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Statistical properties of local work function on stepped surfaces
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Local electrostatic potential of dipole rows along the steps on a solid surface, generated by the Smolu-
chowski electron smoothing effect, exhibits large fluctuations in the directions parallel to the surface. We
analyze statistical properties of this potential for the distances above the surface, ranging from several atomic
units to the macroscopic lengths. Complete probability density of the potential is evaluated for regularly spaced
steps and for randomly distributed steps. Moreover, correlation function of the potential, probed at two differ-
ent points, is analyzed in terms of the probability density for the terrace lengths between two consecutive steps.
Several models for the latter quantity have been tested, giving rise to various forms of the distance dependence
of the potential fluctuation above the surfaf80163-18289)04927-9

. INTRODUCTION on a metal surface by as much asleV compared to the
adjacent terrace sites. A similar effect has been recently con-

It is well documented that atomic-scale defects on surfirmed by using scanning tunneling microscop$TM).?
faces, such as steps, kinks, adatoms, vacancies, etc., hawhile techniques such as PAX and STM provide informa-
dramatic influence on many surface processes, including pation on the local work function with atomic resolution, they
ticle and light scattering, sticking, chemical reactions, het-are limited to rather short distances from the surface, of the
erogeneous catalysis, or film growth.Structural and elec- order of several atomic units. On the other hand, low-energy
tronic properties of such defects have been studied bjon surface scatterifg®(ISS) has been shown to be capable
numerous surface analytical techniques, involving variousf probing distances of around 10 atomic units or more
ranges of sensitivity to distances across the surface and pesbove the surface. This feature has been used recently to
pendicular to it. Ordinary work function measureméfits study the local work function on surfaces with adsorbed
provide information on averages of surface electronic propalkali-metal atoms. Moreover, preliminary resbitshow
erties on a macroscopic scale, covering large surface are#isat ISS may also be quite sensitive to the presence of sur-
and large distances from the surface. Already at this leveface steps.
the influence of surface defects shows up as a linear change In the present article, we develop a theoretical model for
of the work function with increasing density of defects. Fordescribing statistical properties of the local work function
example, the work function of a metal surface may be low-above a surface with steps, for a range of distances from
ered by as much as several eV due to adsorption of alkaliseveral atomic units to macroscopic distances. The random
metal atoms at submonolayer coverag@ the other hand, variable is the position in the plane parallel to the surface,
the work function of vicinal surfaces may be lowered by aschosen to probe the local work function, while the distance
much as several tenths of eV with increasing step densityffom the surface is considered a deterministic variable. In
when compared to the work function of the correspondingdoing so, we are able to introduce into the theory the infor-
low-index plan€ mation on the statistics of step arrangements across the sur-

These facts indicate the existence of stréocplizeddi- face, which may be available from diffraction studies of
poles at the surface, associated with defects, which countestepped surface$, from reflection electron microscopy
act the normal surface dipole potential. In the case of stepsREM),™® or from direct measurements of the terrace lengths
the microscopic mechanism responsible for the localized diby STM® The development of the present theory is some-
poles is the Smoluchowski electron smoothing effe€he  what similar to our previous work on statistical properties of
electron distribution at the surface does not follow the sharghe electrostatic potential of the adsorbed atoms in the con-
step geometry but rather flows from the upper to the lowetext of ISS'® In modeling stepped surfaces, we actually work
terrace, giving rise to a local dipole moment, per step  with a one-dimensional model of surface defects, where the
atom which is oriented along the outwards surface normalsteps are represented by a system of straight-line dipole
Therefore, when a number of defects is present on a surfacews, parallel to each other, with a certain one-dimensional
their electrostatic potential, at a distance close to the surfaceéjstribution of their positions on the surface, in the direction
will fluctuate in directions across the surface, depending omerpendicular to steps. In particular, we focus first on the two
the geometric distribution of defects. Variation of this poten-extreme cases of a perfectly regular and a completely ran-
tial is sometimes called thivcal work functior® and has  dom distribution of steps, but also bring into the theory the
been the subject of many studies over the past decade, bemperature effects by using a model for thermal fluctuation
cause it generates local fields on the surface responsible fof step positions on a surface. We present data on statistical
increased chemical reactivity of surfaces with defects. Foproperties of the electrostatic potential of the step dipole
example, photoemission of adsorbed xeh@AX) has been rows, probed at a randomly chosen point above the surface
used to show the lowering of the local work function at stepgstatic regimg as well as the correlation function of the
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potential probed at two different points above the surface 3
(dynamic regimg This latter regime is relevant for studying
stepped surfaces by an ISS technique, especially under graz T
2
N
1

