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Statistical properties of local work function on stepped surfaces

Z. L. Mišković,* S. G. Davison,† and F. O. Goodman†
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Local electrostatic potential of dipole rows along the steps on a solid surface, generated by the Smolu-
chowski electron smoothing effect, exhibits large fluctuations in the directions parallel to the surface. We
analyze statistical properties of this potential for the distances above the surface, ranging from several atomic
units to the macroscopic lengths. Complete probability density of the potential is evaluated for regularly spaced
steps and for randomly distributed steps. Moreover, correlation function of the potential, probed at two differ-
ent points, is analyzed in terms of the probability density for the terrace lengths between two consecutive steps.
Several models for the latter quantity have been tested, giving rise to various forms of the distance dependence
of the potential fluctuation above the surface.@S0163-1829~99!04927-9#
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I. INTRODUCTION

It is well documented that atomic-scale defects on s
faces, such as steps, kinks, adatoms, vacancies, etc.,
dramatic influence on many surface processes, including
ticle and light scattering, sticking, chemical reactions, h
erogeneous catalysis, or film growth.1,2 Structural and elec-
tronic properties of such defects have been studied
numerous surface analytical techniques, involving vario
ranges of sensitivity to distances across the surface and
pendicular to it. Ordinary work function measurements3,4

provide information on averages of surface electronic pr
erties on a macroscopic scale, covering large surface a
and large distances from the surface. Already at this le
the influence of surface defects shows up as a linear cha
of the work function with increasing density of defects. F
example, the work function of a metal surface may be lo
ered by as much as several eV due to adsorption of alk
metal atoms at submonolayer coverages.3 On the other hand
the work function of vicinal surfaces may be lowered by
much as several tenths of eV with increasing step dens
when compared to the work function of the correspond
low-index plane.4

These facts indicate the existence of stronglocalizeddi-
poles at the surface, associated with defects, which coun
act the normal surface dipole potential. In the case of st
the microscopic mechanism responsible for the localized
poles is the Smoluchowski electron smoothing effect.5 The
electron distribution at the surface does not follow the sh
step geometry but rather flows from the upper to the low
terrace, giving rise to a local dipole momentma per step
atom which is oriented along the outwards surface norm
Therefore, when a number of defects is present on a surf
their electrostatic potential, at a distance close to the surf
will fluctuate in directions across the surface, depending
the geometric distribution of defects. Variation of this pote
tial is sometimes called thelocal work function,6 and has
been the subject of many studies over the past decade
cause it generates local fields on the surface responsibl
increased chemical reactivity of surfaces with defects.
example, photoemission of adsorbed xenon7 ~PAX! has been
used to show the lowering of the local work function at ste
PRB 600163-1829/99/60~3!/2025~8!/$15.00
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on a metal surface by as much as;1eV compared to the
adjacent terrace sites. A similar effect has been recently c
firmed by using scanning tunneling microscopy~STM!.8

While techniques such as PAX and STM provide inform
tion on the local work function with atomic resolution, the
are limited to rather short distances from the surface, of
order of several atomic units. On the other hand, low-ene
ion surface scattering9,10 ~ISS! has been shown to be capab
of probing distances of around 10 atomic units or mo
above the surface. This feature has been used recent
study the local work function on surfaces with adsorb
alkali-metal atoms. Moreover, preliminary results11 show
that ISS may also be quite sensitive to the presence of
face steps.

