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Optical linewidths in an individual quantum dot
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On the basis of lattice relaxation due to the electron acoustic phonon coupling, we theoretically analyze the
homogeneous optical linewidths of a single quantum dot. The calculated result based on a nonstrong-coupling
approximation shows that in a considerable range of temperatures the homogeneous linewidth can be expressed
in terms of ', =T+ AT, and the size dependence is characterized py1/R and Ax1/R?, whereT is the
temperature andR is the quantum dot radius. While this result qualitatively agrees well with the available
experiments on exciton dephasing, it straightforwardly implies the infrared optical properties due to intraband
transitions with transition energy around 100 m¢80163-182@9)02627-2

[. INTRODUCTION infrared intraband optical properties. Very recently, stimu-
lated by the possibility to realize the infrared light devices
Semiconductor quantum dof®D’s) promise important (e.g., infrared light emitters and infrared photodetegt@sd
advantages in device applications such as higher perfothe optical nonlinearities associated with the QD intraband
mance for lasers? strongly enhanced oscillator strengths, transitions, there has been growing interest in the optical
optical nonlinearitie$, etc. All these optical properties are studies based on the intraband transitibhkn this context,
related to the three-dimensional confinement that gives risthe homogeneous linewidth is an important issue as dis-
to a sharply discrete electron energy spectrum, thus undecussed in Ref. 4 for the case of interband optical transitions.
standing of optical spectrum broadening is an essential issu#/e hope that in the near future this intraband homogeneous
Without knowledge of the broadening, for example, we carlinewidth in a single quantum dot can be probed with local
make no useful estimate for the size of the nonlinear absorpspectroscopic techniques in addition to the progress of grow-
tion, since it depends on the width of the linear absorptioring high quality QD samples.
line.t As is well known, in semiconductors the electron phonon
In practice the broadening is dominated by inhomogenescattering is the dominant contribution to line broadening. In
ities in the size and shape of QD’s. However, the intrinsicthis mechanism, the experimental homogeneous linewidths
mechanisms, predominantly the phonon broadening, woulth QD’s were fitted from the phonon-scattering rate in bulk
set the limit to the properties of QD’s that cannot be elimi-semiconductor8,or phenomenologically®’ Note that, in
nated by better fabrication. This stimulated considerable inhigher dimensional systems such as in quantum wells, the
terest in investigations on the homogeneous spectral lindifetime broadening mechanism can account for the homoge-
widths  with certain indirect methods on large neous linewidths, in which the electron state under consider-
inhomogeneous semiconductor microcrystal ensenibfés. ation is scattered rapidly into other energy states by phonons,
More recently, local spectroscopic techniques, such as neathus the finite lifetime results in a level broadening. For ex-
field optical microscopy, make it possible to probe an indi-ample, in Ref. 17, this mechanism was employed to explain
vidual quantum dot?~'° and therefore measure directly the the experimental result in a large size QD, where the level
homogeneous linewidtHs. The essential experimental evi- spacing is of several meV, which implies an efficient elec-
dence can be summarized as follot#gi) the linewidth has tron LA phonon scattering. However, this lifetime broaden-
commonly linear temperature behavior in the relatively high-ing mechanism breaks down in very small QD because of the
temperature regime, ar() the linear coefficient is roughly absence of the exact detuning with the optical phort8asd
inverse-square-size dependent. the extremely reduced scattering rate due to the acoustic
The aim of this work is twofold. First, we intend to clarify phonons® In this case, LR is likely the only and most rea-
the general features of the homogeneous linewidths based @onable mechanism to account for the homogeneous broad-
the lattice relaxationLR) mechanism by considering the ening in single dot optical transitio8-2>The main motiva-
coupling of electron to the acoustic phonons during the option of this work is aimed to provide an appropriate
tical transitions(for more details in the motivation on this treatment to the homogeneous linewidth based on the LR in
point, see the analysis of the next paragpajinthis respect, the present not strongly coupled electron-lattice system.
the intraband and interband transitions are methodologicallivore specifically, due to the localized nature of the electron
equivalent(except for certain differences in estimating the states in QD, upon the optical transition, the lattice configu-
electron phonon coupling strengtiThis fact ensures that if ration changes according to the different electronic states,
we restrict the calculation to the intraband optical transitionsand this lattice relaxation effect causes the broadening of the
the obtained result can be qualitatively compared with theoptical lines. For the coupling of electron to a single phonon
available experiments on interband transitions. Second, wmode, or more generally, single frequency multiphonon
wish to get some insight into the new subject, say, the QDmodes, exact analytical solution exists; but for the coupling
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to arbitrary multiphonon modes, it is impossible to derive anpressure free boundary condition; and the outside material
exact analytical solution. In the latter case, the strongplays the role of coupling anharmonically to these modes and
coupling approximatiofSCA) is a popular and widely ac- dissipating the energy, consequently resulting in a finite life-
cepted approximatiof>>?4 which worked well in most time on these localized phonon mod&$® Further, the
strongly coupled electron-lattice systems. However, since thdominant contribution to the electron-phonon interaction is
coupling strength of the QD electron-phonon system is weakrom the longitudinal acoustid_A) phonons through the de-