ing scattering conditions, which we plan to complete soon.
Nevertheless, we believe that the results of the present pape 21
will be useful in many other applications, includirigtatio

PAX and STM techniques, as well adynamig studies of ]
secondary electron and ion emission properties of steppecArey
surfaces, or examination of the role of random surface fields
in time-of-flight(TOF) measurement¥.

The paper is organized as follows. In Sec. Il, we evaluate
the exact and complete probability density for the electro- T \
static potential at a given distance from the surface for both
the regular and the random steps models. Next, the correla- 0
tion function of the potential is derived in Sec. Ill for a 0
general step distribution and evaluated for certain special
cases, describing thermal fluctuations of step positions. In FIG. 1. Probability density of the potential for the regular steps
Sec. IV, we study the effects of the step dipole componeninodel, versus reduced potentia) shown for several values of the
parallel to the surface on the probability density and the correduced distance,=1/2,1, and 2.
relation function of the potential. Our concluding remarks
are given in Sec. V. Atomic units are used throughout thefunction of x with the period(l), for which the Fourier co-

BN

2 3 4
w

paper, unless otherwise explicitly indicated. sine series can be summed, as follows:
2w
Il. REGULAR AND RANDOM STEPS SIn mz
We place thex,y plane in the surface, take all the steps UperiodX,2) =(U) > P )
parallel to they axis, and direct the axis along the outwards cos)’(mz) cos(mx)

surface normal. The positions Nfsteps, distributed over the
macroscopic length. of the surface along th& axis, are  Since this periodic potential is probed at a randomly chosen
described by an N-body joint-probability density coordinatex, its probability density may be expressed as
Fn(X1,X2, . .. Xy), Which normalizes to unity. For a homo- 1 e

geneous system of steps, the reduced one-body distribution N — _f _ _ }

function, which normalizes tdN, is given by f;(x)=p, DregUi) =775 | _ ) 8% AV ~UperiodXi2)l. - ()
wherep=N/L=1/1) is the linear densityalongx axis) of . . Lo B

steps. Note thatl), the average separation between two agOn introducing reduced quantitieg=2mpz, ©=U/U)

jacent steps, or the average length of terraces between tﬁgdA(w;g):w)D(U;z)’ one obtains

steps, is usually readily available from experiments and is 1

~10%. Areg(@;0)= — (20 coth{— w?—1) 12
Assuming that all the steps are monatomic, with a step Tw

heightd, we denote by the linear densityalongy axis) of XH(2w coth{ — w?—1), (4)

the dipole moment of the dipole row, associated with each - . .
step. If the lattice spacing along the step ds then u whereH stands for the Heaviside step functidneq(w;{) is

= 11, /a, where the dipole moment per step atpmmay be shown in Fig. 1 for several values of the reduced distahce

estimated asyd, based on microscopic measurements or! N€ Vertical lines represent the lowest, tafid), and the

calculation&® of the charge redistributiog per step atom Nighest, cothf/2), value of the reduced potential for a
due to the Smoluchowski smoothing effect. We assume iiven distancel, whereA q4(w;{) exhibits integrable dis-
this and the following section that the dipole moment is pre-continuities. . _ o
dominantly perpendicular to the surfage= 4, >0, so that In general, the probability density of the total potential is
the potential due to a single sfefs V(x,z)=2u,z/(x2  the ensemble averagd(U;z)=(5U—Z,V(x—X,,2)]),
+72) for distancesz>d. The total potential, probed at the t@ken with respect to thé-body probability densityFy .
point (x,2), is the sumU(x,z) =3 ,V(X—X,,z). Therefore, When the probability of a step occurring anywhere on the

the average potential, for any distribution of steps, reduces tgu"face of the length is unaffected by the presence of Sther
steps, theN-body probability density is simplyFy=L"".

