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Band structure of coupled InAs/GaSb quantum wells
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~Received 11 March 1998; revised manuscript received 3 December 1998!

We calculate here the energy spectrum of InAs/GaSb heterostructure taking into account a complicated,
anisotropic, and nonparabolic structure of the valence band of GaSb. In InAs/GaSb heterostructures the valence
band of the GaSb layer overlaps with the conduction band of the InAs layer. The electrons in the InAs layer are
coupled to the holes in the GaSb layer and a hybridization gap is formed. The coupling is considered here as
a small perturbation for the problem of two decoupled infinite quantum wells, one of holes and one of
electrons. The band structure of the coupled system shows features that result from anisotropy, dependence of
the coupling on the in-plane vector, and lifting of the double degeneracy of the energy bands of electrons and
holes due to the coupling. The splitting of the energy bands is very important at the crossing point. Interesting
results of these effects are the possibility of a new kind of a gapless state and nontrivial constant energy
contours.@S0163-1829~99!02027-5#
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I. INTRODUCTION

The unique features of InAs/GaSb heterostructures
crease the interest in investigating these systems. The la
constants of the two materials are very close, and there
matching of thin layers of these materials is possible. T
experimental results for these heterostructures reveal m
netic and electronic features that deviate substantially fr
well known features of other kinds of quantum wells a
make these systems both very promising for device appl
tion and intriguing from the fundamental point of view. F
example, InAs/GaSb structure is the most perspective ca
date for the observation of Bose-Einstein condensation
excitons.1–10

In some range of the layers widths, the bottom of the fi
conduction sub-band in the InAs layer lays below the
edge of the first valence sub-band in the GaSb layer. T
overlap between the valence band in GaSb and the con
tion band in InAs means that from either side of the interfa
there are allowed states that differ from each other in
total angular momentum and in the sign of the effect
mass. Electron wave functions in InAs layer are superp
tions of s states, and their total angular momentum isJ
51/2. Hole wave functions are superposition ofp states, and
their total angular momentum isJ53/2.

The overlap between the valence band in GaSb and
conduction band in InAs induces charge transfer from Ga
to InAs and the ground state of this system is spatially se
rated two-dimensional electrons gas~2DEG! in the InAs
layer and two-dimensional holes gas~2DHG! in the GaSb
layer. The tunneling between the GaSb and InAs lay
yields the formation of a gap in the energy spectrum. T
gap comes about at the crossing point of the GaSb and I
separate spectra and it can be controlled by an external
tric field.11,12 This hybridization gap has been recently o
served experimentally in double thin layers
InAs/GaSb13–15 and in superlattices.16

In cyclotron resonance~CR! experiments in this system
additional absorption lines were measured.17–20A large num-
ber of observed CR peaks contradicts to intuitive understa
PRB 600163-1829/99/60~3!/1861~10!/$15.00
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ing in which only two lines are expected, one for electro
and one for holes. For an understanding of these results
have to perform an accurate calculation of the band struc
of the system. This is the purpose of the present paper.

The problem is not trivial because even the bulk valen
band in GaSb has a complicated structure—there are
highly anisotropic sub-bands.21 Since we are dealing with
thin layers of InAs/GaSb we need to consider the size qu
tization mixing heavy and light hole sub-bands and result
in a highly nonparabolic spectrum.22–27The incorporation of
the ground electron sub-band of InAs makes the prob
even more complicated. In previous calculations28–34 these
features were not explicitly investigated.

In this paper we consider the exact structure of the ho
spectrum, and use the perturbation theory to derive the s
trum of a system of thin double layers of InAs and Ga
sandwiched between two high potential barriers. The unp
turbed problem is the problem of two decoupled infin
quantum wells, one of electrons and one of holes. The p
turbation is the coupling between the wells induced by
tunneling between the layers.

For solving the unperturbed decoupled problem we
the envelope function approximation where hole states
four-component spinors and electron states are t
component spinors. For the calculation the boundary con
tions at the interface between the InAs layer and the G
layer are required. The crucial point here is the necessit
match states with different number of components that c
respond to different total electron and hole angular mome
We have used a variation principle to derive phenomenolo
cal boundary conditions that do not depend on any mic
scopical model. This method is described in our ear
paper.35

One more important factor here is the self-consistent
tential induced by the charge transfer. From the results
simpler models12,36we see that the main effect of this pote
tial is a constant shift of the bands which decreases the o
lap. The spectrum curvature is almost unaffected. There
in the present paper we present both the spectrum calcu
without self-consistent potential corrections and with the
1861 ©1999 The American Physical Society
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1862 PRB 60S. de-LEON, L. D. SHVARTSMAN, AND B. LAIKHTMAN
For the calculation of these corrections we use the sim
model that is described in our previous paper.36

The results show that when the overlap between the h
and the electrons is large enough the system can rea
stage where the anisotropy effects the position of the In
and GaSb spectra crossing point. With the change of
in-plane wave vectork direction the energy position of th
crossing point changes. In such a case there is a hybrid
tion gap in every direction ofk but the energy position of the
gap is angular dependent. If the anisotropy is so substa
that the difference between the energy position of the ga
different directions (DEg), is larger than the gap itself~i.e.,
DEg.Eg) then the density of states is actually gapless a
the system exhibits a kind of a semimetal phase.

