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Band structure of coupled InAs/GaSb quantum wells
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We calculate here the energy spectrum of InAs/GaSb heterostructure taking into account a complicated,
anisotropic, and nonparabolic structure of the valence band of GaSb. In InAs/GaSb heterostructures the valence
band of the GaSb layer overlaps with the conduction band of the InAs layer. The electrons in the InAs layer are
coupled to the holes in the GaSb layer and a hybridization gap is formed. The coupling is considered here as
a small perturbation for the problem of two decoupled infinite quantum wells, one of holes and one of
electrons. The band structure of the coupled system shows features that result from anisotropy, dependence of
the coupling on the in-plane vector, and lifting of the double degeneracy of the energy bands of electrons and
holes due to the coupling. The splitting of the energy bands is very important at the crossing point. Interesting
results of these effects are the possibility of a new kind of a gapless state and nontrivial constant energy
contours[S0163-182809)02027-5

[. INTRODUCTION ing in which only two lines are expected, one for electrons
and one for holes. For an understanding of these results we
The unique features of InAs/GaSb heterostructures inhave to perform an accurate calculation of the band structure
crease the interest in investigating these systems. The latticg# the system. This is the purpose of the present paper.
constants of the two materials are very close, and therefore The problem is not trivial because even the bulk valence
matching of thin layers of these materials is possible. Théband in GaSb has a complicated structure—there are two
experimental results for these heterostructures reveal magrghly anisotropic sub-bands.Since we are dealing with
netic and electronic features that deviate substantially fronthin layers of InAs/GaSh we need to consider the size quan-
well known features of other kinds of quantum wells andtization mixing heavy and light hole sub-bands and resulting
make these systems both very promising for device applicain a highly nonparabolic spectrufi-?’ The incorporation of
tion and intriguing from the fundamental point of view. For the ground electron sub-band of InAs makes the problem
example, INnAs/GaSh structure is the most perspective candeven more complicated. In previous calculatiénd® these
date for the observation of Bose-Einstein condensation ofeatures were not explicitly investigated.
excitons'~1° In this paper we consider the exact structure of the holes
In some range of the layers widths, the bottom of the firstspectrum, and use the perturbation theory to derive the spec-
conduction sub-band in the InAs layer lays below the toptrum of a system of thin double layers of InAs and GaSh
edge of the first valence sub-band in the GaSb layer. Thisandwiched between two high potential barriers. The unper-
overlap between the valence band in GaSb and the condutirbed problem is the problem of two decoupled infinite
tion band in InAs means that from either side of the interfaceguantum wells, one of electrons and one of holes. The per-
there are allowed states that differ from each other in theurbation is the coupling between the wells induced by the
total angular momentum and in the sign of the effectivetunneling between the layers.
mass. Electron wave functions in InAs layer are superposi- For solving the unperturbed decoupled problem we use
tions of s states, and their total angular momentumJis the envelope function approximation where hole states are
=1/2. Hole wave functions are superpositionpa§tates, and four-component spinors and electron states are two-
their total angular momentum &= 3/2. component spinors. For the calculation the boundary condi-
The overlap between the valence band in GaSbh and thions at the interface between the InAs layer and the GaSb
conduction band in InAs induces charge transfer from GaSkayer are required. The crucial point here is the necessity to
to InAs and the ground state of this system is spatially sepamatch states with different number of components that cor-
rated two-dimensional electrons g&8DEG) in the InAs  respond to different total electron and hole angular momenta.
layer and two-dimensional holes g&DHG) in the GaSb  We have used a variation principle to derive phenomenologi-
layer. The tunneling between the GaSb and InAs layergal boundary conditions that do not depend on any micro-
yields the formation of a gap in the energy spectrum. Thisscopical model. This method is described in our earlier
gap comes about at the crossing point of the GaSb and InAsaper®
separate spectra and it can be controlled by an external elec- One more important factor here is the self-consistent po-
tric field.*>2 This hybridization gap has been recently ob-tential induced by the charge transfer. From the results of
served experimentally in double thin layers of simpler models¥3®we see that the main effect of this poten-
InAs/GaSB~**and in superlattice¥® tial is a constant shift of the bands which decreases the over-
In cyclotron resonancéCR) experiments in this system lap. The spectrum curvature is almost unaffected. Therefore
additional absorption lines were measutéd’A large num-  in the present paper we present both the spectrum calculated
ber of observed CR peaks contradicts to intuitive understandwithout self-consistent potential corrections and with them.
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For the calculation of these corrections we use the simple The Schrdinger equations are
model that is described in our previous pafer.

