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Effects of field modulation on the Hofstadter spectrum

Gi-Yeong Oh*
Department of Basic Science, Hankyong National University, Kyonggi-do 456-749, Korea

~Received 21 September 1998!

We study the effect of spatially modulated magnetic fields on the energy spectrum of a two-dimensional
Bloch electron. By taking into account four kinds of modulated fields and using the method of direct diago-
nalization of the Hamiltonian matrix, we calculate energy spectra with varying system parameters~i.e., the kind
of the modulation, the relative strength of the modulated field to the uniform background field, and the period
of the modulation! to elucidate that the energy band structure sensitively depends on such parameters: Inclu-
sion of spatially modulated fields into a uniform field leads to the occurrence of gap opening, gap closing, band
crossing, and band broadening, resulting in an energy band structure that is distinct from the Hofstadter’s
spectrum. We also discuss in detail the effect of the field modulation on the symmetries appearing in the
Hofstadter’s spectrum.@S0163-1829~99!04027-8#
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I. INTRODUCTION

The problem of a two-dimensional Bloch electro
~2DBE! under a uniform magnetic field has been intensiv
studied for several decades,1 and it is well known that the
energy spectrum is characterized by the Hofstadter’s bu
fly showing a fractal nature.2 Recently, the problem has a
tracted renewed interest in connection with various phen
ena such as the quantum Hall effect,3 the flux-state model for
high-Tc superconductivity,4 and the mean-field transitio
temperature of superconducting networks or Josephson j
tion arrays.5 Recent advances in submicron technology t
make it possible to fabricate any desired microstructu
have led to experimental studies that seek to find indicati
of the Hofstadter’s spectrum and its effect on transport
optical properties.6–9 In parallel with this problem, the prob
lem of 2D electron systems under nonuniform~either
disordered10 or periodic11–26! magnetic fields has also bee
extensively studied, and several interesting characteristic
the energy spectral and transport properties have been e
dated.

Though the problem of a 2DBE under spatially modula
magnetic fields has attracted less attention compared with
problem of a 2D electron gas under spatially modulated m
netic fields,11–22 it is still an important problem, not only
from the viewpoint of theoretical interest but also from t
viewpoint of experimental interest, and there have been
tempts to solve this problem.23–26 However, unfortunately,
some of the relevant works contain inconsistent results
the energy spectral properties: In Ref. 24, Gumbs and
workers studied the effect of a one-dimensional si
modulated~1DSM! field on a 2DBE to argue that the sym
metries appearing in the Hofstadter’s spectrum break do
by the field modulation. Most surprisingly, they also argu
that the field modulation leads an additional crisscross
tern like a spiderweb structure onto the Hofstadter’s sp
trum. However, Oh and coworkers25 studied the effect of a
1D cosine-modulated~1DCM! field on a 2DBE to elucidate
that the occurrence of gap closing and gap opening leads
different energy spectrum from the Hofstadter’s spectr
and that the symmetries appeaing in the Hofstadter’s s
PRB 600163-1829/99/60~3!/1939~8!/$15.00
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trum, except the dual property, still remain despite the fi
modulation. Meanwhile, Shi and Szeto26 studied the energy
spectrum of a 2DBE under a kind of 2D field modulation
argue that there is no symmetry breaking in the energy sp
trum and that the fractal structure remains irrespective of
field modulation.

In this paper we re-examine the problem of a 2DBE un
spatially modulated magnetic fields to settle the incons
tency discussed above. In doing this, we take into acco
four kinds of modulated fields~i.e., 1DSM, 1DCM, 2DSM,
and 2DCM fields! in order to obtain rather generic effects
the field modulation on the Hofstadter’s spectrum. By mea
of direct diagonalization of the Hamiltonian matrix, we ca
culate the energy eigenvalues and examine how the sys
parameters such as the type of modulation, the rela
strength of the modulated field to the uniform field, and t
period of the modulation, influence the energy band struct
and the symmetry of the Hofstadter’s spectrum. Introduct

of the field modulation is shown to change thekW dependence
of the energy spectrum drastically, leading to the occurre
of gap opening, gap closing, band crossing, and band bro
ening, which is the origin of distinctive energy band stru
ture from the Hofstadter’s spectrum. Our results indicate t
there is no additional spiderweb structure in the energy sp
trum, contrary to the result of Ref. 24, and that the fie
modulation generically breaks the symmetries and the fra
property of the Hofstadter’s spectrum.

