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Effective boundary conditions, in the form of two-sided impedance boundary conditions, are formulated for
the linear electrodynamics of single- and multishell carbon nanoti@®e%). The impedance is derived using
the dynamic conductivity of CN’s, which is obtained for different CNzsgzag, armchair, and chipain the
frame of the semiclassical as well as quantum-mechanical treatments. Propagation of surface waves in CN's is
considered. The phase velocities and the slow-wave coefficients of surface waves are explored for a wide
frequency range, from the microwave to the ultraviolet regimes. Relaxation is shown to qualitatively change
the dispersion characteristics in the low-frequency limit, thereby rendering the existence of weakly retarded
plasmons impossible. A dispersionless propagation regime is shown possible for the surface waves in the
infrared regime. Attenuation and retardation in metallic and semiconductor CN’s are compared.
[S0163-18209)16247-1

. INTRODUCTION either regular or irregular ensembles of Ch$28 the other
concerns the electrodynamics of single Cks22
Since the discovery by lijimfaof quasi-one-dimensional (i) Multi-CN samples—i.e., distrbutions of CN inclusions

crystalline structures of carbon atoms generally referred to as some host material—furnish typical examples of particu-
carbon nanotube€CN’s), several unique physical properties late composite materials. As such, their anaR/5is*® in-
have been predicted theoretically and detected experimenolves the following general procedure: The effective consti-
tally. Much accumulated information is available in severaltutive parameters of the homogenized composite material are
review papers and monograph$.CN's are classified by the evaluated using various field-averaging algorithms at fre-
dual index fm,n). The two integersm and n represent the quencies below some upper limit, taking the difference be-
vector characterizing the way of turning a planar sheet into &ween the local and the homogenized fields into account as
nanotube, withn=0 for zigzag CN's,n=m for armchair  exhibited by, e.g., the Mossotti-Clausius formaliShA
CN’s, and 6<n#m for chiral CN’s. comprehensive description of the electromagnetic response
Electronic properties of, and electron transport in, CN’sproperties of these composite materials, with the effect of
became the focus of numerous studie. These properties chirality included, was presented recently by Taseatkal >
of CN's are quite different from those of well-known car- (i) Several publicatiol§~2 can be assigned to the sec-
bonic structures such as a planar monatomic graphite sheend main line of investigations. The polarizability tensor of a
(also calledgraphene. Perhaps the most attractive result wassingle CN per unit length was determined by Benedict
to establish a correlation between a CN's conductivity and itet al?? Both 7 and o plasmons in CN’s of different kinds,
geometrical configuration. A carbon nanotube can manifesncluding multi-shell coaxial CN'’s, were considered by
either metallic or semiconductor properties, depending on itdiang® and Yannoulea®t al?* The occurrence of surface
cross-sectional radius and geometric chiral angle. This corelectromagnetic waves at infrared frequencies in nanotubes
relation arises from the transverse quantization of charge cawas predicted and their dispersion characteristics were de-
rier motion and is coupled with the quasi-one-dimensionakcribed by us elsewhef@.
topology of CN’s. Although both lines of investigation are strongly inter-
Several researchers have now begun to focus their attetwined, they are not equivalent. On the one hand, the effec-
tions on electromagnetic processes in Ch!$;??and two  tive constitutive parameters of a particulate composite mate-
main lines of investigations can be recognized. The first igial are indeed dictated by the properties of single inclusions
aimed at wave processes in multi-CN samples incorporatingnd the host material. On the other hand, certain properties

0163-1829/99/6(24)/1713614)/$15.00 PRB 60 17 136 ©1999 The American Physical Society