In the present article, we develop a theoretical model
describing statistical properties of the local work functi
above a surface with steps, for a range of distances f
several atomic units to macroscopic distances. The rand
variable is the position in the plane parallel to the surfa
chosen to probe the local work function, while the distan
from the surface is considered a deterministic variable.
doing so, we are able to introduce into the theory the inf
mation on the statistics of step arrangements across the
face, which may be available from diffraction studies
stepped surfaces,12 from reflection electron microscop
~REM!,13 or from direct measurements of the terrace leng
by STM.8 The development of the present theory is som
what similar to our previous work on statistical properties
the electrostatic potential of the adsorbed atoms in the c
text of ISS.10 In modeling stepped surfaces, we actually wo
with a one-dimensional model of surface defects, where
steps are represented by a system of straight-line dip
rows, parallel to each other, with a certain one-dimensio
distribution of their positions on the surface, in the directi
perpendicular to steps. In particular, we focus first on the t
extreme cases of a perfectly regular and a completely
dom distribution of steps, but also bring into the theory t
temperature effects by using a model for thermal fluctuat
of step positions on a surface. We present data on statis
properties of the electrostatic potential of the step dip
rows, probed at a randomly chosen point above the sur
~static regime!, as well as the correlation function of th
2025 ©1999 The American Physical Society
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2026 PRB 60Z. L. MIŠKOVIĆ, S. G. DAVISON, AND F. O. GOODMAN
potential probed at two different points above the surfa
~dynamic regime!. This latter regime is relevant for studyin
stepped surfaces by an ISS technique, especially under g
ing scattering conditions, which we plan to complete so
Nevertheless, we believe that the results of the present p
will be useful in many other applications, including~static!
PAX and STM techniques, as well as~dynamic! studies of
secondary electron and ion emission properties of step
surfaces, or examination of the role of random surface fie
in time-of-flight~TOF! measurements.14

The paper is organized as follows. In Sec. II, we evalu
the exact and complete probability density for the elect
static potential at a given distance from the surface for b
the regular and the random steps models. Next, the cor
tion function of the potential is derived in Sec. III for
general step distribution and evaluated for certain spe
cases, describing thermal fluctuations of step positions
Sec. IV, we study the effects of the step dipole compon
parallel to the surface on the probability density and the c
relation function of the potential. Our concluding remar
are given in Sec. V. Atomic units are used throughout
paper, unless otherwise explicitly indicated.

II. REGULAR AND RANDOM STEPS

We place thex,y plane in the surface, take all the ste
parallel to they axis, and direct thez axis along the outwards
surface normal. The positions ofN steps, distributed over th
macroscopic lengthL of the surface along thex axis, are
described by an N-body joint-probability density
FN(x1 ,x2 , . . . ,xN), which normalizes to unity. For a homo
geneous system of steps, the reduced one-body distribu
function, which normalizes toN, is given by f 1(x)5r,
wherer5N/L51/̂ l & is the linear density~alongx axis! of
steps. Note that̂l &, the average separation between two a
jacent steps, or the average length of terraces between
steps, is usually readily available from experiments and
;102.

Assuming that all the steps are monatomic, with a s
heightd, we denote bym the linear density~alongy axis! of
the dipole moment of the dipole row, associated with ea
step. If the lattice spacing along the step isa, then m
5ma /a, where the dipole moment per step atomma may be
estimated asqd, based on microscopic measurements
calculations15 of the charge redistributionq per step atom
due to the Smoluchowski smoothing effect. We assume
this and the following section that the dipole moment is p
dominantly perpendicular to the surface,m5m'.0, so that
the potential due to a single step8 is V(x,z)52m'z/(x2

1z2) for distancesz@d. The total potential, probed at th
point (x,z), is the sumU(x,z)5(nV(x2xn ,z). Therefore,
the average potential, for any distribution of steps, reduce

^U&5E dx f1~x!V~x,z!52prm' , ~1!

which is independent ofz and equals precisely the magnitud
of the macroscopic work function loweringuDfu ~typical
values areuDfu;1022).

For the case of regularly spaced steps, such as a vic
surface at low temperatures, the total potential is a perio
e
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function of x with the period^ l &, for which the Fourier co-
sine series can be summed, as follows:

Uperiod~x,z!5^U&

sinhS 2p

^ l &
zD

coshS 2p

^ l &
zD2cosS 2p

^ l &
xD . ~2!

Since this periodic potential is probed at a randomly cho
coordinatex, its probability density may be expressed as

Dreg~U;z!5
1

^ l &E2^ l &/2

^ l &/2
dx d@U2Uperiod~x;z!#. ~3!

On introducing reduced quantitiesz52prz, v5U/^U&
andD(v;z)5^U&D(U;z), one obtains

D reg~v;z!5
1

pv
~2v cothz2v221!21/2

3H~2v cothz2v221!, ~4!

whereH stands for the Heaviside step function.D reg(v;z) is
shown in Fig. 1 for several values of the reduced distancz.
The vertical lines represent the lowest, tanh(z/2), and the
highest, coth(z/2), value of the reduced potentialv for a
given distancez, whereD reg(v;z) exhibits integrable dis-
continuities.