in regard to the LR criterion for quantum dot with size largerformation potential coupling. The mechanical potential asso-
than, say, 4 nm, the SCA is unsuitable to be employed taiated with the LA vibration can be derived as

calculate the optical linewidths. We shall show below that

the SCA would give rise to a temperature dependege Qin(a,1)=BFj1 (AN Yim(0,0)=BfGqm(r).  (2)
«\T, whereI; is the homogeneous linewidth anidthe  The associated LA vibrating displacement is given ty
temperature, and the size dependehige 1/R™> whereRis  _y@, . With the help of this relation, we can specify the

the radius of a spherical QD. We attribute this deviation from,ormalization constant for a single LA mode as
the central experimental features to the breakdown of the

strong coupling approximation. In this work, we shall further

develop an effective single-phonon-mode approach to calcu- BP=
lateT"}, beyond the SCA. The calculated result implies that in

a considerable range of temperatures the homogeneous lindsing these LA modes as the representation basis, the elec-
width can be expressed in terms Bf=I,+AT, and the fron LA-phonon interaction Hamiltonian that resulted from
size dependence is characterized Iiyx1/R and Ax 1/R?. the deformation-potential model can be written as

The qualitative agreement of our result with the available

experiments is good, but .it highly suggests bgth amore care-  H, = > Vq1Gqim(r) Qqim= > Uim(A,)Qqim, (4

ful analysis of the experimental data of exciton dephasing, q,lm q,Im

and performing new experiments on the QD intraband opti
cal transitions.

3

pR - —1/2
qul Z.1(aR)

()

where Qg is the canonical coordinate of the normal LA
mode, the coupling strength has the fornv
=Duwy/\(pR*2)d%{,1(dR), D is the deformation poten-
Il. ELECTRON AND PHONON STATES tial constant, andvoq=qv is the LA phonon frequency with

As mentioned above, we are going to focus our attentionf/2ve numbex and sound velocity .
mainly to the intraband optical transitions in QD. As a result

of confinement, the electronic states are localized. For sim- Il LR APPROACH:  STRONG-COUPLING
plicity, we assume a spherical QD and a rigidly confining APPROXIMATION
potential. Under this consideration, tt@nduction electron For the coupled electron-lattice system, in the Born-
wave function is Oppenheimer approximation the state can be decomposed as
) Wi(r{Qqim}) = #i(r {Qqim) Xi({Qq,im}), Wherey; and x;
Pim(K,) =B} (KN Y m(6,6), (1) are the electron and lattice wave function respectively. In the

