as asserted,g(u,l ) flows to
a stable fixed pointg* (u)5g2* 532(52d)/5, identical to
that found in the tilt-only model of Sec. VI.

It is now easy to complete the proof, by demonstrating
Eq. ~8.19! that near this fixed pointl22( l ) flows rapidly to
zero:

l22~ l !5l22~0!e2(7g2* /32)l , ~8.51a!

5l22~0!e2[7(52d)/5] l . ~8.51b!

Although this result holds only neard55, it is straightfor-
ward to generalize the above analysis to arbitraryd,5, by
relating the graphical corrections toB and K to the exact
anomalous exponentshB andhK of the tilt-only model. We
find thatg2( l→`) again flows to the same fixed point valu
it would have in the absence of the periodic potential, wh
l22( l ) now flows to zero as

l22~ l !5l22~0!e2(hB1hK) l . ~8.52!

So in all dimensionsd,5, l22( l ) flows exponentially to
zero, in contrast to 5,d,7, wherel22( l ) vanishes slowly,
as 1/l . This completes thea posterioriargument in our ear-
lier demonstration thatD̃V(u,l ) flows to a finite fixed point
and that the tilt disorderg(u) flows to a stable,
u-independent fixed point identical to that found for the ti
only model.

All that remains to complete our argument that the ra
dom periodic potential has no effect on the static proper
of disordered smectics ind,5 is to consider the correlatio
functions themselves. Using yet again the trajectory integ
matching formalism, we can show that
e-

a

e

-
s

al

C~q![
^u~q!u~q8!&

dd~q1q8!
, ~8.53!

5S L

q'
D d11F T

K~ l * !L41B~ l * !~L/q'!4qz
2

1
Dh~ l * !L222DV9 ~0,l * !

@K~ l * !L41B~ l * !~L/q'!4qz
2#2G , ~8.54!

with l * [ ln(L/q'). This only differs from our expression fo
this correlation function in the tilt-only model, Eq.~6.31!, by
the presence of the constant termDV9 (0,l * ) in the numerator
of the second term. Using

Dh~ l !5g2~ l !
K5/2~ l !

B1/2~ l !Cd21Ld25
, ~8.55a!

→g2*
K5/2~ l !

B1/2~ l !Cd21Ld25
,

~8.55b!

and

DV~u,l !→
l→`

4L72d

Cd21
K3/2~ l !B1/2~ l !D̃V* ~u!, ~8.56!

it is easy to show that the ratio of thisDV9 (0,l * ) term to
Dh( l * )L2 is

D̃V*
9 ~0!

g2*

B~ l * !

K~ l * !
5

const

l~ l * !2
, ~8.57!

which vanishes asq'→0 andl *→`, sincel22( l * ) does.
To summarize:everypossiblestaticeffect of the periodic

potentialDV vanishes, asl→`, like l22( l ), which vanishes
exponentially asl→`. Hence, the periodic potential~the
random field disorder! has no effect on anystatic properties
of the disordered smectic ind,5. Our tilt-only model is
sufficient to treat those.

All of the above arguments, of course, only apply if w
ignore dislocations. In the next section we include these
our analysis.

IX. FAILURE OF PERIODIC POTENTIAL
TO INDUCE DISLOCATION UNBINDING

In Secs. III, IV, and VIII we have demonstrated that
three-dimensional~or more generally ford,5) randomly
pinned smectics, the tilt disorder (Dh) asymptotically leads
to significantly larger layer disordering than the random fie
displacement disorder (DV). We thereby argued that stati
correlation functions for a general disordered smectic can
accurately computed within a tilt-disorder-only model, stu
ied in Secs. IV–VII. However, the validity of these argu
ments and the conclusions that follow from them critica
rely on the stability of theelasticmodel within which these
assessments are made. That is, it is in principle possible
although the periodic disorder is less important than the r
dom tilt pinning in disordering smectic layers in theelastic
model, it could nevertheless drive dislocation unbindin
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thereby invalidating the elastic model and the conclusi
drawn from it.

Therefore, to make the arguments of the previous sect
complete, it is essential to assess whether the random-
disorder (DV) alone can drive proliferation of dislocation
loops, and this is the subject of current section. To this
we adapt Fisher’s59 real space renormalization group ana
sis to disordered smectics and show that the random peri
disorderalonedoesnot induce a proliferation of dislocation
loops in three-dimensional smectics, thereby concluding
justification for the tilt-only model of randomly pinne
smectics.

We first review Fisher’s analysis as it applies to the thr
dimensional random-fieldXY model. Recall that within a
defect-free model the elastic energy is balanced agains
pinning energy, both much larger than the thermal ene
kBT. The compromise in this competition leads to pha
variations that grow logarithmically with distance and typic
ground-state energies that vary asLu, whereL is system size
andu is ~minus! of the thermal eigenvalue exponent, whic
due to statistical symmetry, is given exactly by

uxy5d22. ~9.1!

We wish to know whether it energetically pays for the sy
tem to insert a vortex loop. Confining our discussion tod
53, a vortex loop of lengthL will cost the system elastic
energy Eel;JL ln L, where the multiplicative logarithm is
associated with the long-rangeXY phase deformation aroun
the vortex line andJ is the spin-wave stiffness. For such
randomly placed vortex loop, which relieves strains by
lowing spin rotations of order 2p, the system can typically
gain disorder energyEdisorder;Lu;L. Hence, this crude ar
gument would suggest that, because of the additional m
plicative logarithmic factor inEel , it never pays to inser
arbitrarily large vortex loops into the random-fieldXY
model. However, as argued by Fisher, a judicious optimi
tion of the vortex loop location and conformation can
better energetically, and therefore it is essential to includ
the stability analysis the energy minimization over the vor
position and conformation.

To this end we start out with a circular vortex loop and,
illustrated in Fig. 12, try to lower its energy by moving var
ous segments of lengthLw of it first by a distancew, then by
2w, etc. We then calculate the renormalization of the l
tensione( l ) by pinning at scale 2lw. The idea is that each
roughly spherical region of sizew is statistically independen
of all the others; each gains a pinning energy of the or
wu5wd225w (in d53). So the total pinning energy gaine
from optimizing the conformation of the vortex loop on sca
w is given by

dEpin;2wANspheres, ~9.2a!

;2wALw

w
, ~9.2b!

;2ALww. ~9.2c!

Balancing this energy against the stretching energy neces
to deform the vortex loop
s
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dEstretch;e
w2

Lw
~9.3!

gives

Lw
3/2;ew3/2, ~9.4!

which predicts the aspect ratio of the energetically most
vorable deformation of the vortex loop

Lw;e2/3w. ~9.5!

Using this in the expression for the pinning energy, we
the best pinning energy gain of

dEpin;2e1/3w. ~9.6!

Associating this energetic reduction with the renormalizat
of the vortex line tensione( l ) gives

de5
dEel1dEpin

Lw
5J ln 22

e1/3w

e2/3w
, ~9.7!

where the first term arises from the elastic energy incre
due to the factor of 2 increase in length scale. This res
implies the RG recursion relation

de~ l !

dl
5J2

1

e~ l !1/3
. ~9.8!

Clearly, if the bare vortex line tensione(0)[e is sufficiently
large, the line tensione( l ) at scaleel grows asl (' lnL),
and therefore it is energetically unfavorable for vortex loo
to unbind. This therefore argues for the stability of the top
logically ordered ‘‘Bragg’’ glass phase in a weakly diso
dered three-dimensional random-fieldXY model.

We now extend this analysis to smectics pinned by a r
dom periodic potential, with the main difference from th
random-fieldXY model being the anisotropy of the smect
state. We begin by calculating the thermal eigenvalue ex
nents2u. As was the case for the random-fieldXY model,

FIG. 12. Illustration of the optimization of a topological defe
loop on length scaleLw . The full and dashed large loops represe
the topological defect line before and after optimization on sc
Lw , respectively, and the small circles are the isotropic correla
regions corresponding to displacementsw.
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242 PRB 60LEO RADZIHOVSKY AND JOHN TONER
statistical symmetry guarantees that the smectic ela
moduli B and K are not renormalized by disorder.60 This
therefore implies that theu exponent can be computedex-
actly by estimating the elastic energy due to layer displa
mentu of order a lattice constantO(a) inside an anisotropic
volumeL'3L'3(Lz;L'

2 ).

E;BE dzd2r'~]zu!2, ~9.9a!

}L'
2 L'

2 1

L'
4

, ~9.9b!

;~L'!0. ~9.9c!

In this estimate Eq.~9.9! we have used the fact that, in th
harmonicsmectic elastic theory, distances in thez direction
scale like the square of those in the' directions. In three
dimensions, we therefore find that the ground state of a
domly pinned, elasticallyharmonicsmectic is described by

usmectic50. ~9.10!

We now need to estimate the pinning energy gain fr
introducing a dislocation loop and optimizing its configur
tion, analogously to the analysis for a vortex loop above. T
main difference here, however, is that, because of the an
ropy of the smectic phase, there are three dislocation
optimization cases to consider:~1! vertical ~alongz) w dis-
placement of a horizontal~perpendicular toz) segment~i.e.,
an edge dislocation!, ~2! horizontalw displacement of a hori-
zontal segment,~3! horizontalw displacement of a vertica
segment~i.e., a screw dislocation!.