In general, the probability density of the total potential
the ensemble averageD(U;z)5^d@U2(nV(x2xn ,z)#&,
taken with respect to theN-body probability densityFN .
When the probability of a step occurring anywhere on
surface of the lengthL is unaffected by the presence of oth
steps, theN-body probability density is simplyFN5L2N.
We call this model of noninteracting steps therandom
model, and obtain the probability density of the total pote
tial, probed at the distancez, in the form

Drand~U;z!5E
2`

` dt

2p
expH i tU 2rE

2`

`

dx

3$12exp@2 i tV~x,z!#%J , ~5!

FIG. 1. Probability density of the potential for the regular ste
model, versus reduced potentialv, shown for several values of th
reduced distance,z51/2,1, and 2.
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PRB 60 2027STATISTICAL PROPERTIES OF LOCAL WORK . . .
which, in terms of reduced quantities, is

D rand~v;z!5
z

pE0

`

dt cos$zt@v2J0~t!cost

2J1~t!sint#%exp$2zt@J0~t!sint

2J1~t!cost#%, ~6!

where J0,1 stand for the ordinary Bessel function
D rand(v;z) has been evaluated for several values of the
duced distancez, and the results are shown in Fig. 2. No
that, for sufficiently large distancesz, this function becomes
a Gaussian, peaked atv51. For intermediate values o
z, D rand(v;z) broadens and becomes very skewed and,
terestingly, develops peaks reminiscent of the edge disco
nuities ofD reg(v;z). For lower values ofz, the bulk of the
function D rand(v;z) looks very much like its regular coun
terpart in Fig. 1.

It should be noted that the first moment ofD(v;z), for
both types of step distributions, is^v&51. In order to give
the idea of the degree of fluctuation of the potential at
distancez, we evaluate the varianceŠ^U2(z)&‹5^U2(z)&
2^U&2. Introducing the reduced widthW(z)5^v2&21
5Š^U2(z)&‹/^U&2, we find

Wreg~z!5cothz21, Wrand51/z. ~7!

The fluctuation of the potential above the stepped surfac
exponentially suppressed with increasingz for regular steps,
but has a very long range of orderAW;z21/2, far above the
surface with random steps. At short distances,z!1, the po-
tential fluctuation, for both types of step distributions, has
magnitudeAŠ^U2(z)&‹5^U&/Az, which may be of the orde
of 0.1 or 1 eV.

III. CORRELATION FUNCTION OF POTENTIAL

While the results of the preceding section refer to sta
properties of the local work function, we wish to explo
here the dynamic regime of probing the total potential of
stepped surfaces at two points (x1 ,z1) and (x2 ,z2), where
z1.0 andz2.0. To this end, we derive the correlation fun

FIG. 2. Probability density of the potential for the random ste
model, versus reduced potentialv, shown for several values of th
reduced distance,z51/2, 1, 2, 4, and 10.
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tion of the total potential in terms of the reduced two-bo
distribution function f 2(x1 ,x2) @which normalizes toN(N
21)#, as follows

C~x22x1 ;z1 ,z2![^U~x1 ;z1!U~x2 ;z2!&2^U&2

5E dx18E dx28 V~x12x18 ,z1!V~x2

2x28 ,z2!

3@rd~x282x18!1 f 2~x282x18!2r2#.

~8!

We have used here the fact thatf 1(x)5r and f 2(x1 ,x2)
5 f 2(x12x2)5 f 2(x22x1) for a translationally invariant sys
tem of steps.

It is instructive, at this point, to make contact with th
probability densityP( l ) of the terrace lengthsl between two
consecutive steps. This function is, in principle, direc
available from STM or REM measurements,8,13 or may be
related to the diffraction data from stepped surfaces.12 More-
over, significant theoretical advances have been achieve
modeling P( l ) to reflect the thermodynamics of steppe
surfaces.12,16 Note thatP( l ) is normalized to unity, with the
mean^ l & and the variances25^ l 2&2^ l &2. Taking the limit
L˜`, together withN˜`, and noting thatf 2(x) dx repre-
sents the probability of having a step indx at x, given a step
at the origin, we may write

f 2~x!5r (
n51

` E
0

`

dl1 P~ l 1!•••E
0

`

dln P~ l n!

3FdS x2(
j 51

n

l j D 1dS x1(
j 51

n

l j D G . ~9!

