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Optical properties of GaAs/Al12xGaxAs quantum wells subjected to large in-plane uniaxial stress
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A comprehensive theoretical study of the effects of in-plane uniaxial stress on the excitonic absorption
spectra of GaAs/AlxGa12xAs quantum wells is presented. In particular, stress is used to investigate optical
features of excitonic mixing effects. State-of-the-art calculations of realistic excitonic absorption spectra under
stress are performed that take valence-band mixingand the stress-induced anisotropy of the band structure into
account. Two important aspects of in-plane uniaxial stress are identified each of which affects exciton mixing
in a different way. On the one hand, the natural quantization direction gets rotated by stress from the confine-
ment direction to the stress direction. This leads to a marked polarization dependence of the absorption
spectrum, which can be explained within a simple model of single-particle zone-center states. On the other
hand, uniaxial stress also allows the energy alignments of the valence states to be varied substantially. Thereby
it is possible to influence thek•p-related exciton mixing considerably, in particular between the lowest 1s
light-hole exciton and thep continuum of the second heavy-hole exciton. This leads to the formation of doublet
structures that reveal strong anticrossing behavior and have peculiar properties, which are best described within
the framework of the Fano-Anderson model. Excellent agreement was achieved up to large stress values
between our theoretical results and our experimental photoreflectance and photoluminescence results, with
respect to the polarization dependence of the transition intensities and the stress dependence of the exciton
energies. This clearly demonstrates the high accuracy of the calculations and provides conclusive evidence for
the strong mixing effects that stress can cause.@S0163-1829~99!04424-0#
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I. INTRODUCTION

Even since the advent of layered semiconductor str
tures, one of the main research interests has been the stu
the optical properties of semiconductor quantum we
~QW’s!. Not only have the optical properties turned out to
of significant use for technological applications, but they a
provide important information about the fundamental beh
ior of electronic properties in an environment of reduc
dimensionality. In nominally undoped structures, the opti
properties near the fundamental band gap are dominate
excitonic excitations, which in QW’s often are strong
mixed.1–13 There are two principal causes of exciton mixin
the three-dimensional nature of the Coulomb potential
valence-band mixing. This valence-band mixing will provi
the main focus of the present work.

A common approach to investigating exciton mixing is
analyze how the excitonic spectrum responds to a chang
external perturbation, using optical spectroscopy techniq
So far predominantly external fields, such as magnetic
electric fields, have been used as perturbations.7,10,14–25The
problem, however, with both electric and magnetic fields
that they mainly affect the exciton itself, i.e., the hydroge
system, but have a lesser effect on the mixing between
ferent excitons. A more powerful method of specifica
changing the mixing between valence subbands and h
excitons in a precisely controllable and reproducible man
is to apply in-plane uniaxial stress. With stress applied, i
possible to change the positions of heavy-hole~HH! and
light-hole ~LH! energy levels relative to each other. Hen
PRB 600163-1829/99/60~3!/1900~15!/$15.00
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stress tends to modify the relative coupling strength betw
the various excitons, and accordingly the degree of mixi
but not the absolute coupling strength. Due to this particu
property of uniaxial stress, we were able to show theor
cally in a previous paper12 that the strongk•p coupling be-
tween LH1 and HH2 can lead to the formation of a distin
doublet structure when LH1-CE1(1s) is shifted by uniaxial
stress towards the onset of the HH2-CE1(p) continuum.
Since that doublet structure can be best understood wi
the framework of the Fano-Anderson model, we will refer
it as a ‘‘Fano doublet.’’

In our work on Fano doublets we neglected, howev
another aspect about in-plane uniaxial stress, which is
uniaxial stress applied perpendicular to the growth direct
reduces the symmetry of the QW from tetragonal to orth
rhombic. This couples valence states even at the zone ce
and as a consequence renders the valence-subband stru
anisotropic. In a general analysis of the stress-induced m
ing effects in excitonic spectra, it is, therefore, necessary
take not only the valence-band mixing but also the ani
tropic band structure into account. Thus, the purpose of
paper is to present a realistic model for the theoretical
scription of excitons in a QW under in-plane uniaxial stre
that incorporates all aspects of uniaxial stress. This allows
to discuss in detail the various effects that uniaxial stress
on the optical properties of a semiconductor QW. For si
plicity, we will restrict ourselves to GaAs/AlxGa12xAs
QW’s that are grown along the@001# direction and hence to
stress that is applied along the@100# direction.

Although it is not difficult from a conceptual point o
1900 ©1999 The American Physical Society
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view to describe excitons theoretically, it is nevertheles
formidable task to obtain numerical solutions for a realis
model of excitons inside a semiconductor QW. For the p
18 years or so QW excitons, therefore, have continued
challenge theoreticians and have led to an enormous we
of contributions in the literature,1–11,18,19,21–24,26–57where the
list of references is by no means exhaustive. A recent
more detailed review is given, for example, by Winkler11

Common to all these works is that they use the envelo
function approximation combined with linear respon
theory as a framework for their investigations. But with
that framework many different modes of varying degrees
sophistication and refinement have been suggested. Bu
our knowledge a model that incorporatesboth valence-band
mixing and the anisotropy of the valence-band structure
still missing. Bauer and Ando included band warping in th
calculations,7 but since they adopted a variational approa
they neglected the important role that the exciton continu
plays in exciton mixing.4–6 Consequently, their model is no
suitable to obtain detailed information about higher exci
states in absorption spectra at elevated stress values. B
and Yang,9 on the other hand, presented a full valence-ba
mixing model that includes uniaxial stress. These auth
however, averaged over the anisotropic band structure
order to simplify the numerical complexity, and this wa
effectively restored axial symmetry. To include the stre
induced anisotropy, we extend the model by Chao a
Chuang, who developed a state-of-the-art model within
axial approximation that rigorously incorporates valen
band mixing.10 One of the main challenges about going b
yond the axial approximation is to circumvent the limitatio
that are imposed by the computational resources with res
to storage capacity and speed. We, therefore, also prese
efficient and optimized algorithm with which it is possible
obtain numerical solutions for the exciton equation even
an ordinary PC within a few hours.

In addition to the theoretical analysis, we also measu
both photoluminescence~PL! and photoreflectance~PR!
spectra of a 100 Å GaAs/Al0.2Ga0.8As QW for in-plane
uniaxial stress values up to about 10 kbar. This is twice
stress range previously reported in the literature for sim
samples58–66 and hence we were able to resolve stre
induced mixing effects in a particularly pronounced wa
Thus, we found not only clear evidence for the formation
Fano doublets, but also managed to detect a strong pola
tion dependence of the oscillator strength of both ground
higher excited states within the QW plane, which is in e
cellent agreement with our calculations.

This paper is organized as follows. In Sec. II we fi
analyze how in-plane uniaxial stress affects the valen
subband structure in GaAs/AlxGa12xAs QW’s, in particular
with respect to anisotropic dispersion relations. In the sec
part of Sec. II we will then give a detailed description of o
theoretical model for anisotropic excitons and fundamen
absorption at finite stress, while in the third part we w
demonstrate how the computational difficulties of obtain
numerical results can be overcome. In Sec. III, we brie
review our experimental technique to measure PL and
spectra of a 100 Å GaAs/Al0.2Ga0.8As QW under uniaxial
stress. Finally, in Sec. IV we discuss our numerical res
and compare them with our experimental results. Our c
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clusions are presented in Sec. V.

II. THEORY

A. Single-particle picture

In order to understand how in-plane uniaxial stress affe
the excitonic absorption spectra of GaAs/AlxGa12xAs QW’s,
it is instructive to analyze stress effects in a single-parti
picture first. Hence in this subsection we look at how str
modifies the valence-subband structure of GaAs/AlxGa12xAs
QW. In particular, this analysis will give a clear indication
to how the stress-induced anisotropy of the valence subba
can be included in the full-band-mixing model for exciton
calculations presented in the next subsection.