A. Case 1: Vertical displacement of a horizontal dislocation
„wiz…

Because of the elastic anisotropy of the smectic state
contrast to the spherical correlated volumes of the rand
field XY model, here correlated regions are cigar-shaped~di-
rected along z) characterized by dimension
L'(w)3L'(w)3w, with L'(w);Aw, as shown in Fig. 13.
The corresponding pinning energy change due to optim
tion of a dislocation segment of lengthLw is given by

FIG. 13. Illustration of smectic anisotropic cigar-shaped cor
lation regions inside the dislocation optimization lengthLw for a
displacementw alongz of a dislocation running perpendicular toz
~case 1!.
tic
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dEpin;2wuA Lw

L'~w!
, ~9.11a!

;2w0ALw

Aw
, ~9.11b!

;2
Lw

1/2

w1/4
. ~9.11c!

Balancing this against the dislocation stretching ener
which, as always, is

dEstretch;e
w2

Lw
, ~9.12!

we get

Lw5e2/3w3/2. ~9.13!

We note thatLw@L'(w);Aw, consistent with the assump
tion of many ‘‘bubbles’’ per segmentLw , on which this
calculation ofdEpin was based. This leads to

dEpin;
Lw

1/2

w1/4
, ~9.14a!

;2e1/3w1/2, ~9.14b!

and predicts a change of the line tension at scalew given by

de5
dEpin

Lw
, ~9.15a!

;2
1

e1/3w
. ~9.15b!

Note that in the above we have ignored the elastic ene
because we do not need it to prove the stability of sme
‘‘Bragg’’ glass. Even without thestabilizingcontribution of
the elastic energy, Eq.~9.15! implies

de~ l !

dl
52

1

e~ l !1/3
e2 l . ~9.16!

Clearly, if the baree( l 50)5e is big enough,e( l→`) will
be nonzero. Henceperiodic disorder, by itself, cannot un-
bind horizontal loops by displacing them vertically.

B. Case 2: Horizontal displacement of a horizontal dislocation
„w'z…

As illustrated in Fig. 14, here, the volume of the corr
lated regions isw3w3w2, with the long axis alongz. The
width of the correlated volumealong Lw is now w, so we
have

dEpin;2ALw

w
. ~9.17!

Equating this energy to the dislocation stretching ene
ew2/Lw , we find

-
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Lw;e2/3w5/3, ~9.18!

which, upon inserting intodEpin , Eq. ~9.17!, gives

dEpin;e1/3w1/3 ~9.19!

and implies

de5
dEpin

Lw
, ~9.20a!

;
1

e1/3w4/3
. ~9.20b!

This leads to

de~ l !

dl
52

1

e~ l !1/3
e24l /3, ~9.21!

which also demonstrates that there isno divergent downward
renormalization ofe, implying that in the presence of onl
periodic disorder, horizontal dislocation loops willnot un-
bind by displacing horizontally.

C. Case 3: Horizontal displacement of a vertical dislocation
„w'z…

Finally we consider optimizing az-directed screw dislo-
cation, by displacing it horizontally. This corresponds to
correlated region of volumew3w3w2, but, in contrast to
case 2, with the axis alongLw being the long dimensionw2,
as illustrated in Fig. 15. As a result, we have

dEpin;2ALw

w2 , ~9.22!

which when balanced against the dislocation stretching
ergy gives

Lw;e2/3w2. ~9.23!

We note that fore@1 this Lw is much greater thanw2,
consistent with the assumption that goes into Eq.~9.22!. This
gives

de;
dEp

Lw
, ~9.24a!

FIG. 14. Illustration of smectic anisotropic cigar-shaped cor
lation regions inside the dislocation optimization lengthLw for both
the displacementw and the dislocation running perpendicular toz,
i.e., alongr' ~e.g., alongx andy) ~case 2!.
n-

52
1

e1/3w2
, ~9.24b!

which implies

de~ l !

dl
52

e22l

e~ l !1/3
~9.25!

whose solution fore( l ), again, is stable asl→`.
Since in all three cases we find that the effective dislo

tion line tension is finite at long scales, we conclude th
periodic random-field disorderalonecannot unbind disloca-
tion loops in such a randomly pinned smectic.

X. EXPERIMENTAL PREDICTIONS AND FUTURE
RESEARCH DIRECTIONS

Our results imply many unequivocal dramatic predictio
for experiments. The first and most unequivocal of these
that long-ranged, and even quasi-long-ranged, smectic tr
lational order is destroyed by the presence of evenarbitrarily
weakquencheddisorder. Furthermore, the decay of smec
translational order induced by such disorder is far more ra
than in previously studied ‘‘Bragg glass’’ systems,28,9–11be-
ing exponential, rather than algebraic. The experimental
nature of this is equally unequivocal: broad x-ray scatter
peaks with finite peak height, as opposed to the infinit
sharp, divergent peaks associated with quasi-long ranged
der in thermal smectics. This qualitative prediction is bo
out by all experiments on smectics in aerogel to date:
show only broad, finite height x-ray scattering peaks, wh
can be fit by assuming a finite x-ray correlation length.12

In strong contrast toquenched~frozen! disorder of this
type, it is straightforward to show analytically that wea
short-ranged ‘‘annealed’’ disorder, in which the random en
vironment can rearrange to accomodate the smectic’s pre
ence for an ordered state, has noqualitative effect on the
long scale properties of liquid crystal phases. Such w
annealed disorder only leads tofinite renormalizations of the
effective parameters in our model.26 Consequently, the smec

-

FIG. 15. Illustration of smectic anisotropic cigar-shaped cor
lation regions inside the dislocation optimization lengthLw for dis-
placementw alongr' and dislocation running alongz, i.e. alongr'

~case 3!.
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tic phase, its quasi-long-ranged smectic translational or
and the transition into it arestable to weak annealeddisor-
der, which might arise, for example, due to a low concen
tion of microscopic inclusions.

Of course, strictly speaking, all physical random confi
ing structure are elastic, even aerogel, and therefore are
to deform to some extent in response to the smectic, wh
resists distortions. It is easy to see that this additional ‘‘el
tic compliance’’ ingredient can be described as an anne
component of the disorder, in addition to the quenched p
that is the main subject of our work. In light of the qualit
tive unimportance of weak annealed disorder, discus
above, our theory for purely quenched random structures
mediately extends to deformable structures, which
quenched for large deformations, i.e., described by a fi
shear modulus.

A notable example of liquid crystals confined in rando
structures in which these elastic annealed features appea
the recent experiments on smectics inaerosil.61,62Sincetypi-
cal weak hydrogen bonds that link the aerosil network
gether have bond-breaking energies of orderkBT, a large
fraction of the aerosil network can rearrange itself in
sponse to stresses imposed on it by the smectic and the
come to thermal equilibrium with it. However
measurements62 show that even these tenuous, weak
bonded structures are characterized by a small but afinite
shear modulus. Hence even aerosils are unable to per
arbitrary rearrangements to equilibrate with the orde
smectic. Therefore, while they have a large annealed com
nent, aerosils contain a small quenched component, w
dominates the qualitative physics of the confined smec
We therefore expect a destruction of the quasi-long-ran
translational order for smectics confined in aerosils, with
x-ray correlation length obeying our predictions for low de
sity aerogels.

However, there are three important consequences of
large annealed disorder component present in aerosils. F
while weak annealeddisorder should only lead to a finit
renormalization of effective parameters,strongannealed dis-
order can destroy the quasi-long-ranged smectic order
driving some of the effective elastic moduli negative. Se
ondly, given the empirical fact that thebulk NA transition
appears to display nonuniversal behavior,30 we would expect
this nonuniversality to also manifest itself for smectics ‘‘co
fined’’ in low-density aerosils, where the effective mod
parameters are functions of aerosil density due to the p
ence of the annealed disorder component. Thirdly, beca
of this large annealed disorder component in aerosils an
correspondingly small quenched component, we expect a
sils to be described by significantly smaller values of o
effective quenched disorder parametersDV andDh than for
aerogels of the same solid volume fraction. Consequen
experiments in aerosils are more appropriate for explor
our weak quenched disorder theory and to search for
delicate and ‘‘fragile’’ SBG and NEG phases.

These nontrivial qualitative predictions are clearly
agreement with the experimental observations of smec
confined in aerosils:62 ~i! for low aerosil densities these ex
periments observe significantly longer~than in equivalent
volume fractions aerogels!, finite smectic x-ray correlation
lengths,~ii ! they measure heat capacities with aerosil den
r,
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dependent~and therefore nonuniversal! exponents, and~iii !
in aerosils beyond a critical density they find a behavior t
is qualitatively similar to smectics confined in aerogels.

It is important to note that in aerogels and aerosils,
contrast to what one might have naively expected, the sm
tic correlation length isnot limited by some sort of ‘‘finite
size’’ effect associated with the ‘‘pore size’’ of the aerog
That is, the smectic confined in aerogel doesnot act as if it
has simply been broken up into many small volumes wh
do not interact with each other.

If this ‘‘finite size’’ scenario were the case, one would
expect to see the smectic translational correlation lengthjX

grow with decreasing temperature asT approached the pure
NA transition temperatureTNA

pure from above exactly as it did
in the pure~bulk! smectic. Indeed, one would expect it
track its temperature-dependent valuejpure

X (T) in the pure

system until T got close enough toTNA
pure that jpure

X (T)5

jaerogel
X (T)5LP , the ‘‘pore size’’ of the aerogel. At this poin

jX(T) would abruptly saturate, and remain constant atLP for
all lower temperatures.