Another aspect of the exact calculation is a complete
ing of the degeneracy in the energy spectrum. Both gro
sub-bands of holes and electrons in the decoupled un
turbed problem are doubly degenerated~Kramers degen-
eracy!. The coupling between the bands lifts the degener
and a small splitting in the energy spectrum occurs. T
splitting is negligible in most of the spectrum range exc
the crossing point where it is the key factor determining
gap size. Both the gap size and the position of the cros
point depend on the well width. All these effects yield no
trivial constant energy contours that change substanti
with the energy.

In the next section we develop the perturbation theory
this problem. In the third section we use symmetry cons
erations and some physical assumptions to simplify the
sults and present the final results of the calculations, i.e.,
dependence of the coupling strength on the in-plane vec
the energy spectrum of the system in different in-pla
angles, and some constant energy contours. The nota
that we used for the general form of the solution are given
the Appendix.

II. THE PROBLEM AND EQUATIONS

The structure that we investigate here consists of two
layers, one of InAs and one of GaSb. The geometry of
system is the following: to the left,

2Lc2
Lv

2
,z,2

Lv

2
,

there is an InAs layer which is a quantum well for electro
To the right,

2
Lv

2
,z,

Lv

2
,

there is a GaSb layer which is a quantum well for holes. T
two layers are sandwiched between high potential barri
and we assume that the wave function vanishes at these
riers. We use this assumption for simplification. The meth
can be applied also for the problem of two finite quantu
wells of holes and of electrons, but the calculation is mu
more cumbersome.

We use the envelope function approximation for our c
culations. The system of equations includes Schro¨dinger
equations for hole and electron envelope functions
boundary conditions at the interface between the layers.
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The Schro¨dinger equations are

Hece5Ece , 2Lc2
Lv

2
,z,2

Lv

2
, ~2.1a!

Hhch5Ech , 2
Lv

2
,z,

Lv

2
. ~2.1b!

Herece is two-component electron wave function,ch is the
four-component hole wave function

He52
\2

2me
¹2, ~2.2a!

Hh5D1
\2

2m0
F S g11

5

2
g2D¹222g3~JW¹W !2

12~g32g2!S ]2

]x2
Jx

21
]2

]y2
Jy

21
]2

]z2
Jz

2D G . ~2.2b!

HereHh is the Luttinger effective Hamiltonian for GaSb.21 JW
is the total angular momentum vector operator correspond
to the angular momentum 3/2, andg1511.8, g254.03, g3
55.26 are the Luttinger parameters for GaSb.37 Jx , Jy , and
Jz are 434 matrices, i.e., we treat properly both the dege
eracy of light and heavy holes and the warping of the vale
band isoenergetic surfaces.D'150 meV is the energy dif-
ference between the bottom of the conduction band in b
InAs and the top of the valence band in bulk GaSb.me is the
effective mass of the conduction electrons in InAs. T
boundary conditions at the interface between the two lay
z52Lv/2 were derived in our previous work:35

Aece1B †ch5Dece , ~2.3a!

Ahch1Bce5Dhch , ~2.3b!

where the differential operatorsDe , Dh are

De52
\2

2me

]

]z
, ~2.4a!

Dh52
\2

2m0
F S g11

5

2
g222g2Jz

2D ]

]z

2g3~JzJW i1JW iJz!¹W ichG . ~2.4b!

Here we use the following notations for the in-plane ve
tors: JW i5(Jx ,Jy), ¹W i5(]/]x,]/]y). In Eq. ~2.3! Ae is 2
32 matrix that represents the interface energy of electr
states,Ah is a 434 matrix which represents the interfac
energy of holes states.B is a 432 matrix which represents
the tunneling between the layers. The units of the ma
elements are@E3L#—energy multiplied by length. Since
the scales of the interface region are microscopic, we can
that, in general, the matrix elements are of the order
\2/2Amemha, where me ,mh are the effective masses o
electrons and holes, respectively, anda is the lattice con-
stant. It can be shown from symmetry consideration that b
Ae andAh are diagonal in the representation whereJz is
diagonal. The same argument shows that the only nonv
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PRB 60 1863BAND STRUCTURE OF COUPLED InAs/GaSb QUANTUM WELLS
ishing matrix elements ofB areB21, B32. ~More precisely,
the interface has a lower symmetry than the crystal its
Nevertheless, we considered the anisotropy that results f
this lower symmetry to be small, and neglected it.38! More
details about the above estimations and symmetry argum
are presented in Ref. 35.