. . . electron wave functionQq ;,, only plays the role of param-
vyhereJ, andY, are, respectwgly, the spherlcal Bessel_ funC-gter. The lattice wave functiog; is a direct product of states
tion and the spherical harmonics, aBfl is a normalization  of harmonic oscillators whose oscillating equilibrium origins
constant with a form aBf=[(R%2)j{,,(kR)] 2 whereR  are influenced by the electronic stdte?*
is the QD radius. The order of the electronic states counting Consider the optical transition between the two lowest
from the lowest energy level to the higher ones isconduction electron states in QD. The transition probability
1s,1p,1d,2s,1f,..., wheres, p, d andf denote the angular s determined by the followingpectral shapdunction:
momentum as in atomic physics. In this work, we shall con-
sider the optical transition between the two lowest states,
namely, the ground 4 stateyo(ky,r), and the first excited
1p stateyo(ks,r). Note that due to the selection rule based
on the dipole approximation for the optical transitions, onlyHereM is the electric dipole moment of the electrdnis the
the 1p state with magnetic quantum number=0 is in-  Photon energy, and\Ey; is the energy difference of the
volved in the transition betweersland 1p. Further, we can whole electron-lattice system before and after the optical
determine the wave numbdg = =/R, and k,=4.4934R, transition. The average over the initial phonon states and
from the rigid boundary conditiofy(kR) = 0. summa_tion over thg final phonon states have been explicitly
To estimate the broadening of the optical transitions, weshown in the equation.
need to specify the acoustic-phonon modes in QD. It is clear !n the Condon approximation, the electronic mathix;
that the optical phonons are confined in &Ddue to the =(¥:M|¢;) can be regarded as lattice coordinate indepen-
obvious discontinuity of band-edge optical-phonon frequendent. Following the standard procedure of LR to carry out
cies of the inside and outside materials. For the acoustithe averaggsummation over initial (final) phonon states,
phonons in QD, the size quantized acoustic-phonon mode€ have
were observed by the low-frequency Raman scatteting. .
Theoretically, the_se _acou_stic modes can be des_cribed_ in W(E)=|Mfi|2f dpef e, (6)
terms of the elastic vibration of homogeneous particle with —

W<E>=Avi2f [(fIM[i)[2o[ E— AE]. (5)
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For the case of single phonon mode or multimodes with 0 0'12/5'.2' (?1':2-95? 1
single frequency, the integral of E¢6) can be carried out
exactly. Otherwise, this integral is analytically intractable for ~ FIG. 1. Homogeneous linewidth,, under the strong-coupling
the arbitrary multimodes. In such a case, the strong-couplingpproximation shown ina) for the temperature dependencg;(
approximation is a popular and widely accepted approximas \T), and in(b) for the size dependencé (= 1/R'®). The dashed
tion, i.e., by expanding the functioR(u,E) to the second curve in(a) is from the high-temperature approximation.
order of u, and using the steepest descent method,(&q.
yields used. The solid line is directly calculated from E(L.2), and

the dashed line is from a further approximation, say, the
2 ]1’2 { (E_AEﬂ_gﬁwq)Zl high-temperature approximation, which gives rise to
(hog)?

2Sr(fwg)7

W(E)=|My|?

I'i=(16IN2kTShw,. (14)

In Fig. 1(a) we see that in a considerably wide range of
where temperatures this high-temperature approximation works
" very well. Consequently, Eq14) implies\/ihat the tempera-
S — Z4)a2 ture dependence of the linewidth §5,< yT rather thanl’y,
Sheg % (Zﬁ)Af”mqﬁwq' {10 «T as indicated by experiments®!* in the high-
temperature regime due to acoustic-phonon scattering. From
Egs. (14) and (10) we can further know that for a given
temperature the homogeneous linewidth depends on the QD
size approximately ad’,<1/R*® from a simple scaling
From the spectral shape function &8), it is straightforward  analysis by noting the insensitive feature of the overlap inte-

9

11

JE— w ,Bhw
St(hwg)t= % (2_;;) Afiimg(f @0g)? COU'<Tq :

to identify the full width at half maximunfFWHM) as gral to the QD size. This conclusion is demonstrated by the
—_— numerical calculation shown in Fig(H). Note that this fea-
Iy =[(8IN2)Sr(fiwg) 712 (12)  ture differs qualitatively from the experimental evidence that

N ) indicated an inverse-square-size dependence behéaor
To carry out these LR quantities, we need to specify thg, «1/R2).
oscillator displacement parametafq. In the dipole ap- We attribute the above discrepancies to the application of
proximation for the optical transition betweers ind Ip  the strong-coupling approximation. As a matter of fact, in
states, we know from group theory that only thp $tate  respect to the lattice relaxation criterion, the electron-lattice
with zero magnetic quantum number is involved. Thus, Wecoupling strength is quite weak if the dot size is larger than
have several nanometer®.g., 4 nm.>* Below we present an al-
1 5 ternative treatment beyond the strong-coupling approxima-
A= Y AYialY. dre2li (ko2 (ar). (13 tion, which can provide a better description for the homoge-
jlog ;g( jol Yiol Jo>f0 lj(kn)[%ji(ar). (13 neous linewidths.