Figure 1 presents the energy dispersions of the first f
valence subbands of a 100 Å GaAs/Al0.3Ga0.7As QW for
three different stress values, which were calculated using
subbandk•p method.1,9,67 The subbandk•p method is a
variational approach where the envelope functions at fin
in-planeki values are expanded in terms of a set of zo
center states. The continuum above the QW is included
putting it symmetrically inside an infinite QW of much large
width. The wave vectors are shown in units of 2p/a in Fig.
1, wherea is the lattice constant of GaAs. At zero stress t
subbands clearly reveal strong nonparabolic dispersions.
ticularly striking is the electronlike curvature of the LH
subband68 out to about 0.015(2p/a). Its origin can be easily
understood in terms of two competing mixing effects.69,70At
smallki values, LH1 and HH2 repel each other strongly d
to an off-diagonal matrix element of the Luttinger-Koh
Hamiltonian that is linear inki . Consequently, LH1 is ben
upwards. At the same time, HH2 is bent further downwa
resulting in a decreased effective mass near the zone ce
As ki increases, LH1 approaches HH1, which is coupled
LH1 via an off-diagonal matrix element of the Luttinge
Kohn Hamiltonian that is quadratic inki . This leads to an
anticrossing between these two states and LH1 is bent do
wards again. This electronlike dispersion is not unique, ho
ever; HH3, for example, reveals the same type of dispers
which originates from the same type of mechanism as in
case of LH1, except that this time HH3 is repelled by LH

FIG. 1. Valence subband dispersions parallel~solid lines! and
perpendicular~dashed lines! to the @100# stress direction for three
different stress values in a 100 Å GaAs/Al0.3Ga0.7As QW.
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Under compressive in-plane uniaxial stress, LH1
shifted towards HH2 and the relative strength of the coupl
between LH1 and HH2 increases. This leads to an enha
ment of the above-described effect, i.e., the electronlike
persion becomes more pronounced and the effective ma
HH2 decreases even further. When the zone-center stat
LH1 and HH2 cross at 2.5 kbar, the repulsion reache
maximum. At this point LH1 and HH2 are strongly mixe
with each other. In fact, it turns out that because of the str
coupling between LH1 and HH2, the LH1 subband cons
of almost equal amounts of LH1 and HH2 zone-center sta
for ki values as large as 2^k&1s , where^k&1s refers to the
momentum expectation value of the excitonic ground st
This suggests that the excitons attached to these subb
will have a strongly mixed character, too, and hence w
show features of an anticrossing behavior, which is precis
what is found in excitonic absorption spectra further belo
If the stress is increased even further, LH1 is shifted bey
HH2 and the repulsion between these two subbands wea
again. More importantly, however, HH2 now has an ele
tronlike dispersion while LH1 is approximately parabolic f
small ki values, so in some sense they have swapped t
respective characteristic features.

Besides modifying thek•p related valence-band-mixin
effects, in-plane uniaxial stress also reduces the symmetr
the QW from tetragonal to orthorhombic, which leads
strong mixing between zone-center valence states. Un
these circumstances the valence-subband dispersions be
strongly anisotropic at elevated stress.41,71 This can be seen
in Fig. 1, which shows the valence-subband dispersions
two directions ink space: kx ~solid line!, which coincides
with the stress direction, andky ~dashed line!. The complete
anisotropic solutions, however, are not suitable for excito
calculations, since in this case the Hilbert space of the e
ton, and hence the matrix representation of the excito
Hamiltonian, becomes too large for numerical calculations
still be manageable. It is, therefore, crucial to derive appro
mate solutions for the anisotropic valence subbands tha
simple enough to be included in the excitonic calculatio
yet still capture the essence of the stress-induced anisotr
The best way to achieve this is to expand the solutions of
anisotropic Hamiltonian, i.e., eigenstates and eigenenerg
in terms of simple harmonics. Since in-plane uniaxial str
reduces the symmetry of the QW from tetragonal to ort
rhombic, both the eigenenergies and eigenstates have a
odicity of p. Thus the eigenenergies of the valence subba
Em(ki) can be expanded in the following way:

Em
h ~ki!5 (

l 50,62,...
Em

hl~ki!eil u, ~1!

while the hole envelope functions according to Zhu39 be-
come

gmn~ki ,z!5e2 inu (
l 50,62,...

gmn
l ~ki ,z!eil u. ~2!

Approximate solutions can now be conveniently obtained
cutting off higher-order terms in the expansion. The crud
approximation includes the anisotropy only in the lowest
der, i.e., it keeps terms only up tol 562. To assess the
validity of this approximation, contour plots of the first tw
s
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valence subbands of a 100 Å GaAs/Al0.3Ga0.7As QW at 5
kbar ~cf. Fig. 1!, which were obtained from the full calcula
tions ~solid lines!, are compared in Fig. 2 with the corre
sponding approximate solutions~dashed lines! derived from
the simplified expression of the anisotropic subband ene

Ẽm
h ~ki ,u!5Em

h0~ki!12Em
h2~ki!cos~2u!. ~3!

The overall agreement in Fig. 2 is excellent; even in t
region where the contour lines show strong deviations fr
the generally prevalent elliptical shape, the approximate
lutions accurately reproduce all main features of the subb
structure. This provides convincing evidence that it is inde
justified to keep only the zeroth-order~i.e., isotropic! and the
first-order~i.e., the first nonisotropic! term in the expansion

B. Exciton theory beyond the axial approximation

Our excitonic calculations are based on a generaliza
of the full-band-mixing model by Chao and Chuang,10 which
is a state-of-the-art model that rigorously incorpora
valence-band mixing within theG8 subspace. The conduc

FIG. 2. Contour plots of the first two confined valence subba
in a 100 Å GaAs/Al0.3Ga0.7As QW at 5 kbar of compressive in
plane uniaxial stress along the@100# direction. The solid lines rep-
resent the exact results whereas the dashed lines represent th
proximate results using the Fourier expansion method.
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PRB 60 1903OPTICAL PROPERTIES OF GaAs/Al12xGaxAs . . .
tion band, on the other hand, is assumed to be parab
Furthermore, the exchange interaction between electrons
holes60 and the difference in dielectric constants betwe
well and barrier materials44–46are neglected. Since Chao an
Chuang only solved the exciton equation within the ax
approximation, the purpose of this subsection is to dem
strate how their model can be extended to include the str
induced anisotropy approximately.

Within the framework of the effective-mass theory a
the envelope-function scheme, excitons can be describe
the following two-particle Hamiltonian~SI units!:

Hsns8n8
ex

5Hss8
e dnn81Hnn8

h dss82
e2

4p««0ure2rhu
dss8dnn8 .

~4!

Hss8
e and Hnn8

h are the single-particle kinetic-energy oper
tors of the conduction-band electron and the valence-b
hole, respectively, wheres56 1

2 and n56 1
2 , 63

2 refer to
the corresponding spinor components. The third term in
~4! is the Coulomb interaction, which is diagonal with r
spect to the spinor components. The exciton wave func
accordingly must be an eight-component spinor satisfy
the Schro¨dinger equation

(
s8n8

Hsns8n8
ex Cs8n8

X
5EXCsn

X , ~5!

where X labels different exciton states. Since both t
electron-hole exchange interaction and the nonparabol
of the conduction band are neglected here,Csn

X is twofold
degenerate with respect to the electron spins and thusCsn

X

effectively becomes a four-component spinor. For simplic
we will drop the indexs in Csn

X henceforth. Considering
also Kramers’ degeneracy for the valence band, each exc
state is thus in general fourfold degenerate.