The results show that when the overlap between the holes _ v Ly
and the electrons is large enough the system can reach a Hepe=Bibe, —Lem5=2<-7, (213
stage where the anisotropy effects the position of the InAs
and GaSb spectra crossing point. With the change of the L, L,
in-plane wave vectok direction the energy position of the Hopn=Ein, = 7< Z<7- (2.1b

crossing point changes. In such a case there is a hybridiza- ) o
tion gap in every direction df but the energy position of the Here ¢ is two-component electron wave functiaf, is the

gap is angular dependent. If the anisotropy is so substanti&pur-component hole wave function

that the difference between the energy position of the gap in 52
different directions AE,), is larger than the gap itseff.e., He=— V2, (2.2a
AE4>E,) then the density of states is actually gapless and 2me

the system exhibits a kind of a semimetal phase.

Another aspect of the exact calculation is a complete lift-
ing of the degeneracy in the energy spectrum. Both ground
sub-bands of holes and electrons in the decoupled unper-
turbed problem are doubly degeneraté¢tamers degen-
eracy. The coupling between the bands lifts the degeneracy
and a small splitting in the energy spectrum occurs. This .
splitting is negligible in most of the spectrum range exceptHere’;, is the Luttinger effective Hamiltonian for GaghJ
the crossing point where it is the key factor determining thds the total angular momentum vector operator corresponding
gap size. Both the gap size and the position of the crossintp the angular momentum 3/2, and=11.8, y,=4.03, v3
point depend on the well width. All these effects yield non- =5.26 are the Luttinger parameters for Gah, , Jy, and
trivial constant energy contours that change substantially, are 4<4 matrices, i.e., we treat properly both the degen-
with the energy. eracy of light and heavy holes and the warping of the valence

In the next section we develop the perturbation theory foband isoenergetic surfaced~150 meV is the energy dif-
this problem. In the third section we use symmetry considference between the bottom of the conduction band in bulk
erations and some physical assumptions to simplify the reinAs and the top of the valence band in bulk Ga®b.is the
sults and present the final results of the calculations, i.e., theffective mass of the conduction electrons in InAs. The
dependence of the coupling strength on the in-plane vectohoundary conditions at the interface between the two layers
the energy spectrum of the system in different in-planez=—L,/2 were derived in our previous work:
angles, and some constant energy contours. The notations
that we used for the general form of the solution are given in Aetpet BT = Dele, (2.39
the Appendix.

ﬁZ
Hh:A+ 2—

S 2 52
vt 572 Ve—=2y3(3V)

(2.2b

2 2 2
+2(y3—72) T L Ty
a2 oy Y a2t

Anipn+ Bipe=Dhipn, (2.3b
Il. THE PROBLEM AND EQUATIONS where the differential operatof3,, Dy, are
The structure that we investigate here consists of two thin 72 g
layers, one of InAs and one of GaSbh. The geometry of the De=— o 77 (2.439
system is the following: to the left, Me 02
2
—LC——V<Z<_—V, Dh:_ﬁ{ 71+§72_272‘]§>E
2 2 o
there is an InAs layer which is a quantum well for electrons. — y3(3 3+ I )V |- (2.4b
To the right,
L L Here we use the following notations for the in-plane vec-

-5 <z<5, tors: Jj=(3,,9,), Vi =(dldx,0/3y). In EQ. (2.3) A, is 2
X 2 matrix that represents the interface energy of electrons

there is a GaSb layer which is a quantum well for holes. Thetates, Ay, is a 4x4 matrix which represents the interface
two layers are sandwiched between high potential barriersgnergy of holes state# is a 4x2 matrix which represents
and we assume that the wave function vanishes at these bdhe tunneling between the layers. The units of the matrix
riers. We use this assumption for simplification. The methocelements arg EX L ]—energy multiplied by length. Since
can be applied also for the problem of two finite quantumthe scales of the interface region are microscopic, we can say
wells of holes and of electrons, but the calculation is muchhat, in general, the matrix elements are of the order of
more cumbersome. #212\Jmemna, where m,,m,, are the effective masses of