This paper is organized as follows: In Sec. II we introdu
four kinds of magnetic fields and the tight-binding model.
Sec. III we present numerical results on the energy b
structure of a 2DBE and its symmetries under these fie
Section IV is devoted to a brief summary.

II. MODULATED MAGNETIC FIELDS
AND THE TIGHT-BINDING MODEL

We consider an electron in a 2D square lattice unde
spatially modulated magnetic field:

BW 5@B01B1~x,y!# ẑ, ~1!
1939 ©1999 The American Physical Society
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where B0(B1) denotes the uniform~modulated! part of an
applied magnetic field. Among possible kinds of modula
fields, we pay attention to two kinds of modulated field
One is the SM field

B1~x,y!5BxsinS 2px

Tx
D1BysinS 2py

Ty
D , ~2!

and the other is the CM field

B1~x,y!5BxcosS 2px

Tx
D1BycosS 2py

Ty
D . ~3!

Here,Bx(y) is the strength of the modulated field andTx(y) is
the period of the modulation along thex(y) direction. Under
the Landau gauge, the vector potential becomes

Ax5
ByTy

2p
cosS 2py

Ty
D , Ay5B0x2

BxTx

2p
cosS 2px

Tx
D , ~4!

for the SM field and

Ax52
ByTy

2p
sinS 2py

Ty
D , Ay5B0x1

BxTx

2p
sinS 2px

Tx
D ,

~5!

for the CM field, respectively.
The tight-binding Hamiltonian describing the motion

an electron in a magnetic field is given by

H52(
i j

t i j e
iu i j u i &^ j u, ~6!

where t i j is the hopping integral between the neare

neighboring sitesi and j, andu i j [(2pe/hc)* i
jAW •d lW is the

magnetic phase factor. Under the vector potentials given
Eqs.~4! and ~5!, the magnetic phase factor becomes

umn;m8n85H 6um , ~m8,n8!5~m,n61!

6un , ~m8,n8!5~m61,n!

0, otherwise ,

~7!

with

um52pmf02bxgxf0cosS 2pm

gx
D ,

un5bygyf0cosS 2pn

gy
D , ~8!

for the SM field and

um52pmf01bxgxf0sinS 2pm

gx
D ,

un52bygyf0sinS 2pn

gy
D , ~9!

for the CM field, respectively. Herebx(y)5Bx(y) /B0 , gx(y)
5Tx(y) /a, andf05B0a2, a being the lattice constant. Th
d
.

-

y

magnetic flux per unit cell, in units of the flux quantumhc/e,
is given byf5(1/2p)(u i j 5AW •d lW5*BW •dSW .

By means of Eqs.~6! and ~7!, the tight-binding equation
can be written as

eiuncm11,n1e2 iuncm21,n1l~eiumcm,n111e2 iumcm,n21!

5Ecmn , ~10!

wherel([ty /tx) is the ratio of hopping integrals betwee
the x and y directions, andE is the energy in units oftx .
Here, the wave function is given byuc&5( jc j u j &.

Denoting Rx(y) as the periodicity ofum(n) , the Bloch
theorem can be written as

cm1Rx ,n5eikxRxcmn , cm,n1Ry
5eikyRycmn , ~11!

and the first magnetic Brillouin zone~FMBZ! is given by
ukx(y)u<p/Rx(y) . We calculate the energy eigenvalues for

the values ofkW in the FMBZ by directly diagonalizing the
Hamiltonian matrix obtained from Eqs.~10! and ~11!.

III. NUMERICAL RESULTS AND DISCUSSION

In what follows, we assume the modulated field has
square symmetry~i.e., bx5by5b andgx5gy5g) and con-
sider only the case of the isotropic hopping integral~i.e., l
51) for the sake of simplicity. We pay attention to the e
ergy dispersions forq52,3 ~with p51) andg52,3,4, since
energy dispersions for other values of (q,g) can be obtained
in a similar way. Herep andq denote the numbers~prime of
each other! given byf05p/q.