This is emphaticallynot what is seen in experiments o
aerogels.12,19,20 Rather the growth ofjX continues right
throughTNA

pure, and only saturates at some temperature w
below TNA

pure. This is completely consistent with our pictur
in which jX is determined by a competition between t
smectic elasticity, which tries to keep the system order
and the random forces exerted by the aerogel strands, w
disorder it. In this picture, the saturation ofjX with decreas-
ing temperature occurs notabove TNA

pure, but, rather, wellbe-
low TNA

pure; specifically, at the temperature at which the sme
tic elastic compression modulusB(T) saturates.

Liquid crystals have also been confined in other rand
but significantly more ordered structures. Some examples
Anopore63 and Vycor,64 which in contrast to the tenuou
aerogel strand structure present on all scales, consist
random distribution of empty pores, with fairly regular wa
structure and much narrower pore size distribution. Ev
these systems can in principle be understood within the g
eral model presented here. However, they fall into the str
disorder regime of our model, and we are therefore unabl
utilize our weak disorder approach to make quantitative p
dictions, aside from the observation that the quasi-lo
ranged smectic order should be destroyed in these system
well, consistent with experiments.

The qualitative agreement between our theory and exp
ment can be made quantitative through our expression
~1.13!, which relatesjX to the smectic elastic constantB(T).
As discussed in the Introduction, this expression implies t
sufficiently far belowTNA

pure ~where our weak disorder theor
applies!, a simple power-law relation betweenjX(T) and the
‘‘bare’’ layer compressional modulusBbare(T) of the pure
system holds:

jX~T!}@Bbare~T!#z/2x, ~10.1a!

}@Bbare~T!#1/x21/2.
~10.1b!

The bareBbare(T) can be determined in a number of way
One way is simply to measure the layer compressio
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modulusBpure(T) of a pure~bulk, aerogel-free! sample of the
same smectic liquid crystal material, and pray that this is
changed when the smectic is placed in aerogel. Howe
since prayers are not always answered, a direct, simultan
in situ determination ofBbare(T) in the smectic inside the
aerogel is clearly desirable.

This could be done by determining the squared magnit
of the smectic order parameterucu2 from, e.g., the integrated
intensity under the~broadened! smectic x-ray peak. In mean
field theory, which should hold for bare quantities suf
ciently far belowTNA , Bbare(T)}ucu2. Thus, we should, in
this mean-field regime, observe a universal power-law re
tion between the x-ray correlation lengthjX and ucu2: jX

}ucu2/x21. Note that in the absence of anomalous elastic
the second regime of Eq.~1.13! @jX5jz

NL(a/l)2# would ap-
ply, and we would getjX}B}ucu2, the last proportionality
holding only in the mean-field regime. Thus,any departure
of thejX-B relation from linearity is evidence for anomalou
elasticity. Furthermore, observing such a power-law relat
determinesx.

Preliminary analysis ofjX versusB data,65 as determined
above, supports the relation Eq.~10.1!, with x50.860.1.
Note thatx,1, favoringstability of the smectic Bragg glas
phase, although we have, as yet, no experimental wa
determining if the other necessary relation for the stability
the SBG, namely,hK,1, is satisfied.

While our prediction forjX(T) is not as quantitative a
we would like, since we do not have quantitatively reliab
predictions forz and x in d53 ~our 52d5e-expansion
results not being quantitatively trustworthy whene52), it
nonetheless makes it possible, by experimentally determ
ing z/x for one smectic inone aerogel, to predict the tem
perature dependence ofjX for any smectic inany low den-
sity aerogel. Furthermore, oncez/x is known, z and x
separately are also known, sincez522x. Knowledge of
these exponents then makes other predictions possible.

In particular, it leads to our second prediction which co
cerns whether or not the transition~which replaces the NA
transition in bulk smectics! from the nematic to the low-
temperature phase~which replaces the ordered smectic! is
destroyed by disorder. Surprisingly, this question can,
principle, have a different answer than the question
whether or not smectic translational order is destroyed. T
is because our analysis shows that, even though sm
translational orderis alwaysdestroyed, a distinct ‘‘smectic
Bragg glass’’ phase~SBG!, in which dislocations remain
bound and long-rangedorientational ~nematic! order per-
sists, maybe possible in the presence of sufficiently w
disorder. If it is, then a thermodynamically sharp transiti
into it ~with decreasing temperature! replaces the NA transi
tion of the pure system, as this phase itself replaces
smectic-A phase. Consequently, an exotic and quite un
feature of this transition is that, while thermodynamic qua
tities ~e.g., heat capacity! display singularities at the trans
tion to the putative smectic Bragg glass, the x-ray scatte
peak remains broad through the transition. Unfortunat
whether or not this~SBG! phase exists, in principle, depend
on whether or not the imprecisely known anomalous ex
nentshB andhK satisfy the bounds Eq.~1.1!.
t
r,
us

e

-

,

n

of
f

n-

-

n
f
is
tic

k

e
e

-

g
,

-

Fortunately, the above-described experimental determ
tion of x could answer this question, since one of the boun
Eq. ~1.1a! is simply x,1. Thus, if the x-ray measurement
described above, findx,1, a SBG phase can exist, and
thermodynamically sharp remnant of the pure system’s
transition could be seen in sufficiently low density aeroge
On the other hand, ifx proves to be.1, no sharp transition
should be seen. This is a definite, falsifiable prediction t
could be tested experimentally: ifx.1, no sharp transition
should be seen. The converse conclusion, that ifx,1, a
sharp transition should be seen, need not hold, since
possible thatx,1, but the boundhK,1 is violated. For the
same reason, even if the current experimental evidence
there isno transition even for arbitrarily low density aerog
holds up, we cannot conclude thatx.1.

It is also important to note, that despite the absence of
long-ranged ordered smectic phase, itis possible, as always
to have a thermodynamically sharpfirst-order transition
within the disordered~nematic! phase. At such a transition
which would be from a nematic with a short smectic cor
lation length to a nematic with longer~but still finite! smectic
correlation length, thermodynamic quantities~such as the
heat capacity! could displaying sharp nonanalytic featur
~such as latent heat!. We believe that the recent calorimetr
experiments on 7O.4/aerogel samples by Haga and Gar
are examples of such a first order transition.66 As a conse-
quence of our main result that only short range smectic or
is possible for smectics confined in quenched random e
ronments, we unambiguously predict a broad, finite x-
scattering peak for the system studied by Haga and Garl

If the SBG phasedoesprove to be possible, then we ca
make far more detailed tests of our predictions. In particu
the simple fact that the SBG phase has long-ranged orie
tional order is, in itself, a striking prediction that could b
tested very easily by looking at optical birefringence
smectics in aerogel. The existence of such long-ranged o
would make possible even more quantitative tests for
predictions of anomalous elasticity, by making it possible
measure director fluctuationŝdni(q)dnj (2q)& by light
scattering. Since these are related to smectic layer fluc
tions by the usual smectic relationdn(r )5“u(r ), we can
immediately write

^dni~q!dnj~2q!&5qiqj^uu~q!u2&, ~10.2a!

5
Dh~q!qiqjq'

2 V

@B~q!qz
21K~q!q'

4 #2

1
kBTqiqjV

B~q!qz
21K~q!q'

4
,

~10.2b!

wherei and j run over all indices butz, andV is the volume
of the system. The first, quenched, term in this express
Eq. ~10.2b!, dominates asq→0; thus fitting this piece to the
observed light scattering would enable a direct experime
measurement ofK(q), B(q), andDh(q), and, hence, a direc
test of the scaling predictions Eq.~6.26! for these quantities,
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as well as a determination of the anomalous exponentshK ,
hB , andhD . For instance, if we takeq in the x2z plane,
Eq. ~10.2! implies

^udnx~q!u2&5qx
242hD12hK f nS qzjz

NL

~q'j'
NL!zD . ~10.3!

Thus, a log-log plot of̂ udnx(q)u2& for qz50 has slope24
2hD12hK . The simple observation that this slope is no
24 would confirm the existence of anomalous elasticity,
showing thathD andhK wereÞ0. The determination of the
anisotropy exponentz by collapsing the plots of̂udnx(q)u2&
versusqx for a variety ofqz’s would then fixhB1hK . Our
exact scaling relation betweenhD , hB and hK , Eq. ~6.30!
would then provide a third equation to fix all three exp
nents. That the results satisfied our bounds Eq.~1.1! for the
stability of the SBG phase would then provide a nontriv
check on the consistency of our theory.

A more stringent test could be provided by measuring
second,kBT term in Eq.~10.2!. Although, as mentioned ear
lier, this term is subdominant to the first, disorder term
could nonetheless be resolved bytime-dependentlight scat-
tering. The reason for this is that the first, disorder term
Eq. ~10.2! represents thestatic, time-persistent response o
the smectic to the random tilt field of the aerogel, wh
the kBT term represents thermal fluctuations about t
disorder-determined smectic layer configuration. That
if we consider the unequal time correlation functio
^dni(q,t)dnj (2q,0)&, we expect

^dni~q,t !dnj~2q,0!&5
Dh~q!qiqjq'

2 V

@B~q!qz
21K~q!q'

4 #2

1
kBTqiqj f ~q,t !V

B~q!qz
21K~q!q'

4
,

~10.4!

where f (q,t) is a function we do not know, but which pre
sumably will have some sort of slow, ‘‘glassy’’ decay, va
ishing ast→`, and going to 1 ast→0, thereby recovering
the equal-time correlation function, Eq.~10.2!. Using these
two limits immediately implies

lim
t→`

^dni~q,t !dnj~2q,0!&2^dni~q,0!dnj~2q,0!&

5
kBTqiqjV

B~q!qz
21K~q!q'

4
, ~10.5!

which allows a completely independent determination ofhK
and hB from the approach based strictly on the equal-ti
correlation function described earlier. Consistency of the t
approaches would demonstrate the validity of the exact s
ing relation betweenhK , hB , andhD .