We use the envelope function approximation for our cal-electrons and holes, respectively, aads the lattice con-
culations. The system of equations includes Sdimger stant. It can be shown from symmetry consideration that both
equations for hole and electron envelope functions and4, and A, are diagonal in the representation whekeis
boundary conditions at the interface between the layers. diagonal. The same argument shows that the only nonvan-
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ishing matrix elements oB are B,;, Bs,. (More precisely, generacy is related to the reflection with respect to the layer
the interface has a lower symmetry than the crystal itselfplane. This symmetry is broken in the coupled system, and
Nevertheless, we considered the anisotropy that results froMye expect that this would lift the degeneracy of the ground

this lower symmetry to be small, and neglecteﬁ?)itMore sub-band. We express the coupled ground state in a combi-
details about the above estimations and symmetry argumentgtion of the degenerate ground states and the contribution

are presented in Ref. 35. from the higher levels in the decoupled problem
With a little algebra we can derive from E®.3) a more
convenient form of the boundary conditions lﬂe:VTlﬂg,)T)JrVilﬂfe?fJf; Venl//g), (2.73
W= Meetfet Menihn, (2.53
lﬂhz./\/lhelﬂe*F Mhhlﬁh. (2.5b) ‘/fh:ueverf//gc,)t)even"_ uodd‘/’l(f,)())dd'i_; uhn‘/’gr)w)- (2-7b)

tors
vi=(ellve) v =(uellie), (2.89

Uever— < lﬂﬁ,)()everl $h>! Uodd™ < ¢§10C))dJ ¢h> (2.8b

Angular brackets here denote the integration with respect to
Mpe= —(Ah—BAngT)’lBAnge, (2.60 z. The wave functions of the higher levels are orthogonal to
the ground state wave functions. In our representation the
Mpn=(An—BA; B 'D,. (2.6d  holes wave functions are four-components spinors and the
electrons wave functions are two-component spinors. The
The dispersion relation that we are going to obtain mak-explicit form of the ground state wave functions for infinite
ing use of Eq.(2.1) with boundary condition$2.5) is the  well of holes are well known but very cumbersofieso we
dependence of the energy on the in-plane wave vdct@o  do not present them here. The explicit form of the ground
hereafter we assume that wave function dependenceand  State wave function for the electron infinite well in our rep-
y is determined by the exponential facek'I. Then the dif-  resentation is
ferential operatorg/dx andd/dy in Egs.(2.1) and(2.5) are _
replaced byk, andik, respectively, and the only derivatives 0)_ e (2)) ., 0)_ 0 ikt (29
that remain in these equations are with respec to Vei= 0 e bel= @el(z) e™, (29
The right-hand sides of Eq$2.5 are of the order of
DA! [see EqQ.(2.6)]. As was mentioned above4 ! is  Where

Mee=(Ae— BT A, *B) 1Dy, (2.63

Men=—(Ae—BTA B BTA, Dy, (2.6b

proportional to the lattice constaat while the differential 5 L
operatorD operating on wave functions is proportional to the ¢e¢(2)=l~ﬂe1(2): \/: sin 1 z+—|.  (2.10
macroscopic scale l1/where L is the wells widths. This Le L 2

means that the produd@A ~! is proportional to the small NoO e will derive eauatio for the amplitude
ratio a/L. We are going to develop a perturbation theory in v Wu w u wi Fro&vthesgu:qlugtsionsrwe wil deFr)i\I/g thz
this parameter. The same parameter justifies the envelopg "'~ even ~odd-

P P J a(;FiTs,per:alon relation of the ground state of the coupled prob-

function approximation, so our method is consistent. lem. To obtain the required equations we multiply Eqs
If terms of the order ofa/L are neglected the boundary (2.13 and (2.1b) by the ground states wave function of the

conditions at the interface between the layers, Bd), are : .
reduced taj,= g, =0 atz= —L /2. This corresponds to two unperturbed problem_ and integrate .Wlth respect toztheer
éhe relevant well region. The equations are

decoupled quantum wells, one of electrons and one of hole

In our method we use this decoupled problem as an unper- 0=(O| He—E| he) (2.113

turbed system. This system is solvable, and we will derive efiire o

the spectrum of the coupled problem perturbing the solution 0=(JO|H.—E 211

of the decoupled problem. (WellHe=Elve), (2119
For electrons the dispersion relation of the unperturbed 0=(® _E 211

problem is parabolic and isotropic. For holes the dispersion (W eved M= Elyn). (2.119