We call this model of noninteracting steps thandom
<U>:f dx f,(X)V(x,2)=2mpu, (1) mode] and obtain the probability density of the total poten-
tial, probed at the distance in the form

which is independent af and equals precisely the magnitude < dt w

of the macroscopic work function lowering\ ¢| (typical Dang(U;2)= 2—exp{itu —pf dx
—2 — T —o

values ardA ¢|~10"2).

For the case of regularly spaced steps, such as a vicinal
surface at low temperatures, the total potential is a periodic x{l—exq—itV(x,z)]}], 5
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tion of the total potential in terms of the reduced two-body
distribution functionf,(x;,x,) [which normalizes taN(N
—1)], as follows

C(Xz_xl;zl122)E<U(X1;21)U(X2;22)>_<U>2

=f dxij dxy V(X1—X1,27)V(X,

—X3,2,)
X[pd(x5—x7)+f(x5—X1) — p?].
8

We have used here the fact thif(x)=p and f,(X;,X,)
=f,(X,—Xy) =f,(X,—X;) for a translationally invariant sys-
tem of steps.

It is instructive, at this point, to make contact with the

FIG. 2. Probability density of the potential for the random steps
model, versus reduced potentia) shown for several values of the

reduced distancg&=1/2, 1, 2, 4, and 10. probability densityP(l) of the terrace lengthisbetween two
consecutive steps. This function is, in principle, directly
which, in terms of reduced quantities, is available from STM or REM measuremefitS or may be
related to the diffraction data from stepped surfaéedore-
(= over, significant theoretical advances have been achieved in
Arand(w;g):;f d7cog{rw—Jg(7)COST modeling P(1) to reflect the thermodynamics of stepped
0 surfaces?'® Note thatP(l) is normalized to unity, with the
—Ji(7)sint]}exp{— ¢ Jo(7)sinT mean(l) and the variancer®=(1%)—(1)2. Taking the limit
L—oo, together withN— oo, and noting thaf,(x) dx repre-
—Ji(7)cos7]}, (6)  sents the probability of having a stepdx atx, given a step

where Jo; stand for the ordinary Bessel functions. at the origin, we may write

A and(w; Q) has been evaluated for several values of the re- "

duced distancé, and the results are shown in Fig. 2. Note B * *

that, for sufficiently large distances this function becomes fZ(X)_an::l jo dls Py jo dln P(ln)
a Gaussian, peaked ai=1. For intermediate values of

¢, Aang(w; ) broadens and becomes very skewed and, in- !
terestingly, develops peaks reminiscent of the edge disconti- X+ 21 'J)
nuities of A ¢4(w;{). For lower values of, the bulk of the :

function A, ,nq(@;¢) looks very much like its regular coun- Going to the Fourier transform with respect to theoordi-

n

x= 2 ]

j=1

) +6 : 9

terpart in Fig. 1. nate, the correlation function becomes
It should be noted that the first moment &fw; ), for
both types of step distributions, {@)=1. In order to give (U)2 (=
the idea of the degree of fluctuation of the potential at the C(Xp—X2;Z1,22)= prf dk Sk)exdik(x,—x1)

distancez, we evaluate the varianc€U?(2)))=(U?(z))
—(U)2. Introducing the reduced widthW({)=(w?)—1 —|k|(z3+25)], (10)
= (U%(2))}(U)2, we find
where thestructure factorof the stepped surface is given by
Wreg(g):COthg_lr Wiang=1/Z. (7)

The quctgation of the poten_tial_above _the stepped surface is S(k)=1+ Q(k—i 7() i Q(—k—i 7) —2mpd(K),
exponentially suppressed with increasingpr regular steps, 1-Q(k—in) 1-Q(—k—in)

but has a very long range of ordgW~ ¢~/ far above the (12)
surface with random steps. At short distances,1, the po- .

tential fluctuation, for both types of step distributions, has theW'th

magnitude\((U?(z)))=(U)//Z, which may be of the order .
of 0.1 or1eV. Q(k)zf di P(Iexp(—ikl), (12)
0

I1l. CORRELATION FUNCTION OF POTENTIAL 4 . .
and »— 07 to ensure the convergence of tkéntegration.