We remind the avid experimentalist that the entire abo
discussiononly applies if the SBG phase is stable. If th
SBG phase doesnot exist, then our experimental prediction
are reduced to Eq.~1.13! for the x-ray correlation length, the
anomalous elasticity lengths given by Eqs.~1.3!, and the
‘‘ghost’’ of nonanalyticity in T in these lengths, associate
y
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with the remnant ofTp below TNA ~see Fig. 6!, defined by
the temperature at which the pure smectic order param
correlation exponenth passes 4.

Presumably, there are experiments that could test our
dictions for the orientational correlation lengthjO , but we
will be unable to make such predictions until we have dev
oped a theory of the nematic elastic glass behavior that h
on longer length scales. This is a topic for future researc26

There are a number of other promising areas for fut
research. One is the subject of smectic order insidestretched
aerogels, which we are currently studying.67 In that system
we have shown that uniaxially stretching or compressing
aerogel matrix can stabilize the smectic Bragg glass ph
The universality class of the resultant SBG now depe
upon whether the aerogel is stretched or compressed: in
former case, it lies in the universality class of the so-cal
‘‘vortex glass’’ phase, which has recently been much d
cussed in the context of the random fieldXY model10,11 and
randomly pinned Abrikosov vortex lattices,9 while compres-
sion leads to a totally novel kind of ‘‘m51 Lifshitz SBG.’’
A detailed discussion of this problem is in preparation.67

We expect a new glass phase similar in many respect
the ‘‘m51’’ glass described above, but in a different unive
sality class, to occur when ‘‘discotics’’~i.e. liquid crystals
with two solidlikedirections andone liquidlike! are absorbed
into unstressedaerogel. Work on this interesting problem
also currently underway.67

It is also interesting to consider what happens to acholes-
teric liquid crystal confined in aerogel.68 Although the sym-
metry of such a system isidentical to that of a smectic stud
ied here, the addition of another long length scale~namely,
the cholesteric pitch! may make it possible to access a nov
type of ‘‘random manifold’’ regime of pinned elastic media

Probably the most interesting and challenging problem
the theory of dynamics of these smectic Bragg glass syste
which would enable a detailed understanding of recent
namic light scattering experiments.19 If the smectic Bragg
glass phase exists, which we are quite certain it does
smectics in anisotropic aerogels and discotics in isotro
aerogels,67 it should have slow glassy dynamics similar

those observed by Belliniet al.19 Given its unusualstatic
properties~e.g., anomalous elasticity!, its dynamics may be
quite unusual, even for glasses.

As noted in the Introduction, here we have studied sm
tics in aerogel by perturbing around the low temperat
translationally and orientational ordered smectic pha
However, another approach to this problem, more conven
to understanding the effects of disorder near and above
bulk NA transition, is based on the de Gennes model.32 This
complementary high-temperature approach makes it poss
to predict, e.g., the rounded specific heat and x-ray scatte
peaks observed in many experiments on smectics
aerogel.12,19–22

Finally, we note that the formalism we developed in S
V for disordered smectics can be applied to a variety of ot
disordered problems, including gauge glasses, rando
pinned Abrikosov vortex lattices and other pinned perio
media. These applications will be discussed in a fut
publication.25
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APPENDIX A: DETAILS OF THE d53 SINGLE
HARMONIC RENORMALIZATION GROUP ANALYSIS

Here we present the details of the derivation of the ren
malization group flow equations Eqs.~3.18a!,~3.18b! for the
three-dimensional disordered smectic model, in the harmo
elastic approximation defined by the replicated Hamilton
Eq. ~3.8!

H@ua#5H0@ua#1HD@ua#, ~A1!

where the quadraticH0@ua# and the interactionHD@ua# parts
of the Hamiltonian are respectively given by

H05
1

2E ddq(
a,b

n

@~Kq'
4 1Bqz

2!dab2Dhq'
2 #uaub ,

~A2a!

HD52E ddr ( 8
aÞb

n

DV cos@q0„ua~r !2ub~r !…#.

~A2b!

In the above and throughout, in the interaction termHD , we
have for convenience excluded thea5b term inside the
summation. This exclusion is indicated by a prime, and
justified since thea5b term is a constant. Also for simplic
ity, throughout this appendix we have setT51; the factors
of T can be easily restored by the replacementK→K/T, B
→B/T Dh→Dh /T2, andDV→DV /T2. FromH0, the propa-
gatorGab(q) can be easily obtained,

Gab~q!5GT~q!dab1GDh
~q!, ~A3a!

5
dab

Kq'
4 1Bqz

2
1

Dhq'
2

~Kq'
4 1Bqz

2!2 .

~A3b!

In three dimensions, a direct perturbative calculation
DV is divergent in the thermodynamic limit even for an a
bitrarily small DV . Nevertheless, physical observables c
be computed utilizing standard methods of the renormal
tion group,40 in which one avoids infrared divergences b
integrating out degrees of freedom a momentum ‘‘shell’’ a
time. In this procedure, the goal is to establish how the
fective Hamiltonian functional changes after the renorm
l
-
-
h

n-
-
t
d
al
.

i-

r-

ic
n

s

n

n
-

f-
l-

ization group transformation, which can be neatly summ
rized by the renormalization group flow equations for t
effective parameters.

We focus onZn as the physical quantity to keep fixe
under the infinitesimal renormalization group transformatio
Following the standard RG procedure we write the Fouri
transformed displacement field asua(q)5ua

,(q)1ua
.(q),

whereua
,(q) is the long wavelength set of modes, nonze

for 0,uq'u,Le2 l , with qz unrestricted, andua
.(q) are the

short wave-vector degrees of freedom that have support
within a thin cylindrical momentum shell

Le2 l,uq'u,L, ~A4a!

2`,qz,`, ~A4b!

We first integrate, perturbatively inDV , the high wave-
vector partua

. out of Zn:

Zn5E @dua
,#@dua

.#e2H0[ua
,

1ua
.] 2HD[ua

,
1ua

.] , ~A5a!

5E @dua
,#e2H0[ua

,] 2dH[ua
,] , ~A5b!

where dH@ua
,# is obtained by integrating out the sho

wavevector degrees of freedom

e2dH[ua
,][E @dua

.#e2H0[ua
.] 2HD[ua

,
1ua

.] , ~A6a!

5Z0
.^e2HD[ua

,
1ua

.]&., ~A6b!

5Z0
.F12^HD@ua

,1ua
.#&.1

1

2
^HD@ua

,1ua
.#2&.

1••• G , ~A6c!

The perturbative correction to the nonconstant part of
effective Hamiltonian can therefore be expressed in term
a cumulant expansion

dH@ua
,#5^HD@ua

,1ua
.#&.

c 2
1

2
^HD@ua

,1ua
.#2&.

c 1•••,

~A7!

where

^HD@ua
,1ua

.#2&.
c 5^HD@ua

,1ua
.#2&.2^HD@ua

,1ua
.#&.

2 .

~A8!

To first order in the interactionDV we obtain

^HD&.52DVE d3r (
aÞb

8 ^cos@q0~ua2ub!#&. ,

52DVReE d3r (
aÞb

8 eiq0(ua
,

2ub
,)^eiq0(ua

.
2ub

.)&. ,

52DVE d3r (
aÞb

8 cos@q0~ua
,2ub

,!#e2q0
2f ab,
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52DVE d3r (
aÞb

8 cos@q0~ua
,2ub

,!#e2h l (12dab),

~A9!

with h as given in Eq.~3.19a!, where

f ab5Gaa
. ~r50!2Gab

. ~r50!, ~A10!

in Gaa
. (0) there isno implied sum overa and

Gab
. ~r !5E

Le2 l

L d2q'

~2p!2E
2`

` dqz

2p
Gab~q!eiq•r. ~A11!

Using

Gaa~q!2Gab~q!5
1

Kq'
4 1Bqz

2 ~12dab!, ~A12!

which is obviously independent of the tilt-disorder varian
Dh , and Fourier transforming the last equality in Eq.~A12!,
we obtain

h5
q0

2

4pAKB
. ~A13!

Hence, for an infinitesimald l the ‘‘graphical’’ correction to
DV to first order inDV is

dDV
~1!52hDVd l . ~A14!