With a little algebra we can derive from Eq.~2.3! a more
convenient form of the boundary conditions

ce5Meece1Mehch , ~2.5a!

ch5Mhece1Mhhch . ~2.5b!

HereMee,Meh ,Mhe ,Mhh , are the differential opera
tors

Mee5~Ae2B †A h
21B!21De , ~2.6a!

Meh52~Ae2B †A h
21B!21B †A h

21Dh , ~2.6b!

Mhe52~Ah2BA e
21B †!21BA e

21De , ~2.6c!

Mhh5~Ah2BA e
21B †!21Dh . ~2.6d!

The dispersion relation that we are going to obtain m
ing use of Eq.~2.1! with boundary conditions~2.5! is the
dependence of the energy on the in-plane wave vectork. So
hereafter we assume that wave function dependence onx and
y is determined by the exponential factoreikr i. Then the dif-
ferential operators]/]x and]/]y in Eqs.~2.1! and~2.5! are
replaced byikx andiky respectively, and the only derivative
that remain in these equations are with respect toz.

The right-hand sides of Eqs.~2.5! are of the order of
DA21 @see Eq.~2.6!#. As was mentioned above,A21 is
proportional to the lattice constanta while the differential
operatorD operating on wave functions is proportional to t
macroscopic scale 1/L where L is the wells widths. This
means that the productDA21 is proportional to the smal
ratio a/L. We are going to develop a perturbation theory
this parameter. The same parameter justifies the enve
function approximation, so our method is consistent.

If terms of the order ofa/L are neglected the boundar
conditions at the interface between the layers, Eq.~2.5!, are
reduced toce5ch50 atz52Lv/2. This corresponds to two
decoupled quantum wells, one of electrons and one of ho
In our method we use this decoupled problem as an un
turbed system. This system is solvable, and we will der
the spectrum of the coupled problem perturbing the solu
of the decoupled problem.

For electrons the dispersion relation of the unperturb
problem is parabolic and isotropic. For holes the dispers
relation is anisotropic and nonparabolic in the in-planek vec-
tor.

Under the assumption of weak coupling we can write
perturbed wave function as a linear combination of the
perturbed wave functions and the coupling determines
coefficients in this linear combination. We assume that o
the ground sub-band of each well is occupied and we
interested in the new ground sub-band of the system.
ground sub-band of the unperturbed problem for electron
doubly degenerate due to spin. The ground sub-band of
unperturbed holes is also doubly degenerate.26 The hole de-
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generacy is related to the reflection with respect to the la
plane. This symmetry is broken in the coupled system,
we expect that this would lift the degeneracy of the grou
sub-band. We express the coupled ground state in a co
nation of the degenerate ground states and the contribu
from the higher levels in the decoupled problem

ce5v↑ce,↑
(0)1v↓ce,↓

(0)1(
n

vencen
(0) , ~2.7a!

ch5uevench,even
(0) 1uoddch,odd

(0) 1(
n

uhnchn
(0) . ~2.7b!

Here the amplitudes are defined as

v↑5^ce,↑
(0)uce&, v↓5^ce,↓

(0)uce&, ~2.8a!

ueven5^ch,even
(0) uch&, uodd5^ch,odd

(0) uch&. ~2.8b!

Angular brackets here denote the integration with respec
z. The wave functions of the higher levels are orthogona
the ground state wave functions. In our representation
holes wave functions are four-components spinors and
electrons wave functions are two-component spinors. T
explicit form of the ground state wave functions for infini
well of holes are well known but very cumbersome,27 so we
do not present them here. The explicit form of the grou
state wave function for the electron infinite well in our re
resentation is

ce,↑
(0)5S c̃e↑~z!

0
D eik•r, ce,↓

(0)5S 0

c̃e↓~z!
D eik•r, ~2.9!

where

c̃e↑~z!5c̃e↓~z!5A 2

Lc
sin

p

Lc
S z1

Lv

2 D . ~2.10!

Now we will derive equations for the amplitude
v↑ ,v↓ ,ueven,uodd. From these equations we will derive th
dispersion relation of the ground state of the coupled pr
lem. To obtain the required equations we multiply Eq
~2.1a! and ~2.1b! by the ground states wave function of th
unperturbed problem and integrate with respect to thez over
the relevant well region. The equations are

05^ce,↑
(0)uHe2Euce&, ~2.11a!