While the results of the preceding section refer to statiNote that,Q(0)=1, Q'(0)=—i(l), andQ"(0)=—(1?).
properties of the local work function, we wish to explore Let us define the reduced correlation functibiy,?)
here the dynamic regime of probing the total potential of the= C(x,—x4;21,2,)/{U)?, where xy=mp(x,—X;) and ¢
stepped surfaces at two points;(z;) and (x,,z,), where  =p(z;+2,). Static fluctuation of the potential, probed at
z,>0 andz,>0. To this end, we derive the correlation func- the point &;,z;) =(x»,2,), is then obtained from the width
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function W(¢{)=T"(x=0,). For example, random steps are
described by the exponenti@(l)=(I)"texp(—1/1)) with
S(k)=1, so that

08|

{
Frand(x, 0= W (13 Wtemp

04
Regular steps are described Byl) = 8(1 — (1)), so that

sinhZ cosh?

r =—)—1. 14
reg(X:g) sin2X+sinhZ§ (14 0

In order to go beyond these two extreme cases of the step FIG. 3. Temperature-dependent width function of the potential
distribution, one has to consider the influence of step interfor the Gaussian model vs reduced distagcdhick solid curves
actions on the functioﬁ)“)' To this end, we may |n|t|a”y are evaluated W|t|’U/<|>:01, 0.2, 0.3, 0.4, and 0.5. Dashed line
neglect all energetic interactions between the steps, excerﬁpresents a_nalytical _Iimit wheor— 0, while the thin solid line
the hard-core repulsion, which prevents steps from crossing©Ws the width function of regular steps.
each othernno overhangs It has been shown that, in this
case, the universdtemperature-independentvo-body dis-

tribution function i<® 2

Fasymr(ng)::?Frand(ng)i >1 (18)

sin( pXx)
TpX

2
]' (15 Therefore, the potential fluctuation in the static regime may
be of order of {(U%(2)))=(U)a/\27Z(l) at finite tem-
peratures and large distances;(l)/(2m). Note thate=0
for regular steps, and=(l) for random steps.

A useful model forP(l), which was successfully used to
fit experimental datd®'® is the Gaussian P(l)
=(V2mo) “texd —(I—(1)%(207)]. Assuming that the devia-
cog2) tion of the step distribution from the regular one, with in-
creasing temperatufg is dominated by energetic step inter-
actions, it is instructive to estimate the change of the
potential correlation functiod g,,sd{x,¢) in the Gaussian
model with increasing as a qualitative measure of the tem-
perature effects. It has been shdwthat o may be consid-
ered proportional tQI)ﬁ. Noting that the structure factor in
Gaussian model reads as

fz(X):PZ[ 1-

Then, the core-repulsion form of the correlation function
reads

2 2
LCeorel X, )= <X {l_ezg

2(02+ x%)?

2{x .
_?XZSWZX) } (16)
with the corresponding static-regimg < 0) width

WCOre(g):(l_eizg)/(2§2)- (17) Sinr(kZO'Z/Z)

" coshk2o?/2) — cog k(1))

—2mpd(k), (19
It should be noted that these results should hold for tempera-
tures up to moderately high valu¥sThus, the fluctuation of
the potential, in the core-repulsion model goes agve have evaluated the width functionWgays{{)
J{(U?(2))y=(U)/¢ for (<1, as it did for regular and ran- =I'caus{x=0.{), and plotted in Fig. 3 the quantity
dom steps, but has the forri((U?(2)))=p, /(\/22) for
large distanceg, which is independent of the step density (1)2