In order to solve Eq.~5!, the exciton wave function is
expanded in terms of products of single-particle electron
hole states:

f ns~kie ,re!5~2p!21f ns~kie ,ze!e
~ ikie•re!,

~6!
gmn~kih ,rh!5~2p!21gmn~kih ,zh!e~ ikih•rh!,

wheren and m are the subband indices for the conducti
and valence band, respectively, while the vectorski and r
refer to two-dimensional vectors in thex-y plane of momen-
tum and real space, respectively. Before constructing the
citon state, it should be remembered that a hole state is
time-reversed version of the corresponding single-part
electron state. Hence the hole envelope function is obta
from the envelope function of the valence state in Eq.~6! by
complex conjugation. With this in mind the exciton wav
function becomes

Cn
X~r,ze ,zh!5 (

n8,m8
E dki8

~2p!2 fn8m8
X

~ki8!eiki•r

3 f n8s~ki8 ,ze!gm8n
* ~ki8 ,zh!, ~7!

where fn8m8
X (ki8) denotes the expansion coefficient and

often called the exciton envelope function.
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After this preparation it is now straightforward to deriv
the exciton equation inki space by inserting Eq.~7! into Eq.
~5!, multiplying both sides of Eq. ~5! with
f ns* (ki ,ze)gmn(ki ,zh)e2 iki•r, summing overn, and integrat-
ing over ze , zh , and r. This yields the following set of
coupled integral equations:

Tnm~ki!fnm
X ~ki!1 (

n8,m8
E dki8

~2p!2 Vnmn8m8~ki ,ki8!fn8m8
X

~ki8!

5EXfnm
X ~ki!, ~8!

which sometimes is also referred to as the Bethe-Salp
equation.9,72 In momentum space the kinetic-energy mat
elementTnm(ki) is diagonal and reads

Tnm~ki!5En
e~ki!2Em

h ~ki!, ~9!

where En
e(ki)/Em

h (ki) are the subband dispersions of th
nth/mth confined electron/hole states. WhileEn

e(ki) is para-
bolic in the approximation adopted here,Em

h (ki) in general is
highly nonparabolic as was discussed in the preceding s
section. Much more complicated than the kinetic-energy m
trix element, however, is the Coulomb matrix eleme
Vnmn8m8(ki ,ki8) which turns out to be of the form

Vnmn8m8~ki ,ki8!52
e2

2««0

1

q E dzeE dzhe2quze2zhu

3 f ns* ~ki ,ze! f n8s~ki8 ,ze!

3(
n

gmn~ki ,zn!gm8n
* ~ki8 ,zh!, ~10!

where

q5uki2ki8u5Aki
21ki8

222kiki8 cos~u2u8!. ~11!

Finally, within the dipole approximation the oscillato
strength for the excitonic stateX is defined as

f X
j 5

2

m0EX
U(

n
~j• P̃cv

sn!E dzCn
X~r50,z,z!U2

5
2

m0EX
U(

n
~j•P̃cv

sn!(
n,m

E dki8

~2p!2 fnm
X ~ki8!I nm

sn ~ki8!U2

,

~12!

where

I nm
sn ~ki!5E dz fns~ki ,z!gmn* ~ki ,z! ~13!

is the overlap integral between the conduction and vale
subbands. Summation over the electron spins is omitted in
Eq. ~12! due to the twofold degeneracy of the conductio
band states with respect tos. This, however, means that th
momentum matrix element between the conduction- a
valence-band Bloch functions needs to be slightly modifi
to ensure that all allowed transitions are included in Eq.~12!:

P̃cv
sn5^uc

supuun
n cos@~n1s!p#&. ~14!
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Once the excitonic oscillator strengths are known, the
sorption coefficient can be calculated by summing up
contributions from all excitonic states:

a~E!5
pe2\

2nr«0cm0L (
X

f X
j

GX

2p

~E2EX!21S GX

2 D 2 . ~15!

Here we have replaced thed function by a phenomenologica
Lorentzian broadening.GX is the linewidth of the Lorentz-
ian and is chosen empirically, partially to match the expe
mental data presented below and partially to match the r
lution of the energy spectrum obtained in numeric
calculations.

Equation ~8! is a two-dimensional integral equation
which in general is very laborious to solve numerical
Thus, in previous works the numerical treatment of the
citon equation was usually tackled by invoking the axial a
proximation, i.e., by neglecting the warping of the valen
band, in which case the two-dimensional integral equat
simplifies to a one-dimensional one. In the presence of
plane uniaxial stress this is no longer possible, however,
cause of the anisotropic band dispersions induced by st
To include the effects of stress on excitons at least appr
mately, it is therefore necessary to go beyond the axial
proximation. This means that at finite stress the exciton w
functions need to be written as a linear combination of wa
functions with different total angular momenta:

fnm
X ~ki ,u!5(

s8
fnm

Xs8~ki!eis8u. ~16!

Inserting Eq.~16! into Eq. ~8!, multiplying by e2 isu, and
integrating overu yields the exciton equation

(
s8

Tnm
s2s8~ki!fnm

Xs8~ki!

1 (
n8,m8

(
s8

E
0

` ki8dki8

2p
Vnmn8m8

ss8 ~ki ,ki8!fn8m8
Xs8 ~ki8!

5EXfnm
Xs~ki!, ~17!

whereTnm
s8 (ki) and Vnmn8m8

ss8 (k,ki8) are Fourier component
of the kinetic energy and Coulomb matrix element, resp
tively, i.e.,

Tnm~ki ,u!5(
s8

Tnm
s8 ~ki!eis8u, ~18!

Vnmn8m8~ki,ki8 ,u,u8!5(
s

(
s8

Vnmn8m8
ss8 ~ki,ki8!eisue2 is8u8.

~19!

The Fourier components of the Coulomb matrix element
be determined by Fourier expanding the single-particle en
lope functions in Eq.~10!. Since the conduction-band sub
spaceG6 is isotropic, the angular dependence of the elect
envelope functions is simply

f ns~ki ,ze!5 f n~ki ,ze!e
2 isu. ~20!
-
e

i-
o-
l

.
-
-

n
-

e-
ss.
i-

p-
e
e

-

n
e-

n

Together with the corresponding expression for the hole

velope functions presented in Eq.~2!, Vnmn8m8
ss8 (ki,ki8) can

thus be shown to adopt the following form:

Vnmn8m8
ss8 ~ki ,ki8!52

e2

2««0
(

n
(

l 50,62,...

3E dzeE dzhE
0

2p dDu

2p

3
e2quze2zhu

q
ei @s2n2~s2 l !#Du f n* ~ki ,ze!

3 f n8~ki8 ,ze!gmn
l ~ki ,zh!gm8n

l 2~s2s8!* ~ki8 ,zh!,

~21!

while the oscillator strength becomes

f X
j 5

2

m0EX
U(

n
~j•P̃cv

sn! (
n8,m8

(
s

(
l 50,62,...

3E
0

` ki8dki8

2p
fn8m8

Xs
~ki8!I n8m8

n l
~ki8!ds2 l ,s2nU2

, ~22!

where

I nm
n l ~ki!5E dz fn~ki ,z!gmn

l* ~ki ,z!. ~23!

In the absence of stress, only the zeroth-order term
gmn

l (ki ,z) is nonzero, in which case Eqs.~21! and~22! sim-
plify to the corresponding expressions of the ax
approximation.10 Furthermore, from Eq.~21! it can be imme-
diately concluded that the stress-induced anisotropy o
couples angular momenta that differ at least by 2, i.e.,Ds
5s2s8562, which follows from the fact that uniaxia
stress applied perpendicular to the growth direction o
couples different types of holes, i.e., heavy holes with lig
holes, but not holes of the same kind. In view of this resu
the simplest extension of the axial approximation is to co
sider the coupling between only those four total angular m
menta that have nonzero contributions to the oscilla
strength under the axial approximations, i.e.,s5s1 3

2 , s
1 1

2 , s2 1
2 , s2 3

2 . Within that subspace, Eq.~21! becomes
block-diagonal, where one block comprisess5s1 3

2 ands
2 1

2 and the others5s1 1
2 and s2 3

2 . Consequently, the
final matrix equation is in this case twice the size of t
respective axially symmetric matrix equation and hence
merically still feasible. Furthermore, it should be noted th
under this approximation only the first nonisotropic Four
component of the hole envelope function is taken into
count. But as was mentioned in the preceding subsect
this already captures the essence of the stress-induced a
ropy. It is, therefore, reasonable to expect that the restric
to those four total angular momenta is adequate.