05^ce,↓
(0)uHe2Euce&, ~2.11b!

05^ch,even
(0) uHh2Euch&, ~2.11c!

05^ch,odd
(0) uHh2Euch&. ~2.11d!

Calculating the terms in these equations that do not con
derivatives with respect toz we use the definitions of the
amplitudes, Eq.~2.8!. Terms containing the derivatives w
integrate by parts in order to reduce them to the form wh
the derivatives operate only on unperturbed wave functio
Then we can make use of the Schro¨dinger equations for the
unperturbed wave functions. In the integration by parts
obtain also integrated terms from the interface between In
and GaSb wells~integrated terms from other interfaces a
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1864 PRB 60S. de-LEON, L. D. SHVARTSMAN, AND B. LAIKHTMAN
zero due to zero boundary conditions for the wave fu
tions!. As a result we obtain the following equations:

05v↑@Ee
(0)~kW !2E#1

\2

2me

]ce,↑
†(0)

]z
ceU

z52Lv/2

, ~2.12a!

05v↓@Ee
(0)~kW !2E#1

\2

2me

]ce,↓
†(0)

]z
ceU

z52Lv/2

, ~2.12b!

05ueven@Eh
(0)~kW !2E#1

\2

2m0

]ch,even
†(0)

]z

3S g11
5

2
g222g2Jz

2DchU
z52Lv/2

, ~2.12c!

05uodd@Eh
(0)~kW !2E#1

\2

2m0

]ch,odd
†(0)

]z

3S g11
5

2
g222g2Jz

2DchU
z52Lv/2

, ~2.12d!
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-where Ee
(0)(kW ) and Eh

(0)(kW ) are the unperturbed dispersio
relations for electrons, and holes, respectively.

For the wave functions at the interface between the lay
z52Lv/2, in Eq. ~2.12! we use their expressions from th
boundary conditions, Eqs.~2.5!. As it was mentioned above
the right-hand side of the boundary conditions contains
small parametera/L. Neglecting high order terms ina/L we
can replace wave functions there with their unperturbed v
ues and neglect the contribution of the high levels. Then w
the help of Eq.~2.7! the expressions for wave functions
the interface are

ce5Mee~v↑ce,↑
(0)1v↓ce,↓

(0)!1Meh~uevench,even
(0) 1uoddch,odd

(0) !,

~2.13a!

ch5Mhe~v↑ce,↑
(0)1v↓ce,↓

(0)!1Mhh~uevench,even
(0) 1uoddch,odd

(0) !.
~2.13b!

The substitution of these expressions in the interface term
Eq. ~2.12! leads to four equations for the four amplitud
ueven, uodd, v↑ , and v↓ where all coefficients except th
energyE are known. This set of equations has a nontriv
solution, only if its determinant equals to zero. The conditi
for the vanishing of the determinant, provides us with t
desired dispersion relation of the coupled problem. The
plicit general form of the determinant is
UEe
(0)2E2C↑U]c̃e,↑

(0)

]z
U2

0 C21*
]c̃e,↑

(0)

]z

]c̃h,odd,1/2
(0)

]z
C21*

]c̃e,↑
(0)

]z

]c̃h,even,1/2
(0)

]z

0 Ee
(0)2E2C↓U ]c̃e,↓

(0)

]z
U2

C32*
]c̃e,↓

(0)

]z

]c̃h,odd,21/2
(0)

]z
C32*

]c̃e,↑
(0)

]z

]c̃h,even,21/2
(0)

]z

C21

]c̃e,↑
(0)

]z

]c̃h,odd,1/2* (0)

]z
C32

]c̃e,↓
(0)

]z

]c̃h,odd,21/2* (0)

]z
Eh

(0)2E2GS U]ch,odd
(0)

]z
U2D FS ]ch,odd* (0)

]z
,
]ch,even

(0)

]z D
C21

]c̃e,↑
(0)

]z

]c̃h,even,1/2* (0)

]z
C32

]c̃e,↓
(0)

]z

]c̃h,even,21/2* (0)

]z
FS ]ch,even* (0)

]z
,
]ch,odd

(0)

]z D Eh
(0)2E2GS U]ch,even

(0)

]z
U2D
U . ~2.14!
si-
rmi-

of

ow-
mp-

re-
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Here we use the notation for the hole envelope function co
ponents from Ref. 27 where the expressions for these c
ponents are written down explicitly. Other notations are p
sented in the Appendix.