In order to describe the step wandering due to energetic Wtemp(g“)=—2[WGau34§)—Wreg(§)], (20
interactions at finite temperatures, one has to focus on the o
dependence of the potential correlation function on the
(temperature-depend@ntarianceo? of the functionP(l). It in order to stress the role of increasing temperature in devia-
has been found recently, by using REM measuremértst  tion from the regular step model, which becomes important
o may be a significant fraction of the average terrace lengtlior the potential fluctuation at large distanagsbeyond the
(Y. We first note that, in general, one h&gk)—c?/(I)>  exponential termination of the regular step model. The re-
whenk—0 for any model forP(l), which enables one to sults forw,e,{¢) are shown in Fig. 3 by thick solid lines for
express the leading term in the largeasymptotics of the several values of the ratio/(l), while the thin solid line
potential correlation function as representdV,.4(£). Note that, in the limit of very low tem-
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0.6 comparison, the core-repulsion res\Wt,«(¢) is shown in
Fig. 4 by a thick solid line, together with the regular steps
resultWieq(¢), which is displayed by the dashed line. One
may note that the gamma model gives the longest range for

04 the potential fluctuation, which goes agm¢) 2 for large
£, even for large values of the parametar

‘W 4
0.2 IV. DIPOLE COMPONENT PARALLEL TO SURFACE
In this section we generalize the results of the previous
two sections to the case when the dipole momernif the
steps has components, and |, which are, respectively,
0 perpendicular and parallel to the surface. Then, the potential

0 2 4 ¢ 6 8 10 due to a single stép is V(x,z;s)=2(u, z+suX)/(x*
+27%), wheres=1 (s=—1) for a step ugdown) along the
FIG. 4. The width function of the potential versus reduced dis-X axis. Note that, in principles is a new random vari-
tance{. Thin solid curves represent the gamma model, with theable for each step. In order to study statistical properties
values of the parameten=1 (random steps 2, 3, and 10. Thick of the total potentialu(x,z)=2%,V(X—X,,z;s,), we need
solid curve represents the core-repulsion model, while the dashegeneralized N-body joint probability density of steps
line represents the regular steps model. Gn(X1, - -« XN3STy - -+ ,SN). We assume a factorization of
Gy, such that the probability of a stepgoing up or down is
peratures ¢<<{I)), one may obtain an analytical estimate for independent of its position,, and the probabilities of the

Wiemd {) In terms of the digamma functio, as follows otherN—1 steps going up or down, viz.,
2 iy g ( ié” N
w, =—Im|y'| ——=|—5=¢"| ——]||, (21
low temd £) =7 [w 7 2\ ")) @ Gr(Xq,s + o XNiS1s -+ SN =Fn(Xq, . .. ,xN)nl;[1 h(sn).
which is shown in Fig. 3 by the dashed line. It should be (24)

noted that all curves fow.,{¢) in Fig. 3 decay ag ! for

large ¢, in accordance with the general result for theHere, F\ is the joint probability density of step positions

asymptotic limit of the potential fluctuation. from Sec. Il, while the probability densiti(s), which we
Another view at the step wandering due to energetic indefine by

teractions is provided by means of the gamma distribdfion
for the terrace lengths, viz.,
h(s)=ud(s—1)+(1—u)ds(s+1), (25

mm |m-1 I
Pm(l)= mweﬂ< _mm)' (22 assumes that each step has a probability0<u=<1) of
going up. For example, ascendifdescending staircase is
obtained withu=1 (u=0). Note thath(s) is normalized to
%nity, with the mean(s)=2u—1 and the variancé(s?))
=(s?)—(s)?=4u(1—u). Of course, the average potential
depends only on the perpendicular dipole component,

Note thatm=1 corresponds to random steps and increasin
values ofm describe narrowing of the functid®,(l) due to
step-step interactions, such thaf=(1)2/m. Whenm—s,