We now proceed to compute the corrections todH@ua
,# to

second order inDV , which we anticipate will result in highe
order corrections to the random field disorderdDV , as well
as a correction to tilt disorder varianceDh . We compute

^HD
2 &.

c [^HD@ua
,1ua

.#2&.
c ,

5DV
2E

rr 8
( 8

aÞb,a8Þb8
Tab

a8b8~r2r 8!,

~A15!

where* r[*d3r , the prime on the sum now excludesa5b
and/ora85b8 terms, and

Tab
a8b8~r2r 8![^cos@q0„ua~r !2ub~r !…#

3cos@q0„ua8~r 8!2ub8~r 8!…#&.
c ,

5
1

4 (
q,q8

^eiq[ua(r )2ub(r )] 1 iq8[ua8(r8)2ub8(r8)]&.
c ,

5
1

4 (
q,q8

eiq[ua
,(r )2ub

,(r )] 1 iq8[u
a8
,

(r8)2u
b8
,

(r8)]

3Sab
a8b8~r2r 8!. ~A16!

In the above expression theq andq8 variables independently

range over two values6q0, and Sab
a8b8(dr ) ~with dr[r

2r 8) is the result of the cumulant average overua
. fields

given by
Sab
a8b8~dr ![^eiq„ua

.(r )2ub
.(r )…1 iq8„ua8

.
(r8)2u

b8
.

(r8)…&.
c ,

5e2q0
2( f ab1 f a8b8)

3@e2qq8„Gaa8
.

(dr )1G
bb8
.

(dr )2G
ab8
.

(dr )2G
ba8
.

(dr )…

21#,

5e2q0
2( f ab1 f a8b8)

3@e2qq8GT
.(dr )(daa81dbb82dab82dba8)21#,

~A17!

where to obtain the last equation above we used Eq.~A3a!.
The real space propagator of the short wavelength mo
GT

.(dr ) is by definition a partial Fourier transform of th
propagator in momentum space, Eqs.~A3a!,~A3b!, which for
infinitesimal renormalization group transformation is int
grated only over an infinitesimal shell of wave vecto
Le2d l,q',L. This implies that the exponential in the la
equation can be expanded in powers of an infinitesim
GT

.(dr ) proportional tod l

Sab
a8b8~dr !5e2q0

2( f ab1 f a8b8)F24qq8GT
.~dr !daa8

1
q0

4

2
@GT

.~dr !#2

3~daa81dbb82dab82dba8!
21•••G ,

~A18a!

5e2q0
2( f ab1 f a8b8)

†24qq8GT
.~dr !daa8

12q0
4@GT

.~dr !#2

3~daa81daa8dbb822dab8dbb8!1 . . . ‡,

~A18b!

where to obtain the first terms in the respective square bra

ets of Eqs.~A18a!,~A18b!, above, we anticipated thatSab
a8b8

will be summed overq and q8, which allowed us to make
simplifying changes in summation variablesa,a8,b,b8. In-

serting this last expression Eq.~A18b! into Tab
a8b8(dr ), Eq.

~A16!, and performing the sum overq,q8, we obtain

Tab
a8b8~dr !5q0

2e2q0
2GT

.(0)(22dab2da8b8)

3@2GT
.~dr !daa8A2ab

a8b8~r ,r 8!

1q0
2@GT

.~dr !#2~daa81daa8dbb8

22dab8dbb8!A1ab
a8b8~r ,r 8!#, ~A19!

where
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A6ab
a8b8~r ,r 8!5cos@q0„ua

,~r !2ub
,~r !2ua8

,
~r 8!1ub8

,
~r 8!…#

6cos@q0„ua
,~r !2ub

,~r !1ua8
,

~r 8!

2ub8
,

~r 8!…#. ~A20!

Naively, it appears that thedab , da8b8, and 22dab8dbb8
terms above contribute to the renormalization ofDV to sec-
ond order in DV . However, upon summation ove
a,b,a8,b8, these terms, in fact, vanish, because in the s
over replica indices we exclude the diagonal termsa5b and
a85b8. If we had kept these diagonal contributions in o
definition of HD , a ~somewhat less obvious! cancellation
would have taken place between various terms with the fi
results, of course, unchanged. Inserting the resulting exp
sion Eq.~A19! into Eq. ~A15!, we obtain

^HD
2 &.

c 5I 11I 21I 3 , ~A21!

where we have defined three contributions to^HD
2 &.

c ,

I 15DV
2E

r ,dr
( 8

aÞb,aÞb
q0

2e22q0
2GT

.(0)

3@2GT
.~dr !1q0

2@GT
.~dr !#2#

3cos@q0„ua
,~r !2ub

,~r !2ua
,~r 8!1ub8

,
~r 8!…#,

~A22a!

I 25DV
2E

r ,dr
( 8

aÞb,aÞb8
q0

2e22q0
2GT

.(0)

3@22GT
.~dr !1q0

2@GT
.~dr !#2#

3cos@q0„ua
,~r !2ub

,~r !1ua
,~r 8!2ub8

,
~r 8!…#},

~A22b!

I 35DV
2E

r ,dr
(

aÞb
8 q0

4e22q0
2GT

.(0)@GT
.~dr !#2

3$cos@q0„ua
,~r !2ub

,~r !2ua
,~r 8!1ub

,~r 8!…#

1cos@q0„ua
,~r !2ub

,~r !1ua
,~r 8!2ub

,~r 8!…#%,

~A22c!

We now carefully analyze each of the above terms. Althou
naively I 1 andI 2 appear as three-replica terms, in fact, as
will see below,I 1 renormalizes bothDV and Dh , and I 2 is
irrelevant.

I 1 naturally splits up into ab5b8 term and everything
else:

I 15DV
2E

r ,dr
q0

2e22q0
2GT

.(0)$2GT
.~dr !1q0

2@GT
.~dr !#2%

3~ I 1a1I 1b!, ~A23!

where
m

r

al
s-

h
e

I 1a5 ( 8
aÞb8,bÞb8

cos@q0„ua
,~r !2ub

,~r !

2ua
,~r 8!1ub8

,
~r 8!…#, ~A24a!

I 1b5 (
aÞb

8 cos@q0„ua
,~r !2ub

,~r !2ua
,~r 8!1ub

,~r 8!…#.

~A24b!

Since the functionGT
.(dr ) multiplying the above expres

sions is a short-ranged function ofdr ~with range on the
orderL21, the inverse of the ultra-violet cutoffL), we can
safely expand the above expressions in powers ofdr :

I 1a5 (
aÞb8,bÞb8

8 cos@q0„ua
,~r !2ub

,~r !2ua
,~r1dr !

1ub8
,

~r1dr !…#,

' (
aÞb8,bÞb8

8 cos@q0„ub
,~r !2ub8

,
~r !

1dr•“@ua
,~r !2ub8

,
~r !#…#,

' (
bÞb8

8 ~n22!cos@q0„ub
,~r !2ub8

,
~r !…#

1 irrelevant terms, ~A25!

where the ‘‘irrelevant terms’’ are of the form of a product
cos@q0„ub

,(r )2ub8
, (r )…# and derivatives ofua

,(r )2ub8
, (r ),

and are clearly less important at long length scales than
term that we have kept. Similarly forI 1b , we obtain

I 1b5 (
aÞb

8 cos@q0„ua
,~r !2ub

,~r !2ua
,~r1dr !

1ub
,~r1dr !…#,

' (
aÞb

8 cos@q0„dr•“@ua
,~r !2ub

,~r !#…#,

' (
aÞb

8 S 12
q0

2

2
udr•“@ua

,~r !2ub
,~r !#u2D

1 irrelevant terms. ~A26!

Performing similar local expansion in powers ofdr of the
term I 2, Eq.~A22b!, it is easy to see thatI 2 contributes terms
of the form of a product cos@q0„2ua

,(r )2ub
,(r )2ub8

, (r )…#
and derivatives ofua

,(r )2ub8
, (r ), which areall irrelevant at

long scales, near the glass transition temperature, and
therefore drop them.

Finally, the analysis ofI 3 is also very similar. Thesecond
cosine in Eq.~A22c! generates a higher harmonic and
therefore irrelevant as in the analysis ofI 2, while the first
cosine gives
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I 35DV
2E

r ,dr
(

aÞb
8 q0

4e22q0
2GT

.(0)@GT
.~dr !#2

3cos@q0„ua
,~r !2ub

,~r !2ua
,~r1dr !1ub

,~r1dr !…#

'DV
2E

r ,dr
(

aÞb
8 q0

4e22q0
2GT

.(0)@GT
.~dr !#2

3S 12
q0

2

2
udr•“@ua

,~r !2ub
,~r !#u2D 1 irrelevant terms.

~A27!

Putting all this together into Eq.~A21! and dropping ir-
relevant and constant terms~which renormalize the constan
part of the free energy!, we obtain

^HD
2 &.

c '2DV
2e22q0

2GT
.(0)

3E
r
(

aÞb
8 XA~22n!cos@q0„ua

,~r !2ub
,~r !…#

1
1

2
Ci j ] i@ua

,~r !2ub
,~r !#] j@ua

,~r !2ub
,~r !#C,

~A28!

where we have defined

A[q0
2E

dr
$2GT

.~dr !1q0
2@GT

.~dr !#2%, ~A29a!

Ci j [2q0
4E

dr
$GT

.~dr !1q0
2@GT

.~dr !#2%dr idr j .

~A29b!

The first term inA andCi j is just a Fourier transform o
GT

.(r ) evaluated atq50. Because the propagatorGT
.(q) of

the high wave-vector modes by definition only has supp
near the lattice cutoffq'5L, with GT

.(q50)50, the first
terms inA andCi j vanish. With this simplificationA andCi j
can be evaluated via contour integration.

For A we easily find

A5q0
4E

dr
@GT

.~dr !#2, ~A30a!