The off-diagonal terms between the odd and the even h
states appear due to the symmetry breaking with respe
the parity operator. The unperturbed system of holes was
of an infinite well. This system is symmetric with respect
the parity.26 The perturbed system is not symmetric wi
respect to the reflection inxy plane and therefore the dege
eracy with respect to the parity is lifted.

We see here that there are contributions of the pertu
tion to diagonal terms. The initial spectrum of holes a
electrons is renormalized by the small perturbation. The
ditional diagonal terms are by the order of magnitude sma
than original unperturbed diagonal terms.

The off-diagonal terms between electrons and holes
the most relevant to the effect that we investigate here.
structure of these terms shows that only states with the s
angular momentum are coupled.
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In the next section we will use symmetry and other phy
cal assumptions to reduce the general form of the dete
nant to a more convenient, solvable form. The final results
the calculation are presented for this simplified form.

III. LEGITIMATE APPROXIMATION

The general form of the determinant, Eq.~2.14!, is very
cumbersome and includes a lot of different parameters. H
ever, symmetry considerations and other physical assu
tions can be used to simplify the problem.

We assume that the surface energy is invariant with
spect to the change of the sign of the total angular mom
tum projection to thez direction. That yields the following
relations between the interface matrix elements:

Ah,115Ah,44[Ah,3/2, Ah,225Ah,33[Ah,1/2, ~3.1a!

Ae,115Ae,22[Ae,1/2, B215B32[B1/2. ~3.1b!
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This reduces the number of parameters in this problem
complex coefficients.

The effect that we investigate here is the coupling
tween the electrons and the holes. We would like to conc
trate on this and neglect other effects that results from
boundary conditions. As was mentioned above, additio
diagonal terms that renormalize the unperturbed spect
are by the order of magnitude smaller than the original
perturbed diagonal terms. Therefore we neglect them in
determinant. The breaking of parity symmetry induces o
diagonal terms between the odd and the even holes f
tions. We neglect this effect in order to simplify the dete
minant.

Under all the assumptions that were described above
number of parameters in the problem reduces to one com
d

he
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coefficient

C5
\2

2m0

\2

2me

B1/2~g112g2!

Ah,1/2Ae,1/22uB1/2u2 . ~3.2!

But as we will see the energy spectrum depends only onuCu,
so actually there is just one real parameter in the proble

As was mentioned in the previous section, the units of
interface matrix elements are energy multiplied by leng
and the scales are the atomic scales. So a good estimat
uCu will be \2a/2Amemlh, where mlh5m0 /(g112g2)
'0.05m0 is the effective mass of GaSb light holes andme
50.026m0 is the effective mass of InAs conduction ele
trons. The determinant now has the following form:
05U Ee
(0)2E 0 C*

]c̃e,↑
(0)

]z

]c̃h,odd,1/2
(0)

]z
C*

]c̃e,↑
(0)

]z

]c̃h,even,1/2
(0)

]z

0 Ee
(0)2E C*

]c̃e,↓
(0)

]z

]c̃h,odd,21/2
(0)

]z
C*

]c̃e,↓
(0)

]z

]c̃h,even,21/2
(0)

]z

C
]c̃e,↑

(0)

]z

]c̃h,odd,1/2* (0)

]z
C

]c̃e,↓
(0)

]z

]c̃h,odd,21/2* (0)

]z
Eh

(0)2E 0

C
]c̃e,↑

(0)

]z

]c̃h,even,1/2* (0)

]z
C

]c̃e,↓
(0)

]z

]c̃h,even,21/2* (0)

]z
0 Eh

(0)2E

U , ~3.3!
the
where

uCu'
\2a

2Amemlh

. ~3.4!

The values of the effective masses were given above ana
'6 Å.

This determinant is a polynomial of the fourth order in t
energy which has four different roots. We begin the calcu
tion of the spectrum with two degenerate sub-bands, on
the electron ground state in the InAs, and the other is
hole ground state in the GaSb. The degeneracy of the gro
states is lifted due to the coupling between the energy ba
The effect of splitting of the energy bands due to coupling
negligible except the region near the crossing points.

The solutions to Eq.~3.3! can be written in the form

E1,2,3,45
~Ee

(0)1Eh
(0)!

2
6

1

2
A~Ee

(0)2Eh
(0)!214X1,2, ~3.5!

where

X1,25
b

2
6

1

2
Ab224d. ~3.6!

Here
-
is
e
nd
s.

s

b5uCu2U]c̃e

]z
U2S U]c̃h,odd,1/2

(0)

]z
U2

1U]c̃h,odd,21/2
(0)

]z
U2

1U]c̃h,even,1/2
(0)

]z
U2

1U]c̃h,even,21/2
(0)

]z
U2D , ~3.7a!

d5uCu4U]c̃e

]z
U4U]c̃h,odd,1/2

(0)

]z

]c̃h,even,21/2
(0)

]z

2
]c̃h,odd,21/2

(0)

]z

]c̃h,even,1/2
(0)

]z
U2

. ~3.7b!