[glratlon is anisotropic and nonparabolic in the in-planvec- O=<l//|(']?())d(JHh_ E| ). (2.119

Under the assumption of weak coupling we can write theCalculating the terms in these equations that do not contain
perturbed wave function as a linear combination of the underivatives with respect ta we use the definitions of the
perturbed wave functions and the coupling determines thamplitudes, Eq(2.8). Terms containing the derivatives we
coefficients in this linear combination. We assume that onlyintegrate by parts in order to reduce them to the form where
the ground sub-band of each well is occupied and we ar¢he derivatives operate only on unperturbed wave functions.
interested in the new ground sub-band of the system. Th&hen we can make use of the Scllirmger equations for the
ground sub-band of the unperturbed problem for electrons isnperturbed wave functions. In the integration by parts we
doubly degenerate due to spin. The ground sub-band of thebtain also integrated terms from the interface between InAs
unperturbed holes is also doubly degeneféfehe hole de- and GaSb wellgintegrated terms from other interfaces are
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zero due to zero boundary conditions for the wave funcwyhere E(O)(k) and E{”(k) are the unperturbed dispersion
tions). As a result we obtain the following equations:

2 gyt©
0= [EQ(K)~El+ 50— e !
z=—L,2

wT(O)
0=v [EQ(k)— E]+

e i)
&Z z=—-L,/2

¢,T(0)

h,even

0z

0=Ueved ER(K) E]+

z=—-L,/2

5 2
Yt 572—27/232 in

+(0
l//h(o)d

0=Upd EV(K)—E] S

z=—-L,/2

5 2
Yt 572—27232 Un

(2.123

(2.12b

(2.129

(2.129

0
W

(0)_
Ec'—E-C, 9z

0 EQ-E-C,

0 0
19',0( ) fwﬁ (od)d 172

S
2z

2

0) = (0
5¢( ) ﬁ‘ﬂ:,(od)d,—l/z

A5z 9z 32 9z

~(0) 4, 77x(0
(wé,% a‘ﬂﬁ,(ev)en,l/z

) I

dz
(0)

,even~1/2

21 9z

0z

32 Y

0z

relations for electrons, and holes, respectively.

For the wave functions at the interface between the layers,
z=-L,/2, in Eq.(2.12 we use their expressions from the
boundary conditions, Eq$2.5). As it was mentioned above
the right-hand side of the boundary conditions contains the
small parametea/L. Neglecting high order terms /L we
can replace wave functions there with their unperturbed val-
ues and neglect the contribution of the high levels. Then with
the help of Eq.(2.7) the expressions for wave functions at
the interface are

- Mee(VT ’r//(e(,)r)"'vi ‘r/f(o)) + Meh(ueverlr/fh even uodd‘/’h od
(2.133

’;bh:Mhe(VT'r/’Eec,)r)—’_Vl‘r/f(o))+Mhh(ueverfr//h even uodd'vb(hogd '
(2.13p
The substitution of these expressions in the interface terms in
Eqg. (2.12 leads to four equations for the four amplitudes
Uevens Uodgs Vi, andv; where all coefficients except the
energyE are known. This set of equations has a nontrivial
solution, only if its determinant equals to zero. The condition
for the vanishing of the determinant, provides us with the
desired dispersion relation of the coupled problem. The ex-
plicit general form of the determinant is

0) (0

OW( ) 3¢§1,gdd,1/2
2 Jz Jz

~(0) .0

&wé,f I a1
82 9z 9z

0
¢§1 dd

0) ,77.(0
(9‘//( ) é"/’ﬁr,()even,llz
2 9z 9z

0) ,77.(0
8lﬂ( ) a'ﬂg,even,—llz
32 9z 9z

2 0 0
) F( alpﬁ,(od)d &¢§1,even)

e

(2.19

"oz

(0 _g_
EQ-E G(’ =

0
I en
0z

0
l/f§1 dd
0z

iz '

0
( o

}

Here we use the notation for the hole envelope function com- In the next section we will use symmetry and other physi-

ponents from Ref. 27 where the expressions for these contal assumptions to reduce the general form of the determi-
ponents are written down explicitly. Other notations are prenant to a more convenient, solvable form. The final results of
sented in the Appendix. the calculation are presented for this simplified form.