A. Energy spectrum in a uniform magnetic field

In a uniform field (b50), un becomes zero. Thus, b
means of the translational invariance along they direction,
Eq. ~10! reduces to the Harper equation,

cm111cm2112cos~um1ky!cm5Ecm , ~12!

and there areq eigenvalues for a given value ofky ; the full
energy spectrum for an oddq consists ofq subbands, while
the full spectrum for an evenq consists of (q21) subbands
because two central subbands touch at zero energy. It is
well known that the full spectrum has the following symm
tries: ~i! the dual property between thekx andky directions
~let us denote it asSD), ~ii ! the symmetry between2E and
E(SE), ~iii ! the symmetry between2kx andkx(SX), and~iv!
the symmetry between2ky andky(SY). Here the full energy
spectrum means a set of energy eigenvalues obtained by

ing into account all the values ofkW in the FMBZ.
Energy dispersions forq52 and 3 are given as follows:
~a! q52: We haveRx52 and the energy dispersion

given by

E~kW !562Acos2kx1cos2ky. ~13!

There are two subbands and they touch at zero energ
shown in Fig. 1~a!, resulting in a single subband structu
with uEu<2A2.
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~b! q53: We haveRx53 and the energy dispersion
given by the equation

E326E22~cos3kx1cos3ky!50. ~14!

There is no touching point in the dispersion and the ene
spectrum exhibits a three subband structure with2(1
1A3)<E<22, uEu<(A321), and 2<E<(11A3) as
shown in Fig. 1~b!.

B. Energy spectrum in 1D modulated magnetic fields

Assuming the field modulation is along thex direction,un
is still zero and the tight-binding equation is formally th
same as Eq.~12!. However,b andg are introduced inum ,
andf becomes periodic along thex direction with the period
g:

f/f055
11~bg/2p!@cos„2p~m11!/g…2cos~2pm/g!#,

1DSM

12~bg/2p!@sin„2p~m11!/g…2sin~2pm/g!#,

1DCM.
~15!

The lattice is called the stripped flux lattice23 and the energy
spectrum can be obtained by diagonalizing the (Rx3Rx)
Hamiltonian matrix.

1. 1DSM field

When (q,g)5(2,2), we haveRx52 and the energy dis
persion is given by

FIG. 1. Energy dispersion in the uniform magnetic field with~a!
q52 and~b! q53. The horizontal plane is drawn in units ofp.
y E~kW !52sinbsinky62Acos2kx1cos2b cos2ky. ~16!

The two subbands touch at (kx ,ky)5(p/2,p/2) and
(p/2,3p/2), whereE562sinb. Since the touching points
exist irrespective ofb, the energy spectrum exhibits a sing
subband structure as in the case ofb50. In order to demon-
strate theg dependence of the energy spectrum withq52,
we calculate energy spectra for other values ofg and plot
some of them in Fig. 2. Even though there are six and f
subbands for (q,g)5(2,3) and (2,4), there occurs direc
touching between the nearest-neighboring subbands, w
leads to a single subband structure of the energy spectrum
our calculations, we find that the energy band structure
independent of the valuesb andg while the total bandwidth
slightly changes with varyingb.

Figure 3 shows theky dependence of the energy spectru
for (q,g)5(3,2), where it can be seen thatb plays a key
role in forming the band structure. For small values ofb, the
upper~lower! two subbands touch at some values ofky , and
there exists indirect overlapping~i.e., crossing of subbands a
different values ofky) between the central subbands. Thu
the energy spectrum exhibits a three subband structure@Fig.
3~a!#. However, for a large value ofb, there occurs a gap
opening between the subbands and the energy spectrum
hibits a six subband structure@Fig. 3~b!#. Further increase of
b makes the second and the fourth gaps close, leading
four subband structure@Fig. 3~c!#. Another example is given

FIG. 2. Plot of E versusky in the 1DSM field withb50.3,
where~a! (q,g)5(2,3) and~b! (q,g)5(2,4). The horizontal axis is
drawn in units ofp.
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1942 PRB 60GI-YEONG OH
in Fig. 4, where theky dependence of the energy spectru
for (q,g)5(3,3) is shown. For small values ofb, the energy
spectrum exhibits a three subband structure@Fig. 4~a!#. How-
ever, indirect overlapping between subbands occurs asb in-
creases, and the energy spectrum exhibits a single sub
structure@Fig. 4~b!#. The occurrence of a gap closing due
indirect overlapping is also found in the case of (q,g)
5(3,4).