For convenience, we denote the angular matrix element by
Zii;=(YjolYi0|Yjo). From the angular momentum coupling
theory, we know that the nonzero matrices argy
=1N4m, Zyp=1\4m, andZ,,;=—1/\/57. Based on this In Ref. 5, by phenomenologically approximating the qua-
analysis, we see that only the phonon modes with angulasicontinuum of acoustic phonons by a single mode, the tem-
quantum numbet=0 and 2 respond to the electron-lattice perature dependence was discussed on the basis of a shifted
coupling in terms of lattice relaxation. oscillator model. In what follows, from a direct multimode
Figure Xa) shows the homogeneous linewidtl, under calculation for the LR quantities, we first define an effective
the strong-coupling approximation, where the adopted pasingle phonon mode, then present an exact analysis for the
rameters are from the CdSe quantum ¢dotthe following  linewidth based on the single phonon mode. The basic idea is
numerical calculations the same material parameters will béhat we let the effective single mode have the same lattice

IV. LR APPROACH: EFFECTIVE SINGLE MODE
APPROXIMATION
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relaxation feature as the multimodes, thus we have a defini-

tion for the single phonon mode as

hQ=ShaglS, (15
where
_ @q| 2
S—%:q ﬁ)Afnmq (16)

is the Huang-Rhys parameter. In this way, the single mode
description keeps the same Huang-Rhys parameter and lat-

tice relaxation energyi.e., Shw,) as the multimodes do.
Replacingfi o in Eq. (7) by the just obtained average pho-
non energyi(), a precise expression follows directly as

)

W(E)=|Mg|%e”(12NS > | [2SYN(N+1)]
0

X

p/2
T) O(E—Ae—phQd), 17)

whereN=[exp@Q/kgT)—1] ! is the Bose functionl,,(x) is
the imaginary argument Bessel function, andy; is the
electron level spacing. Equatigh7) gives rise to a number
of discrete phonon peaks by tlddunction. Due to the small

energy of the low-frequency acoustic phonon and its rapi

decay to the bulk acoustic phonofi®., the heat bajhcon-
ventionally we can regard the envelope of the discrete ph

non peaks given by Eq17) as the practical observed spec-
tral shape function of the optical transition. Therefore, we

make a continuity op from the discrete integer to a continu-

ous variablep=AE/# (), whereAE is the optical detuning

energyAE=E— A¢;; . Accordingly, the homogeneous line-

width is obtained from the following envelope function:

1+N)|P2
N

f(AE)=1,[2SYN(N+1)]

(18)

p=AE/LQ
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FIG. 2. Linear temperature depender(selid line) calculated

exactly from the effective single mode model. Self-consistency be-

tween the effective single mode and the multimodes is examined

under the strong-coupling approximation by the dashed curve and

the small circles, which, having df behavior, also show an obvi-
ous deviation from the linear temperature dependence.

standing the present homogeneous broadening, but it would
be ignored completely in the Markovian approximation.