5q0
4E

Le2d l

L d2q'

~2p!2E
2`

` dqz

2p
@GT

.~q!#2,

~A30b!

5q0
4E

Le2d l

L d2q'

~2p!2E
2`

` dqz

2p

1

~Kq'
4 1Bqz

2!2 ,

~A30c!

5
q0

4

8pL4AK3B
d l ~A30d!

[A1d l . ~A30e!
rt

The evaluation ofCi j is similar but a little more involved.
Because of the anisotropic scalingqz

2;q'
4 !q'

2 enforced by
the quadratic part of the elastic Hamiltonian, Eq.~3.8!, it is
clear that we are only interested inCi j with i , j taking on
valuesx,y, for which

Ci j
'[2q0

6E
dr

@GT
.~dr !#2dr i

'dr j
' , ~A31a!

[C'd i j
' , ~A31b!

where the second equation follows by rotational invarian
in the xy plane, which enforcesCxx5Cyy[C' and Cxy
5Cyx50, with

C'5q0
6E d2rdz r'

2 @GT
.~r' ,z!#2, ~A32a!

5
c q0

6

4pL6AK3B
d l , ~A32b!

[A2d l . ~A32c!

In the abovec is a dimensionless constant of order 1. No
comparing the expression for^HD

2 &.
c , Eq. ~A28!, with the

‘‘bare’’ Hamiltonian, Eq.~3.8!, we find

dDV
~2!52

1

2
~22n!A1DV

2d l , ~A33a!

5
n→0

2A1DV
2d l ,

dDh5A2DV
2d l . ~A33b!

We note that the graphical correction to the random fi
disorder DV is stabilizing ~negative!, leading to a stable
Cardy-Ostlund–like glassy fixed line~Fig. 6!, only for n
→0 (n,2), which can be physically understood from th
discussion given in Sec. III.

After the above integration of the short wavelength mod
ua

. , the effective Hamiltonian is a functional of the lon
wavelength modesua

, , which have an ultraviolet cutoff
Le2 l that is different from the cutoffL of the original
theory. Therefore, in order to identify the new effective co
pling constantsDV( l ),Dh( l ), . . . , we need to perform the
second part of the renormalization group transformation, t
involves the rescaling of variables, which restores the cu
in the effective theory back toL. The rescaling that accom
plishes this is

r'5r'8 el ,

z5z8ev l ,

ua
,~r !5ef lua~r 8!. ~A34!

Because the random-field nonlinearity is a periodic functi
it is convenient~but not necessary! to take the arbitrary field
dimensionf50, thereby preserving the period 2p/q0 under
the renormalization group transformation.41 Under this trans-
formation the resulting effective Hamiltonian functional ca
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be restored into its original form, Eq.~3.8!, with effective
l-dependent couplings that satisfy differential recursion re
tions, Eqs.~3.18!.

APPENDIX B: DETAILS OF THE 3 <D<7 FUNCTIONAL
RENORMALIZATION GROUP ANALYSIS,
INCLUDING ANHARMONIC ELASTICITY

In this appendix we present the details of the functio
renormalization group~FRG! calculation for the effective
replicated Hamiltonian,H5H01H int , given by Eq.~8.10!,
with the quadratic partH0

H0@ua#5
1

2E ddr (
a51

n

@K~¹'
2 ua!21B~]zua!2#, ~B1!

and the anharmonic part of the effective HamiltonianH int
5Hanh1HD given by

Hanh5
1

2E ddr (
a51

n F2B]zua~“'ua!21
B

4
~“'ua!4G ,

~B2a!

HD5E ddr (
a,b51

n F1

4
Dh~ua2ub!u“'~ua2ub!u2

2DV~ua2ub!G , ~B2b!

which incorporates both the elastic anharmonicities, pre
ously studied in Sec. VI, and the random field and tilt dis
ders of a randomly pinned smectic liquid crystal. The res
of the analysis presented below is the set of the FRG fl
equations given in Eqs.~8.11!–~8.13! of Sec. VIII.

Our RG analysis will closely follow the approach pr
sented in the previous RG sections, in particular paralle
the calculation and notation for a single harmonic disorde
three dimensions, presented in Appendix A. The differe
here is that we are interested in the effect of disorder
dimensions higher than 3. As a result, as discussed in d
in Sec. VIII, in these higher dimensions all harmonics of t
random pinning potential are equally relevant and need to
kept track of by studying the evolution of arbitrary period
functionsDV(ua2ub) andDh(ua2ub) under the RG trans
formation. Furthermore, in contrast to Appendix A, here,
addition, we are including anharmonic nonlinearities, wh
lead to the weak logarithmic anomalous elasticity discus
in Sec. VIII for 5,d,7, and to the power-law anomalou
elasticity ford,5 discussed in Sec. VI.

1. Assuming tilt disorder is irrelevant for d>5

We have argued in Secs. III and IV, that, although in
full model of a randomly pinned smectic both random
and field disorders are present, for 3,d,5, the random tilt
disorder always dominates over the random field~periodic!
disorder. However, as the power-counting suggests, fod
.5, the random tilt disorder becomes irrelevant and sme
correlations are dominated by the random field disorder
the second subsection of this appendix we will explici
demonstrate that this conclusion remains valid even w
potentially singular diagrammatic corrections toDh(ua
-

l

i-
-
lt
w

g
n
e
n
ail

e

d

ic
n

n

2ub) are taken into account. Hence, for the remainder of t
subsection, confining our discussion to dimensionsd.5,
where random tilt disorder is irrelevant, we leave it out
our analysis.

The logic of the renormalization group analysis here is
same as that used in Appendix A: we separate the fieldsua

into high and low wave-vector componentsua
. andua

, , re-
spectively, and perturbatively integrate theua

. out of the
replicated partition function. At leading order, the correcti
to the quadratic HamiltonianH0 is formally given by a cu-
mulant expansion

dH@ua
,#5^H int@ua

,1ua
.#&.

c 2
1

2
^H int@ua

,1ua
.#2&.

c 1•••,

~B3!

where, as in Appendix A, we have setT51, but, in contrast
to the calculations there, have not excluded diagonal term
the replica sum.

We first focus on the contributions to the random fie
disorderDV(u). We begin by noting that the renormalizatio
of DV(u) getsno contributions from the elastic anharmonic
ties ]zua(“'ua)2 and (“'ua)4, i.e., from the vertices in
Hanh, Eq. ~B2a!. This is because the graphs that look lik
they might renormalizeDV(ua2ub) haveq’s on the external
legs and hence renormalizeonly the tilt disorder~and other
less relevant operators!, which, as we discussed above,
irrelevant for d.5, which is the case we are considerin
here.

To first order in the disorderDV(ua2ub), keeping only
the relevant, nonconstant terms, we obtain

dHD
(1)52(

a,b
E

r
^DV~ua2ub!&. ,

'2
1

2 (
a,b

E
r
DV9 ~ua

,2ub
,!^~ua

.2ub
.!2&. ,

'2dl
Cd21Ld23

2ABK
(
a,b

E
r
DV9 ~ua

,2ub
,!, ~B4!

which when compared to the definition ofHD gives

dDV
(1)~u!'dl

Cd21Ld23

2ABK
DV9 ~u!, ~B5!

with the primes indicating a partial derivative with respect
u. To obtain the final result above, we used the Gaussian
of the total effective Hamiltonian

HGauss5
1

2Er
H(

a
@B~]zua!21K~¹'

2 ua!2#

2(
ab

DV9 ~0!~ua2ub!2J ~B6!

to calculate

^~ua
.2ub

.!2&.52E
q

.

@^uua~q!u2&2^ua~q!ub~2q!&#

~B7!
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using the corresponding propagator

^ua~q!ub~2q!&5
dab

Bqz
21Kq'

4
2

2DV9 ~0!

@Bqz
21Kq'

4 #2
, ~B8!

obtained fromHGaussby manipulations virtually identical to
those described earlier for the tilt-only model, Sec. VI.

The contribution to second order inDV(u) is given by

dHD
(2)'2

1

4 (
a1 ,b1 ,a2 ,b2

E
r1,r2

DV9 @ua1

, ~r1!2ub1

, ~r1!#

3DV9 @ua2

, ~r2!2ub2

, ~r2!#I a1b1

a2b2~r1 ,r2!, ~B9!

where

I a1b1

a2b25^@ua1

. ~r1!2ub1

. ~r1!#2@ua2

. ~r2!2ub2

. ~r2!#2&.
c ,

~B10a!

5^@ua1

. ~r1!2ub1

. ~r1!#@ua2

. ~r2!2ub2

. ~r2!#&.
2 ,

~B10b!

5~da1a2
1db1b2

2da1b2
2db1a2

!2@GT
.~r12r2!#2,

~B10c!

54~da1a2
1da1a2

db1b2
22da1b2

db1b2
!@GT

.~dr !#2,
~B10d!

dr[r12r2, we used the Wick decomposition theorem f
Gaussian random variables (a,b,c,d)

^abcd&5^ab&^cd&1^ac&^bd&1^ad&^bc&, ~B11!

to go from Eq.~B10a! to Eq.~B10b!, and used the symmetr
of the summand indHD

(2) , Eq. ~B9! undera,b interchange
to get Eq.~B10d!.