Going to the Fourier transform with respect to thex coordi-
nate, the correlation function becomes

C~x22x2 ;z1 ,z2!5
^U&2

2pr E2`

`

dk S~k!exp@ ik~x22x1!

2uku~z11z2!#, ~10!

where thestructure factorof the stepped surface is given b

S~k!511
Q~k2 ih!

12Q~k2 ih!
1

Q~2k2 ih!

12Q~2k2 ih!
22prd~k!,

~11!

with

Q~k!5E
0

`

dl P~ l !exp~2 ikl !, ~12!

and h˜01 to ensure the convergence of thek integration.
Note that,Q(0)51, Q8(0)52 i ^ l &, andQ9(0)52^ l 2&.

Let us define the reduced correlation functionG(x,z)
5C(x22x1 ;z1 ,z2)/^U&2, where x5pr(x22x1) and z
5pr(z11z2). Static fluctuation of the potential, probed
the point (x1 ,z1)5(x2 ,z2), is then obtained from the width

s
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2028 PRB 60Z. L. MIŠKOVIĆ, S. G. DAVISON, AND F. O. GOODMAN
function W(z)5G(x50,z). For example, random steps a
described by the exponentialP( l )5^ l &21exp(2l/^l&) with
S(k)51, so that

G rand~x,z!5
z

x21z2
. ~13!

Regular steps are described byP( l )5d( l 2^ l &), so that

G reg~x,z!5
sinhz coshz

sin2 x1sinh2 z
21. ~14!

In order to go beyond these two extreme cases of the
distribution, one has to consider the influence of step in
actions on the functionP( l ). To this end, we may initially
neglect all energetic interactions between the steps, ex
the hard-core repulsion, which prevents steps from cros
each other~no overhangs!. It has been shown that, in thi
case, the universal~temperature-independent! two-body dis-
tribution function is16

f 2~x!5r2H 12Fsin~prx!

prx G2J . ~15!

Then, the core-repulsion form of the correlation functi
reads

Gcore~x,z!5
z22x2

2~z21x2!2 H 12e22zFcos~2x!

2
2zx

z22x2
sin~2x!G J , ~16!

with the corresponding static-regime (x50) width

Wcore~z!5~12e22z!/~2z2!. ~17!

It should be noted that these results should hold for temp
tures up to moderately high values.16 Thus, the fluctuation of
the potential, in the core-repulsion model goes
AŠ^U2(z)&‹5^U&/Az for z!1, as it did for regular and ran
dom steps, but has the formAŠ^U2(z)&‹5m' /(A2z) for
large distancesz, which is independent of the step densityr.

In order to describe the step wandering due to energ
interactions at finite temperatures, one has to focus on
dependence of the potential correlation function on
~temperature-dependent! variances2 of the functionP( l ). It
has been found recently, by using REM measurements,13 that
s may be a significant fraction of the average terrace len
^ l &. We first note that, in general, one hasS(k)˜s2/^ l &2

when k˜0 for any model forP( l ), which enables one to
express the leading term in the largez asymptotics of the
potential correlation function as
ep
r-

pt
g

a-

s

ic
he
e
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Gasymp~x,z!5
s2

^ l &2
G rand~x,z!, z@1. ~18!

Therefore, the potential fluctuation in the static regime m
be of order ofAŠ^U2(z)&‹5^U&s/A2pz^ l & at finite tem-
peratures and large distances,z@^ l &/(2p). Note thats50
for regular steps, ands5^ l & for random steps.

A useful model forP( l ), which was successfully used t
fit experimental data,13,16 is the Gaussian P( l )
5(A2ps)21exp@2(l2^l&)2/(2s2)#. Assuming that the devia
tion of the step distribution from the regular one, with i
creasing temperatureT, is dominated by energetic step inte
actions, it is instructive to estimate the change of t
potential correlation functionGGauss(x,z) in the Gaussian
model with increasings as a qualitative measure of the tem
perature effects. It has been shown13 that s may be consid-
ered proportional tôl &AT. Noting that the structure factor in
Gaussian model reads as

S~k!5
sinh~k2s2/2!

cosh~k2s2/2!2cos~k^ l &!
22prd~k!, ~19!

we have evaluated the width functionWGauss(z)
5GGauss(x50,z), and plotted in Fig. 3 the quantity

wtemp~z!5
^ l &2

s2
@WGauss~z!2Wreg~z!#, ~20!