As for the symmetry of the energy spectrum, Figs. 2 a
3 show thatSE remains under the 1DSM field, which i
contrary to the arguments of Ref. 24. The reason for

discrepancy lies in the range ofkW taken into account in dis
cussing the symmetry of the energy spectrum. In Ref.

only a particular value ofkW was taken into account, while a

the values ofkW in the FMBZ are taken into account in th

paper. Here we would like to stress that all the values ofkW in
the FMBZ should be considered in order to discuss the s
metry of the energy spectrum. In fact,SE of the Hofstadter’s

spectrum holds only when all the values ofkW in the FMBZ
are considered. Figures 2 and 3 also show thatSX remains
under the 1DSM field while whetherSY remains or not de-

FIG. 3. Plot of E versusky in the 1DSM field with (q,g)
5(3,2), where~a! b50.3, ~b! b50.6, and~c! b50.9.
nd

d

is

4,

-

pends crucially onq and g. Note thatSD breaks down by
introducing 1D field modulation.

2. 1DCM field

Figure 5 shows theky dependence of the energy spectru
for (q,g)5(2,3). In this case, for small values ofb, the two
central subbands directly touch at two points ofky and the
upper ~lower! two subbands indirectly overlap with eac
other, resulting in a single subband structure@Fig. 5~a!#.
However, asb increases, indirect overlapping between t
upper~lower! two subbands disappears and the energy sp
trum exhibits a three subband structure@Fig. 5~b!#. Further
increase ofb makes the remaining indirect overlapping di
appear, resulting in a five subband structure@Fig. 5~c!#. The
b dependence of the energy spectrum for (q,g)5(2,4) is
found to be quite different from the case of (q,g)5(2,3).
The four subbands directly touch their neighboring su
bands, resulting in a single subband structure regardless ob.
The only effect ofb is to change the energy bandwidth. A
for (q,g)5(3,3) and (3,4), similar phenomena to the case
q53 under the 1DSM field~i.e., occurrence of a gap closin
due to indirect overlapping! is also found; the energy spec
trum exhibits a three~single! subband structure for sma
~large! values ofb. In Table I, we summarize the number o
subbands of the energy spectra for the parameters (q,g,b)
we took into account. As for the symmetry of the ener
spectrum, we find thatSE ,SX ,SY remain, whileSD breaks

FIG. 4. Plot of E versusky in the 1DSM field with (q,g)
5(3,3), where~a! b50.3 and~b! b50.9.
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PRB 60 1943EFFECTS OF FIELD MODULATION ON THE . . .
down under the 1DCM field. Note thatSY depends on the
type of field modulation; it remains~breaks! in the 1DCM
~1DSM! field.

Before concluding this subsection, we would like to ma
two comments. First, we assumeg to be an integer for the
sake of simplicity even though it can be an arbitrary r
value. Also, we consider only the values ofg>3(2) in the
case of the CM~SM! field becausef becomes nonuniform
only under these conditions. However, the authors of Ref
violated this condition. They choseg51 in their calcula-
tions. But, wheng51, f becomes uniform, as can be eas

FIG. 5. Plot of E versusky in the 1DCM field with (q,g)
5(2,3), where~a! b50.3, ~b! b50.6, and~c! b50.9.

TABLE I. Number of subbands of the energy spectrum un
the 1D modulated fields.

kind 1DSM 1DCM
q 2 3 2 3

g 2 3 4 2 3 4 3 4 3 4
0.3 1 1 1 3 3 3 1 1 3 3

b 0.6 1 1 1 6 1 1 3 1 1 1
0.9 1 1 1 4 1 1 5 1 1 1
l

4

checked by Eq.~15!, and the full energy spectrum should b
identical to the Hofstadter’s spectrum, all of which implie
that the results presented in Ref. 24 are erroneous, ari
from mistakes in choosing the values ofg and in choosing

the values ofkW . Second, the tight-binding model we are co
sidering is basically a one-band model. Thus, we focus
attention on energy spectra only for the values ofb that are
not large since there might be interband mixing between
ferent Landau levels for large values ofb.