FIG. 1. The coupling dependence on the in-plane vector, in
in-plane directionŝ01& and ^11&.
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FIG. 2. The energy spectrum for different wells widths. The zero energy point is at the bottom of the bulk InAs conduction ba
considered the hole well of 0.4 eV depth and the electron well of 0.8 eV depth.~a! Lv5100 Å, Lc5170 Å, ~b! Lv5100 Å, Lc5150 Å, ~c!
Lv550 Å, Lc5150 Å, ~d! Lv540 Å, Lc5140 Å.
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Here we used the notation]c̃e /]z[]c̃e,↑
(0)/]z5]c̃e,↓

(0)/]z
@Eq. ~2.10!#. It is important to note that the hole spectru
Eh

(0) in Eq. ~3.5! is the ground heavy hole sub-band while t
corrections in Eq.~3.7! are calculated with the light hole
component of the holes wave function. This is indicated
plicitly by the subscript61/2 which describes the angula
momentum projection in thez direction.

The results of numerical calculation of the spectrum
cording to Eq.~3.5! are presented in the next section. T
unperturbed energiesEh

(0) and Ee
(0) were found by the nu-

merical solution of the problems for rectangular quant
wells similar to Ref. 26. For a better accuracy the unp
turbed energy spectrum of holes and of electrons were
culated for finite wells of holes and electrons. In reality, t
well of holes in GaSb is limited by finite barriers between t
valence band top in GaSb and the tops of the valence b
in InAs and AlSb. The well for electrons is determined in
similar way. We neglected the asymmetry of the barriers.
holes this asymmetry is really small~0.42 eV and 0.51 eV
for InAs and AlSb barriers, respectively! and for electrons
the whole correction due to the finiteness of the well is v
small.

In the development of the method in both the pres
-

-

-
l-

ds

r

y

t

section and Sec. II and the calculation of tunneling across
interface we used the approximation of infinite wells. Th
approximation can be justified in the following way. Th
corrections to the energies and the wave functions of e
trons and holes due to the well finiteness are of the orde
the square root of the ratio of the quantization energy in
well to the barrier heightADE/U. Making use of the infinite
well approximation we neglect corrections of this order
X1,2 in Eq. ~3.5!. The quantitiesX1,2 themselves are propor
tional to the small parametera/L. So, in the spectrum we
keep terms of the order ofa/L and ADE/U and neglect
terms containing the product of these two small paramet
It is worth to note that the neglect of corrections of the ord
of ADE/U to wave functions is justified forX1,2 and the
energy spectrum calculation, but for other kind of proble
where the full wave functions are necessary~e.g., the calcu-
lation of optical transition matrix elements! these corrections
may be important.

IV. DISCUSSION

The dependence of the coupling strengthsX1,2, Eq. ~3.6!,
on the in-plane wave vectorki can be reduced to dimesion
less functionsf 1,2 as follows:
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FIG. 3. The energy spectrum for different wells widths including the correction which is induced by the self consistant poten~a!
Lv5100 Å, Lc5170 Å, ~b! Lv5100 Å, Lc5150 Å, Hmax is the top of the first valence sub-band,hmax, hmin are, respectively, additiona
local maximum and minimum of the valence sub-band, in the^11& direction.~c! Lv550 Å, Lc5150 Å, ~d! Lv540 Å, Lc5140 Å. Hmax is
the top of the first valence sub-band,Emin is the bottom of the first conduction sub-band.
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X1,25S \2a

2Amemlh
D 2

2p5
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3Lv

3
f 1,2~kiLv!. ~4.1!

The prefactor in this equation gives the energy scale of
coupling. The functionsf 1,2 are shown in Fig. 1. As one ca
see the coupling strengths are nonmonotonic functions ofki .
Whenki goes to zero the coupling strengths also go to ze
To understand this one has to remember thatX1,2 describe
the coupling between the electron ground subband and
heavy hole ground subband. On the other hand electrons
directly coupled to light holes only.39 The coupling between
electrons and heavy holes comes from an admixture of
light hole component to the heavy holes. This admixtu
goes to zero withki .

The coupling strengthX2 may also have a zero of anoth
kind, i.e., occasional zero. It happens when the quantityd,
Eq. ~3.7b!, reaches a zero different fromki50.