C. Computational details

A standard procedure for solving integral equations su
as the exciton equation~17! is to discretize the integral, i.e.
to replace the integral by a finite sum, which turns the in
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gral equation into a linear matrix equation. Details of this a
given in the Appendix. Here we want to comment briefly
the considerable difficulties that one encounters in solv
the matrix equation in practice. The difficulties stem main
from two types of limitations imposed by the computation
resources: operational memory and processor speed, bo
which set restrictions on the size of the matrices. For t
reason, it is necessary to discuss first how large the matr
need to be in order to obtain reliable results, and how th
requirements can be made compatible with the availa
computer power. Second, we will describe a technique
we developed to speed up calculations of the matrix elem
significantly.

The size of a matrix is determined by the number of co
duction and valence subbands that are included in the ex
sion of the exciton wave function and, most importantly, t
number ofk values. In this work we are interested in stud
ing the effects of mixing between the lower valence su
bands, i.e., HH1, LH1, HH2, and HH3. Since the measu
absorption spectra, which will be used further below
comparison with theoretical results, also resolve higher
cited states, i.e., HH2-CE2, both the first and the sec
confined electron state, CE1 and CE2, need to be inclu
Hence the only remaining question is how manyk values
need to be included in the numerical calculations. In orde
obtain a smooth absorption spectrum, the number ofk values
has to be large enough so that the average energy sepa
of two consecutive exciton states determined from the
merical calculations is much smaller than the linewidthGX of
the Lorentzian attached to each exciton state. In practice,
sufficient to have aGX that is about five times larger than th
average exciton separation energy. IfDE refers to the energy
range over which the excitonic spectrum is calculated,
the energy separation between HH1-CE1 and HH2-C
then the following relationship serves as a suitable rule
thumb to estimate the minimum numberN of k values:

N.
5DE

GX
. ~24!

In a 100 Å GaAs/Al0.3Ga0.7As QW, DE is about 150 meV,
while experimental spectra yield a broadeningGX of the or-
der of 4 meV. Hence, according to Eq.~24! at least 190k
values should be used for an accurate comparison betw
theory and experiment. Hence within the numerical appro
outlined above, the minimum dimension of the discretiz
n3n Hamiltonian hasn523234319053040, which is
obviously very large. For that reason, coupling between
citons attached to different conduction subbands will be
glected henceforth. For the physical system considered h
this is a justifiable assumption, since the confined elect
states are usually far apart due to their light effective ma
In a 100 Å GaAs/Al0.3Ga0.7As QW, the energy separatio
between CE1 and CE2 is 91 meV and thus almost twice
large as the energy separation between HH1 and HH3. C
sequently, the higher excited exciton states attached to
are well separated from the corresponding states linke
CE1. This approximation is not valid in general, however.
the presence of an electric field, for example, CE1 and C
are typically strongly coupled.
e

g

l
of
t
es
se
le
at
ts

-
n-

-
d
r
x-
d
d.

o

tion
-

is

.,
2,
f

en
h

d

-
-

re,
n
s.

s
n-

E2
to

2

Another problem that needs to be tackled is the calcu
tion of the matrix elements. Equation~21! reveals that the
matrix elements of the Coulomb potential are obtained
solving a triple integral, which in general is very time
consuming. The subbandk•p method employed here is pa
ticularly advantageous in this respect. By using the subb
k•p method, it is possible to carry out the integration ov
the hole and electron coordinates in Eq.~21! analytically.
Hence the triple integral is reduced to a single integr
which is much easier to solve numerically. In the subba
k•p method, the hole envelope functiongmn(ki ,zh) at finite
ki value is expanded in terms of zone-center states, i.e.,

gmn~ki ,zh!5(
r 8

amr8
n

~ki!gr 8n~zh!, ~25!

where the expansion coefficientsamr
n (ki) themselves can be

Fourier expanded in analogy with Eq.~2!:

amr
n ~ki ,u!5e2 inu (

l 850,62

amr
n l 8~ki!eil 8u. ~26!

Before rewriting Eq.~21! in this basis, the following integra
given by Bauer and Ando7 has to be introduced, since
allows separation of the hole and electron integrals:

e2quze2zku5
1

p E
2`

`

dt
q

q21t2 cos@ t~ze2zh!#. ~27!

Inserting now Eqs.~25!, ~26!, and ~27! into Eq. ~21! thus
yields

Vnmn8m8
ss8 ~ki ,ki8!52

e2

2««0p (
n

(
l 50,62

(
rr 8

3amr
n l ~ki!am8r 8

n@ l 2~s2s8!#* ~ki8!

3E
0

2p dDu

2p
I nrn8r 8

n
~q!

3cos$@s2n2~s2 l !#Du%, ~28!

where

I nrn8r 8
n

~q!5E
2`

`

dt
1

q21t2 E dzef n* ~ze! f n8~ze!cos~ tze!

3E dzhgrn~zh!gr 8n
* ~zh!cos~ tzh!

1E
2`

`

dt
1

q21t2 E dzef n* ~ze! f n8~ze!sin~ tze!

3E dzhgrn~zh!gr 8n
* ~zh!sin~ tzh!. ~29!

The crucial point about the integrals in Eq.~29! is that they
can be solved analytically due to the simple form of t
zone-center states. Deriving the algebraic expression
I nrn8r 8

n (q) is straightforward but nevertheless extreme
lengthy. It should be noted that under the assumption c
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sidered here, i.e., no coupling between excitons attache
different conduction subbands, the second term of Eq.~29! is
always zero.

The computation time, however, can be lowered even
ther by taking the following property ofI nrn8r 8

n (q) into ac-
count. SinceI nrn8r 8

n (q) is derived from zone-center states
zero stress, it is independent of the applied stress. The e
of stress and in fact band mixing is exclusively contain
within the expansion coefficientsamr

n l (ki) @cf. Eq.~26!#. Con-
sequentlyI nrn8r 8

n (q) needs to be determined only once f
each QW and can be used henceforth for any elevated s
value. Hence it is possible to obtain a complete excito
absorption spectrum at finite uniaxial stress, which inclu
band mixing and stress-induced anisotropies, in fewer t
12 h on an ordinary PC. The calculations here were car
out usingMATLAB for Windows on a 200 MHz Pentium PC
with 128 MB of memory.77

III. EXPERIMENT

The sample was grown on a~100!-oriented GaAs sub-
strate, and comprised GaAs and AlxGa12xAs buffer layers, a
ten-period multiple quantum well, with 100 Å GaAs wel
and 500 Å Al0.2Ga0.8As barriers, 1000 Å of Al0.4Ga0.6As, and
finally 500 Å of GaAs. Uniaxial stress was applied with th
cell previously used in Ref. 73. Polarized and unpolariz
PR spectra were measured by phase-sensitive detectio
temperatures between 20 and 80 K, using;5 W/cm22 from
a 670-nm diode laser to modulate the natural surface ele
field in the sample~at ;420 Hz!. Two 0.3-m focal length
monochromators were driven in tandem. The first (M1) dis-
persed the light from a 250 W tungsten lamp, which w
then focused at an angle of incidence of 45° onto the sam
so that it was coincident with the;2 mm2 spot from the
laser beam. The reflected light was collected at the entra
slit of the second monochromator (M2). A silicon detector
was used at its exit slit. The slit widths ofM2 were half
those ofM1, fixing the spectral resolution at;3 meV. Pho-
toluminescence was also measured at 20 K, using 670
diode laser excitation.