Substituting the last expression forI a1b1

a2b2, Eq. ~B10d!, into

dHD
(2) above and using the short-range property ofGT

.(dr )
to expandr1 as r15r21dr , keeping only the most relevan
terms, we obtain

dHD
(2)'2d l G2E

r
(
a,b

H DV9 @ua
,~r !2ub

,~r !#2

22DV9 @ua
,~r !2ub

,~r !#DV9 ~0!

1(
g

DV9 @ua
,~r !2ub

,~r !#DV9 @ua
,~r !2ug

,~r !#J ,

~B12!

where the constantG2 is defined by

G2d l 5E
dr

@GT
.~dr !#2, ~B13a!

5E
Le2d l

L dd21q'

~2p!d21E2`

` dqz

2p
@GT

.~q!#2, ~B13b!
5E
Le2d l

L dd21q'

~2p!d21E2`

` dqz

2p

1

~Kq'
4 1Bqz

2!2 ,

~B13c!

5
Cd21Ld27

8AK3B
d l . ~B13d!

It is easy to see by power-counting that the three-rep
~last! term in dHD

(2) , Eq. ~B12! is irrelevant relative to the
two-replica terms and can therefore be neglected. Compa
the resulting expression fordHD

(2) with HD , Eq. ~B2b! we
find

dDV
(2)~u!'d l

Cd21Ld27

8AK3B
@DV9 ~u!222DV9 ~u!DV9 ~0!#.

~B14!

Combining the first and second order contributions toDV(u),
Eqs. ~B5!,~B14!, with the length and field rescalings, Eq
~A34!, necessary to bring the ultraviolet cutoff back toL, we
obtain the recursion relation forDV(u) given by

] lDV~u,l !5~d11!DV~u,l !1
h~ l !

q0
2 DV9 ~u,l !

1F1

2
@DV9 ~u,l !#22DV9 ~u,l !DV9 ~0,l !G

3
Cd21Ld27

4AK3~ l !B~ l !
, ~B15!

where, for simplicity, in the above we have set the fie
rescalingf50 and usedv52.

We now turn to the renormalization of the elastic mod
B and K. As discussed in Sec. III, statistical symmetry fo
bids renormalization of these by disorder alone~the same
argument applies to theXY spin stiffness in the random field
XY model!. However, anharmonic elasticity, special
smectic liquid crystals, conspires with the random fie
DV(u) to renormalizeB andK.

Calculations very similar to those for the tilt-only mod
treated in Sec. VI show that the graphical corrections toB
andK found in that section can be taken over for the rand
field disorder, with the identification

Dh
eff522DV9 ~0!/L2. ~B16!

In addition to a detailed perturbative RG calculation, this c
also be easily seen by comparing

DV~ua2ub!'const1
1

2
DV9 ~0!~ua2ub!2, ~B17!

to the disorder part of the the tilt-only Hamiltonian.
Using this mapping we immediately find

dK

dl
5Fd231

d2212d123

8~d221! S B

K5D 1/2

DV9 ~0!Cd21Ld27GK,

~B18a!
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dB

dl
5Fd231

3

8S B

K5D 1/2

DV9 ~0!Cd21Ld27GB.

~B18b!

Now identifying the dimensionless measure of the rand
field disorder

D̃V~u,l ![
Cd21Ld27

4AK3~ l !B~ l !
DV~u,l !, ~B19!

and using it inside Eqs.~B15!, ~B18a!, and ~B18b!, we ob-
tain the FRG flow Eqs.~8.13!, ~8.11!, and ~8.12! given in
Sec. VIII.

2. Proving that tilt disorder is irrelevant for d>5

In the previous subsection we have ignored the tilt dis
der for d.5, arguing for its irrelevance based on powe
counting in these higher dimensions. However, the~super-
naturally! alert reader might be concerned~as we were at
first! that the singular behavior ofD̃V* (u), Eq. ~8.23! @in par-
ticular, the divergence of its fourth derivative with respect
u, D̃V

( iv)(u,l ) asl→`] could potentially invalidate the simple
power-counting argument that tilt disorder is irrelevant
d.5. Here, we demonstrate that this does not happen
deriving a functional renormalization group recursion rela
tion for Dh(u,l ) to linear order inDh(u,l ) itself at the~FRG!

fixed pointD̃V* (u), Eq. ~8.23! found in Sec. VIII. We obtain

] lDh~u,l !5~d21!Dh~u,l !1S h~ l !

q0
2 1D~u! DDh9~u,l !

1c~D̃V*
- ~u!!2AK3~ l !B~ l !L52d/Cd21 ,

~B20!

where we have defined the ‘‘position-dependent diffusivit

D~u![c2@D̃V*
9 ~u!2D̃V*

9 ~0!#, ~B21!

andc andc2 are dimensionless constants of order unity.
As in the tilt-only model, the important quantity prove

not to beDh(u,l ), but rather the dimensionless combinati

g~u,l ![Dh~u,l !S B~ l !

K5~ l ! D
1/2

Cd21Ld25, ~B22!

whose recursion relation readily follows from those forK( l ),
B( l ), andDh(u,l ), Eqs.~B18a!, ~B18b!, and~B20!, respec-
tively,

] lg~u,l !5S 52d1c3

D̃V*
9 ~0!

l2~ l !
D g~u,l !

1S h~ l !

q0
2 1D~u! Dg9~u,l !1c

@D̃V*
- ~u!#2

l2~ l !
,

~B23!
-
-

r
by

’

wherec3[3/41(d2212d123)/@2(d221)#.
The solution to this inhomogeneous linear partial diffe

ential equation can, as usual, be written as a sum of
solution to thehomogeneousequation obtained by droppin
the last term, plus any solution of the inhomogeneous eq
tion. The solution to the homogeneous equation can be w
ten as an expansion in a complete basis

ghom~u,l !5 (
n50

`

gn~ l !fn~u!, ~B24!

where the setfn(u) are the eigenfunctions of the operat
D(u)]u

2 defined and discussed in Sec. VIII.
The expansion coefficientsgn( l ) can be readily found

from Eq. ~B23! to be

gn~ l !5gn~0!e2lnl expS 2E
0

l

dl8
c3uD̃V*

9 ~0!u

l2~ l 8!
D ,

~B25!

with

ln[d251uGnu, ~B26!

which is positive for alln for d.5, and we have dropped th
h( l ) term, which vanishes exponentially fast asl→`. Since
the second exponential in Eq.~B25! is a monotonically de-
creasing function ofl, every gn( l ), and, hence, the entire
homogeneous solution Eq.~B24! for g(u,l ), vanishes asl
→`.

Thus, the only possible problem with neglecting tilt di
order ~for d.5) must come from theinhomogeneoussolu-
tion for g(u,l ). We will now show that this vanishes as we
thereby proving that tilt disorder is irrelevant ford.5. We
do this by finding an asymptotic~large l ) solutiongI(u,l ) to
the full, inhomogeneous equation of the form

gI~u,l !5 (
n51

`
f n~u!

l n , ~B27!

which clearly vanishes asl→`.
Inserting Eq.~B27! into Eq. ~B23!, and keeping in mind

that 1/l2( l ) is itself }1/l , as l→` @see Eq.~8.17!#, we find
an equation forf 1(u) by equating coefficients of the leadin
order 1/l terms on both sides of Eq.~B23!. The resulting
equation reads

D~u! f 19~u!2~d25! f 1~u!52
cA~d!uD̃V*

- ~0!u2

uD̃V*
9 ~0!u

,

~B28!

where we have definedA(d)[(d221)/(d216d213) and
used Eq.~8.17! for l( l ). Once f 1(u) is known, the remain-
ing f n’s for n.1 can be determined by equating coefficien
of 1/l n on both sides of Eq.~B23! after inserting the ansat
Eq. ~B27!. This gives

D~u! f n9~u!2~d25! f n~u!5„c3A~d!112n…f n21~u!.
~B29!

Now, to complete the proof thatgI(u,l ) vanishes asl
→`, we need merely show that allf n’s obtained from Eq.
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~B28! and Eq.~B29! are finite for alln. If f 1(u) is finite, then
clearly f 2(u) is also finite, since no derivatives off 1(u)
@which could potentially diverge iff 1(u) is cusped# appear
in Eq. ~B29!. This finiteness argument then obviously recu
sively carries through via Eq.~B29! to all of other f n(u)’s.

Although f 1(u) can be found explicitly applying standar
integration methods to Eq.~B28!, our only goal here is to
demonstrate thatf 1(u) is finite. To do this we simply expand
f 1(u) in eigenfunctionsfn(u) of the operatorD(u)]u

2 :

f 1~u!5 (
n50

`

anfn~u!. ~B30!

Inserting this expansion into Eq.~B28!, multiplying both
sides byfm(u), integrating fromu50 to u5a, and using
the eigenvalue equation, Eq.~8.46! and the orthogonality re
lation Eq.~8.47!, we obtain

am5
cA~d!

~d251uGmu!uD̃V*
9 ~0!u

Sm , ~B31!

where the source

Sm[E
0

auD̃V*
- ~u!u2fm~u!

I mD~u!
du ~B32!

was shown to be finite for allm ~including m50) in Sec.
VIII.

