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Optical properties of GaAs/Al;_,Ga,As quantum wells subjected to large in-plane uniaxial stress
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A comprehensive theoretical study of the effects of in-plane uniaxial stress on the excitonic absorption
spectra of GaAs/AlGa, _,As quantum wells is presented. In particular, stress is used to investigate optical
features of excitonic mixing effects. State-of-the-art calculations of realistic excitonic absorption spectra under
stress are performed that take valence-band miaimdthe stress-induced anisotropy of the band structure into
account. Two important aspects of in-plane uniaxial stress are identified each of which affects exciton mixing
in a different way. On the one hand, the natural quantization direction gets rotated by stress from the confine-
ment direction to the stress direction. This leads to a marked polarization dependence of the absorption
spectrum, which can be explained within a simple model of single-particle zone-center states. On the other
hand, uniaxial stress also allows the energy alignments of the valence states to be varied substantially. Thereby
it is possible to influence thk- p-related exciton mixing considerably, in particular between the lowsst 1
light-hole exciton and thp continuum of the second heavy-hole exciton. This leads to the formation of doublet
structures that reveal strong anticrossing behavior and have peculiar properties, which are best described within
the framework of the Fano-Anderson model. Excellent agreement was achieved up to large stress values
between our theoretical results and our experimental photoreflectance and photoluminescence results, with
respect to the polarization dependence of the transition intensities and the stress dependence of the exciton
energies. This clearly demonstrates the high accuracy of the calculations and provides conclusive evidence for
the strong mixing effects that stress can caliS8163-18209)04424-(

[. INTRODUCTION stress tends to modify the relative coupling strength between
the various excitons, and accordingly the degree of mixing,
Even since the advent of layered semiconductor strucbut not the absolute coupling strength. Due to this particular
tures, one of the main research interests has been the studymbperty of uniaxial stress, we were able to show theoreti-
the optical properties of semiconductor quantum wellscally in a previous papéf that the strondk-p coupling be-
(QW’s). Not only have the optical properties turned out to between LH1 and HH2 can lead to the formation of a distinct
of significant use for technological applications, but they alsadoublet structure when LH1-CE1§} is shifted by uniaxial
provide important information about the fundamental behavstress towards the onset of the HH2-CgJlL(continuum.
ior of electronic properties in an environment of reducedSince that doublet structure can be best understood within
dimensionality. In nominally undoped structures, the opticalthe framework of the Fano-Anderson model, we will refer to
properties near the fundamental band gap are dominated lilyas a “Fano doublet.”
excitonic excitations, which in QW’s often are strongly In our work on Fano doublets we neglected, however,
mixed! 13 There are two principal causes of exciton mixing, another aspect about in-plane uniaxial stress, which is that
the three-dimensional nature of the Coulomb potential andiniaxial stress applied perpendicular to the growth direction
valence-band mixing. This valence-band mixing will provide reduces the symmetry of the QW from tetragonal to ortho-
the main focus of the present work. rhombic. This couples valence states even at the zone center
A common approach to investigating exciton mixing is to and as a consequence renders the valence-subband structure
analyze how the excitonic spectrum responds to a change @ahisotropic. In a general analysis of the stress-induced mix-
external perturbation, using optical spectroscopy techniquesg effects in excitonic spectra, it is, therefore, necessary to
So far predominantly external fields, such as magnetic otake not only the valence-band mixing but also the aniso-
electric fields, have been used as perturbatidfid*~?The  tropic band structure into account. Thus, the purpose of this
problem, however, with both electric and magnetic fields ispaper is to present a realistic model for the theoretical de-
that they mainly affect the exciton itself, i.e., the hydrogenicscription of excitons in a QW under in-plane uniaxial stress
system, but have a lesser effect on the mixing between difthat incorporates all aspects of uniaxial stress. This allows us
ferent excitons. A more powerful method of specifically to discuss in detail the various effects that uniaxial stress has
changing the mixing between valence subbands and henam the optical properties of a semiconductor QW. For sim-
excitons in a precisely controllable and reproducible manneplicity, we will restrict ourselves to GaAs/iBa _,As
is to apply in-plane uniaxial stress. With stress applied, it iISQW's that are grown along thH@01] direction and hence to
possible to change the positions of heavy-h@h#H) and  stress that is applied along th€00] direction.
light-hole (LH) energy levels relative to each other. Hence Although it is not difficult from a conceptual point of
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view to describe excitons theoretically, it is nevertheless & or r i
HH1 - X=0 kbar X=2.5 kbar X=5 kbar

formidable task to obtain numerical solutions for a realistic I HH1

model of excitons inside a semiconductor QW. For the pas 20 \
18 years or so QW excitons, therefore, have continued t
challenge theoreticians and have led to an enormous wealr

of contributions in the literatur,*118:1921-24.26"3¢here the 3 40
list of references is by no means exhaustive. A recent ani §;
more detailed review is given, for example, by Winktér. 2 ¢
Common to all these works is that they use the envelope &
function approximation combined with linear response 50

theory as a framework for their investigations. But within
that framework many different modes of varying degrees ol \
sophistication and refinement have been suggested. But 1 _4golt—t 1 PP, W .
our knowledge a model that incorporatesth valence-band 0.00 0.02 0.04 000 002 0.04 000 002 004
mixing and the anisotropy of the valence-band structure is k, " al2n
still missing. Bauer and Ando included band warping in their
calculations’, but since they adopted a variational approach, FIG. 1. Valence subband dispersions paraléiiid lines and
they neglected the important role that the exciton Continuunpgrpendmulat(dashed Il.ne)sto the [100] stress direction for three
plays in exciton mixing~® Consequently, their model is not different stress values in a 100 A GaAsj{ABa As QW.
suitable to obtain detailed information about higher excited = . i
states in absorption spectra at elevated stress values. Broi8!Sions are presented in Sec. V.
and Yang® on the other hand, presented a full valence-band-
mixing model that includes uniaxial stress. These authors, Il. THEORY
however, averaged over the anisotropic band structure, in
order to simplify the numerical complexity, and this way
effectively restored axial symmetry. To include the stress- In order to understand how in-plane uniaxial stress affects
induced anisotropy, we extend the model by Chao andhe excitonic absorption spectra of GaAsBg _,As QW's,
Chuang, who developed a state-of-the-art model within thét is instructive to analyze stress effects in a single-particle
axial approximation that rigorously incorporates valence-icture first. Hence in this subsection we look at how stress
band mixing'® One of the main challenges about going be-modifies the valence-subband structure of GaAgha] _,As
yond the axial approximation is to circumvent the limitations QW. In particular, this analysis will give a clear indication as
that are imposed by the computational resources with respet2 how the stress-induced anisotropy of the valence subbands
to storage capacity and speed. We, therefore, also present aan be included in the full-band-mixing model for excitonic
efficient and optimized algorithm with which it is possible to calculations presented in the next subsection.
obtain numerical solutions for the exciton equation even on Figure 1 presents the energy dispersions of the first four
an ordinary PC within a few hours. valence subbands of a 100 A GaAs/AGa,-As QW for

In addition to the theoretical analysis, we also measurethree different stress values, which were calculated using the
both photoluminescencéPL) and photoreflectancéPR)  subbandk-p method®®’ The subbandk-p method is a
spectra of a 100 A GaAs/fhGa, As QW for in-plane variational approach where the envelope functions at finite
uniaxial stress values up to about 10 kbar. This is twice thén-planek; values are expanded in terms of a set of zone-
stress range previously reported in the literature for similacenter states. The continuum above the QW is included by
sample2®®% and hence we were able to resolve stressputting it symmetrically inside an infinite QW of much larger
induced mixing effects in a particularly pronounced way.width. The wave vectors are shown in units af/2 in Fig.
Thus, we found not only clear evidence for the formation ofl, wherea is the lattice constant of GaAs. At zero stress the
Fano doublets, but also managed to detect a strong polarizaubbands clearly reveal strong nonparabolic dispersions. Par-
tion dependence of the oscillator strength of both ground anticularly striking is the electronlike curvature of the LH1
higher excited states within the QW plane, which is in ex-subbanéf out to about 0.015(2/a). Its origin can be easily
cellent agreement with our calculations. understood in terms of two competing mixing effet$° At