C. Energy spectrum in 2D modulated magnetic fields

When the field modulation is along both lateral direction
un becomes nonzero andf becomes periodic in both latera
directions with the periodg. The lattice is called the check
erboard flux lattice23 and the energy spectrum can be o
tained by diagonalizing the (RxRy3RxRy) Hamiltonian ma-
trix.

1. 2DSM field

When (q,g)5(2,2), the Hamiltonian matrix becomes

S 0 a b 0

a* 0 0 c

b* 0 0 d

0 c* d* 0

D , ~17!

where a52eib2e2 i (b12ky), b5e2 ib1ei (b22kx), c5eib

1e2 i (b12kx), and d5e2 ib1ei (b22ky), respectively. By di-
agonalizing Eq.~17! we obtain the energy dispersion as

E~kW !562ucosbAcos2kx1cos2ky6sinbAsin2kx1sin2kyu,
~18!

which is plotted in Fig. 6. Numbering the four subbands
order of lowering energy, one can see that the first~second!
and the third~fourth! subbands directly touch at the center
FMBZ regardless ofb. There also exists band crossing b
tween the second and the third subbands, which is abse
the case of the 1D field modulation. Equation~18! indicates
that the energy spectrum exhibits a single subband struc
regardless ofb and the total bandwidth changes with varyin
b. When (q,g)5(2,3), due to direct touching and indirec
overlapping between neighboring subbands, the energy s
trum exhibits a single subband structure regardless ofb.
Meanwhile, when (q,g)5(2,4), the energy band structur
sensitively depends onb. For small values ofb, due to di-
rect touching between neighboring subbands, the ene
spectrum exhibits a single subband structure. However,
opening between subbands occurs with increasingb, and the
energy spectrum exhibits a five subband structure.

When (q,g)5(3,2), even for small values ofb, the en-
ergy spectrum is quite different from the case ofb50. The
energy spectrum for a small value ofb exhibits an eight
subband structure@Fig. 7~a!#. And, asb increases, two more
gaps are open to yield a ten subband structure@Fig. 7~b!#.
Further increase ofb makes the energy spectrum exhibit
twelve subband structure@Fig. 7~c!#. The b dependence of
the energy spectrum for (q,g)5(3,3) is also different from
the case of (q,g)5(3,2): For small values ofb, the energy
spectrum consists of three subbands as in the case ofb50.

r
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However, gap closing occurs with increasingb and the en-
ergy spectrum exhibits a single subband structure. We
find similar gap closing behavior for (q,g)5(3,4).

2. 2DCM field

When (q,g)5(2,3), due to direct touching and indire
overlapping between the subbands, the energy spectrum
small values ofb exhibits a three subband structure. Ho
ever, gap opening occurs between the subbands with incr
ing b and the energy spectrum exhibits a five subband st
ture. Also, the widths of gaps broaden with the increase ob.
Similar behavior is also found in the case of (q,g)5(2,4),
where the energy spectrum exhibits a single~five! subband
structure for small~large! values ofb. Sensitive dependenc
of the band structure onb is also found in the case ofq
53. For the case of (q,g)5(3,3), the energy spectrum i
found to exhibit a three subband structure for a small va
of b, a single subband structure for an intermediate value
b, and a seven subband structure for a large value ob.
Figure 8 shows theb dependence of the energy spectrum
(q,g)5(3,4), where the concurrent occurrence of gap op
ing and gap closing can be seen. We summarize in Tab
the number of subbands of the full energy spectra for
parameters (q,g,b) taken into account.

The symmetry of the energy spectrum under the
modulated fields is more complicated than the cases of
1D modulated fields.SE remains for both the 2DSM an
2DCM fields. However,SX andSY depend sensitively on th
system parameters. For the parameters considered, we
that SX and SY remain for the cases of (q,g)

FIG. 6. Energy dispersion in the 2DSM field with (q,g)
5(2,2), where~a! b50.3 and~b! b50.9.
so
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c-

e
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5(2,2),(2,4),(3,2) in the 2DSM fields, and (q,g)
5(2,4),(3,3) in the 2DCM fields, while they break for th
cases of (q,g)5(2,3),(3,4) in the 2DSM fields and (q,g)
5(2,3),(3,4) in the 2DCM fields. Meanwhile, the energ
spectrum in the 2DSM field with (q,g)5(3,3) has a flipped
symmetry with respect tokx(y)50. Here the flipped symme
try means that the energy spectrum in the range of 0<kx(y)
<p/Rx(y) is the same as that in the range of2p/Rx(y)
<kx(y)<0 whenE is replaced by2E. SD also depends sen
sitively on the system parameters; it holds~breaks! for the
values of (q,g) that makeSX andSY remain~break!.