Figure 2 shows the calculated linewidth on the basis of
Eq. (18) as a function of temperature by the solid line,
where, as a reference, we also plot the result of the strong-
coupling approximation by the dashed curtfeom mul-
&iphonon modes and the small circlesfrom the effective
single phonon mode which in a certain sense demonstrate
the self-consistency between the descriptions of the single
mode and multimodes. Resulting from the exact solution
from the effective single mode, the solid line in Fig. 2 clearly
shows a linear temperature-dependent behavior of the line-
width in a wide range of temperatures, which can be charac-
terized by

[p=To+AT. (19

This T linear behavior is in good agreement with experi-
ments. For example, in Ref. 12, the origin of this behavior is

Based on this line-shape function, we can determine thattributed to the significantly enhanced coupling to the low-

FWHM.

frequency acoustic phonons, since the strong linear tempera-

We noted that, in the context of bulk semiconductor lasergure dependence found there cannot be accounted for by the
and based on the carrier-LO phonon and carrier-carrier scatacreasing LO phonon population.
terings, Ref. 30 addressed the non-Markovian relaxation pro- It is well known that in higher dimensional systems the
cesses and obtained a non-Lorentzian line-shape functiohomogeneous linewidth due to the electron LA phonon scat-
which has an asymmetry and stronger convergent charactetering is proportional td at high-temperature limit. Interest-
istics in comparison with the Lorentzian function. In our ingly, we noted that in Ref. 17 the optical spectra resulting

case, despite the different microscopic mechanism,(Eg).

from a relatively large QD were investigated in high preci-

shows a similar asymmetry non-Lorentzian line-shape feasion, where at respectively high temperatufies., between
ture. More specifically, at zero temperature the envelop@5 and 50 K the linewidth also has linear temperature de-

function Eg.(18) corresponds to a Poissonian distribution, pendence. There, since the QD size is not too small, then the
while it evolves gradually to a Gaussian function with in- exciton level spacing is in the range of efficient LA phonon
crease of temperature. The underlying physics for this nonscattering, a simple lifetime broadening mechanism can ac-
Lorentzian behavior is owing to the fact that the present LRcount for both the extremely narrow linewidth of the order of
treatment for the coupled QD electron-lattice system goe®.025-0.12 meV, and the temperature dependence. Here we
beyond the conventional Markovian approximation by in-stress that in very small QD, where the energy level spacing
volving a certain non-Markovian relaxation effect on theis considerably large thus the lifetime broadening mechanism
acoustic-phonon bath. For example, in LR the effect of theoreaks down completely, the low-frequency acoustic
electron subsystem on the lattice subsystem would result iphonons can as well result in a lineardinewidth in wide

an origin shift of the bath oscillator¢i.e., the acoustic range of temperatures, due to the lattice relaxation effect in
phonons. This lattice relaxation effect is essential in under- optical transition.
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The size dependence bf, is characterized by and I’ 0.15 B 0.2
in Eq. (19). Figure 3 shows the numerical result Afbased 1/R (nm™)

on the effective-single-mode LR approach. This precise FIG. 4. (a) Size dependence of the homogeneous linewidh

In_\/erse-square_-SIZG depe_nde_nce is in excellent agreemegﬁd (b) the inverse size dependent behavior of the temperature in-
with the experimental fitting in Ref. 8. Other experlmentsdependent part i, .

also roughly support this behavior by showing tHag
«R™2. However, strictly speaking, our calculation revealed|attice relaxation in the optical transitions is likely the only
a slight deviation of", from theR ™2 behavior. In Fig. 40)  and most reasonable way to account for the homogeneous
we plot the size behavior dfy, for two given temperatures, linewidth, due to the significant size localization of electron
from which we deduce the size dependencel’gfin Fig.  states in QD. Due to the common origin of LR in small QD,
4(b). Very interestingly, we see thalty is characterized well we can compare the qualitative features between the present
by a linear inverse size dependence, &R *. To our  obtained results and the exciton dephasing behaviors in the
knowledge, this fact has not been reported in any experiavailable experiments, and satisfactory agreement was ob-
ments. On the contrary, in literature, thg part in Eq.(19)  tained. The present study may suggest both further careful
was widely regarded as a contribution of nonphonon scatteranalysis of the experimental data in exciton dephasing, and
ing, and having no size dependence. We here recognize thpérforming new experiments on the QD intraband optical
I'y (at least part of jtshare the common origin of the term transitions. Especially, in view of the sound potential being
AT due to the LA phonon scattering, and has clear size deapplied to infrared optical device®.g., infrared detectors
pendent behavior. and emittery the study of intraband optical transitions in
QD'’s itself is of great interest.
V. CONCLUSION
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