This paper is organized as follows. In Sec. Il we firstsmallk; values, LH1 and HH2 repel each other strongly due
analyze how in-plane uniaxial stress affects the valenceto an off-diagonal matrix element of the Luttinger-Kohn
subband structure in GaAs/i&a, _,As QW's, in particular Hamiltonian that is linear irk;,. Consequently, LH1 is bent
with respect to anisotropic dispersion relations. In the secondpwards. At the same time, HH2 is bent further downwards
part of Sec. Il we will then give a detailed description of our resulting in a decreased effective mass near the zone center.
theoretical model for anisotropic excitons and fundamentals k; increases, LH1 approaches HH1, which is coupled to
absorption at finite stress, while in the third part we will LH1 via an off-diagonal matrix element of the Luttinger-
demonstrate how the computational difficulties of obtainingKohn Hamiltonian that is quadratic ik, . This leads to an
numerical results can be overcome. In Sec. lll, we brieflyanticrossing between these two states and LH1 is bent down-
review our experimental technique to measure PL and PRvards again. This electronlike dispersion is not unique, how-
spectra of a 100 A GaAs/AkGa ¢As QW under uniaxial ever; HH3, for example, reveals the same type of dispersion,
stress. Finally, in Sec. IV we discuss our numerical resultsvhich originates from the same type of mechanism as in the
and compare them with our experimental results. Our conease of LH1, except that this time HH3 is repelled by LH2.

A. Single-particle picture
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Under compressive in-plane uniaxial stress, LH1 is () HH1-subband k
shifted towards HH2 and the relative strength of the coupling
between LH1 and HH2 increases. This leads to an enhance-
ment of the above-described effect, i.e., the electronlike dis-
persion becomes more pronounced and the effective mass of " 450
HH2 decreases even further. When the zone-center states of 02}
LH1 and HH2 cross at 2.5 kbar, the repulsion reaches a
maximum. At this point LH1 and HH2 are strongly mixed §
with each other. In fact, it turns out that because of the strong »
coupling between LH1 and HH2, the LH1 subband consists =~
of almost equal amounts of LH1 and HH2 zone-center states 0.02 I
for k, values as large as(R),s, where(k)s refers to the | 210
momentum expectation value of the excitonic ground state.
This suggests that the excitons attached to these subbands
will have a strongly mixed character, too, and hence will
show features of an anticrossing behavior, which is precisely
what is found in excitonic absorption spectra further below.

If the stress is increased even further, LH1 is shifted beyond (b)
HH2 and the repulsion between these two subbands weakens
again. More importantly, however, HH2 now has an elec-

0.00 t80

0.04 -

270

tronlike dispersion while LH1 is approximately parabolic for 0.04 -
small k; values, so in some sense they have swapped their 150
respective characteristic features. 0.02 F

Besides modifying thek-p related valence-band-mixing
effects, in-plane uniaxial stress also reduces the symmetry of
the QW from tetragonal to orthorhombic, which leads to
strong mixing between zone-center valence states. Under =
these circumstances the valence-subband dispersions become
strongly anisotropic at elevated stré&<! This can be seen
in Fig. 1, which shows the valence-subband dispersions for
two directions ink space: k, (solid ling), which coincides 0.04 F
with the stress direction, arld, (dashed ling The complete
anisotropic solutions, however, are not suitable for excitonic
calculations, since in this case the Hilbert space of the exci-
ton, and hence the matrix representation of the excitonic FIG. 2. Contour plots of the first two confined valence gubb_ands
Hamiltonian, becomes too large for numerical calculations td" & 1OO.A,GaAS/A4-3GaO-7AS QW at 5 kbar of compressive in-
still be manageable. It is, therefore, crucial to derive approxiplane uniaxial stress along tfi#00] direction. The solid lines rep-

mate solutions for the anisotropic valence subbands that afgsent the exact results whereas the dashed lines represent the ap-

simple enough to be included in the excitonic calculationsP"OXMate results using the Fourier expansion method.

yet still capture the essence of the stress-induced anisotropy.

The best way to achieve this is to expand the solutions of th¥alence subbands of a 100 A GaAs{ABa, As QW at 5
anisotropic Hamiltonian, i.e., eigenstates and eigenenergie§Pa" (cf. Fig. 1), which were obtained from the full calcula-
in terms of simple harmonics. Since in-plane uniaxial stres&ions (solid lines, are compared in Fig. 2 with the corre-
reduces the symmetry of the QW from tetragonal to orthoSPonding approximate solutioridashed linesderived from
rhombic, both the eigenenergies and eigenstates have a petil?_e simplified expression of the anisotropic subband energy:
odicity of 7. Thus the eigenenergies of the valence subbands

Em(k,) can be expanded in the following way: En(ky,0)=ER(k) +2Ep7(k;)cog26). (©)

g
o
‘® 0.00 (180

*

T

0.02
210

N b - The overall agreement in Fig. 2 is excellent; even in the
Em(k)) = _2 Em(kpe"?, (1) region where the contour lines show strong deviations from

=02 the generally prevalent elliptical shape, the approximate so-
while the hole envelope functions according to ?hbe-  lutions accurately reproduce all main features of the subband
come structure. This provides convincing evidence that it is indeed
justified to keep only the zeroth-ordére., isotropi¢ and the
Ik, ,z)=e*i‘"’| glmy(ku 2)el, @) first-order(i.e., the first nonisotropjcterm in the expansion.

=0,%2,...

Approximate solutions can now be conveniently obtained by =+ EXCiton theory beyond the axial approximation

cutting off higher-order terms in the expansion. The crudest Our excitonic calculations are based on a generalization
approximation includes the anisotropy only in the lowest or-of the full-band-mixing model by Chao and Chuafigyhich

der, i.e., it keeps terms only up fo=+2. To assess the is a state-of-the-art model that rigorously incorporates
validity of this approximation, contour plots of the first two valence-band mixing within th&'g subspace. The conduc-



PRB 60 OPTICAL PROPERTIES OF GaAs/AlL,GaAs. . . 1903

tion band, on the other hand, is assumed to be parabolic. After this preparation it is now straightforward to derive

Furthermore, the exchange interaction between electrons arde exciton equation ik, space by inserting Eq7) into Eq.

hole€® and the difference in dielectric constants between5), multiplying both sides of Eq. (5 with

well and barrier materiaté~*®are neglected. Since Chao and f*_(k,Zze)gm,(K;,zn)e™'¥"?, summing ovemw, and integrat-

Chuang only solved the exciton equation within the axialing over z., z,, and p. This yields the following set of

approximation, the purpose of this subsection is to demoneoupled integral equations:

strate how their model can be extended to include the stress-

induced anisotropy approximately. X dk; X ,
Within the framework of the effective-mass theory and Tam(Kj) @hm(kp)+ 2 f(ZT)zvnmn’m'(kll KD & (KD

the envelope-function scheme, excitons can be described by n’,m’

the following two-particle HamiltoniaSI units: - Ex¢§m(ku)- (8)

