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Optical linewidths in an individual quantum dot
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Institute of Industrial Science, University of Tokyo, 7-22-1 Roppongi, Minato-ku, Tokyo 106, Japan

~Received 16 February 1999!

On the basis of lattice relaxation due to the electron acoustic phonon coupling, we theoretically analyze the
homogeneous optical linewidths of a single quantum dot. The calculated result based on a nonstrong-coupling
approximation shows that in a considerable range of temperatures the homogeneous linewidth can be expressed
in terms ofGh5G01AT, and the size dependence is characterized byG0}1/R andA}1/R2, whereT is the
temperature andR is the quantum dot radius. While this result qualitatively agrees well with the available
experiments on exciton dephasing, it straightforwardly implies the infrared optical properties due to intraband
transitions with transition energy around 100 meV.@S0163-1829~99!02627-2#
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I. INTRODUCTION

Semiconductor quantum dots~QD’s! promise important
advantages in device applications such as higher pe
mance for lasers,1,2 strongly enhanced oscillator strengths3

optical nonlinearities,4 etc. All these optical properties ar
related to the three-dimensional confinement that gives
to a sharply discrete electron energy spectrum, thus un
standing of optical spectrum broadening is an essential is
Without knowledge of the broadening, for example, we c
make no useful estimate for the size of the nonlinear abs
tion, since it depends on the width of the linear absorpt
line.4

In practice the broadening is dominated by inhomoge
ities in the size and shape of QD’s. However, the intrin
mechanisms, predominantly the phonon broadening, wo
set the limit to the properties of QD’s that cannot be elim
nated by better fabrication. This stimulated considerable
terest in investigations on the homogeneous spectral l
widths with certain indirect methods on larg
inhomogeneous semiconductor microcrystal ensembles5–13

More recently, local spectroscopic techniques, such as n
field optical microscopy, make it possible to probe an in
vidual quantum dot,14–16 and therefore measure directly th
homogeneous linewidths.17 The essential experimental ev
dence can be summarized as follows:13 ~i! the linewidth has
commonly linear temperature behavior in the relatively hig
temperature regime, and~ii ! the linear coefficient is roughly
inverse-square-size dependent.

The aim of this work is twofold. First, we intend to clarif
the general features of the homogeneous linewidths base
the lattice relaxation~LR! mechanism by considering th
coupling of electron to the acoustic phonons during the
tical transitions~for more details in the motivation on thi
point, see the analysis of the next paragraph!. In this respect,
the intraband and interband transitions are methodologic
equivalent~except for certain differences in estimating t
electron phonon coupling strength!. This fact ensures that i
we restrict the calculation to the intraband optical transitio
the obtained result can be qualitatively compared with
available experiments on interband transitions. Second,
wish to get some insight into the new subject, say, the
PRB 600163-1829/99/60~3!/1915~6!/$15.00
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infrared intraband optical properties. Very recently, stim
lated by the possibility to realize the infrared light devic
~e.g., infrared light emitters and infrared photodetectors!, and
the optical nonlinearities associated with the QD intraba
transitions, there has been growing interest in the opt
studies based on the intraband transitions.25 In this context,
the homogeneous linewidth is an important issue as
cussed in Ref. 4 for the case of interband optical transitio
We hope that in the near future this intraband homogene
linewidth in a single quantum dot can be probed with loc
spectroscopic techniques in addition to the progress of gr
ing high quality QD samples.

As is well known, in semiconductors the electron phon
scattering is the dominant contribution to line broadening.
this mechanism, the experimental homogeneous linewid
in QD’s were fitted from the phonon-scattering rate in bu
semiconductors,8 or phenomenologically.9,10,17 Note that, in
higher dimensional systems such as in quantum wells,
lifetime broadening mechanism can account for the homo
neous linewidths, in which the electron state under consid
ation is scattered rapidly into other energy states by phon
thus the finite lifetime results in a level broadening. For e
ample, in Ref. 17, this mechanism was employed to exp
the experimental result in a large size QD, where the le
spacing is of several meV, which implies an efficient ele
tron LA phonon scattering. However, this lifetime broade
ing mechanism breaks down in very small QD because of
absence of the exact detuning with the optical phonons,18 and
the extremely reduced scattering rate due to the acou
phonons.19 In this case, LR is likely the only and most rea
sonable mechanism to account for the homogeneous br
ening in single dot optical transitions.20–22The main motiva-
tion of this work is aimed to provide an appropria
treatment to the homogeneous linewidth based on the LR
the present not strongly coupled electron-lattice syste
More specifically, due to the localized nature of the electr
states in QD, upon the optical transition, the lattice config
ration changes according to the different electronic sta
and this lattice relaxation effect causes the broadening of
optical lines. For the coupling of electron to a single phon
mode, or more generally, single frequency multiphon
modes, exact analytical solution exists; but for the coupl
1915 ©1999 The American Physical Society