P (1) approaches the regular steps model. In a sdPsf,)
describes, with increasing, deviation from the random
steps model due to energetic interactions at high tempera-

tures. Noting that the two-body distribution, for the gamma (U):f dxf ds fi(x)h(s)V(x,z;s)=2mpu, . (26)
model, reads

m-1 The case of regularly spaced steps generalizes to a regular
fo(x)=p?Re >, expli2mj/m—mp]|x| staircase =0 or u=1), for which the periodic potential
1=0 reads as
X[1—exp(i2j/m)]}, (23
mysinhd+ wsiny
the potential correlation function and the corresponding Uperiod(X,2) = 2mp coshi—cosy (27

width function W,,,({) may be evaluated in an analytical
(though cumbersomdorm. The results foW,({) are pre-
sented by thin solid lines in Fig. 4 for several values of thewhere {=2mpz and x=2mpx, with x>0 (<0) for as-
parametem of the gamma model foP (). For the sake of cending(descendingstaircase. It is convenient to introduce
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FIG. 5. Probability density of the potential for the regular stair-  FIG. 6. Probability density of the potential for the random steps
case model, with the dipole moment parallel to the surface, vs remodel, with the dipole moment parallel to the surface, vs reduced
duced potentiak), shown for several values of the reduced dis- potential 2, shown for several values of the reduced distarice,

tance,(=1/2, 1, and 2. =1/2, 1, and 2.

the anglea (— w/2<a<m/2), such thatu, = u cosa and D (U'z)=fx ﬂex itU—pfw dxfx ds h(s)
_ . . _ . H rand ' —OC27T — 0 — o0

m=psina, with u= \/,uf +,u|2| being the total dipole mo-

ment. Probability densit{D¢,;,(U;z) of the potential is ob-
tained in analogy to(3), and the reduced density X{l—eXF{—itV(X,Z;S)]}], (29
Astair(Q;0) =2mpuDeiair(U;2) reads as

which turns out to be independent of the probabilitjor a
step going up. For the special casewf * /2, we obtain

: (2Q coth{ cosa the reduced densimuand(ﬂ;g):27-rp|,u|||Drand(U;z) as
Q%+sirf a follows:

1 Q cosa+ coth sirf a
Astair( ;0= ;

—Q%—1+-cottf ¢ sirf a) "2 (28 (=
Alr‘ano(w;g)Z ;JO drcog7Q))

where the reduced potential is defined Qy=U/(27pu).
Note that, with the present normalizatio(Q})=cosa. It
may be interesting to consider a special casexef+ /2, 2
such thatu, =0 and =], which is perhaps not physi- —mIo(TH1(7) = ~Ja(7) ] (30)
cally feasible, but demonstrates how far above the surface
the probability density of the potential extends when the diwhere Hq; are Struve functions and)=U/(2mp|y|).
pole rows have only the component parallel to the surfaceA,‘and(Q;g) is again an even function &2, which is shown
Of course, in such a casastair(g;g)EAltair(Q;g) is an in Fig. 6 for several values of the reduced distati@nd for
even function of the reduced potentiﬂ=U/(2wp|,u”|), a range of positive values &1. Contrary to the case of step
which is shown in Fig. 5 for several values of the reduceddipole moments perpendicular to the surface in Sec. I, no
distance/ and for a range of positive values 6f, where apparent signatures of the discontinuitiesAdf,; (©2;¢) are
discontinuities are apparent. present inA'r‘and(Q;g).

Probability density of the potential for the case of random  Finally, the generalization of the potential correlation
distribution of step positionén the sense of Sec.)lls given  function to the case when the dipole momenthas both
by componentse; andy| reads as

for coth cosa—cosechy <) <coth{ cosa+cosechy,
X exp{ =373 230(7)+ I () Ho(7)

C(XZ_Xl;ZlaZZ):f dXij dxéf dslf ds, V(X1 —X1,21;81) V(X2 —X3,22;S)

X{p8(x3—x1)N(s1) 8(s,—51) + [ F2(x3—x1) — pZ]h(sN(S)}- (31)
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With  the  normalization T(x,{)=(2mpu) ?C(x, z Y?for all considered models of the step positions.