2 which sometimes is also referred to as the Bethe-Salpeter

ex _ e h
Hovorv =H oo 00 TH,, 866 = Gmseo|fa—Ty] Soo'Ou’ - equation?’? In momentum space the kinetic-energy matrix
(4) elementT,(k;) is diagonal and reads
HS . and H:V, are the single-particle kinetic-energy opera- Tom(k)) =ES(k)) —E"(K,)), 9

tors of the conduction-band electron and the valence-band . h _ )
hole, respectively, where=+1 and v==+1, =32 refer to  Where E(k))/Ep(k,) are the subband dispersions of the

— 2y —2
the corresponding spinor components. The third term in Egth/mth confined electron/hole states. Whi(k;) is para-
(4) is the Coulomb interaction, which is diagonal with re- bolic in the approximation adopted hek) (k) in general is
spect to the spinor components. The exciton wave functiofiighly nonparabolic as was discussed in the preceding sub-
accordingly must be an eight-component spinor satisfyingection. Much more complicated than the kinetic-energy ma-
the Schrdinger equation trix element, however, is the Coulomb matrix element
Voamrm (K ,K[) which turns out to be of the form
2 Hze;):/a"v’qu("v'zEX\P;(V1 (5) e2 1

a'v' Vnmn’m’(k1k’):_gaj dzef (jzh67(1|2‘fZh|
where X labels different exciton states. Since both the 0
electron-hole exchange interaction and the nonparabolicity X fr oKy, ze) frro(K| ,Ze)
of the conduction band are neglected hebs;, is twofold
deger_lerate with respect to the electron s_piand thuer’éV. . x> Im(Ky 2G5, (K( ,20),  (10)
effectively becomes a four-component spinor. For simplicity v
we will drop the indexo in ¥ henceforth. Considering

, av .. Where
also Kramers’ degeneracy for the valence band, each exciton
state is thus in general fourfold degenerate. , E—— ; ;

In order to s%lve Eq(5), the ex?:iton wave function is a=k—k{|=Vki-+k[*~2kjkf cog6—6").  (1D)

expanded in terms of products of single-particle electron an¢tinally, within the dipole approximation the oscillator
hole states: strength for the excitonic staté is defined as

fro(Kie,re) = (277)71fn(r( Kie ’ze)e(ikue'l’e),

2

O Teme| S €PD [ a2vip-0z2)

Imu(Kin o F1) = (27) g mu(Kyn , 2z €Ki Pn),

wheren and m are the subband indices for the conduction _ 2
and valence band, respectively, while the vectgrand p mMoEx
refer to two-dimensional vectors in tixey plane of momen-

tum and real space, respectively. Before constructing the ex-

citon state, it should be remembered that a hole state is thghere
time-reversed version of the corresponding single-particle

electron state. Hence the hole envelope function is obtained v .

from the envelope function of the valence state in &by lam(ki) = J dz fp(k;, 2)gm, (k) ,2) (13

complex conjugation. With this in mind the exciton wave _ )
function becomes is the overlap integral between the conduction and valence

subbands. Summation over the electron spiis omitted in
« dk X » Eqg. (12) due to the twofold degeneracy of the conduction-
VX(p.ze.zp)= 2 f Wﬁbnfmr(ku')e' e band states with respect to This, however, means that the
n',m’ T momentum matrix element between the conduction- and
X for (K] PALW (k[ ,zp), (7) valence-band Bloch functions needs to be slightly modified
my to ensure that all allowed transitions are included in @8):

5 dk/ 2
2 (&P J(z—”m?m(ku’m(ku’)

)

(12

where ¢>§,m,(ku’) denotes the expansion coefficient and is _ cod (vt o]
often called the exciton envelope function. Py =(ulpluy 7. (14)
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Once the excitonic oscillator strengths are known, the abTogether with the corresponding expression for the hole en-

sorption coefficient can be calculated by summing up th%elope functions presented in E€@), Vnmn’ (ky.k!) can
contributions from all excitonic states: thus be shown to adopt the following form:
'y 2
2 2 M/ k 1k Y
a(E) meh > 4 2m 5. (15 nmnm( ki) = 28805 1-672..
2n,egCmpl X ) X
(E-Ex)™* |5 2ndA 6
[ of 7%

Here we have replaced tl&function by a phenomenological
Lorentzian broadening.T'y is the linewidth of the Lorentz- e Ulze=z|
ian and is chosen empirically, partially to match the experi- X ————gllomv=(s=DIAb % (K 7,)
mental data presented below and partially to match the reso- q
lution of the energy spectrum obtained in numerical % I- (s s’
calculations. f (kH 1Ze)gmv(kll th)g (k|| !Zh)l

Equation (8) is a two-dimensional integral equation, (21
which in general is very laborious to solve numerically. while the oscillator strenath becomes
Thus, in previous works the numerical treatment of the ex- 9
citon equation was usually tackled by invoking the axial ap-
proximation, i.e., by neglecting the warping of the valence fé= (&P Y >
band, in which case the two-dimensional integral equation MoEx | & n’,m s 1=0x2..
simplifies to a one-dimensional one. In the presence of in- KK )

lane uniaxial stress this is no longer possible, however, be- I

b gl b X | S b (KD (KD 05| (22)

cause of the anisotropic band dispersions induced by stress.

To include the effects of stress on excitons at least approxi-

mately, it is therefore necessary to go beyond the axial apahere

proximation. This means that at finite stress the exciton wave

functions need to be written as a linear combination of wave vl _ f I*

functions with different total angular momenta: m(Ki) dz fo(ky,2)gm, (ki 2) 23

) iy In the absence of stress, only the zeroth-order term of
DRk =2 drs(k)e's”. (16 gl ,(k,,2) is nonzero, in which case Eq@1) and(22) sim-
s’ plify to the corresponding expressions of the axial
Inserting Eq.(16) into Eq. (8), multiplying by e™'$?, and approximation'® Furthermore, from Eq21) it can be imme-
integrating overd yields the exciton equation diately concluded that the stress-induced anisotropy only
couples angular momenta that differ at least by 2, ies,
=s—s’'==*2, which follows from the fact that uniaxial

S— S
SE Tan (k) (k) stress applied perpendicular to the growth direction only
couples different types of holes, i.e., heavy holes with light
k”’ ki XS holes, but not holes of the same kind. In view of this result,
+ E 2 j nmn’m’(k” Ki) b (Ki) the simplest extension of the axial approximation is to con-

sider the coupling between only those four total angular mo-
=Ex¢nﬁq(ku), (17) menta that have nonzero contributions to the oscillator
strength under the axial approximations, isso+3, o
where TS (k) and Vnmn,m,(k,k‘{) are Fourier components +3, o—3, o—3. Within that subspace, E¢21) becomes
of the kinetic energy and Coulomb matrix element, respecblock diagonal, where one block compriSESUJr and o
tively, i.e., —1 and the othes=o0+3 and o—32. Consequently, the
final matrix equation is in this case twice the size of the
(k; . 0)= 2 T (k) ois'0 (18) respective exially _symmetric matrix equation and hence nu-
Tom(Ki 1) merically still feasible. Furthermore, it should be noted that
under this approximation only the first nonisotropic Fourier
_ component of the hole envelope function is taken into ac-
Vamwm (KK, 60,6") 2 E Ve (ki es eI count. But as was mentioned in the preceding subsection,
(19) this already captures the essence of the stress-induced anisot-
ropy. It is, therefore, reasonable to expect that the restriction
The Fourier components of the Coulomb matrix element caro those four total angular momenta is adequate.
be determined by Fourier expanding the single-particle enve-
lope functions in Eq(10). Since the conduction-band sub-

spacel ' is isotropic, the angular dependence of the electron o )
envelope functions is simply A standard procedure for solving integral equations such