A first derivative Lorenzian line shape~FDLL! formula
was used to fit the experimental PR line shapes based on
~13! of Ref. 74 with a dielectric function«5A1I /(Eex2E
1 iG), whereE is the photon energy,A is a constant,I is
related to the oscillator strength,Eex is the exciton optical
transition energy, andG is a broadening parameter. Assum
ing that oscillator strength modulation is negligible com
pared with energy and linewidth modulation,74 the PR line
shape for each exciton may be fitted to the formula

DR

R
}F cos~u22f!

~Eex2E!21G2G ~30!

with fitting parameters Eex and G, and where f
5arctan@G/(Eex2E)#. In spite of the additional complexity
introduced into the line shape of the upper of the Fano d
blets considered in this work,75 the above fitting formula
appeared to work very well, and was deemed adequate
estimating energies, linewidths, and relative intensiti
which are the only data presented here in order to comp
with calculation. Some of the measured spectra are prese
to
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in Ref. 13, but more detailed measurements and their an
sis may be found elsewhere76,77 and will be reported in a
future publication.

IV. RESULTS AND DISCUSSIONS

Before we embark on a detailed discussion of the theo
ical and experimental results, we would like to give a gene
overview of Fig. 3, which displays the evolution of the a
sorption spectrum of a 100 Å GaAs/Al0.3Ga0.7As QW with
respect to stress. The absorption spectrum is shown for
different in-plane polarization directions:~a! parallel to the
stress direction and~b! perpendicular to the stress directio
Comparing these two polarization directions, it is evident
first sight that they yield very different results. While fo
@100# polarization the LH1-CE1(1s) exciton practically dis-
appears, it is strongly enhanced for@010# polarization. Con-
versely, the optically active HH excitons, i.e., HH1-CE1(1s)
and HH2-CE2(1s), are enhanced for@100# polarization and
attenuated for@010# polarization. Another feature that is als
immediately apparent is the appearance of two anticross
in the LH1-CE1(1s) transition@cf. Fig. 3~b!#. The first anti-
crossing at about 4 kbar occurs when LH1-CE1(1s) ap-
proaches thep continuum of HH2-CE1 and is due to th
formation of Fano doublets, which we mentioned in the
troduction. The second anticrossing is a result of the stre

FIG. 3. Polarization dependence of the calculated excitonic
sorption spectrum of a 100 Å GaAs/Al0.3Ga0.7As QW for different
values of in-plane uniaxial stress along the@100# direction.
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induced mixing between LH1 and HH3, which we discuss
previously in Ref. 78 in the context of a simple singl
particle zone-center model. The doublet structure
HH2-CE2(1s) at small stress values turns out to be an a
crossing as well, which can be explained by the same me
nism as the first anticrossing of LH1-CE1(1s). The main
difference is that the anticrossing of HH2-CE2(1s) already
occurs at zero stress.

A. Energy shifts and binding energies

We now present a more quantitative analysis of the v
ous stress-induced features of the excitonic spectra. Firs
consider the energy shifts of the excitonic peaks found in
calculated absorption spectra of Fig. 3. These are show
Fig. 4 as solid lines together with the experimental transit
energies determined from our measured PR spectra. As
be clearly seen, the overall agreement between theory
experiment is excellent, which is quite remarkable given t
the theoretical calculations are free of any adjustable par
eter. The only slight discrepancy occurs for HH2-CE2(1s) at
high stress and can be attributed to the omission of the s
orbit coupling in our calculations. The experimental tran
tion energies of HH1-CE1(1s) could be determined reliably
only up to about 4 kbar, since at higher stress values
signal was clouded by the bulk GaAs HH-CE transition
the cap layer, which is shifted strongly by uniaxial stress
higher energies. Most importantly, however, the data rep
duce the anticrossing of LH1-CE1(1s) at about 4 kbar very
precisely including the minimum separation energy and t
provide conclusive evidence for the existence of Fano d
blets.

Further insights into the stress effects on excitonic spe
can be gained from the stress dependence of the exc
binding energies. Here we determine the binding energie

FIG. 4. Comparison between the experimental energy shift
the lowest excitations~individual data points! in a 100 Å
GaAs/Al0.2Ga0.8As QW under in-plane uniaxial stress along t
@100# direction, and the corresponding theoretical results~solid
lines!.
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simply taking the difference between the peak positions
the band edges of the corresponding single-particle tra
tions. The results are presented in Fig. 5. It is found that
binding energies of HH1-CE1(1s) and LH1-CE1(1s) at
zero stress are 9.0 and 11.2 meV, respectively. This ag
well with numerical results that various groups obtain
from variational calculations for similar systems,3–6 whereas
more recently published values tend to be sligh
larger.8,11,45,46In the latter cases additional effects, which a
neglected here, were included as well, such as nonparab
ity of the conduction band and difference in dielectric co
stants between well and barrier materials. As far as the st
dependence of the binding energies is concern
HH1-CE1(1s) is essentially independent of stress, while t
binding energies of all higher excited states exhibit a mar
stress dependence. These changes in binding energies c
most conveniently understood in terms of stress-indu
changes of the effective masses of the valence subba
Thus the decrease of the HH3-CE1(1s) binding energy with
increasing stress can be linked to a decrease of the effe
mass. It was mentioned earlier that the HH3 subband is
nificantly modified by LH2 due to strongk•p coupling, be-
cause of which it assumes an electronlike band disper
~cf. Fig. 1.!. This yields a large reduced mass and acco
ingly a large binding energy for the exciton. As LH2
shifted away from HH3, however, this effect weakens a
consequently the binding energy gets smaller. An analog
argument, which is similarly based on electronlike subba
dispersions, can be invoked to explain the characteri
stress dependence of the LH1-CE1(1s) and HH2-CE2(1s)
binding energies. In both cases the binding energy ha
maximum near the respective anticrossing. F
LH1-CE1(1s) it occurs just before the anticrossing, whi
for HH2-CE2(1s) it occurs just afterwards, which follows
directly from the opposite dispersions that LH1 and HH
have near the zone center due to their mutual repulsion~cf.
Fig. 1!. This suggests that the enhanced binding energ
near the anticrossings indeed also originate from the str
electronlike curvature of the corresponding hole subban
An effective-mass argument would also explain why t
binding energy of LH1-CE1(1s) is considerably smaller im-
mediately after the anticrossing. Since LH1 and HH2 sw

of

FIG. 5. Binding energies of the first fours excitons under com-
pressive in-plane uniaxial stress along the@100# direction in a 100
Å GaAs/Al0.3Ga0.7As QW determined from full band-mixing calcu
lations including the stress-induced anisotropy.
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their respective features as LH1 moves through HH2~cf. Fig.
1!, LH1 has a parabolic dispersion and hence a much sm
effective mass afterwards. Even though these arguments
quite plausible and in that sense satisfactory, it should
emphasized at this point that they are not rigorous. Th
main shortcoming is that they cannot actually account for
occurrence of the two Fano-related anticrossings. The rea
is that in the effective-mass picture the Coulomb potentia
tacitly assumed to be constant, i.e., it is assumed not to
affected by the valence-band mixing. According to the d
cussion of the preceding section, this is clearly not the c
in general, especially when LH1 and HH2 are in close pr
imity. Nevertheless, the effective-mass picture serves a
useful tool to interpret the complicated stress dependenc
the exciton binding energies.

B. Anticrossings

In this subsection we will discuss in more detail the tw
types of anticrossings that can be observed in the absorp
line of LH1-CE1(1s) at elevated stress values. As was me
tioned earlier, the first anticrossing occurs wh
LH1-CE1(1s) approaches the onset of the HH2-CE1(p)
continuum and can be best described within the framew
of the Fano-Anderson model. In Ref. 12 we showed tha
this particular case the Fano-Anderson model behaves li
two-state system, where one of the two states is a real s
i.e., LH1-CE1(1s), while the other is an ‘‘image’’ state
comprising the collective effect of the HH2-CE1(p) con-
tinuum. Although we already gave an exhaustive accoun
Ref. 12 of the conditions for the formations of these Fa
doublets, and of the characteristic features that distingu
them from conventional anticrossings, we discarded the
fects of the stress-induced anisotropy for simplicity’s sa
Hence the main focus here will be to investigate these F
doublets under realistic conditions including the additio
anisotropy.