a
ng
-

th
ea
e

a

m
th
er
lc
t in
li

bl
ar
ng
pt

io
ul
im
ng

c

tin
is

r
n

te

ed
ly

w
le

en
st
d
g.
d
it

rial
and
fe-

is
-
so-

e

lec-
m

A

-

rn-
d as

the
-
s
s

est
lity

ical
and
itly

en-
ut

1916 PRB 60XIN-QI LI AND YASUHIKO ARAKAWA
to arbitrary multiphonon modes, it is impossible to derive
exact analytical solution. In the latter case, the stro
coupling approximation~SCA! is a popular and widely ac
cepted approximation,20,23,24 which worked well in most
strongly coupled electron-lattice systems. However, since
coupling strength of the QD electron-phonon system is w
in regard to the LR criterion for quantum dot with size larg
than, say, 4 nm, the SCA is unsuitable to be employed
calculate the optical linewidths. We shall show below th
the SCA would give rise to a temperature dependenceGh

}AT, where Gh is the homogeneous linewidth andT the
temperature, and the size dependenceGh}1/R1.5, whereR is
the radius of a spherical QD. We attribute this deviation fro
the central experimental features to the breakdown of
strong coupling approximation. In this work, we shall furth
develop an effective single-phonon-mode approach to ca
lateGh beyond the SCA. The calculated result implies tha
a considerable range of temperatures the homogeneous
width can be expressed in terms ofGh5G01AT, and the
size dependence is characterized byG0}1/R and A}1/R2.
The qualitative agreement of our result with the availa
experiments is good, but it highly suggests both a more c
ful analysis of the experimental data of exciton dephasi
and performing new experiments on the QD intraband o
cal transitions.

II. ELECTRON AND PHONON STATES

As mentioned above, we are going to focus our attent
mainly to the intraband optical transitions in QD. As a res
of confinement, the electronic states are localized. For s
plicity, we assume a spherical QD and a rigidly confini
potential. Under this consideration, the~conduction! electron
wave function is

c lm~k,r !5Bl
ej l~kr !Ylm~u,f!, ~1!

wherej l andYlm are, respectively, the spherical Bessel fun
tion and the spherical harmonics, andBl

e is a normalization
constant with a form asBl

e5@(R3/2) j l 11
2 (kR)#21/2, whereR

is the QD radius. The order of the electronic states coun
from the lowest energy level to the higher ones
1s,1p,1d,2s,1f ,..., wheres, p, d, and f denote the angula
momentum as in atomic physics. In this work, we shall co
sider the optical transition between the two lowest sta
namely, the ground 1s statec00(k1 ,r ), and the first excited
1p statec10(k2 ,r ). Note that due to the selection rule bas
on the dipole approximation for the optical transitions, on
the 1p state with magnetic quantum numberm50 is in-
volved in the transition between 1s and 1p. Further, we can
determine the wave numberk15p/R, and k254.4934/R,
from the rigid boundary conditionj l(kR)50.

To estimate the broadening of the optical transitions,
need to specify the acoustic-phonon modes in QD. It is c
that the optical phonons are confined in QD,26 due to the
obvious discontinuity of band-edge optical-phonon frequ
cies of the inside and outside materials. For the acou
phonons in QD, the size quantized acoustic-phonon mo
were observed by the low-frequency Raman scatterin27

Theoretically, these acoustic modes can be describe
terms of the elastic vibration of homogeneous particle w
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pressure free boundary condition; and the outside mate
plays the role of coupling anharmonically to these modes
dissipating the energy, consequently resulting in a finite li
time on these localized phonon modes.28,29 Further, the
dominant contribution to the electron-phonon interaction
from the longitudinal acoustic~LA ! phonons through the de
formation potential coupling. The mechanical potential as
ciated with the LA vibration can be derived as

F lm~q,r !5Bl
pj l~qr !Ylm~u,f![Bl

pGq,lm~r !. ~2!

The associated LA vibrating displacement is given byum
5¹F tm . With the help of this relation, we can specify th
normalization constant for a single LA mode as

Bl
p5FrR3

2
q2 j l 11

2 ~qR!G21/2

. ~3!