_ as the exciton equatiofl7) is to discretize the integral, i.e.,
fro(K,ze)=fn(k,ze)e™ 77 (200  to replace the integral by a finite sum, which turns the inte-

C. Computational details
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gral equation into a linear matrix equation. Details of this are  Another problem that needs to be tackled is the calcula-
given in the Appendix. Here we want to comment briefly ontion of the matrix elements. Equatiq21) reveals that the
the considerable difficulties that one encounters in solvingnatrix elements of the Coulomb potential are obtained by
the matrix equation in practice. The difficulties stem mainlysolving a triple integral, which in general is very time-
from two types of limitations imposed by the computational consuming. The subbarid p method employed here is par-
resources: operational memory and processor speed, both tdularly advantageous in this respect. By using the subband
which set restrictions on the size of the matrices. For thak-p method, it is possible to carry out the integration over
reason, it is necessary to discuss first how large the matriceke hole and electron coordinates in Eg1) analytically.
need to be in order to obtain reliable results, and how thesklence the triple integral is reduced to a single integral,
requirements can be made compatible with the availablevhich is much easier to solve numerically. In the subband
computer power. Second, we will describe a technique thakt- p method, the hole envelope functigp,,(k,,z,) at finite
we developed to speed up calculations of the matrix elements, value is expanded in terms of zone-center states, i.e.,
significantly.

The size of a matrix is determined by the number of con- )
duction and valence subbands that are included in the expan- Im(K; 1Zh):2 e (K)Gr (20,
sion of the exciton wave function and, most importantly, the '
number ofk values. In this work we are interested in study- where the expansion coefficierda$, (k,) themselves can be
ing the effects of mixing between the lower valence sub-ourier expanded in analogy with E):
bands, i.e., HH1, LH1, HH2, and HH3. Since the measured
absorption spectra, which will be used further below for _ , .
comparison with theoretical results, also resolve higher ex- an (k. 0)=e"" > an (ke (26)
cited states, i.e., HH2-CE2, both the first and the second I"'=0x2
confined electron state, CE1 and CE2, need to be include@efore rewriting Eq(21) in this basis, the following integral

Hence the only remaining question is how makyalues  given by Bauer and Andohas to be introduced, since it
need to be included in the numerical calculations. In order tgows separation of the hole and electron integrals:

obtain a smooth absorption spectrum, the numbénaflues

has to be large enough so that the average energy separation 1 (=

of two consecutive exciton states determined from the nu- e e~ ad= —f dt
merical calculations is much smaller than the linewiBhof TS
the Lorentzian attached to each exciton state. In practice, it i ; :

sufficient to have &'y that is about five times larger than the ag%r:ng now Eqs(29), (26), and(27) into Eq. (21) thus
average exciton separation energyA E refers to the energy

range over which the excitonic spectrum is calculated, i.e.,

(25

12 cogt(ze—z,)]. (27

2

the energy separation between HH1-CE1 and HH2-CE2, Viin’m'(k\\’k\\’):_ €
then the following relationship serves as a suitable rule of 2e80m 5 15022 17
thumb to estimate the minimum numbsrof k values: y = (s—s")T* 1.0
Xamr(kll)am/r’ (kH)
5AE 2rdA6
T (24) XJO S lame (@)

_ xcog[o—v—(s—1)]AG}, (29
In a 100 A GaAs/A} Ga,As QW, AE is about 150 meV,
while experimental spectra yield a broadening of the or-  where
der of 4 meV. Hence, according to E@®4) at least 190k
values should be used for an accurate comparison between , > 1 N
theory and experiment. Hence within the numerical approach !nrne (9= ﬁwdtmf dzef5 (ze) frr (ze) cOStZe)
outlined above, the minimum dimension of the discretized
nxn Hamiltonian hasn=2X2X4X190=3040, which is .
obviously very large. For that reason, coupling between ex- X j d2,9,,(2)9; ,(zn)cOS 1Zp)
citons attached to different conduction subbands will be ne- L
glected henceforth. For the physical system considered here, * " .
this is a justifiable assumption, since the confined electron + f_xdtqzﬂz J dZfn (Ze) T (Ze)sin(tze)
states are usually far apart due to their light effective mass.
In a 100 A GaAs/A}Gay-As QW, the energy separation
between CE1 and CE2 is 91 meV and thus almost twice as
large as the energy separation between HH1 and HH3. Con- ] ) _ _ ]
sequently, the higher excited exciton states attached to CEPhe crucial point about the integrals in EQ9) is that they
are well separated from the corresponding states linked t6a&n be solved analytically due to the simple form of the
CEL1. This approximation is not valid in general, however. InZone-center states. Deriving the algebraic expression of
the presence of an electric field, for example, CE1 and CE2,,,,.(q) is straightforward but nevertheless extremely
are typically strongly coupled. lengthy. It should be noted that under the assumption con-

X f dz.,9,,(2n)9} ,(Zn)siN(tZp). (29)
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sidered here, i.e., no coupling between excitons attached to
different conduction subbands, the second term of(29).is
always zero.

The computation time, however, can be lowered even fur-

[100]- Polarization

ther by taking the following property dfl’jm,r,(q) into ac- 5L @

count. Since ' ,,(q) is derived from zone-center states at @

zero stress, it is independent of the applied stress. The effect g 4

of stress and in fact band mixing is exclusively contained g 5| 15 kbar -

within the expansion coefficiens, (k) [cf. Eq.(26)]. Con- <

sequentlyl . .(q) needs to be determined only once for _§ 2 10kvar

each QW and can be used henceforth for any elevated stress g' 4 b skoar

value. Hence it is possible to obtain a complete excitonic 4

absorption spectrum at finite uniaxial stress, which includes < o[ 0kbar HH1-CE1  HH3-CEt I
band mixing and stress-induced anisotropies, in fewer than 1500 1550 1600 1650 1700
12 h on an ordinary PC. The calculations here were carried Energy (meV)

out usingMATLAB for Windows on a 200 MHz Pentium PC
with 128 MB of memory’’

[010]- Polarization

IIl. EXPERIMENT (b)

The sample was grown on @00-oriented GaAs sub-
strate, and comprised GaAs and &k, _,As buffer layers, a
ten-period multiple quantum well, with 100 A GaAs wells
and 500 A A} ,Ga, gAs barriers, 1000 A of A Ga, ¢As, and
finally 500 A of GaAs. Uniaxial stress was applied with the
cell previously used in Ref. 73. Polarized and unpolarized
PR spectra were measured by phase-sensitive detection at
temperatures between 20 and 80 K, using W/cm 2 from
a 670-nm diode laser to modulate the natural surface electric
field in the samplgat ~420 Hz. Two 0.3-m focal length
monochromators were driven in tandem. The fildtl() dis-

persed the light from a 250 W tungsten lamp, which was F|G. 3. Polarization dependence of the calculated excitonic ab-

then focused at an angle of incidence of 45° onto the sampleorption spectrum of a 100 A GaAsiAGa, -As QW for different
so that it was coincident with the-2 mn? spot from the  values of in-plane uniaxial stress along f1€0] direction.

laser beam. The reflected light was collected at the entrance
slit of the second monochromatoM@). A silicon detector in Ref. 13, but more detailed measurements and their analy-
was used at its exit slit. The slit widths M2 were half sis may be found elsewhéPe” and will be reported in a
those ofM 1, fixing the spectral resolution at3 meV. Pho-  future publication.
toluminescence was also measured at 20 K, using 670-nm
diode laser excitation. IV. RESULTS AND DISCUSSIONS