One of the findings of our analysis in Ref. 12 was that
minimum separation energyDE of the Fano doublets during
the anticrossing depends inversely on the widthL of the QW,
which in turn could be directly linked to the underlyin
valence-band mixing. In Fig. 6 we therefore compare
theoretical width dependence ofDE for the two cases, i.e.
when the stress-induced anisotropy is included~filled
squares! and when it is neglected~open squares!. As can be
quite clearly seen, the minimum separation energies for th
two cases are essentially identical over a wide range of
widths. For very large QW widths, slight deviations occu
which are more likely connected to uncertainties in extra
ing DE from calculated absorption spectra than to any
isotropy effects. This means that the influence of the stre
induced anisotropy on the main features of the Fano doub
is negligible.

Besides the width dependence ofDE, it is also interesting
to look briefly at the width dependence of the anticross
stressX, i.e., the stress at which the separation energy of
Fano doublet reaches its minimum. Results of the full-ba
mixing model forX versusL are presented as filled circles
Fig. 6. ComparingDE(L) with X(L) reveals a striking quali-
tative difference. UnlikeDE(L), X(L) changes much more
abruptly from a gradual increase for largeL to a steep in-
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crease for smallL. This suggests that the functional depe
dence ofX(L) must be different fromDE(L), which was
found to be proportional to 1/(a0L), wherea0 is the Bohr
radius of the pseudo-2D exciton. For a qualitative estimate
the L dependence ofX, it is reasonable to assume thatX is
proportional to the zero stress energy difference betw
LH1-CE1(1s) and its image state. Since the image state
at the onset of the HH2-CE1(p) continuum, it is easy to
show that

X}E0
HH22E0

LH11Eb
LH1 , ~31!

whereE0
HH2 and E0

LH1 refer to the confinement energies
HH2 and LH1, respectively, whereasEb

LH1 is the binding
energy of LH1-CE1(1s). While the width dependence o
confinement energies in QW’s is easily determined and
proximately proportional to 1/L2, it is much less straightfor-
ward to find the right functional form forEb

LH1 . It turns out,
however, that it is reasonable to assume an inverse rela
between the binding energy and the QW width, at least
the range ofL values that is of interest here. Thus Eq.~31!
can be rewritten as follows:

X}a/L21b/L. ~32!

Equation ~32! fits the values obtained from the full-band
mixing model very well, as can be seen in Fig. 6, whi
retrospectively justifies the assumption made aboutEb

LH1 .
This explains now the qualitative difference betweenDE(L)
and X(L). While DE(L) always depends inversely onL,
X(L) depends onL as 1/L for largeL and as 1/L2 for small
L.

At this point it should also be mentioned that the go
agreement in Fig. 6 could only be achieved because of
second term in Eq.~32!. Assuming simply a 1/L2 depen-
dence forX did not give good fits. The presence of the se
ond term in Eq.~32! is a direct consequence of the peculi

FIG. 6. Width dependence of the energy~squares! and the cor-
responding stress values~circles! of the anticrossing between
LH1-CE1(1s) and HH2-CE1(p). The filled/open squares represe
the results of the full-band-mixing calculations including/excludi
the stress-induced anisotropy while the solid lines represent sim
fied calculations using the Fano-Anderson model. The open up
triangles depict experimental results obtained from photoreflecta
spectra of a 100 Å GaAs/Al0.2Ga0.8As QW while the open lower
triangles represent experimental results obtained from photolu
nescence excitation spectra of a 220 Å GaAs/Al0.3Ga0.7As QW ~cf.
Ref. 9!.
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properties of the image state, which is positioned at the b
edge, not below it, and in that sense has no binding energ
it did, it would approximately cancelEb

LH1 in Eq. ~31! and
thus remove the 1/L dependence in Eq.~32!. Therefore, it is
possible to say that the characteristic width dependenceX
can be considered as a fingerprint of the unusual natur
the image state, just like the characteristic width depende
of DE turned out to be a fingerprint of the underlyin
valence-band mixing.

In Fig. 6 we also show experimental results compris
both anticrossing energy and anticrossing stress. The dat
the 220 Å GaAs/Al0.3Ga0.7As QW ~downward triangle! were
determined by Broido and Yang9 from photoluminescence
excitation data measured by Koteleset al.,58 while the data
for the 100 Å GaAs/Al0.2Ga0.8As QW ~upward triangle! were
obtained by us from photoreflectance measurements. In
cases the theoretical predictions are seen to agree well
the experimental findings, confirming the high accuracy
our calculations.

The second anticrossing occurs when LH1-CE1(1s) ap-
proaches HH3-CE1(1s) and hence, unlike in the Fano dou
blet case,two realstates interfere with each other. In Ref. 7
we showed that this anticrossing can already be accou
for within a simple single-particle picture. It can be ascrib
to the finite size of the QW, since only in finite QW’s can th
HH3 and LH1 envelope functions have a finite overlap a
hence be coupled by in-plane stress. When comparing
excitonic results for both anticrossing energy and anticro
ing stress with the corresponding single-particle zone-ce
results in Fig. 7, it is found that they are practically identic
This is not surprising, since the stress HamiltonianHX does
not depend onki , so that the coupling matrix element b
tween the two 1s states can be considerably simplified to

^CLH1-CE1
1s uHXuCHH3-CE1

1s &5^gLH1uHXugHH3&^f11
1suf13

1s&,
~33!

where the first term on the right-hand side of Eq.~33! is just
the respective single-particle coupling matrix element a
^f11

1suf13
1s&'1. Hence both excitonic and single-partic

states are coupled by the same matrix element and co
quently must reveal the same anticrossing behavior. At

FIG. 7. Width dependence in a GaAs/Al0.3Ga0.7As QW of the
anticrossing energy separation~squares! between LH1 and HH3.
The circles present the stress value at which the anticrossing oc
The solid lines represent the corresponding single-particle resu
the zone center.
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point it is interesting to note that in agreement with the p
vious argument the anticrossing stressX(L) depends on the
QW width L approximately as 1/L2. Here both anticrossing
states have proper binding energies, which are similar
size. Therefore, the zero stress energy separation of the
excitonic states is roughly equal to the zero stress separa
of the respective zone-center states and thusX}E0

HH3

2E0
LH1}1/L2. For the width dependence of the anticrossi

energyDE(L), on the other hand, a similarly simple ap
proximation cannot be derived. The reason is thatDE(L)
depends not only onE0

HH32E0
LH1 but also on the overlap

integral r HH3,LH1 between HH3 and LH1, whose width de
pendence cannot be determined analytically. The additio
contribution of the overlap integralr HH3,LH1 to DE(L) ex-
plains, however, the qualitative difference between the wi
dependence ofX(L) and DE(L), which incidentally is just
the opposite of what was found for Fano doublets in Fig.

C. Oscillator strengths

Undoubtedly the most noticeable effect of the stre
induced anisotropy on the optical absorption spectra in Fi
is the distinct dependence of the absorption on the polar
tion direction within the QW plane. To investigate this
more detail, we present in Figs. 8~a! and 8~b! the stress de-
pendence of the oscillator strength of HH1-CE1(1s) and
LH1-CE1(1s), respectively, for both@100# and@010# polar-
ization. In each case three different models are compa
with each other. The solid lines are the results obtained fr
the full-band-mixing model~FBM!, which we introduced
above, whereas the dashed lines represent simple zone-c
results in the single-particle model~SPM!. Finally, the dotted
lines depict the results of a strongly simplified excito
model, which we henceforth will refer to as the ‘‘image sta
model’’~ISM!. It only includes three discrete states, name
HH1-CE1(1s), LH1-CE1(1s), and the image state o
LH1-CE1(1s), which replaces the whole HH2-CE1(p) con-
tinuum to account for the effect of thek•p coupling between
the HH2-CE1(p) continuum and LH1-CE1(1s). The image
state is located at the onset of the HH2-CE1(p) continuum
and its wave function is optically inactive except for th
admixture from the LH1-CE1(1s) wave function.