The off-diagonal terms between the odd and the even hole
states appear due to the symmetry breaking with respect to
the parity operator. The unperturbed system of holes was that
of an infinite well. This system is symmetrlc with respect to
the parity?® The perturbed system is not symmetric with
respect to the reflection ixy plane and therefore the degen-
eracy with respect to the parity is lifted.

We see here that there are contributions of the perturba-
tion to dragonal terms. The initial spectrum of holes and
electrons is renormalized by the small perturbation. The ad:
ditional diagonal terms are by the order of magnitude smalle
than original unperturbed diagonal terms.

The off-diagonal terms between electrons and holes are
the most relevant to the effect that we investigate here. The
structure of these terms shows that only states with the same
angular momentum are coupled.

Ill. LEGITIMATE APPROXIMATION

The general form of the determinant, EG.14), is very
cumbersome and includes a lot of different parameters. How-
ever, symmetry considerations and other physical assump-
tions can be used to simplify the problem.

We assume that the surface energy is invariant with re-
spect to the change of the sign of the total angular momen-
fum projection to thez direction. That yields the following
relations between the interface matrix elements:

An11=Anaa=Anzz,  An2o=Anzz=An12, (3.13

Ac11= Ae 2= Ac 120 Bor=B3=0By,. (3.1
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This reduces the number of parameters in this problem to 4oefficient
complex coefficients.

The effect that we investigate here is the coupling be- 2 22
tween the electrons and the holes. We would like to concen- C= h ﬁ_ By y1+272) .
trate on this and neglect other effects that results from the 2mg 2Me An12Ae 112~ Bz
boundary conditions. As was mentioned above, additional
diagonal terms that renormalize the unperturbed spectrufBut as we will see the energy spectrum depends onlyGdn
are by the order of magnitude smaller than the original unso actually there is just one real parameter in the problem.
perturbed diagonal terms. Therefore we neglect them in the As was mentioned in the previous section, the units of the
determinant. The breaking of parity symmetry induces off-interface matrix elements are energy multiplied by length
diagonal terms between the odd and the even holes fun@nd the scales are the atomic scales. So a good estimate for
tions. We neglect this effect in order to simplify the deter-|C| will be #2a/2\m.m,, where m,=mg/(y,+27v,)
minant. ~0.05m, is the effective mass of GaSb light holes ang

Under all the assumptions that were described above the 0.026n, is the effective mass of InAs conduction elec-
number of parameters in the problem reduces to one compldaxons. The determinant now has the following form:

(3.2

~(0) (0 ~(0) (0
EO_E 0 o+ TIPS TP aa 112 o+ TGS TP ven 112
¢ iz 0z iz 0z
~7(0) ,77.(0 ~7(0) 577.(0
0 EQ_E - 1911&(9,3 f9'r’f§1,c)>dd,—1/2 o 1911&(9,3 5'ﬁﬁ,<)even,—1/z
Jz Jz Jz Jz 33
0= 3.3
~(0) 7% (0 ~(0) (0 '
P a1 Cﬁlﬂ(e,f I 112 EQ—E 0
Jz 0z 0z 0z
~(0) (0 ~(0) (0
TP 0 S aiz IV 9 Sen— 110 0 EO)_ g
C C h
0z Jz Jz 0z
|
where ~ 12/ (0 2 |~ 2
b—|CJ? e 3'/ff1,c):dd,1/4 N 54//f1,c);dd,—1/2‘
52 9z iz | iz |
a
|C|l~ ——. (3.9 Q) S PNI©) 2
2 /memlh + wh,even,l/i& + ‘ﬂh,even,—l/Z‘ ’ (3.73
iz | gz |
The values of the effective masses were given aboveaand ~ (4] .~ (0) ~ 0)
~6 A. d=[c|* el | I odd, 112 9 ¥ even- 112
This determinant is a polynomial of the fourth order in the - 0z 0z Jz
energy which has four different roots. We begin the calcula- ~ 0 ~ 0 5
tion of the spectrum with two degenerate sub-bands, one is &l//l('u,())dd,fllz 5'p§1,t)wen,lli
the electron ground state in the InAs, and the other is the N 9z iz |- 3.7

hole ground state in the GaSh. The degeneracy of the ground
states is lifted due to the coupling between the energy bands.
The effect of splitting of the energy bands due to coupling is
negligible except the region near the crossing points.