A first derivative Lorenzian line shapéDLL) formula ) ) )
was used to fit the experimental PR line shapes based on Eq. Before we embark on a detailed discussion of the theoret-
(13) of Ref. 74 with a dielectric functiom=A+1/(E,,—E  ical and experimental results, we would like to give a general
+iT'), whereE is the photon energyA is a constant] is  Overview of Fig. 3, which displays the evolution of th.e ab-
related to the oscillator strengt,, is the exciton optical SOrption spectrum of a 100 A,GaAS@A&G‘?OJAS QW with
transition energy, andl is a broadening parameter. Assum- "€SPect to stress. The absorption spectrum is shown for two
ing that oscillator strength modulation is negligible com- different in-plane polarization directions:(a) parallel to the
pared with energy and linewidth modulatiéhthe PR line stress direction an¢b) perpendicular to the stress direction.

shape for each exciton may be fitted to the formula Comparing these two polarization directions, it is evident at
first sight that they yield very different results. While for

[100] polarization the LH1-CE1(4) exciton practically dis-
(30 appears, it is strongly enhanced {@10] polarization. Con-

versely, the optically active HH excitons, i.e., HH1-CE§) 1
with fitting parameters E., and I', and where ¢ and HH2-CE2(%), are enhanced fdrl00] polarization and
=arctafil'/(Eg,— E)]. In spite of the additional complexity attenuated fof010] polarization. Another feature that is also
introduced into the line shape of the upper of the Fano douimmediately apparent is the appearance of two anticrossings
blets considered in this work, the above fitting formula in the LH1-CE1(%) transition[cf. Fig. Ib)]. The first anti-
appeared to work very well, and was deemed adequate farossing at about 4 kbar occurs when LH1-CEJ)(Jp-
estimating energies, linewidths, and relative intensitiesproaches the continuum of HH2-CE1 and is due to the
which are the only data presented here in order to compar®rmation of Fano doublets, which we mentioned in the In-
with calculation. Some of the measured spectra are presentéduction. The second anticrossing is a result of the stress-

=
I 10 kbar ==}
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1560 - W J FIG. 5. Binding energies of the first fogrexcitons under com-

pressive in-plane uniaxial stress along f@0] direction in a 100
1540 | HH1-CE1(15) . A GaAs/Al, Ga, As QW determined from full band-mixing calcu-

6 . é . :t - é . ;3 lations including the stress-induced anisotropy.

[100] Stress (kbar)

simply taking the difference between the peak positions and

FIG. 4. Comparison between the experimental energy shifts ofthe band edges of the corresponding single-particle transi-
the lowest excitations(individual data points in a 100 A  tions. The results are presented in Fig. 5. It is found that the
GaAs/Ap ,GaygAs QW under in-plane uniaxial stress along the pinding energies of HH1-CE1€) and LH1-CE1(k) at
[.100] direction, and the corresponding theoretical resdtslid  zerp stress are 9.0 and 11.2 meV, respectively. This agrees
lines). well with numerical results that various groups obtained

from variational calculations for similar systerh€,whereas

induced mixing between LH1 and HH3, which we discussedmore recently published values tend to be slightly
previously in Ref. 78 in the context of a simple single- larger®!1454€|n the latter cases additional effects, which are
particle zone-center model. The doublet structure ofneglected here, were included as well, such as nonparabolic-
HH2-CE2(1s) at small stress values turns out to be an antidity of the conduction band and difference in dielectric con-
crossing as well, which can be explained by the same mechatants between well and barrier materials. As far as the stress
nism as the first anticrossing of LH1-CEX)1 The main dependence of the binding energies is concerned,
difference is that the anticrossing of HH2-CE2]lalready = HH1-CE1(1s) is essentially independent of stress, while the
occurs at zero stress. binding energies of all higher excited states exhibit a marked
stress dependence. These changes in binding energies can be
most conveniently understood in terms of stress-induced
changes of the effective masses of the valence subbands.

We now present a more quantitative analysis of the vari-Thus the decrease of the HH3-CE$]binding energy with
ous stress-induced features of the excitonic spectra. First wiacreasing stress can be linked to a decrease of the effective
consider the energy shifts of the excitonic peaks found in thenass. It was mentioned earlier that the HH3 subband is sig-
calculated absorption spectra of Fig. 3. These are shown inificantly modified by LH2 due to stronlg-p coupling, be-
Fig. 4 as solid lines together with the experimental transitiorcause of which it assumes an electronlike band dispersion
energies determined from our measured PR spectra. As cdaof. Fig. 1). This yields a large reduced mass and accord-
be clearly seen, the overall agreement between theory aridgly a large binding energy for the exciton. As LH2 is
experiment is excellent, which is quite remarkable given thashifted away from HH3, however, this effect weakens and
the theoretical calculations are free of any adjustable paranconsequently the binding energy gets smaller. An analogous
eter. The only slight discrepancy occurs for HH2-CEQ(at  argument, which is similarly based on electronlike subband
high stress and can be attributed to the omission of the spirdispersions, can be invoked to explain the characteristic
orbit coupling in our calculations. The experimental transi-stress dependence of the LH1-CE4&)land HH2-CE2(%)
tion energies of HH1-CE1(¥) could be determined reliably binding energies. In both cases the binding energy has a
only up to about 4 kbar, since at higher stress values themaximum near the respective anticrossing. For
signal was clouded by the bulk GaAs HH-CE transition of LH1-CE1(1s) it occurs just before the anticrossing, while
the cap layer, which is shifted strongly by uniaxial stress tofor HH2-CE2(1s) it occurs just afterwards, which follows
higher energies. Most importantly, however, the data reprodirectly from the opposite dispersions that LH1 and HH1
duce the anticrossing of LH1-CE1$)l at about 4 kbar very have near the zone center due to their mutual repul&bn
precisely including the minimum separation energy and thu§ig. 1). This suggests that the enhanced binding energies
provide conclusive evidence for the existence of Fano dounear the anticrossings indeed also originate from the strong
blets. electronlike curvature of the corresponding hole subbands.

Further insights into the stress effects on excitonic spectrédn effective-mass argument would also explain why the
can be gained from the stress dependence of the excitdsinding energy of LH1-CE1(4) is considerably smaller im-
binding energies. Here we determine the binding energies byediately after the anticrossing. Since LH1 and HH2 swap

A. Energy shifts and binding energies
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their respective features as LH1 moves through Hef2Fig. i ' ’ '
1), LH1 has a parabolic dispersion and hence a much smaller 20| 120
effective mass afterwards. Even though these arguments ar
quite plausible and in that sense satisfactory, it should be,:1 I 1% s
emphasized at this point that they are not rigorous. Their§ ok {12 &
main shortcoming is that they cannot actually account for the 3 -
occurrence of the two Fano-related anticrossings. The reasorg g  ~— lg ©
is that in the effective-mass picture the Coulomb potential is & S
tacitly assumed to be constant, i.e., it is assumed not to be 4} 44
affected by the valence-band mixing. According to the dis-
cussion of the preceding section, this is clearly not the case o = : . . 0

0 50 100 150 200 250

in general, especially when LH1 and HH2 are in close prox-
imity. Nevertheless, the effective-mass picture serves as a
useful tool to interpret the complicated stress dependence of g\ 6. width dependence of the energyuaresand the cor-
the exciton binding energies. responding stress valuegircles of the anticrossing between
LH1-CE1(1s) and HH2-CE1p). The filled/open squares represent
) ) the results of the full-band-mixing calculations including/excluding
B. Anticrossings the stress-induced anisotropy while the solid lines represent simpli-
In this subsection we will discuss in more detail the two fied calculations using the Fano-Anderson model. The open upper
types of anticrossings that can be observed in the absorptidfangles depict experimental results obtained from photoreflectance

line of LH1-CE1(1s) at elevated stress values. As was men-SPectra of a 100 A GaAs/fGa sAs QW while the open lower
tioned earlier, the first anticrossing occurs Whentnangles represent experimental results obtained from photolumi-