In Fig. 2 we present the results of the complete calcu
tion of the band structure for different well widths. From th
results that are presented in Fig. 2 we see an important e
of the spectrum anisotropy and of the dependence of
e

o.

he
re

e
e

-

ct
e

coupling on the in-plane vector. The energy gap induced
the coupling between electrons and holes is located in dif
ent places for different crystallographic directions. Since
size of the gap is a function of the in-plane vector, differe
positions of the gap, yields different gap widths. The ho
energy decreases faster with the in-plane vector at the^01&
direction. Due to that, the crossing point in the^01& direction
is located at smaller in-plane vectors than the crossing p
in the ^11& direction.

When the wells are narrow@Figs. 2~c!,2~d!#, the different
positions of the crossing points lead to a larger coupl
strength at thê11& direction, which yields larger gap and
more pronounced level spliting at this direction. When t
wells width is large enough@Figs. 2~a!,2~b!# the overlap of
the ground sub-bands of InAs electrons and GaSb hole
bigger and the anisotropy effects are even more promin
Because of the anisotropy the gap arising from the coup
has different energy positions in different directions of t
in-plane wave vector. If this difference is larger than the g
itself a new kind of gapless state comes about. The spec
of this situation is that the presence of the gap can be see
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FIG. 4. Various constant energy contours for different wells widths, including the self-consistent potential correction. The zero
point is taken to be at the bottom of the bulk InAs conduction band.~a! Lv540 Å, Lc5140 Å, E573 meV.~b! Lv5100 Å, Lc5150 Å,
E5106 meV,~c! Lv5100 Å, Lc5150 Å, E5107.5 meV,~d! Lv5100 Å, Lc5150 Å, E5112 meV.
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optical experiments but in the density of states and hence
transport, the gap does not exist. This may be the explana
of the fact that the first experiment where the gap has b
detected13 was carried out on relatively thin quantum we
@the width of the InAs layerLc5140 Å and the width of the
GaSb layerLv540 Å, Fig. 2~d!#. Without anisotropy two
edges of the gap form circles in thek space and the densit
of states has square root singularities at the edges.36 An an-
isotropy breaks the circles and creates saddle points nea
edges that smears the singularities to logarithmic ones. If
Fermi level is swept across the gap, the existence of the
leads to a dip in the conductivity. The density of state sin
larities lead to an increase of the conductivity near the d
The weakening of the singularities by the anisotropy ma
this increase very weak.13

Another important result of the anisotropy is an addition
maximum in the hole spectrum in thê11& direction that
becomes important in wide enough wells. Due to this ma
mum constant energy contours in some region of ener
become quite nontrivial.

In the actual system there is a self-consistent poten
which is induced by charge transfer between the wells
order to see its effects on the sub-bands and bring our re
closer to the experimental situation, we used a simple mo
in
on
n

the
e

ap
-
.
s

l

i-
es

al
n
lts
el

that was described in our previous work.36 In Fig. 3 we
present the results of the calculation including the correct
of self-consistent potential according to this simple mod
Due to the self-consistent potential the electron and the h
sub-bands were shifted towards each other, and the cros
point position moved to lower in-plane vectors. This reduc
the anisotropy effect, but all the main features of the sp
trum without the correction still hold, including the gaple
phase@Figs. 3~a!,3~b!#.

In Fig. 2~a! one can see a principal possibility of anoth
kind of gapless state. Such a gapless state can arise i
occasional zero ofX2 mentioned above occurs precisely
the crossing point ofEe

(0) and Eh
(0). This occasional degen

eracy can be removed by a change of the system parame
For example, as one can see from comparison of Fig.~a!
and Fig. 3~a! that for chosen parameters of the quantu
wells it is removed by the self-consistent potential.

In Fig. 4 we present constant energy contours that g
cyclotron orbits in the semiclassical approximation.24,25,40,41

We provide the results that include the self-consistent po
tial correction, the results without correction will have sim
lar properties.

Here again there is a difference between the results
narrow wells, and for wide wells. First, we will examine th
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narrow wells case, e.g.,Lc5140 Å, Lv540 Å, Fig. 3~d!.
When the Fermi level is aboveHmax, we will have only an
electron orbit. When the Fermi level is betweenHmax and the
gap, we will have one electrons orbit and one hole orbit.
the gap there are no cyclotron orbits. Once we are below
gap but aboveEmin , again we will have two kinds of orbits
electron orbits and hole ones. An example is on Fig. 4~a! for
energy equals 73 meV. When the Fermi energy is belowEmin
we will have only hole orbits. Since the hole spectrum
nonparabolic, for different positions of the Fermi level w
will get different values of the hole CR mass, but for ea
energy position we will get at most two lines in CR expe
ment, one for holes, and one for electrons.