Using these LA modes as the representation basis, the e
tron LA-phonon interaction Hamiltonian that resulted fro
the deformation-potential model can be written as

Hep5 (
q,lm

Vq,lGq,lm~r !Qq,lm[ (
q,lm

ulm~q,r !Qq,lm , ~4!

whereQq,lm is the canonical coordinate of the normal L
mode, the coupling strength has the formVq,l

5Dvq /A(rR3/2)q2 j l 11
2 (qR), D is the deformation poten

tial constant, andvq5qv is the LA phonon frequency with
wave numberq and sound velocityv.

III. LR APPROACH: STRONG-COUPLING
APPROXIMATION

For the coupled electron-lattice system, in the Bo
Oppenheimer approximation the state can be decompose
C i(r ,$Qq,lm%)5c i(r ,$Qq,lm%)x i($Qq,lm%), wherec i andx i
are the electron and lattice wave function respectively. In
electron wave function,Qq,lm only plays the role of param
eter. The lattice wave functionx i is a direct product of state
of harmonic oscillators whose oscillating equilibrium origin
are influenced by the electronic state.20–24

Consider the optical transition between the two low
conduction electron states in QD. The transition probabi
is determined by the followingspectral shapefunction:

W~E!5Av i(
f

z^ f uM u i & z2d@E2DEf i #. ~5!

HereM is the electric dipole moment of the electron,E is the
photon energy, andDEf i is the energy difference of the
whole electron-lattice system before and after the opt
transition. The average over the initial phonon states
summation over the final phonon states have been explic
shown in the equation.

In the Condon approximation, the electronic matrixM f i
5^c f uM uc i& can be regarded as lattice coordinate indep
dent. Following the standard procedure of LR to carry o
the average~summation! over initial ~final! phonon states,
we have

W~E!5uM f i u2E
2`

`

dmeF~m,E!, ~6!



in

it
t
fo
lin
a

th

w

t b
g

ul
e

p

l b

the

of
rks
-

rom

QD

te-
the

at

of
in
ice
an

-
a-
e-

a-
m-

hifted
e
ve
the
a is
tice

PRB 60 1917OPTICAL LINEWIDTHS IN AN INDIVIDUAL QUANTUM DOT
with

F~m,E!52 im~E2DEf i !1(
lmq

S vq

2\ DD f i lmq
2

3Fcoth
b\vq

2
~cosm\vq21!1 i sinm\vqG , ~7!

where b is the inverse temperature, andD f i lmq5D f lmq
2D i lmq with

D j lmq5^c j uulm~q,r !uc j&/vq
2, ~8!

describing the shift of the lattice normal oscillator orig
before and after the electron transition.

For the case of single phonon mode or multimodes w
single frequency, the integral of Eq.~6! can be carried ou
exactly. Otherwise, this integral is analytically intractable
the arbitrary multimodes. In such a case, the strong-coup
approximation is a popular and widely accepted approxim
tion, i.e., by expanding the functionF(m,E) to the second
order of m, and using the steepest descent method, Eq.~6!
yields

W~E!5uM f i u2F 2p

ST~\vq!T
2G 1/2

expF2
~E2DEf i2S\vq!2

2ST~\vq!T
2 G ,

~9!

where

S\vq5(
lmq

S vq

2\ DD f i lmq
2 \vq , ~10!

ST~\vq!T
25(

lmq
S vq

2\ DD f i lmq
2 ~\vq!2 cothS b\vq

2 D . ~11!

From the spectral shape function Eq.~9!, it is straightforward
to identify the full width at half maximum~FWHM! as

Gh5@~8 ln 2!ST~\vq!T
2#1/2. ~12!

To carry out these LR quantities, we need to specify
oscillator displacement parameterD j lmq . In the dipole ap-
proximation for the optical transition between 1s and 1p
states, we know from group theory that only the 1p state
with zero magnetic quantum number is involved. Thus,
have

D j l 0q5
1

vq
2 ^Yj 0uYl0uYj 0&E

0

R

drr 2u j j~kr !u2 j l~qr !. ~13!

For convenience, we denote the angular matrix elemen
Zjl j [^Yj 0uYl0uYj 0&. From the angular momentum couplin
theory, we know that the nonzero matrices areZ000

51/A4p, Z10151/A4p, andZ121521/A5p. Based on this
analysis, we see that only the phonon modes with ang
quantum numberl 50 and 2 respond to the electron-lattic
coupling in terms of lattice relaxation.

Figure 1~a! shows the homogeneous linewidthGh under
the strong-coupling approximation, where the adopted
rameters are from the CdSe quantum dot~in the following
numerical calculations the same material parameters wil
h
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used!. The solid line is directly calculated from Eq.~12!, and
the dashed line is from a further approximation, say,
high-temperature approximation, which gives rise to

Gh
25~16 ln 2!kTS\vq. ~14!