in order to stress the role of increasing temperature in de
tion from the regular step model, which becomes import
for the potential fluctuation at large distancesz, beyond the
exponential termination of the regular step model. The
sults forwtemp(z) are shown in Fig. 3 by thick solid lines fo
several values of the ratios/^ l &, while the thin solid line
representsWreg(z). Note that, in the limit of very low tem-

FIG. 3. Temperature-dependent width function of the poten
for the Gaussian model vs reduced distancez. Thick solid curves
are evaluated withs/^ l &50.1, 0.2, 0.3, 0.4, and 0.5. Dashed lin
represents analytical limit whens˜0, while the thin solid line
shows the width function of regular steps.
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PRB 60 2029STATISTICAL PROPERTIES OF LOCAL WORK . . .
peratures (s!^ l &), one may obtain an analytical estimate f
wtemp(z) in terms of the digamma functionc, as follows

wlow temp~z!5
2

p
ImFc8S 2

i z

p D2
i z

2p
c9S 2

i z

p D G , ~21!

which is shown in Fig. 3 by the dashed line. It should
noted that all curves forwtemp(z) in Fig. 3 decay asz21 for
large z, in accordance with the general result for t
asymptotic limit of the potential fluctuation.

Another view at the step wandering due to energetic
teractions is provided by means of the gamma distributio12

for the terrace lengths, viz.,

Pm~ l !5
mm

G~m!

l m21

^ l &m
expS 2m

l

^ l & D . ~22!

Note thatm51 corresponds to random steps and increas
values ofm describe narrowing of the functionPm( l ) due to
step-step interactions, such that,s25^ l &2/m. Whenm˜`,
Pm( l ) approaches the regular steps model. In a sense,Pm( l )
describes, with increasingm, deviation from the random
steps model due to energetic interactions at high temp
tures. Noting that the two-body distribution, for the gamm
model, reads

f 2~x!5r2 Re (
j 50

m21

exp$ i2p j /m2mruxu

3@12exp~ i2p j /m!#%, ~23!

the potential correlation function and the correspond
width function Wm(z) may be evaluated in an analytic
~though cumbersome! form. The results forWm(z) are pre-
sented by thin solid lines in Fig. 4 for several values of t
parameterm of the gamma model forPm( l ). For the sake of

FIG. 4. The width function of the potential versus reduced d
tancez. Thin solid curves represent the gamma model, with
values of the parameterm51 ~random steps!, 2, 3, and 10. Thick
solid curve represents the core-repulsion model, while the das
line represents the regular steps model.
-

g

a-

g

e

comparison, the core-repulsion resultWcore(z) is shown in
Fig. 4 by a thick solid line, together with the regular ste
result Wreg(z), which is displayed by the dashed line. On
may note that the gamma model gives the longest range
the potential fluctuation, which goes as;(mz)21/2 for large
z, even for large values of the parameterm.

IV. DIPOLE COMPONENT PARALLEL TO SURFACE

In this section we generalize the results of the previo
two sections to the case when the dipole momentm of the
steps has componentsm' and m i , which are, respectively
perpendicular and parallel to the surface. Then, the poten
due to a single step15 is V(x,z;s)52(m'z1sm ix)/(x2

1z2), wheres51 (s521) for a step up~down! along the
x axis. Note that, in principle,s is a new random vari-
able for each step. In order to study statistical proper
of the total potentialU(x,z)5(nV(x2xn ,z;sn), we need
generalized N-body joint probability density of steps
GN(x1 , . . . ,xN ;s1 , . . . ,sN). We assume a factorization o
GN , such that the probability of a stepn going up or down is
independent of its positionxn and the probabilities of the
otherN21 steps going up or down, viz.,

GN~x1 , . . . ,xN ;s1 , . . . ,sN!5FN~x1 , . . . ,xN!)
n51

N

h~sn!.

~24!

Here, FN is the joint probability density of step position
from Sec. II, while the probability densityh(s), which we
define by

h~s!5ud~s21!1~12u!d~s11!, ~25!

assumes that each step has a probabilityu (0<u<1) of
going up. For example, ascending~descending! staircase is
obtained withu51 (u50). Note thath(s) is normalized to
unity, with the mean̂ s&52u21 and the varianceŠ^s2&‹
[^s2&2^s&254u(12u). Of course, the average potenti
depends only on the perpendicular dipole component,

^U&5E dxE ds f1~x!h~s!V~x,z;s!52prm' . ~26!