PRB 60 ELECTRODYNAMICS OF CARBON NANOTUBES: ... 17 137

of inclusions are not manifested by composite materials behexagon side. The transition from graphene to a zigzag CN is
cause of homogenization, and some other properties of conestablished by the substitutigr— z,y— ¢}; while the tran-
posites appear solely due to interaction betweersition from graphene to an armchair CN requires the substi-
inclusions?>2* The electrodynamics of a single nanotube istution {y—z,x— ¢}.
of special interest not only for homogenization of composite
materials, but also because experimental methods are availk. AXIAL DYNAMIC CONDUCTIVITY OF A NANOTUBE
able to separate a single nanotube from others and to mea-
sure its individual properties:2®

In this paper, we model the electromagnetic response TO begin with, let us outline our general approach. On
properties of a single CN through effective boundary condi-2PPlying the semiclassical approximation to describe the mo-
tions. This model is widely applied in microwave electronicstion of -electrons exposed to the electromagnetic field of a
and antenna theory, e.g., for the design of semi-transparefignsversely symmetri¢i.e., 3/d¢=0) surface wave in a
screens and helical sheaths in traveling wave téb&sin a  single-shell CN, a distribution functiof(p,z,t) becomes ap-
predecessor papét,we initiated the application of this ap- plicable. It satisfies the Boltzmann kinetic equation
proach to nanotubes. It entails the replacement of a real
nanotqbe by a pontinuous, infinitely thin, cylindripal surface a—f+eEZa—f+vzﬂ=J[F(p);f(p,z,t)], 1)
on which two-sided impedance boundary conditions for the ot ap; Jz
electromagnetic field are laid down. The surface impedance

tensor is expressed in terms of the dynamic conductivity o angential to the CN's surface, is the projection ofp on

the nanotube. . ;
Three assumptions in the derivation of the dynamic con—the axis of the CNv,=0&/dp,, £=£(p) is the electron

ductivity put restrictions on the applicability of our earlier energy W'th respect to the 'Ferml Ieve], ad(F; f) IS the.
result€® to real CN's as follows: collision integral. The chemical potential of graphite being

(i) In the framework of a spiral model, the real honey- null-valued® the Fermi equilibrium distribution function
comb crystalline structure of graphite was implemented as a

A. Preliminaries

herep is the electron’s two-dimensional quasimomentum

tetragonal lattice. While that assumption is adequate for F(p)= 2)
BC,N nanotubes, its application to CN'’s is not always satis- 1+ ex &p)
factory. kgT

(ii) The effect of the transverse quantization of electron
momentum was neglected. Hence, our earlier results are a
plicable to CN’s with large cross-sectional ra@p that the
dynamic conductivity is close to that of graphgne

wolves only the Boltzmann constaky and the temperature
. In the so-called momentum-independent relaxation time
approximatiorf® the collision integral is given by

(i) The semiclassical approximation was used to de- IE(D):f 1= [ E(p)— f t 3
scribe electron motion, which is applicable only in the infra- [Fpst(p.z)]=vF(p)~f(p.20)], ®
red regime. where v is the relaxation frequency. Conventionally,is

Our aim for this paper was to eliminate the three assumpassumed to be constant and equal to the reciprocal for the
tions, so that results of more general applicability wouldtime of the electron mean-free path; see Jishal® for a
emerge. Therefore, we considered eigenwaves—includingumerical estimate of /for armchair CN’s from micro-
surface waves—in CN’'s and thereby extended the applicascopic considerations.
bility of our model to the optical and the ultraviolet regimes,  Let us setE,=R[E2'("Z~ Y] in the Boltzmann kinetic
wherein electromagnetic processes exhibit pronounced pecequation(1), whereh is the axial wavenumbefnot to be
liarities. confused with the Planck constat) and w is the angular

This paper is arranged as follows: In Sec. Il, the dynamidrequency of the exciting electromagnetic field. Settihg
conductivities of CN’s of different kinds are evaluated, tak- =F + [ 5fe'("#" D] with &f as a small quantity to be
ing into account the actual crystalline structure of CN's, thefound, and keeping only linear terms if , we then obtain
transverse quantization of electron momentum, and the
guantum-mechanical nature of electron motion. Comparison JF eE(Z)
is made with our previous resuft8The equivalent boundary of =—i —
conditions for a single-shell CN are then formulated in Sec.