LH1-CE1(1s) approaches the onset of the HH2-CEL( nescence excitation spectra of a 220 A GaAgiSia, ;As QW (cf.
continuum and can be best described within the frameworke" 9

of the Fano-Anderson model. In Ref. 12 we showed that mgease for small. This suggests that the functional depen-
t ]

Quantum Well Width (A)

this particular case the Fano-Anderson model behaves like . )
two-state system, where one of the two states is a real sta ence ofX(L) must_be different fromAE(L), .Wh'Ch was
ound to be proportional to 1#pL), wherea, is the Bohr

i.e., LH1-CE1(X), while the other is an “image” state, . . 0 :

comprising the collective effect of the HH2-CE)( con- radius of the pseudo—2[_) exciton. For a qualitative estimate of

tinuum. Although we already gave an exhaustive account iﬁhe : dv_ependence ok, it is reasonable to assume thais
0proportlonal to the zero stress energy difference between

Ref. 12 of the conditions for the formations of these Fan - ) ; :
L . 1 H1-CE1(1s) and its image state. Since the image state lies
| f the ch f h k . m:
doublets, and of the characteristic features that distinguis t the onset of the HH2-CE@J continuum. it is easy o

them from conventional anticrossings, we discarded the eff-ih that
fects of the stress-induced anisotropy for simplicity’s sakeSNoW tha
Hence the main focus here will be to investigate these Fano

doublets under realistic conditions including the additional

anisotropy. where E{'"? and E;™ refer to the confinement energies of
.Qne of the find.ings of our analysis in Ref. 12 was tha}t theqH2 and LH1, respectively, Wheredst”l is the binding
minimum separation energye of the Fano doublets during energy of LH1-CE1(%). While the width dependence of
the anticrossing depends inversely on the widtf the QW,  confinement energies in QW's is easily determined and ap-
which in turn could be directly linked to the underlying proximately proportional to 17, it is much less straightfor-

valence-band mixing. In Fig. 6 we therefore compare thQNard to find the right functional form foEHL . It turns out,

. . . b
theoretical width dgpendence ‘.ME for the_ tW.O Cases, 1.€., nowever, that it is reasonable to assume an inverse relation
when the stress-induced anisotropy is includé&dled

d when it i | A b between the binding energy and the QW width, at least for
sqgare}san when It 1S neg ectebpen squares S Can b€ g range ofL values that is of interest here. Thus Eg1)
quite clearly seen, the minimum separation energies for the

. : . i n be rewritten as follows:

two cases are essentially identical over a wide range of Q
widths. For very large QW widths, slight deviations occur, Xocal L2+ BIL. (32
which are more likely connected to uncertainties in extract-
ing AE from calculated absorption spectra than to any anEquation(32) fits the values obtained from the full-band-
isotropy effects. This means that the influence of the stresgnixing model very well, as can be seen in Fig. 6, which
induced anisotropy on the main features of the Fano doublet®trospectively justifies the assumption made alﬁbﬁl.
is negligible. This explains now the qualitative difference betwedh(L)

Besides the width dependence/iE, it is also interesting and X(L). While AE(L) always depends inversely dn
to look briefly at the width dependence of the anticrossingX(L) depends or. as 1L for largeL and as 1.2 for small
stressX, i.e., the stress at which the separation energy of thé.
Fano doublet reaches its minimum. Results of the full-band- At this point it should also be mentioned that the good
mixing model forX versusL are presented as filled circles in agreement in Fig. 6 could only be achieved because of the
Fig. 6. Comparing\ E(L) with X(L) reveals a striking quali- second term in Eq(32). Assuming simply a 1/ depen-
tative difference. UnlikeAE(L), X(L) changes much more dence forX did not give good fits. The presence of the sec-
abruptly from a gradual increase for largeto a steep in- ond term in Eq(32) is a direct consequence of the peculiar

XxEFH2— gt + EFHT, (31)
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' i " " point it is interesting to note that in agreement with the pre-
»r 1% vious argument the anticrossing stregd.) depends on the
e 120 QW width L approximately as 1. Here both anticrossing
< = states have proper binding energies, which are similar in
“E’ 151 115 8 size. Therefore, the zero stress energy separation of the two
g - excitonic states is roughly equal to the zero stress separation
o 10 R — 110 @ of the respective zone-center states and thisES™
::: sk 1s & —E5™ec1/L2. For the width dependence of the anticrossing
energyAE(L), on the other hand, a similarly simple ap-
of 10 proximation cannot be derived. The reason is th&i(L)
. o T e 2% depends not only o}~ E4H* but also on the overlap

integral r yy3 41 between HH3 and LH1, whose width de-
pendence cannot be determined analytically. The additional

FIG. 7. Width dependence in a GaAsjABa,As QW of the ~ contribution of the overlap integrals 1, to AE(L) ex-
anticrossing energy separatiésquares between LH1 and HH3. Plains, however, the qualitative difference between the width
The circles present the stress value at which the anticrossing occuidependence oK(L) and AE(L), which incidentally is just
The solid lines represent the corresponding single-particle results &e opposite of what was found for Fano doublets in Fig. 6.
the zone center.

Quantum Well Width (A)

. . L o C. Oscillator strengths
properties of the image state, which is positioned at the band ' g

edge, not below it, and in that sense has no binding energy. If Undoubtedly the most noticeable effect of the stress-
it did, it would approximately canchtHl in Eq. (31) and induced anisotropy on the optical absorption spectra in Fig. 3
thus remove the L/ dependence in Eq32). Therefore, it is i; the .disti.nct dgp(_andence of the absorp;ion on the pqlar_iza—
possible to say that the characteristic width dependenge of tion direction within the QW plane. To investigate this in
can be considered as a fingerprint of the unusual nature gpore detail, we present in Figs(z8 and 8b) the stress de-
the image state, just like the characteristic width dependend@éndence of the oscillator strength of HH1-CEd)land

of AE turned out to be a fingerprint of the underlying LH1-CE1(1s), respectively, for botti100] and[010] polar-
valence-band mixing. ization. In each case three different models are compared

In Fig. 6 we also show experimental results comprisingWith each other._ The solid lines are the_ results _obtained from
both anticrossing energy and anticrossing stress. The data f8te full-band-mixing model(FBM), which we introduced
the 220 A GaAs/A| Ga, As QW (downward trianglewere above, _\/vhereqs the dashed lines represent simple zone-center
determined by Broido and YaRdrom photoluminescence 'esults in the single-particle mod&@PM). Finally, the dotted
excitation data measured by Kotelesal,® while the data lines depict the results of a strongly simplified exciton
for the 100 A GaAs/A} ,Ga, /As QW (upward trianglgwere model, which we hen_ceforth will refer _to as the “image state
obtained by us from photoreflectance measurements. In bofRodel”(ISM). It only includes three discrete states, namely
cases the theoretical predictions are seen to agree well witH1-CE1(1s), LH1-CE1(ls), and the image state of
the experimental findings, confirming the high accuracy of-H1-CE1(1s), which replaces the whole HH2-CHi) con-
our calculations. tinuum to account for the effect of the p coupling between

The second anticrossing occurs when LH1-CE)(ap-  the HH2-CE1p) continuum and LH1-CE1(§). The image
proaches HH3-CE1(s) and hence, unlike in the Fano dou- State is located at the onset of the HH2-Cgjl€ontinuum
blet casetwo real states interfere with each other. In Ref. 78 @nd its wave function is optically inactive except for the
we showed that this anticrossing can already be accountedfimixture from the LH1-CE1() wave function. _
for within a simple single-particle picture. It can be ascribed For the two simplified models, the oscillator strength is
to the finite size of the QW, since only in finite QW's can the Straightforward to determine. For the FBM, on the other
HH3 and LH1 enve'ope functions have a finite Over|ap and’land, it is more d|ff|CU|t, since h|gher excited exciton states
hence be coupled by in-plane stress. When comparing th@'€ not properly bound stationary states, but have a finite
excitonic results for both anticrossing energy and anticrossifetime due to Fano-Anderson-type interference. Thus they
ing stress with the corresponding single-particle zone-cented’® broadened resonances and as such cannot be treated as
results in Fig. 7, it is found that they are practically identical. Single excitations anymore. For that reason we simply set the
This is not Surprising, since the stress Ham”torﬁa)h does oscillator Strer-]gth equal 1‘_0 the maximum tl’ansition intensity
not depend ork;, so that the coupling matrix element be- Of the absorption peak minus the corresponding background.
tween the two § states can be considerably simplified to  Even though this definition is not rigorous, it nevertheless

provides at least a crude measure for the oscillator strength,

(W e HWES N = (g Y Grna)( 625 615), which for our present purposes is adequate. .