Before concluding this subsection, we would like to ma
a few comments. The first is that the above results
SE,X,Y,D are not from a theoretical analysis but from a n
merical study. Thus, further study such as the group theo
ical analysis23,26,27is required in order to deepen the unde
standing of the symmetry breaking. The second is that thekx
andky directions taken into account in discussingSX,Y,D are
not the high symmetry directions of the Hamiltonian und
the 2D modulated fields. The reason for taking into acco
these directions, nevertheless, lies in testing howSX,Y,D ap-
peared in the Hofstadter’s spectrum is influenced by the fi
modulation. Since symmetry breaking is generally expec

FIG. 7. Plot of E versusky in the 2DSM field with (q,g)
5(3,2), where~a! b50.3, ~b! b50.6, and~c! b50.9.



ha
i

ul
tro

rg
iffe
o
i

nly
his
26
g-
e

d

the
on

tic
cur-
band
eld
t is

and
sys-
to
in
eld

ffect
the
this
per-
te-
wn

opy
ted

der
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if the symmetry axis is not properly chosen, our result t
the breaking ofSX,Y,D depends on the system parameters
quite natural. Finally, it may be worthwhile to note the res
of Ref. 26, where Shi and Szeto considered a Bloch elec
in the magnetic field

BW 5@B01~21!m2nB1# ẑ, ~19!

and found that there is no symmetry breaking in the ene
spectrum even though the energy spectrum becomes d
ent from the Hofstadter’s spectrum, which seems to be c
trary to our results. However, since the directions used
Ref. 26 are the highly symmetric (kx6ky) directions while

FIG. 8. Plot of E versusky in the 2DCM field with (q,g)
5(3,4), where~a! b50.3 and~b! b50.6.
.

.

t
s
t
n

y
r-

n-
n

the directions used in this paper are thekx andky directions,
it may not be easy to compare both results directly. The o
thing we can say is that the field modulation given in t
paper@Eqs.~1!–~3!# is more generalized than that of Ref.
@Eq. ~19!#; specifying the periodic magnetic field by a ma
netic unit cell, the lattice with Eq.~19! becomes the simpl
checkerboard lattice@see, for example, Fig. 2~a! of Ref. 23#
while the lattice with Eqs.~1!–~3! becomes a generalize
checkerboard lattice@see Fig. 2~b! of Ref. 23#. Thus we ex-
pect that the latter may present a more generic effect of
field modulation than the former. Further theoretical study
the comparison between the two cases is also required.

IV. SUMMARY

In summary, the effect of spatially modulated magne
fields on the Hofstadter’s spectrum was studied. The oc
rence of gap opening, gap closing, band crossing, and
broadening was found to be the generic effect of the fi
modulation, which leads to an energy band structure tha
distinct from the Hofstadter’s spectrum. The energy b
structure was found to be sensitively dependent on the
tem parameters, which implies that it may be difficult
detect the direct indication of the Hofstadter’s spectrum
experiment since even a tiny change of the magnetic fi
leads to a very complicated energy band structure. The e
of the field modulation on the symmetries appearing in
Hofstadter’s spectrum was also discussed in detail. In
work, we have paid attention to the energy spectral pro
ties only with a rational flux and the isotropic hopping in
gral. Since an introduction of hopping anisotropy is kno
to lead to interesting phenomena like band broadening,28 it
may be interesting to study the effect of hopping anisotr
on the energy spectrum of a 2DBE under the modula
magnetic fields.

TABLE II. Number of subbands of the energy spectrum un
the 2D modulated fields.

kind 2DSM 2DCM
q 2 3 2 3

g 2 3 4 2 3 4 3 4 3 4
0.3 1 1 1 8 3 7 3 1 3 3

b 0.6 1 1 5 10 3 7 5 5 1 7
0.9 1 1 5 12 3 5 5 5 7 3
s,

ys.

-
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