The case of regularly spaced steps generalizes to a reg
staircase (u50 or u51), for which the periodic potentia
reads as

Uperiod~x,z!52pr
m'sinhz1m i sinx

coshz2cosx
, ~27!

where z52prz and x52prx, with m i.0 (,0) for as-
cending~descending! staircase. It is convenient to introduc

-
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2030 PRB 60Z. L. MIŠKOVIĆ, S. G. DAVISON, AND F. O. GOODMAN
the anglea (2p/2<a<p/2), such thatm'5m cosa and

m i5m sina, with m5Am'
2 1m i

2 being the total dipole mo-
ment. Probability densityDstair(U;z) of the potential is ob-
tained in analogy to ~3!, and the reduced densit
Dstair(V;z)52prmDstair(U;z) reads as

Dstair~V;z!5
1

p

V cosa1cothz sin2 a

V21sin2 a
~2V cothz cosa

2V2211coth2 z sin2 a!21/2, ~28!

for cothz cosa2cosechz,V,cothz cosa1cosechz,
where the reduced potential is defined byV5U/(2prm).
Note that, with the present normalization,^V&5cosa. It
may be interesting to consider a special case ofa56p/2,
such thatm'50 andm5um iu, which is perhaps not physi
cally feasible, but demonstrates how far above the surf
the probability density of the potential extends when the
pole rows have only the component parallel to the surfa
Of course, in such a case,Dstair(V;z)[Dstair

i (V;z) is an
even function of the reduced potentialV5U/(2prum iu),
which is shown in Fig. 5 for several values of the reduc
distancez and for a range of positive values ofV, where
discontinuities are apparent.

Probability density of the potential for the case of rando
distribution of step positions~in the sense of Sec. II! is given
by

FIG. 5. Probability density of the potential for the regular sta
case model, with the dipole moment parallel to the surface, vs
duced potentialV, shown for several values of the reduced d
tance,z51/2, 1, and 2.
ce
i-
e.

d

Drand~U;z!5E
2`

` dt

2p
expH i tU 2rE

2`

`

dxE
2`

`

ds h~s!

3$12exp@2 i tV~x,z;s!#%J , ~29!

which turns out to be independent of the probabilityu for a
step going up. For the special case ofa56p/2, we obtain
the reduced densityD rand

i (V;z)52prum iuDrand(U;z) as
follows:

D rand
i ~v;z!5

z

pE0

`

dt cos~ztV!

3expH 2 1
2 zt2F2J0~t!1pJ1~t!H0~t!

2pJ0~t!H1~t!2
2

t
J1~t!G J , ~30!

where H0,1 are Struve functions andV5U/(2prum iu).
D rand

i (V;z) is again an even function ofV, which is shown
in Fig. 6 for several values of the reduced distancez and for
a range of positive values ofV. Contrary to the case of ste
dipole moments perpendicular to the surface in Sec. II,
apparent signatures of the discontinuities ofDstair

i (V;z) are
present inD rand

i (V;z).
Finally, the generalization of the potential correlatio

function to the case when the dipole momentm has both
componentsm' andm i reads as

e-
FIG. 6. Probability density of the potential for the random ste

model, with the dipole moment parallel to the surface, vs redu
potential V, shown for several values of the reduced distancez
51/2, 1, and 2.
C~x22x1 ;z1 ,z2!5E dx18E dx28E ds1E ds2 V~x12x18 ,z1 ;s1!V~x22x28 ,z2 ;s2!

3$rd~x282x18!h~s1!d~s22s1!1@ f 2~x282x18!2r2#h~s1!h~s2!%. ~31!
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With the normalization G(x,z)5(2prm)22C(x2
2x1 ;z1 ,z2), we find

G~x,z!5~cos2 a1^s&2sin2 a!G0~x,z!

1^^s2&& sin2 a
z

z21x2
, ~32!

where x5pr(x22x1), z5pr(z11z2), and G0(x,z)
stands for any of the reduced correlation functions from S
III. It is seen that any randomness in the steps going up
down (0,u,1) will yield a long-ranged (;z21/2) contri-
bution to the fluctuation of the potential due to the para
dipole component.