For the two simplified models, the oscillator strength
straightforward to determine. For the FBM, on the oth
hand, it is more difficult, since higher excited exciton sta
are not properly bound stationary states, but have a fi
lifetime due to Fano-Anderson-type interference. Thus th
are broadened resonances and as such cannot be trea
single excitations anymore. For that reason we simply set
oscillator strength equal to the maximum transition intens
of the absorption peak minus the corresponding backgrou
Even though this definition is not rigorous, it neverthele
provides at least a crude measure for the oscillator stren
which for our present purposes is adequate.

Comparing the three models now for the two differe
exciton transitions yields the following results. For the osc
lator strength of HH1-CE1(1s) shown in Fig. 8~a!, all three
different models are found to be in excellent agreement o
the entire stress range and for both polarizations.
LH1-CE1(1s) the situation is a bit more complicated. Whi
all three models agree very well for the@100# polarization
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and hence uniformly predict the disappearance of
LH1-CE1(1s) oscillator strength for this polarization direc
tion, each model yields a slightly different result for th
@010# polarization. The latter directly reflects the differe
levels of sophistication that the three models incorpora
The SPM only reproduces the general upward trend and
dip at about 10 kbar caused by the anticrossing w
HH3-CE1(1s), while the ISM also captures the second d
between 4 and 5 kbar due to the anticrossing betw
LH1-CE1(1s) and its image state. Neither of these simp
fied models, however, can account for the much sma
overall oscillator strength obtained from the FBM. This is
be expected, since the reduced oscillator strength is a d
consequence of Fano-Anderson-related broadening, whic
not included in the simple models.

It can therefore be said that the polarization depende
of excitonic states in QW’s at elevated stress can be
equately described by a simple single-particle model, wh
only comprises the corresponding zone-center states. All
tra features in the stress dependence of the oscill
strengths, which cannot be reproduced by the SPM, arenot
caused by the stress-induced symmetry reduction but by
citonic mixing effects. In the simple single-particle zon
center model, however, the change of the oscillator stren

FIG. 8. Polarization dependence of the transition intensities
~a! HH1-CE1(1s) and ~b! LH1-CE1(1s) in a 100 Å
GaAs/Al0.3Ga0.7As QW under in-plane uniaxial stress along t
@100# direction. The solid lines are obtained from the full-ban
mixing model. The dashed lines represent the corresponding o
lator strengths of the single-particle model, while the dotted lin
show the results of the image-state model.
e
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he
h
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ct
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for the various hole states can be easily explained, since
directly linked to the stress-induced mixing of the Bloc
functions. As we discussed in Ref. 78, in-plane uniax
stress rotates the natural quantization direction in a QW
90° from the confinement direction at low stress values to
stress direction at large stress values. At the same tim
HH-type Bloch function turns into a LH-type Bloch functio
and vice versa. If the new quantization direction at lar
stress values is chosen as the newz axis, the oscillator
strengths for the two in-plane directions of the QW, i.
@100# and @010#, effectively become identical to the corre
sponding ones in bulk for thez andy direction, respectively.

With this mechanism in mind, it becomes straightforwa
to interpret the results shown in Fig. 8. For small and la
stress values the oscillator strengths equal to the corresp
ing bulk oscillator strengths, which are found to be direc
related to the Clebsch-Gordan coefficients of the Bloch fu
tion. Thus the oscillator strength for HH1-CE1 in Fig. 8~a! at
zero stress is12 for both directions, which corresponds to th
bulk HH oscillator strength along thex and y direction. At
large stress values, on the other hand, it is2

3 for @100# and1
6

for @010# directions, which corresponds to the bulk LH o
cillator strength along thez andy direction, respectively. For
the LH1-CE1 transition shown in Fig. 8~b!, the interpretation
is analogous except that now a LH-type Bloch function tu
into a HH-type Bloch function.

Finally, Figs. 9~a! and 9~b! present our experimental re
sults for the transition intensities of HH1-CE1(1s) and
LH1-CE1(1s), respectively. In both figures, squares refer
@100# polarization, i.e., parallel to the stress direction, a
circles refer to@010# polarization, i.e., perpendicular to th
stress direction. The data in Fig. 9~a! were obtained from PL
measurements, while the data in Fig. 9~b! were obtained
from PR measurements. Overall the transition intensities
seen to be in good agreement with the corresponding th
retical results~solid lines!. Contrary to the PL data in Fig
9~a!, however, the PR data in Fig. 9~b! exhibit strong fluc-
tuations and in parts noticeable deviations from the theo
ical lines. The reason for this lies mainly in the difficulty o
extracting precise intensity values from the complicated
line shapes by merely fitting them with simple phenomen
logical fitting formulas that depend only on a few param
eters. Nevertheless, all essential aspects of the previous
oretical discussion are confirmed by the experimental resu
Most importantly, the nontrivial variation of the
LH1-CE1(1s) transition intensity for@010#-polarization near
the anticrossing at about 4 kbar is clearly visible in Fig. 9~b!.
It is interesting to note that, in accordance with theory,
point of equal transition intensities~the ‘‘optical’’ anticross-
ing point! occurs at 5 kbar, i.e., at a higher stress value th
the point of minimum anticrossing energy~the ‘‘real’’ anti-
crossing point!. This is in contrast to an ordinary two-sta
system, where these two points coincide. This feature ca
traced back to the strong broadening of the second peak
Fano doublet compared with the first peak. The difference
broadening is clearly resolved in the experimental da
where the broadening of LH1-CE1(1s) before and after the
anticrossing is 4 and 5 meV, respectively. Detecting t
subtle feature in the experimental spectra, therefore, prov
further evidence for the existence of Fano doublets in
present system.
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V. CONCLUSION

We have studied, both theoretically and experimenta
the effects of large in-plane uniaxial stress on the opt
properties of GaAs/AlxGa12xAs QW’s. In particular, we
have investigated in great detail the mixing between ex
tonic states caused by valence-band mixing and have
lyzed how this mixing is modified by stress. The analy
showed that stress is a powerful tool to reveal some of
striking optical features caused by exciton mixing. Spec
cally, the two main contributions of this work are~a! the
development of a full-band-mixing model that goes beyo
the axial approximation and hence allows the stress-indu
anisotropyof the valence-subband structure to be taken i
account, and~b! the characterization of the various mixin
mechanismsthat are intrinsic to quasi-two-dimensional sy
tems under stress.

The main point about the extended full-band-mixi
model was that the stress-induced anisotropy of the vale
subband structure can be described accurately by Fourie
panding the valence states only up to the first nonisotro
order. In the excitonic picture this means that each of
four total angular momenta that give finite contributions
the excitonic oscillator strength couples strongly only toone
other total angular momentum under in-plane uniaxial stre

FIG. 9. Polarization dependence of the intensity of~a!
HH1-CE1(1s) and ~b! LH1-CE1(1s) in a 100 Å
GaAs/Al0.2Ga0.8As QW under in-plane uniaxial stress along t
@100# direction. The individual data points in~a! and~b! are experi-
mental results obtained from photoluminescence and photore
tance spectra, respectively, and the solid lines are the correspon
theoretical results. Squares refer to@100# polarization while circles
refer to @010# polarization.
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The coupling to angular momenta outside the subsp
spanned by those four total angular momenta can be
glected. Consequently, the Hilbert space of the anisotro
case is only twice the size of the isotropic case, which
merically is still tractable.