—X1:;21,2,), we find Finally, we have studied the effects of the step dipole
component parallel to the surface by introducing the prob-
I'(x,¢)=(cog a+(s)?sir? a)T'o(x,{) ability density for the discrete random variatde(=1 or
; —1), describing the steps up or down. The probability den-
2N sity of the total potential for a regular staircase has been
+{(s )>5|n2a§2+X2, (32) obtained in a general form. Results were presented for a

special case when the step dipole moment has only the par-
where x=mp(X,—x;), {=mp(z3+2,), and I'o(x,{) allel component for the staircase model and the random
stands for any of the reduced correlation functions from Seanodel. In both models, the probability density is an even
lll. It is seen that any randomness in the steps going up ofunction of the potential, which possesses integrable discon-
down (0<u<1) will yield a long-ranged £ ¢~ %) contri- tinuities in the staircase model, but is a smooth bell-shaped
bution to the fluctuation of the potential due to the parallelcurve in the random model, for a range of distances above

dipole component. the surface. Lastly, the potential correlation function has
been derived in a general form, involving the méah and
V. CONCLUDING REMARKS the variance((sz)) of the variables.

A further development of the present theory should deal

We have analyzed statistical properties of the local elecwith a more realistic model for step shapes than the simple
trostatic potential of dipole rows along the steps on a solicstraight-line model. In fact, a model Hamiltonian approach
surface, which are generated by the Smoluchowski electrofas been uséfito deduce statistical properties of a random
SmOOthing effect. The pOtential is prObed ata randomly ChOfunctioanx(y), describing the Shapes of meandering StepS,
sen point in directions parallel to the surface, with the dis-in the context of step-step interactions. Qualitatively, step
tancesz from the surface ranging from several atomic unitsmeandering effect may be translated into a straight-line step
to infinity. The complete probability density for observing wandering about its mean position along #exis, which, in
the potentialU at a distancez has been obtained for the tyrn, can be described by the Gaussian model of Sec. IIl.
model of regularly spaced steps and the model of randorpjowever, implementation of the random functiaty) for
steps, when the step dipole moment is predominantly perpefihe step shapes in calculations of the electrostatic potential
dicular to the surface. In the latter case, the probability dengye to electron smoothing effect requires further refinements
sity shows dramatic and intriguing changes, when the disat the microscopic level. Namely, one may expect that the
tancez ranges between the values smaller than the averag§ectron redistribution along the “rough” terrace edges
step separatiofl) and the values bigger thaf). In either  should depend on the local curvature of the steps separating
case, significant dispersion of the potential is observed, as o terraces. If the curvature can be neglected compared to
function of the distance. the electron screening length in jellium model, one may as-

For the regime when the potential is probed at two differ-syme that the linear density of induced dipoles is constant.
ent points, we have derived a general expression for the Coffhen, the qualitative effect of the meandering step shape
relation function of the potential in terms of the two-body amounts to increased dipole density of an effective straight-
distribution function of the step pOSitiOﬂS. The latter quantity"ne Step. In any case, quantitative understanding of the role
is expressed in terms of the probability denditfl) for the  of general step shapes requires further refinements of both
terrace lengths between two consecutive steps. In doing so the statistical and the microscopic aspects of present theory.
we were able to test several models R(l), describing the  |n conclusion, we mention that the study of the statistical
step wandering due to step-step interactions at finite temproperties of the electrostatic potential on stepped surfaces
peratures. In particular, we have found that the fluctuation otannot be completed before addressing modifications of the
the potential decays exponentially above the surface withmage interaction on stepped surfaéés.
regularly spaced steps, but has a long range of the order of
oz Y2, whenever the varianae? of P(l) is finite. In a spe-
cific case of steps with the core repulsion only, the fluctua-
tion of the potential goes a& ! at large distances, and is  The work presented in this paper was supported by the
independent of the step densitl) *. When the distances Natural Sciences and Engineering Research Council of
are short,z<(l), the potential fluctuation seems to go asCanada.
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