lll. Corrections due to spatial dispersion are estimated. AThe axial surface current densily=93[J%'("*~ 9] is to be
similar approach is developed in Sec. IV for multishell nano-determined by the relation

tubes with coaxial geometry. An analysis of eigenwaves in
CN’s, predicated on the equivalent boundary conditions, is 2e
provided in Sec. V. Special attention is paid to their attenu- J,= Zf f v,fd%p,
ation coefficients over a wide spectral rarigevering from (2mh)

the microwave to the ultraviolet regimesThe paper con- yith e as the electron charge. Using both foregoing equa-
cludes with a discussion in Sec. VI. tions, we get

Parenthetically, we use a two-dimensio(2D) cartesian
coordinate systemx(y) for graphene; and the circular cylin- =7, fw,h)E? (6)
drical coordinate systemp(#,z) for any CN, with the CN zoTEmT
axis parallel to thez axis. Thex axis is oriented along the wherein

4

—i— — .,
dp, o—hv,+iv

®)
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v,d%p the sake of tractability, now we neglect the effect of spatial
o, w,h)= f f 7) nonlocality by settingh=0 in Eq. (7). Physically, this ne-
27-rﬁ)2 Ip; w— hV +iv glect means that the third term on the left side of Eq.is

discarded, just as we did elsewhé?elhe role of this non-

is the axial conductivity. Aso,, is the axial conductivity locality is discussed in Sec. Il

evaluated semiclassicalljt must be distinguished from the )
total axial conductivityo,, considered in Sect. Il F. B. Zigzag nanotubes

Equation(7) is applied to zigzag and armchair CN’s in ~ The electron dispersion relation for CN’s can be formu-
Secs. I B and Il C, wherein the electron dispersion relatioriated in the framework of the tight-binding model, in strict
&(p) as well as the range of theintegration are needed. For analogy with the counterpart relatity®30-3

o) =+ \/1+4 5(3pr) s(ﬁbpy)+4 §(\/§bpy) 8
(P)=%v cog —-— |08 — co % 8

for a planar monatomic sheet with hexagonal lattice. HereThe range ofp is transformed thus into the population of
the overlap integral yo=2.7 eV for carbon, andb straight line segment®) located inside the hexagons shown
=1.42 A is the interatomic distance in a graphite sheet. Thén Fig. 1(a).

positive and the negative signs in E&) correspond to the The electron dispersion relation for zigzag CN's thus
conduction and the valence bands, respectively. The range tdkes the following form:

the quasimomentum (the first Brillouin zongis confined to

the hexagons shown in Figs(al and ib). \/ 3b APNEDS s
A fundamental distinction between CN's and graphene is€(Pz:S)=*vo\/ 1+4 cog — +4 cos| —
in the transverse quantization of charge-carrier motfo, (10)

which causeg, andp, to exhibit discrete spectra. In order

to derive the d|spers|0n relation for Z|gzag CN’ S_C|ass|f|edon neglectlng interband transitions between states with dif-
by the dual index ifh,n=0)%*—from Eq. (8), we observe ferent values of, Eq.(7) reduces to

that thex andy directions in Eq(8) correspond to the and

¢ directions. The substitutiofip,— p,, py— Py} is imple- ~ 0= — 4imhe’ng
mented in Eq(8) therefore. Simultaneously,, is quantized oA ®,0)= JBmb(w+iv)Fy,
as follows:
M omhi3d JF
2mhs 12 (9) X E f Vg(pzas) &_gd P2, (11)
=— s=1.2,...m. $=1 J—2ah/30
Po \/§mb
wheren, is the surface density of conduction-band electrons
N a) in graphene, and
‘ 2
\M,Sb Fo= f LsthF(p)d p. (12
/ ff)¢ The range qualifier g7 refers to the first Brillouin zone.
In the limiting case of a CN with infinitely large cross-