When investigating the effects of valence-band mixing
the excitonic spectrum, it is important to distinguish ca
fully between mixing that is intrinsic to stress and mixin
that is intrinsic tok•p coupling. Stress-induced mixing has
straightforward mechanism that can be understood within
framework of a simple single-particle zone-center mod
The main aspect about in-plane uniaxial stress is that it
tates the natural quantization direction from the confinem
direction to the stress direction, which leads to polarizatio
dependent absorption spectra and to the anticrossings
tween HH and LH states with the same parity, such as H
and LH1. Thus, on its own stress has no significant dir
influence on excitonic quantities. Mixing effects caused
k•p coupling, on the other hand, are best explained wit
the excitonic picture. In this context, stress can be used
tune the relative strength of the variousk•p coupling terms.
This decisively modifies the binding energies of the high
excited states due to the stress-induced changes of
valence-band effective masses. Furthermore, it leads
strong anticrossing feature between the discr
LH1-CE1(1s) and thep continuum of HH2-CE1, which can
be best explained within the framework of the Fan
Anderson model. The characteristic width dependence of
stress value at which the double peak structure of the a
crossing reaches its minimum separation energy directly
flects the peculiar properties of Fano doublets.

The validity of our theoretical results was confirmed by
detailed analysis of experimental data, which we obtain
from photoreflectance and photoluminescence measurem
on a 100 Å GaAs/Al0.2Ga0.8As QW. Excellent agreement be
tween theory and experiment was achieved for both
stress dependence of the exciton energies and the pola
tion dependence of the transition intensities. This powerfu
demonstrates the high accuracy of the theoretical results
unambiguously confirms the existence of Fano doublets.
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APPENDIX: NUMERICAL SOLUTION

In this appendix we present our theoretical method
obtaining numerical solutions of the exciton equation@cf. Eq.
~17!#. The solution technique is similar to the approach
Ref. 10 and is based on the Gaussian quadrature method
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essence of this method is to approximate the integral b
finite sum of the following form:

E
a

b

f ~x!dx'(
j 51

N

wj f ~xj !, ~A1!

where xj are the roots of appropriately chosen orthogo
polynomials of degreeN and wj are the corresponding
weighting factors.79 In order to turn the improper integral i
Eq. ~17! into a proper integral, we use the following coord
nate transformation:

k5
1

2
$22k0 cot~px!1k1x

1A@2k0 cot~px!1k1x#214^k&1s
2 %, ~A2!

where

k05
kT

tanS xT

p

2 D , k15
kT

xT
, ~A3!

andx runs from 0 to 1. HerekT andxT are adjustable param
eters that are used to optimize the accuracy of the nume
results. What makes Eq.~A2! a particularly suitable coordi
nate transformation is that it increases linearly up toxT ,
wherek assumes the valuekT , and only then starts divergin
to infinity. This means that Eq.~A2! permits control of the
turning point between smallk values near the origin an
largek values. Hence with Eq.~A2! it is possible to set the
percentage of the total number ofk values that are smalle
than^k&1s exactly to the appropriate level, where^k&1s refers
to the momentum expectation value of the excitonic grou
state.

Before we proceed to present the discretized form of
exciton equation~17!, a few definitions are necessary. Firs
the modified weighting factor is defined as

Wi5
k~xi !

2p S dk

dxD
i

wi , ~A4!

where (dk/dx) i represents the Jacobian of the coordin
transformation~A2! at the pointxi . Furthermore, it is con-
venient to introduce

f̃nmi
Xs 5AWifnm

Xs~ki !, ~A5!

Tnmi
s2s85Tnm

s2s8~ki !, ~A6!

Ṽnmin8m8 j
ss8 5AWiVnmn8m8

ss8 ~ki ,kj !AWj . ~A7!

After these preliminaries it is straightforward to show th
the discretized from of Eq.~17! can be written as follows:

(
n8,m8

(
s85s21/2

s13/2

(
j 51

N

Anmin8m8 j
ss8 f̃n8m8 j

Xs8 5EXf̃nmi
Xs , ~A8!

whereAnmin8m8 j
ss8 is a Hermitian matrix of the following form:

Anmin8m8 j
ss8 5Tnmi

s2s8dnn8dmm8d i j 1Ṽnmin8m8 j
ss8 . ~A9!
a

l

al

d

e

e

t

Finally, we deal with the singularity of the Coulomb po
tential. It can be readily seen from the expression of Eq.~21!

that the Coulomb matrix elementVnmn8m8
ss8 (k,k8) scales like

1/q for small values ofq, so that the validity of the quadra
ture method becomes questionable atki5kj . Fortunately
this difficulty can be circumvented, since the singularity
the Coulomb potential is integrable. Numerically this can
achieved by the so-called ‘‘modified quadrature method.’’
the modified quadrature method the Coulomb matrix elem

Vnmn8m8
ss8 (k,k8) in Eq. ~17! is replaced near the singularity b

a simplified expressionLnmn8m8
ss8 (k,k8), which has the same

type of singularity asVnmn8m8
ss8 (k,k8) but which can be inte-

grated exactly across the singularity. Following Chao an

Chuang10 we choose the following form forLnmn8m8
ss8 (k,k8):

Lnmn8m8
ss8 ~k,k8!52

e2

2««0

2k2

k21k82

3(
n

(
l 50,62

E
0

2p dDu

2p

1

q
cos~mDu!

3dnn8E dzhgmn
l ~k,zh!gm8n

l 2~s2s8!* ~k,zh!.

~A10!

Herem5s2n2(s2 l ), while 2k2 /(k21k82) is a weighting
function that is added to improve numerical convergen
Furthermore, the integral over the conduction-subband en
lope functions disappears, because conduction-band mi
is neglected in this work. Consequently all conduction sta
are orthonormal at eachk value. In the derivation by Chao
and Chuang, the integral over the hole envelope functi
was also set equal todmm8 . This, however, is not correct in
general, especially in the case of strong valence-band m
ing, and hence this approximation is not adopted here.
nally, it is now possible with the help of Eq.~A10! to ap-

proximateṼnmn8m8
ss8 (ki ,ki) as follows:

Ṽnmn8m8
ss8 ~ki ,ki !'E

1/2~ki 211ki !

1/2~ki1ki 11! k8dk8

2p
Vnmn8m8

ss8 ~ki ,k8!

'E
0

` k8dk8

2p
Lnmn8m8

ss8 ~ki ,k8!

2(
j Þ i

N

WjLnmn8m8
ss8 ~ki ,kj !. ~A11!

The crucial point about this approximation is that the sum
the second term only contains summands for which
quadrature method is valid, while the integral in the first te
can be carried out exactly and has the following result:

E
0

` k8dk8

2p
Lnmn8m8

ss8 ~ki ,k8!52
e2

8p««0
ki(

n
(

l 50,62

3Cmdnn8Gmm8n
l @ l 2~s2s8!#

~ki !,

~A12!

where
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Gmm8n
l @ l 2~s2s8!#

~ki !5E dzhgmn
l ~ki ,zh!gm8n

l 2~s2s8!* ~ki ,zh!,

~A13!

and

Cm54E
0

2p dDu

2p E
0

`

dx
x

11x2

cos~mDu!

Ax222x cosDu11
.

~A14!

The double integral in Eq.~A14! is a standard integral that i
well defined over the entire integration range and hence
.

th
hy

.

.

ev
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.

.
.

d,

e

an

be solved numerically to any degree of accuracy. It is eas
convince oneself that within the subspace spanned by
four total angular momentas5s2 3

2 , s2 1
2 , s1 1

2 , and s
1 3

2 , six differentCm’s are needed, i.e.,

C055.2442, C250.918 63, C450.486 69,
~A15!

C151.6037, C350.637 77, C550.392 84.

Under the axial approximation, on the other hand, only
first four values are needed.
.
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