The solutions to Eq(3.3) can be written in the form

(EQ+EQ) 1
Eizar— 5 *5VED-ED)?+4X, (39

where
0,024

——————————————————

4 -12 -1.0 -08 -06 0.4 02 00 02 04 06 08 1.0 12 1.4
k vector [r/L,]

<01>

b 1
X1,2=§i§x/b2—4d. (3.6)

<11>

FIG. 1. The coupling dependence on the in-plane vector, in the
Here in-plane directiong01) and(11).
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FIG. 2. The energy spectrum for different wells widths. The zero energy point is at the bottom of the bulk InAs conduction band. We
considered the hole well of 0.4 eV depth and the electron well of 0.8 eV depth, =100 A, L,=170 A, (b) L,=100 A, L.=150 A, (c)
L,=50 A, L.=150 A, (d) L,=40 A, L.=140 A.

Here we used the notatiofny,/dz= (9,7,590%/(922 5’7//‘(901)/(3’2 section and Sec. Il and the calculation of tunneling across the

[Eq. (2.10]. It is important to note that the hole spectrum interfaqe we used the app_rqxim_ation of infin_ite wells. This
E%O) in Eq. (3.5 is the ground heavy hole sub-band while the @PProximation can be Jgstlfled in the foIIowmg. way. The
corrections in Eq(3.7) are calculated with the light holes corrections to the energies and the wave functions of elec-

component of the holes wave function. This is indicated eX_tronS and holes due to the well finiteness are of the order of

plicitly by the subscript=1/2 which describes the angular the square root of the ratio of the quantization energy in the

momentum projection in the direction, well to the barrier height/ AE/U. Making use of the infinite

. . well approximation we neglect corrections of this order to
The results of numerical calculation of the spectrum ac-

: . : X1,1in EQ. (3.5. The quantitiesX, , themselves are propor-
cording to Eq.(3.5 are presented in the next section. The. 12 : .
unperturbed energieE©® and E© were found by the nu- tional to the small parameter/L. So, in the spectrum we

merical solution of the problems for rectangular quantumkeep terms of the order cd/L and yAE/U and neglect

wells similar to Ref. 26. For a better accuracy the unper_terms containing the product of these two small parameters.

|t is worth to note that the neglect of corrections of the order
turbed energy spectrum of holes and of electrons were Cadf AE/U to wave functions is iustified foX. » and the
culated for finite wells of holes and electrons. In reality, the J 12

well of holes in GaSb is limited by finite barriers between theEMerdy spectrum calculation, but for other kind of problems

valence band top in GaSb and the tops of the valence banﬁ%here the full wave functions are necessémng., the calcu-

in InAs and AISb. The well for electrons is determined in a ation of .optical transition matrix elementhese corrections

similar way. We neglected the asymmetry of the barriers. Foay be important.

holes this asymmetry is really smdD.42 eV and 0.51 eV IV. DISCUSSION

for InAs and AISb barriers, respectiveland for electrons

the whole correction due to the finiteness of the well is very The dependence of the coupling strengtfhs, Eq.(3.6),

small. on the in-plane wave vectdq can be reduced to dimesion-
In the development of the method in both the presentess functiond, , as follows:



PRB 60 BAND STRUCTURE OF COUPLED InAs/GaSb QUANTUM WELLS 1867

120 120

H ax
154 115
110 1104
hmax
= = .
2 2 hmm
= 1054 = 105
a3 Pl
o =4
Q ®
=4 (=4
o [i7]
100+ 100 -1
95 95
€0 90 T T T T T T U T T T T T T
12 10 08 06 04 02 00 02 04 05 08 10 12 12 -10 08 06 04 02 00 02 04 06 08 10 12
<11> k vector [T/L] <01> <11> k vector [r/L] <01>
(@) (b)
0 78
954
76
90
HmaX'
3 $
= £
S 85 = 744
= S
i &
80
724
* E
min
70 T T T T L] U T o I T T T T
03 02 01 00 01 02 03 02 01 01 00 01 01 02
<li> k vector [T/l <01> <11> k vector [T/l <0f>

© (d)

FIG. 3. The energy spectrum for different wells widths including the correction which is induced by the self consistant pential.
L,=100 A, L,=170 A, (b) L,=100 A, L,=150 A, H. is the top of the first valence sub-barid,,,, hm, are, respectively, additional
local maximum and minimum of the valence sub-band, in(tt® direction.(c) L, =50 A, L,=150 A, (d) L,=40 A, L,=140 A. H . is
the top of the first valence sub-bart,,, is the bottom of the first conduction sub-band.