In Fig. 1~a! we see that in a considerably wide range
temperatures this high-temperature approximation wo
very well. Consequently, Eq.~14! implies that the tempera
ture dependence of the linewidth isGh}AT rather thanGh
}T as indicated by experiments5,8,13,14 in the high-
temperature regime due to acoustic-phonon scattering. F
Eqs. ~14! and ~10! we can further know that for a given
temperature the homogeneous linewidth depends on the
size approximately asGh}1/R1.5 from a simple scaling
analysis by noting the insensitive feature of the overlap in
gral to the QD size. This conclusion is demonstrated by
numerical calculation shown in Fig. 1~b!. Note that this fea-
ture differs qualitatively from the experimental evidence th
indicated an inverse-square-size dependence behavior~i.e.,
Gh}1/R2!.

We attribute the above discrepancies to the application
the strong-coupling approximation. As a matter of fact,
respect to the lattice relaxation criterion, the electron-latt
coupling strength is quite weak if the dot size is larger th
several nanometers~e.g., 4 nm!.23 Below we present an al
ternative treatment beyond the strong-coupling approxim
tion, which can provide a better description for the homog
neous linewidths.

IV. LR APPROACH: EFFECTIVE SINGLE MODE
APPROXIMATION

In Ref. 5, by phenomenologically approximating the qu
sicontinuum of acoustic phonons by a single mode, the te
perature dependence was discussed on the basis of a s
oscillator model. In what follows, from a direct multimod
calculation for the LR quantities, we first define an effecti
single phonon mode, then present an exact analysis for
linewidth based on the single phonon mode. The basic ide
that we let the effective single mode have the same lat

FIG. 1. Homogeneous linewidthGh under the strong-coupling
approximation shown in~a! for the temperature dependence (Gh

}AT), and in~b! for the size dependence (Gh}1/R1.5). The dashed
curve in ~a! is from the high-temperature approximation.
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1918 PRB 60XIN-QI LI AND YASUHIKO ARAKAWA
relaxation feature as the multimodes, thus we have a de
tion for the single phonon mode as

\V5S\vq/S, ~15!

where

S5(
lmq

S vq

2\ DD f i lmq
2 ~16!

is the Huang-Rhys parameter. In this way, the single m
description keeps the same Huang-Rhys parameter and
tice relaxation energy~i.e., S\vq! as the multimodes do
Replacing\vq in Eq. ~7! by the just obtained average ph
non energy\V, a precise expression follows directly as

W~E!5uM f i u2e2~112N!S (
p52`

`

I p@2SAN~N11!#

3S 11N

N D p/2

d~E2De f i2p\V!, ~17!

whereN5@exp(\V/kBT)21#21 is the Bose function,I p(x) is
the imaginary argument Bessel function, andDe f i is the
electron level spacing. Equation~17! gives rise to a numbe
of discrete phonon peaks by thed function. Due to the smal
energy of the low-frequency acoustic phonon and its ra
decay to the bulk acoustic phonons~i.e., the heat bath!, con-
ventionally we can regard the envelope of the discrete p
non peaks given by Eq.~17! as the practical observed spe
tral shape function of the optical transition. Therefore,
make a continuity ofp from the discrete integer to a continu
ous variablep5DE/\V, whereDE is the optical detuning
energyDE5E2De f i . Accordingly, the homogeneous line
width is obtained from the following envelope function:

f ~DE!5I p@2SAN~N11!#S 11N

N D p/2U
p5DE/\V

. ~18!

Based on this line-shape function, we can determine
FWHM.

We noted that, in the context of bulk semiconductor las
and based on the carrier-LO phonon and carrier-carrier s
terings, Ref. 30 addressed the non-Markovian relaxation
cesses and obtained a non-Lorentzian line-shape func
which has an asymmetry and stronger convergent chara
istics in comparison with the Lorentzian function. In o
case, despite the different microscopic mechanism, Eq.~18!
shows a similar asymmetry non-Lorentzian line-shape f
ture. More specifically, at zero temperature the envel
function Eq. ~18! corresponds to a Poissonian distributio
while it evolves gradually to a Gaussian function with i
crease of temperature. The underlying physics for this n
Lorentzian behavior is owing to the fact that the present
treatment for the coupled QD electron-lattice system g
beyond the conventional Markovian approximation by
volving a certain non-Markovian relaxation effect on t
acoustic-phonon bath. For example, in LR the effect of
electron subsystem on the lattice subsystem would resu
an origin shift of the bath oscillators~i.e., the acoustic
phonons!. This lattice relaxation effect is essential in unde
i-
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standing the present homogeneous broadening, but it w
be ignored completely in the Markovian approximation.