(33 Comparing the three models now for the two different
exciton transitions yields the following results. For the oscil-
where the first term on the right-hand side of E3) is just  |ator strength of HH1-CE1(4) shown in Fig. 8a), all three
the respective single-particle coupling matrix element andjifferent models are found to be in excellent agreement over
(p75l#15~1. Hence both excitonic and single-particle the entire stress range and for both polarizations. For
states are coupled by the same matrix element and conseH1-CE1(1s) the situation is a bit more complicated. While
guently must reveal the same anticrossing behavior. At thisll three models agree very well for th&00] polarization
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[100]- ")olariza'ﬁon for the various hole states can be easily explained, since it is

directly linked to the stress-induced mixing of the Bloch
functions. As we discussed in Ref. 78, in-plane uniaxial
stress rotates the natural quantization direction in a QW by
90° from the confinement direction at low stress values to the
stress direction at large stress values. At the same time, a
T HH-type Bloch function turns into a LH-type Bloch function
and vice versa. If the new quantization direction at large
stress values is chosen as the nevaxis, the oscillator
strengths for the two in-plane directions of the QW, i.e.,
[100] and [010Q], effectively become identical to the corre-
sponding ones in bulk for theandy direction, respectively.
With this mechanism in mind, it becomes straightforward
to interpret the results shown in Fig. 8. For small and large
stress values the oscillator strengths equal to the correspond-
ing bulk oscillator strengths, which are found to be directly
related to the Clebsch-Gordan coefficients of the Bloch func-
tion. Thus the oscillator strength for HH1-CEL1 in FigaBat
zero stress ig for both directions, which corresponds to the
bulk HH oscillator strength along the andy direction. At
large stress values, on the other hand, i for [100] and;
for [010] directions, which corresponds to the bulk LH os-
cillator strength along the andy direction, respectively. For
g the LH1-CEL1 transition shown in Fig(l®, the interpretation
is analogous except that now a LH-type Bloch function turns
& : : : ] into a HH-type Bloch function.
. ., . . ., . . . [100]-polarization Finally, Figs. 9a) and 9b) present our experimental re-

Transition Intensities (Arb. Units)
w

16

Transition Intensities (Arb. Units)

2 0 2 4 & 8 10 12 14 16 sults for the transition intensities of HH1-CEX)1 and
[1001] Stress (kbar) LH1-CE1(1s), respectively. In both figures, squares refer to

o o N 100] polarization, i.e., parallel to the stress direction, and
FIG. 8. Polarization dependence of the transmon intensities Okircles refer to[010] polarization, i.e., perpendicular to the
(@ HH1-CEl(1s) and (b) LHI-CEL(Is) in a 100 A gyess direction. The data in Figia®were obtained from PL
e e o measurements, whe he data in FigbPvere obianed
mixing model -The dashed lines represent the correspondin 'T-rom PR me_asurements. Overall t.he transition 'mensltles are
. g osci
lator strengths of the single-particle model, while the dotted Iinesse(.an to be in gqod ggreement with the correspom_jlng.theo-
show the results of the image-state model. retical results(solid lines. Contrary to the. PL data in Fig.
9(a), however, the PR data in Fig(l9 exhibit strong fluc-
and hence uniformly predict the disappearance of thduations and in parts noticeable deviations from the theoret-
LH1-CE1(1s) oscillator strength for this polarization direc- ical lines. The reason for this lies mainly in the difficulty of
tion, each model yields a slightly different result for the extracting precise intensity values from the complicated PR
[010Q] polarization. The latter directly reflects the different line shapes by merely fitting them with simple phenomeno-
levels of sophistication that the three models incorporatelogical fitting formulas that depend only on a few param-
The SPM only reproduces the general upward trend and theters. Nevertheless, all essential aspects of the previous the-
dip at about 10 kbar caused by the anticrossing withoretical discussion are confirmed by the experimental results.
HH3-CE1(1s), while the ISM also captures the second dipMost importantly, the nontrivial variation of the
between 4 and 5 kbar due to the anticrossing betweehH1-CE1(1s) transition intensity fof010]-polarization near
LH1-CE1(1s) and its image state. Neither of these simpli- the anticrossing at about 4 kbar is clearly visible in Fig)9
fied models, however, can account for the much smallelt is interesting to note that, in accordance with theory, the
overall oscillator strength obtained from the FBM. This is to point of equal transition intensitigshe “optical” anticross-
be expected, since the reduced oscillator strength is a direttg poin occurs at 5 kbar, i.e., at a higher stress value than
consequence of Fano-Anderson-related broadening, which the point of minimum anticrossing energghe “real” anti-
not included in the simple models. crossing point This is in contrast to an ordinary two-state
It can therefore be said that the polarization dependencsystem, where these two points coincide. This feature can be
of excitonic states in QW’s at elevated stress can be advaced back to the strong broadening of the second peak in a
equately described by a simple single-particle model, whichano doublet compared with the first peak. The difference in
only comprises the corresponding zone-center states. All esroadening is clearly resolved in the experimental data,
tra features in the stress dependence of the oscillatovhere the broadening of LH1-CEI$)L before and after the
strengths, which cannot be reproduced by the SPMpate anticrossing is 4 and 5 meV, respectively. Detecting this
caused by the stress-induced symmetry reduction but by exsubtle feature in the experimental spectra, therefore, provides
citonic mixing effects. In the simple single-particle zone- further evidence for the existence of Fano doublets in the
center model, however, the change of the oscillator strengtpresent system.
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S L The coupling to angular momenta outside the subspace
(a) ] spanned by those four total angular momenta can be ne-
glected. Consequently, the Hilbert space of the anisotropic
case is only twice the size of the isotropic case, which nu-
merically is still tractable.

When investigating the effects of valence-band mixing on
the excitonic spectrum, it is important to distinguish care-
fully between mixing that is intrinsic to stress and mixing
that is intrinsic tok - p coupling. Stress-induced mixing has a
] straightforward mechanism that can be understood within the
framework of a simple single-particle zone-center model.
O T T T s r s 6 7 s s 10 The main aspect about in-plane uniaxial stress is that it ro-

[100] Stress (kbar) tates the natural quantization direction from the confinement
direction to the stress direction, which leads to polarization-
R — dependent absorption spectra and to the anticrossings be-
tween HH and LH states with the same parity, such as HH3
and LH1. Thus, on its own stress has no significant direct
. influence on excitonic quantities. Mixing effects caused by
k-p coupling, on the other hand, are best explained within
the excitonic picture. In this context, stress can be used to
tune the relative strength of the variokisp coupling terms.
This decisively modifies the binding energies of the higher
- excited states due to the stress-induced changes of the
valence-band effective masses. Furthermore, it leads to a
strong anticrossing feature between the discrete
10 1 2 3 4 5 6 7 8 9 10 1 LH1-CE1(1s) and thep continuum of HH2-CE1, which can
[100] Stress (kbar) be best explained within the framework of the Fano-
Anderson model. The characteristic width dependence of the

FIG. 9. Polarization dependence of the intensity @  stress value at which the double peak structure of the anti-
HH1-CE1(l) and (b) LH1-CE1(ls) in a 100 A  crossing reaches its minimum separation energy directly re-
GaAs/Ab GaygAs QW under in-plane uniaxial stress along the flects the peculiar properties of Fano doublets.