#2a  \%245 coupling on the in-plane vector. The energy gap induced by
X1=| —F/—— 3 3 f1AKLy)- (4.1  the coupling between electrons and holes is located in differ-
2ymemy /- Ll ent places for different crystallographic directions. Since the

The prefactor in this equation gives the energy scale of théize of the gap is a function of the in-plane vector, different
coupling. The function$, , are shown in Fig. 1. As one can Positions of the gap, yields different gap widths. The hole
see the coupling strengths are nonmonotonic functiokg.of ~ energy decreases faster with the in-plane vector at@tip
Whenk; goes to zero the coupling strengths also go to zerodirection. Due to that, the crossing point in @) direction
To understand this one has to remember %a$ describe is located at smaller in-plane vectors than the crossing point
the coupling between the electron ground subband and the the (11) direction.
heavy hole ground subband. On the other hand electrons are When the wells are narroyFigs. 4c),2(d)], the different
directly coupled to light holes on§. The coupling between positions of the crossing points lead to a larger coupling
electrons and heavy holes comes from an admixture of thetrength at thé€11) direction, which yields larger gap and a
light hole component to the heavy holes. This admixturemore pronounced level spliting at this direction. When the
goes to zero withk; . wells width is large enoughFigs. 2a),2(b)] the overlap of
The coupling strengtiX, may also have a zero of another the ground sub-bands of InAs electrons and GaSb holes is
kind, i.e., occasional zero. It happens when the quawkity bigger and the anisotropy effects are even more prominent.
Eq. (3.7b, reaches a zero different frok)=0. Because of the anisotropy the gap arising from the coupling
In Fig. 2 we present the results of the complete calculahas different energy positions in different directions of the
tion of the band structure for different well widths. From the in-plane wave vector. If this difference is larger than the gap
results that are presented in Fig. 2 we see an important effeitself a new kind of gapless state comes about. The specifics
of the spectrum anisotropy and of the dependence of thef this situation is that the presence of the gap can be seen in
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FIG. 4. Various constant energy contours for different wells widths, including the self-consistent potential correction. The zero energy
point is taken to be at the bottom of the bulk InAs conduction béadL, =40 A, L,=140 A, E=73 meV.(b) L,=100 A, L,=150 A,
E=106 meV,(c) L,=100 A, L,=150 A, E=107.5 meV,(d) L,=100 A, L.=150 A, E=112 meV.