Figure 2 shows the calculated linewidth on the basis
Eq. ~18! as a function of temperature by the solid lin
where, as a reference, we also plot the result of the stro
coupling approximation by the dashed curve~from mul-
tiphonon modes!, and the small circles~from the effective
single phonon mode!, which in a certain sense demonstra
the self-consistency between the descriptions of the sin
mode and multimodes. Resulting from the exact solut
from the effective single mode, the solid line in Fig. 2 clea
shows a linear temperature-dependent behavior of the l
width in a wide range of temperatures, which can be char
terized by

Gh5G01AT. ~19!

This T linear behavior is in good agreement with expe
ments. For example, in Ref. 12, the origin of this behavio
attributed to the significantly enhanced coupling to the lo
frequency acoustic phonons, since the strong linear temp
ture dependence found there cannot be accounted for by
increasing LO phonon population.

It is well known that in higher dimensional systems t
homogeneous linewidth due to the electron LA phonon sc
tering is proportional toT at high-temperature limit. Interest
ingly, we noted that in Ref. 17 the optical spectra result
from a relatively large QD were investigated in high pre
sion, where at respectively high temperatures~i.e., between
25 and 50 K! the linewidth also has linear temperature d
pendence. There, since the QD size is not too small, then
exciton level spacing is in the range of efficient LA phon
scattering, a simple lifetime broadening mechanism can
count for both the extremely narrow linewidth of the order
0.025–0.12 meV, and the temperature dependence. Her
stress that in very small QD, where the energy level spac
is considerably large thus the lifetime broadening mechan
breaks down completely, the low-frequency acous
phonons can as well result in a linear-T linewidth in wide
range of temperatures, due to the lattice relaxation effec
optical transition.

FIG. 2. Linear temperature dependence~solid line! calculated
exactly from the effective single mode model. Self-consistency
tween the effective single mode and the multimodes is exami
under the strong-coupling approximation by the dashed curve
the small circles, which, having aAT behavior, also show an obvi
ous deviation from the linear temperature dependence.
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PRB 60 1919OPTICAL LINEWIDTHS IN AN INDIVIDUAL QUANTUM DOT
The size dependence ofGh is characterized byA andG0
in Eq. ~19!. Figure 3 shows the numerical result ofA based
on the effective-single-mode LR approach. This prec
inverse-square-size dependence is in excellent agree
with the experimental fitting in Ref. 8. Other experimen
also roughly support this behavior by showing thatGh
}R22. However, strictly speaking, our calculation reveal
a slight deviation ofGh from theR22 behavior. In Fig. 4~a!
we plot the size behavior ofGh for two given temperatures
from which we deduce the size dependence ofG0 in Fig.
4~b!. Very interestingly, we see thatG0 is characterized wel
by a linear inverse size dependence, i.e.,G0}R21. To our
knowledge, this fact has not been reported in any exp
ments. On the contrary, in literature, theG0 part in Eq.~19!
was widely regarded as a contribution of nonphonon sca
ing, and having no size dependence. We here recognize
G0 ~at least part of it! share the common origin of the term
AT due to the LA phonon scattering, and has clear size
pendent behavior.

V. CONCLUSION

In summary, we theoretically investigated the homog
neous optical linewidth in QD by showing its temperatu
and size dependences. Our calculation was restricted to
conduction intraband optical transitions in the intermedi
size of QD, i.e., it has energy level spacing around 100 m
which implies that the usual lifetime broadening mechani
due to phonon scattering breaks down completely, thus

FIG. 3. Inverse-square-size dependence of the linear coeffic
A.
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lattice relaxation in the optical transitions is likely the on
and most reasonable way to account for the homogene
linewidth, due to the significant size localization of electr
states in QD. Due to the common origin of LR in small Q
we can compare the qualitative features between the pre
obtained results and the exciton dephasing behaviors in
available experiments, and satisfactory agreement was
tained. The present study may suggest both further car
analysis of the experimental data in exciton dephasing,
performing new experiments on the QD intraband opti
transitions. Especially, in view of the sound potential bei
applied to infrared optical devices~e.g., infrared detectors
and emitters!, the study of intraband optical transitions
QD’s itself is of great interest.
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FIG. 4. ~a! Size dependence of the homogeneous linewidthGh

and ~b! the inverse size dependent behavior of the temperature
dependent part inGh .
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