[100] direction. The individual data points {i@) and(b) are experi- The validity of our theoretical results was confirmed by a
mental results obtained from photoluminescence and photoreflegietailed analysis of experimental data, which we obtained
tance s.pectra, respectively, and the solid Iings a}re the .corr.esponditplgbm photoreflectance and photoluminescence measurements
theoretical results._ Sq_uares refer[4®0] polarization while circles on a 100 A GaAs/AJ ,Ga, sAs QW. Excellent agreement be-
refer t0[010] polarization. tween theory and experiment was achieved for both the
stress dependence of the exciton energies and the polariza-
V. CONCLUSION tion dependence of the transition intensities. This powerfully

We have studied, both theoretically and experimentally,demO”_Strates the high accuracy of the theoretical results and
the effects of large in-plane uniaxial stress on the opticaln@mbiguously confirms the existence of Fano doublets.
properties of GaAs/AlGa _,As QW'’s. In particular, we
have investigated in great detail the mixing between exci- ACKNOWLEDGMENTS
tonic states caused by valence-band mixing and have ana-
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model was that the stress-induced anisotropy of the valence-
subband structure can be described accurately by Fourier ex-
panding the valence states only up to the first nonisotropic
order. In the excitonic picture this means that each of the In this appendix we present our theoretical method for
four total angular momenta that give finite contributions toobtaining numerical solutions of the exciton equafioh Eq.
the excitonic oscillator strength couples strongly onlyte  (17)]. The solution technigue is similar to the approach in
other total angular momentum under in-plane uniaxial stresRef. 10 and is based on the Gaussian quadrature method. The
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essence of this method is to approximate the integral by a Finally, we deal with the singularity of the Coulomb po-

finite sum of the following form: tential. It can be readily seen from the expression of (Ej)
) N that the Coulomb matrix elemewﬁin,m,(k,k’) scales like
J' f(x)dx~ >, wif(x;), (A1) 1/ for small values ofy, so that the validity of the quadra-
a = ture method becomes questionablekatk;. Fortunately

wherex; are the roots of appropriately chosen orthogonalth's difficulty can be circumvented, since the singularity of

olvnomials of deareeN and w: are the correspondin the Coulomb potential is integrable. Numerically this can be
polynol 9 9 J . >SP 9 achieved by the so-called “modified quadrature method.” In
weighting factorg? In order to turn the improper integral in e .
. X . . the modified quadrature method the Coulomb matrix element
Eq. (17) into a proper integral, we use the following coordi-

nate transformation: Vif;n,m,(k,k’) in Eqg. (17) is replaced near the singularity by

a simplified expressiod S, (k k'), which has the same

1 /nmn'm
k=5 {=2ko cotlmx) +kyx type of singularity a8/;> . (k,k’) but which can be inte-
grated exactly across the singularity. Following Chao and
+/[2ko cot{ mx) + Ky ]2+ 4(K) T}, (A2)  chuand® we choose the following form foAif;n,m,(k,k’):
where A ke e?  2k?
kr ks (KK = = KT K2
ko:—ﬂ_, klzx—, (A3) A
T 27 61
tar( XT_) X J —— —cog uAf
2 2v|:;,¢2 o 2m Sul6)
andx runs from 0 to 1. Her& andxy are adjustable param-
eters that are used to optimize the accuracy of the numerical X 5nn,J dzhglmp(kaZh)9;<57S’)*(k,Zh)-
results. What makes E@A2) a particularly suitable coordi- .
nate transformation is that it increases linearly upxig (A10)

wherek assumes the valler, and only then starts diverging
to infinity. This means that EqA2) permits control of the
turning point between smak values near the origin and
large k values. Hence with EqA2) it is possible to set the
percentage of the total number bfvalues that are smaller
than(k) s exactly to the appropriate level, whelie), refers

Hereu=o0—v—(s—1), while 2k?/(k®+k’?) is a weighting
function that is added to improve numerical convergence.
Furthermore, the integral over the conduction-subband enve-
lope functions disappears, because conduction-band mixing
is neglected in this work. Consequently all conduction states
. 7S gre orthonormal at eadkvalue. In the derivation by Chao
to the momentum expectation value of the excitonic groun ) )
and Chuang, the integral over the hole envelope functions

state. was also set equal t6,,,y . This, however, is not correct in

Before we proceed to present the discretized form of the eneral. es ec?all in tr?l,(:‘; casé of stron ' valence-band mix-
exciton equatior(17), a few definitions are necessary. First,f‘:J » €SP Y . or strong :
the modified weighting factor is defined as ing, and hence this approximation is not adopted here. Fi-

nally, it is now possible with the help of EqA10) to ap-

_:k(xi) (ﬂ() w (Ad) proximateVﬁfT’m,m,(ki ki) as follows:
I [l

2m \dx i U2ki+ki4 1) k'dk’ ,
VSS

Vi k0~ | (ki ')

where @k/dx); represents the Jacobian of the coordinate U2k _y+k) 2w o nmm
transformation(A2) at the pointx; . Furthermore, it is con- L
venient to introduce _ [~ K'dk ASY K K’
- o 2m nmn’m’( i.K")
nmi= VWi (k). (A5) .
e ey — > WASS (K k). A1l
Tond = Tou (k). (16) 2 Wilkim (ki k) (ALY

~ed , The crucial point about this approximation is that the sum in
SS — Ras\/SS INVE . h

Vnmin’m’j_ WiV mmme (Ki o Kj) VW (A7) the second term only contains summands for which the

quadrature method is valid, while the integral in the first term

After these preliminaries it is straightforward to show that . .
P d can be carried out exactly and has the following result:

the discretized from of Eq.17) can be written as follows:
- »k'dk . e?
. ss/ ~Xs'  _ = ~Xs 2—Arsnsnn/m/(ki K')=—

2 2 El Anmin/m'j¢n’m’j_Ex¢nmi7 (A8) 0 w

n.m s'=¢-1/217

8meey 'S 1542

X C 0 GIL 1570y,

whereAiim,m,j is a Hermitian matrix of the following form: mm' v
(A12)
ss - — &8s’
Anmin'm’j_Tﬁm? Snn Smn 5ii +Vnmin’m’j : (A9) where
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|—(s—s")*
m'v

GI[I—(s—s’)]

mm' v

(ki zp),
(A13)

(ki):j d 240, (ki 1Z0)g

and

X cog nA6)

C 4f2Wdewd

= X 2 .

g o 2m Jo 14X 2oy cosAf+1
(A14)

The double integral in EA14) is a standard integral that is
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be solved numerically to any degree of accuracy. It is easy to
convince oneself that within the subspace spanned by the

four total angular momenta=o—3, 0—3, o+3, ando

+32, six differentC ,’s are needed, i.e.,

Co=5.2442, C,=0.91863, C,=0.486609,
(A15)
C,=1.6037, C;=0.63777, C5=0.39284.

Under the axial approximation, on the other hand, only the

well defined over the entire integration range and hence cafirst four values are needed.
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