optical experiments but in the density of states and hence, ithat was described in our previous wdfkin Fig. 3 we
transport, the gap does not exist. This may be the explanatigoresent the results of the calculation including the correction
of the fact that the first experiment where the gap has beeaf self-consistent potential according to this simple model.
detected® was carried out on relatively thin quantum wells Due to the self-consistent potential the electron and the hole
[the width of the InAs layet .=140 A and the width of the sub-bands were shifted towards each other, and the crossing
GaSb layerL,=40 A, Fig. 2d)]. Without anisotropy two point position moved to lower in-plane vectors. This reduces
edges of the gap form circles in tlkespace and the density the anisotropy effect, but all the main features of the spec-
of states has square root singularities at the etfyas. an-  trum without the correction still hold, including the gapless
isotropy breaks the circles and creates saddle points near tipbase[Figs. 3a),3(b)].
edges that smears the singularities to logarithmic ones. If the In Fig. 2(@) one can see a principal possibility of another
Fermi level is swept across the gap, the existence of the gdgnd of gapless state. Such a gapless state can arise if the
leads to a dip in the conductivity. The density of state singu-occasional zero oK, mentioned above occurs precisely at
larities lead to an increase of the conductivity near the dipthe crossing point oE{? and E{?). This occasional degen-
The weakening of the singularities by the anisotropy makegracy can be removed by a change of the system parameters.
this increase very weak. For example, as one can see from comparison of Hig. 2
Another important result of the anisotropy is an additionaland Fig. 3a) that for chosen parameters of the quantum
maximum in the hole spectrum in thd1) direction that wells it is removed by the self-consistent potential.
becomes important in wide enough wells. Due to this maxi- In Fig. 4 we present constant energy contours that give
mum constant energy contours in some region of energiesyclotron orbits in the semiclassical approximati§ri>+%4*
become quite nontrivial. We provide the results that include the self-consistent poten-
In the actual system there is a self-consistent potentiatial correction, the results without correction will have simi-
which is induced by charge transfer between the wells. Inar properties.
order to see its effects on the sub-bands and bring our results Here again there is a difference between the results for
closer to the experimental situation, we used a simple modeiarrow wells, and for wide wells. First, we will examine the
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narrow wells case, e.gl,.=140 A, L,=40 A, Fig. 3d). position within small region nedn,;,, hnha- When the en-
When the Fermi level is abovd,,,,, we will have only an ergy is betweerh,, and h,,;, a typical energy contour has
electron orbit. When the Fermi level is betweep,,and the the shape of Fig. @) (107.5 meV. Since we are very close
gap, we will have one electrons orbit and one hole orbit. Into the crossing point, the splitting of the degenerate sub-
the gap there are no cyclotron orbits. Once we are below thbands is well pronounced and this is why we see the double
gap but abové,,;,, again we will have two kinds of orbits, contours in Figs. é)—4(d). Here we can expect one electron
electron orbits and hole ones. An example is on Fig) for  effective mass corresponding to the internal closed contour
energy equals 73 meV. When the Fermi energy is béfqyy ~ and at least two different hole effective masses, one corre-
we will have only hole orbits. Since the hole spectrum issponding to the central closed contour arodhgdpoint and
nonparabolic, for different positions of the Fermi level we the other that corresponds to 4 closed contours around the
will get different values of the hole CR mass, but for each(11) extrema. Any external distortion in some in-plane di-
energy position we will get at most two lines in CR experi- rection will break the symmetry between th&l) contours
ment, one for holes, and one for electrons. and can lead to a larger number of different effective masses

The situation is different in wider wells, e.g., for the spec-for holes. This can explain additional lines in the CR
trum that is described in Fig. 8 (L,=100A, L, experiment§? When the Fermi level is below,,,, we have
=150 A). Here we see that complicated band structure reFig. 4b) (106 me\j where again we have only two orbits.
sults in different nontrivial constant energy contours, i.e., in

a number of cyclotron orbits. The shape of the contours V. SUMMARY
changes substantially within a very small energy interval. '
The difference between Figs(b}, 4(c), and 4d), is only a In this paper we calculated the energy spectrum of

few meV. These shapes result from the anisotropy and norlnAs/GaSb heterostructures considering the exact valence
parabolicity of the sub-band structure and could not be obband structure. We treated the coupling as a small perturba-
tained from the parabolic approximation. These shapes shotion for the problem of two decoupled infinite quantum
that the number of lines in CR experiments can change sulwells, one for holes, and one for electrons. The main results
stantially with a slight change of the Fermi level position. are the existence of a gapless state due to the anisotropy and
The description of possible orbits above the gaps is the sam®ontrivial constant energy contours, which might illuminate
as for the narrow wells and an example we see in Fid) 4 the CR'’s fascinating results. The coupling between the layers
where the energy equals 112 meV. Since this system is gaflifts the degeneracy of the electron and hole ground states
less, we always have constant energy contours. The contouasid at the crossing point we expect an additional splitting of
shapes vary drastically with the change of the Fermi levethe energy bands.

APPENDIX: THE DETERMINANT COEFFICIENTS

The notations that we used for the determinant in the second sectig2.E4. are the following:

G h? k2 Bu(yit2v2) Coue h? h2 Balyit2v2) (Ala)
2 2mgy 2mg Ap 20Ae 11— |821|2’ % 2mg 2mg Ah,ssAe,zz_|532|2'
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The numerical part of the subscripts of the hole wave function denotes the component of the wave function that has this
total angular momentum projection in thelirection. Since electron wave functions have only one component that is different
than zerdEqg. (2.9)], we did not use numerical subscripts there. Under the assumptions that were described in Sec. Il, the only

constant that does not vanish@s,=C5,=C.
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