The situation is different in wider wells, e.g., for the spe
trum that is described in Fig. 3~b! (Lv5100 Å, Lc
5150 Å). Here we see that complicated band structure
sults in different nontrivial constant energy contours, i.e.,
a number of cyclotron orbits. The shape of the conto
changes substantially within a very small energy interv
The difference between Figs. 4~b!, 4~c!, and 4~d!, is only a
few meV. These shapes result from the anisotropy and n
parabolicity of the sub-band structure and could not be
tained from the parabolic approximation. These shapes s
that the number of lines in CR experiments can change s
stantially with a slight change of the Fermi level positio
The description of possible orbits above the gaps is the s
as for the narrow wells and an example we see in Fig. 4~d!
where the energy equals 112 meV. Since this system is
less, we always have constant energy contours. The con
shapes vary drastically with the change of the Fermi le
n
e

-

e-

s
l.

n-
-
w
b-
.

e

p-
urs
l

position within small region nearhmin , hmax. When the en-
ergy is betweenhmax and hmin a typical energy contour ha
the shape of Fig. 4~c! ~107.5 meV!. Since we are very close
to the crossing point, the splitting of the degenerate s
bands is well pronounced and this is why we see the dou
contours in Figs. 4~b!–4~d!. Here we can expect one electro
effective mass corresponding to the internal closed con
and at least two different hole effective masses, one co
sponding to the central closed contour aroundG8 point and
the other that corresponds to 4 closed contours around
^11& extrema. Any external distortion in some in-plane d
rection will break the symmetry between the^11& contours
and can lead to a larger number of different effective mas
for holes. This can explain additional lines in the C
experiments.42 When the Fermi level is belowhmin we have
Fig. 4~b! ~106 meV! where again we have only two orbits.

V. SUMMARY

In this paper we calculated the energy spectrum
InAs/GaSb heterostructures considering the exact vale
band structure. We treated the coupling as a small pertu
tion for the problem of two decoupled infinite quantu
wells, one for holes, and one for electrons. The main res
are the existence of a gapless state due to the anisotropy
nontrivial constant energy contours, which might illumina
the CR’s fascinating results. The coupling between the lay
lifts the degeneracy of the electron and hole ground sta
and at the crossing point we expect an additional splitting
the energy bands.
APPENDIX: THE DETERMINANT COEFFICIENTS

The notations that we used for the determinant in the second section Eq.~2.14! are the following:

C215
\2

2m0

\2

2me

B21~g112g2!

Ah,22Ae,112uB 21u2 , C325
\2

2m0

\2

2me

B32~g112g2!

Ah,33Ae,222uB 32u2
, ~A1a!

C↑5S \2

2me
D 2 Ah,22

Ah,22Ae,112uB 21u2 , C↓5S \2

2me
D 2 Ah,33

Ah,33Ae,222uB 32u2
, ~A1b!

GS U]ch
(0)

]z
U2D 5F \2

2m0
~g122g2!G2S 1

Ah,11
U]c̃h,3/2

(0)

]z
U2

1
1

Ah,44
U]c̃h,23/2

(0)

]z
U2D

1F \2

2m0
~g112g2!G2S Ae,11

Ah,22Ae,112uB 21u2U]c̃h,1/2
(0)

]z
U2

1
Ah,33

Ah,33Ae,222uB 32u2
U]c̃h,21/2

(0)

]z
U2D , ~A1c!

FS ]ch,even* (0)

]z
,
]ch,odd

(0)

]z D 52F \2

2m0
~g122g2!G2S 1

Ah,11

]c̃h,even,3/2* (0)

]z

]c̃h,odd,3/2
(0)

]z
1

1

Ah,44

]c̃h,even,23/2* (0)

]z

]c̃h,odd,23/2
(0)

]z
D

1F \2

2m0
~g112g2!G2S Ae,11

Ah,22Ae,112uB 21u2

]c̃h,even,1/2* (0)

]z

]c̃h,odd,1/2
(0)

]z
D

1F \2

2m0
~g112g2!G2S Ae,22

Ah,33Ae,222uB 32u2

]c̃h,even,21/2* (0)

]z

]c̃h,odd,21/2
(0)

]z
D . ~A1d!
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The numerical part of the subscripts of the hole wave function denotes the component of the wave function that
total angular momentum projection in thez direction. Since electron wave functions have only one component that is diffe
than zero@Eq. ~2.9!#, we did not use numerical subscripts there. Under the assumptions that were described in Sec. II,
constant that does not vanish isC215C32[C.
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