V. CONCLUDING REMARKS

We have analyzed statistical properties of the local e
trostatic potential of dipole rows along the steps on a so
surface, which are generated by the Smoluchowski elec
smoothing effect. The potential is probed at a randomly c
sen point in directions parallel to the surface, with the d
tancesz from the surface ranging from several atomic un
to infinity. The complete probability density for observin
the potentialU at a distancez has been obtained for th
model of regularly spaced steps and the model of rand
steps, when the step dipole moment is predominantly perp
dicular to the surface. In the latter case, the probability d
sity shows dramatic and intriguing changes, when the
tancez ranges between the values smaller than the ave
step separation̂l & and the values bigger than^ l &. In either
case, significant dispersion of the potential is observed,
function of the distancez.

For the regime when the potential is probed at two diff
ent points, we have derived a general expression for the
relation function of the potential in terms of the two-bod
distribution function of the step positions. The latter quant
is expressed in terms of the probability densityP( l ) for the
terrace lengthsl between two consecutive steps. In doing
we were able to test several models forP( l ), describing the
step wandering due to step-step interactions at finite t
peratures. In particular, we have found that the fluctuation
the potential decays exponentially above the surface w
regularly spaced steps, but has a long range of the orde
sz21/2, whenever the variances2 of P( l ) is finite. In a spe-
cific case of steps with the core repulsion only, the fluct
tion of the potential goes asz21 at large distances, and i
independent of the step density^ l &21. When the distances
are short,z!^ l &, the potential fluctuation seems to go
a
a

c.
or

l

-
d
n
-
-

m
n-
-

s-
ge

a

-
r-

,

-
f

th
of

-

z21/2 for all considered models of the step positions.
Finally, we have studied the effects of the step dipo

component parallel to the surface by introducing the pro
ability density for the discrete random variables (51 or
21), describing the steps up or down. The probability de
sity of the total potential for a regular staircase has be
obtained in a general form. Results were presented fo
special case when the step dipole moment has only the
allel component for the staircase model and the rand
model. In both models, the probability density is an ev
function of the potential, which possesses integrable disc
tinuities in the staircase model, but is a smooth bell-shap
curve in the random model, for a range of distances ab
the surface. Lastly, the potential correlation function h
been derived in a general form, involving the mean^s& and
the varianceŠ^s2&‹ of the variables.

A further development of the present theory should d
with a more realistic model for step shapes than the sim
straight-line model. In fact, a model Hamiltonian approa
has been used16 to deduce statistical properties of a rando
functionx5x(y), describing the shapes of meandering ste
in the context of step-step interactions. Qualitatively, st
meandering effect may be translated into a straight-line s
wandering about its mean position along thex axis, which, in
turn, can be described by the Gaussian model of Sec.
However, implementation of the random functionx(y) for
the step shapes in calculations of the electrostatic poten
due to electron smoothing effect requires further refineme
at the microscopic level. Namely, one may expect that
electron redistribution along the ‘‘rough’’ terrace edge
should depend on the local curvature of the steps separa
two terraces. If the curvature can be neglected compare
the electron screening length in jellium model, one may
sume that the linear density of induced dipoles is consta
Then, the qualitative effect of the meandering step sh
amounts to increased dipole density of an effective straig
line step. In any case, quantitative understanding of the r
of general step shapes requires further refinements of b
the statistical and the microscopic aspects of present the
In conclusion, we mention that the study of the statistic
properties of the electrostatic potential on stepped surfa
cannot be completed before addressing modifications of
image interaction on stepped surfaces.17
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Höhler, Springer Tracts on Modern Physics Vol. 85~Springer-
Verlag, Berlin, 1979!, p. 1.

4H. Wagner, inSolid Surface Physics~Ref. 3!, p. 151.
5R. Smoluchowski, Phys. Rev.60, 661 ~1941!.
6K. Wandelt, inThin Metal Films and Gas Chemisorption~Ref. 1!,

p. 280.
7K. Wandelt, Surf. Sci.251/252, 387 ~1991!.
8J. F. Jiaet al., Phys. Rev. B58, 1193~1998!.
9J. J. C. Geerlings, L. F. Tz. Kwakman, and J. Los, Surf. Sci.184,

305 ~1987!; G. A. Kimmel et al., Phys. Rev. B43, 9403~1991!.



ev

-
.
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