Hence,f 1(u) will be finite for all u, providedthat the sum

(
n50

`
Snfn~u!

d251uGnu
5

uD̃V*
9 ~0!u

cA~d!
f 1~u! ~B33!

converges for allu.
To prove that it does, let us follow the obvious conventi

of ordering the eigenmodesn such thatuGnu is a monotoni-
cally increasing function ofn. Then, for largen, we can use
the WKB solution for the eigenfunctionsfn(u)

fn~u!5D1/4~u!sinFnq0D̄1/2E
0

u du8

D1/2~u8!
G ~B34!

and eigenvaluesGn

Gn52D̄n2q0
2 , ~B35!

where we have defined the suitably averaged diffusion c
stant

D̄[F1

aE0

a du8

D1/2~u8!
G22

, ~B36!

to prove the convergence of the sum in Eqs.~B33!. Equation
~B34! shows thatfn(u) is bounded from above for allu „by
@maxuD(u)#1/4

…, which in turn implies that theSn’s are also
bounded above@since D̃V*

- (u) is finite for all u, and so is
fn(u)] as n→`. Then using Eq.~B35! for the Gn , we see
that the largen behavior of the summand in Eq.~B33! is
bounded above by const./n2. Hence, the sum converges, an
so f 1(u) is in fact finite for all u; consequently allf n(u)’s
-

n-

are also finite. This therefore demonstrates thatg(u,l ) van-
ishes asl→`, proving our assertion that tilt disorder is ir
relevant ford.5.

APPENDIX C: DERIVATION OF SMECTIC ‘‘COULOMB
GAS’’ DISLOCATION THEORY,

WITHOUT EULER-LAGRANGE EQUATION

In this appendix we derive the Coulomb gas descript
of smectic dislocation loops characterized by an effect
Hamiltonian, Eq.~5.15!. However, here, in contrast to th
derivation of the main text, we accomplish thiswithoutmini-
mizing the Hamiltonian with respect to smooth smectic d
formations.

Our starting point is the elastic Hamiltonian for a tilt-on
model of a randomly pinned smectic, given in Eq.~5.1!

H@u#5E ddr FB

2
~]zu!21

K

2
~¹'

2 u!21h~r !•“'uG .
~C1!

We include dislocations in above description by allowing t
layer displacementu(r ) to be a multi-valued function, such
that

“3“u5m. ~C2!

We then decompose“u into a sum of a singular,purely
transversepart vd satisfying

“3vd5m, ~C3!

and a nonsingular, purely longitudinal part“up , according
to

“u5vd1“up . ~C4!

The difference between this approach and our earlier der
tion in Sec. V is in our arbitrary choice of the separation
“u into phonon and dislocation parts. In Sec. V, we chosevd
to minimize H given m; here, we simply choose it to b
purely transverse. We will now demonstrate that this diff
ence between these twoarbitrary choices has no effect on
the final answer, as it should not.

Substituting this decomposition intoH@u#, Eq. ~C1!, we
obtain

H tot@up ,vd#5Hel@up#1Hv@vd#1H int@up ,vd#, ~C5!

where~dropping the subscriptd on v),

Hv5E ddr FB

2
vz

21
K

2
~“'•v'!21h~r !•v'G , ~C6a!

5E ddr FB

2
vz

21
K

2
~]zvz!

21h~r !•v'G , ~C6b!

and

H int5E ddr @Bvz]zu1K~“'•v'!¹'
2 u#, ~C7a!

5E ddr @Bvz]zu2K]zvz¹'
2 u#. ~C7b!
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In going from Eq.~C6a! to Eq. ~C6b! and from Eq.~C7a! to
Eq. ~C7b!, we used the purely transverse property ofv,
“•v50, or equivalently,

“'•v'1]zvz50, ~C8!

to eliminatev' in favor of vz .
We now integrate over the single-valued phonon deg

of freedomup . After a simple Gaussian integration, som
algebra, and Fourier transformation, we obtain an effec
Hamiltonian

Hd5E
q
FKq4

2Gq
uvz~q!u21b~q!•h~2q!G , ~C9!

where,Gq5qz
21l2q'

4 , andb(q) is given by

bi~q!5FP' i j
T ~q!1

q2

Gq
P' i j

L ~q!G v' j~q!, ~C10!

with

P' i j
T ~q!5d i j

'2
qi

'qj
'

q'
2 , ~C11a!

P' i j
L ~q!5

qi
'qj

'

q'
2 , ~C11b!

the transverse and longitudinal projection operators in
space (') perpendicular toẑ.

Now Fourier transforming Eq.~C3!, and solving it for
v(q), keeping in mind thatv is purely transverse, we find

v i~q!5 i e i jkqjmk /q2. ~C12!

Using this solution to eliminatev inside Hd , Eq. ~C9!,
above, in favor of the dislocation densitym, we obtain the
final expression for the dislocation loop Hamiltonian, E
~5.15!, quoted in the main text.

APPENDIX D: ANALYSIS OF FLUCTUATIONS
IN THE DUAL MODEL OF DISORDERED SMECTICS

IN TYPE I LIMIT

In this appendix we analyze the type I regime of the d
disordered smectic liquid crystal model derived and stud
in Sec. V. In this regime, we will computeexactlythe effec-
tive free energy and as a by-product obtain from it the fl
tuation corrections to the reduced dual transition tempe
ture, given in Eq.~5.37!.

Our starting point is the replicated dual ‘‘action’’Sr given
in Eq. ~5.33!, together with the quenched ‘‘gauge field’’a
variance, given by Eq.~5.34b!. We build on the ideas devel
oped in Ref. 15, generalizing them here to disordered s
tems. As discussed in these references and in Sec. V, in
type I regime the order parameterc is significantly stiffer
than the gauge fieldA and can therefore be accurately treat
in a mean-field approximation. This amounts to takingc(r )
to be constant in space. The constantc is then calculated by
minimizing the resultant free energy, which can now
computed exactly, without further approximations. As i
clear from the discussion in Sec. V, to do so, we must c
culate
e

e

e

.

l
d

-
a-

s-
he

l-

Zn̄5
1

Na
E 8

@da# )
a51

n

@dAa#e2Sm f[c,Aa ,a] , ~D1!

with

Smf@c,Aa ,a#5Sr@c,Aa ,a#

1(
q

Gq
2q2

2Dhq'
2 qz

2
Pi j

'ai~q!aj~2q!, ~D2!

5nV~ tucu21uucu4!1
1

2Er
F(

a
uAau22nuau2

12i(
a

Aa•aG ucu2

1
1

2 (
q,a

@GA
21~q!Pi j

'~q!Aa i~q!Aa j~2q!

1Ga
21~q!Pi j

'~q!ai~q!aj~2q!#.

~D3!

The prime on the integral in Eq.~D1! indicates that it is
constrained to be taken only over thetransverseparts ofAa
anda, V is the volume of the system,Na is the normalization
factor coming from the probability distribution ofa, and will
be chosen such thatZn̄→1 asn→0, and

GA
215

Gq

Kq'
2

, ~D4a!

Ga
215

Gq
2q2

Dhq'
2 qz

2
, ~D4b!

can be read off from Eqs.~5.33! and ~5.34b!, taking the
appropriate long wavelength limit in the latter.

The great virtue of the effective ‘‘action’’Smf is that it is
quadratic in Aa anda and therefore allows exact evaluatio
of the functional integrals over them in Eq.~D1!. Taking
these Gaussian integrals, we obtain

ln Zn̄52VFn~ tucu21uucu4!1
n~d22!

2 E
q
ln@GA

21~q!1ucu2#

1
~d22!

2 E
q
ln@Ga

21~q!2nucu2#G2 ln Na , ~D5!

where the factors ofd22 correspond to the fact that ther
ared22 transverse ‘‘gauge-field’’ components ofAa anda,
due to the transversality constraint on the functional integ
discussed above.

We observe that, as expected, the normalization factorNa
for the probability distribution ofa, given by

ln Na52V
~d22!

2 E
q
ln@GA

21~q!#, ~D6!
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guarantees that lnZn̄→0 asn→0, IncorporatingNa into Eq.
~D5! gives

ln Zn̄52VnF ~ tucu21uucu4!1
~d22!

2 E
q
ln~GA

21~q!1ucu2!

1
~d22!

2n E
q
ln~12nGa~q!ucu2!G . ~D7!

Expanding this inn, we find

ln Zn̄52VnF tucu21uucu41
d22

2 E
q
ln@GA

21~q!1ucu2#

2
d22

2
ucu2E

q
Ga~q!G1O~n2!. ~D8!

Now using the standard replica expression for the aver
free energy, we finally obtain

F̄MF5 lim
n→0

S 2kBT
Zn21

n D ~D9a!
s.

,

ys
,

e

5 lim
n→0

S 2kBT
lnZn

n D , ~D9b!

5kBTVF tRucu21uucu4

1
d22

2 E
q
ln~GA

211ucu2!G , ~D9c!

where the renormalized reduced temperaturetR is given by

tR5t2
d22

2 E
q
Ga~q!, ~D10!

which, using Eq.~D4b!, is precisely the result used in Eq
~5.37! of Sec. V to assess the stability of the disorder
smectic to dislocation unbinding. Thus, the result of o
more rigorous and systematic perturbation theory is rec
ered by this fluctuation corrected mean field theory. The
nealed term in Eq.~D9c! is analogous to the term that lead
to a fluctuation-driven first-order transition in type
superconductors.15 Here, however, its effects are innocuou
expanding the integrand inucu2 leads only to a finite renor-
malization oft, plus a non-analyticucud11 piece, which only
leads to a finite renormalization ofu in d53.
.
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