sectional radiugdi.e., asm—), the spectrum of allowed

zigzag CN: metal for m=3q values ofp, is continuous and the summation owein Eq.
b) (11) transforms to an integration over the hexagon in Fig.
R P, 1(a). Physically, this means that the dynamic axial conduc-
tivity of a CN becomedocally equivalent to the dynamic
// conductivity of graphene, am— . Consequently, Eq(11)
simplifies to
Py
N _ - 242
N 0 0,00=—2ie? no( ioF ffl . Z(p) d
armchair CN: metal for any m (13

FIG. 1. Configuration of the first Brillouin zone fag) zigzag ~ Here and hereafter, we denote{w,0) simply asa,, for
and (b) armchair CN's. notational simplicity.
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FIG. 3. Same as Fig. 2, but for armchair CN’s.

FIG. 2. Normalized semiclassical conductivity,/ o, for zig-
zag CN's as a function ofn (and therefore of the cross-sectional  For finite m, the integration on the right side of E(L1)
radius B; o.=liMpy, ... 05, v0=2.7 €V, 7=3x10 2 s andT  was performed numerically. Figure 2 shows the dependence
=264 K. of o,, on m. Because the radiuR of a zigzag CN is con-

) ) ) ) nected tom by the linear relatiorR= J3mb/275, the curves
The integral in Eq(13) can be analytically estimated as- i, Fig. 2 really present the dependenceogt, on the cross-

ymptotically with respect to the large parameter . , . < ~

= vo/kgT, taking into the account that the proximal regions Zﬁcgggrﬂprt?)gg?aﬁi I\Clv%ri?:as:\;r@e 33\/?,2)”’ xft%iﬁgiogs;isby
the asymptotic formuld17), which corresponds to the dy-
Ghamic conductivity of semimetallic grapheeThe fact that
CN'’s are metallic am=23q (with q as an integéf?> mani-

fests itself in sharp discontinuities of,, at those values of

yob m. Let us note that ah=3q, two of the integration lines for

7 |p—pel (14)  the right side of Eq(11) go through the Fermi points, result-
ing in the drastic growth of the numerical value of the inte-

is applied, withpe as the constant quasimomentum corre-gral. At m#3q, o, lies in a range typical of semiconduc-
sponding to the particular Fermi point. tors.

The rest of the integration procedure is as follows: The The dynamic conductivity of metallic CN'’s is easily esti-
idea is to pass from the integration oyeto the integration ~mated analytically for smalh. The integration in Eq(11) is
over £ and ¢, extending the integration over<QS<.. Us-  approximately accomplished under assumption that the main
ing Egs. (2) and (14), and taking into account thad?p  contribution is provided by the lines passing through the

called Fermi points (where £=0). By analogy with
Wallace3! in the vicinity of these points the approximation

3
Ep)==

= (2h/3by,)%EdEd ¢ as per Wallacé! we find Fermi pointss=m/3 ands=2m/3. Using the simplest ap-
proximation for the dispersion relation in the vicinity of the
2 OF Fermi points, such as E@l4), we transform the integration
J’ J L thVZ(p) gd p over p, to that over€ and carry it out over the range<(¢
S <oo; thus,
_ 1 fx &de f2w 2 4
= 2T ; g 1), S pd¢ s J’Zﬂ-ﬁ/Sb ous) aF(pZ,s)d
COST DT = | i P 2 Pz
=—2mkgTIn2. (15 2mh IF(p,,m/3)
E4J Vg(pz,m/3)+dpz
In the same fashion, from E¢l2) we get 0
) 4ar [ wh\? z—ﬁﬂfm ae 2—370b (18
Fo=(2mh)Nol2= 55| 1| - (16) 2% kgT o I3 ho
27\ \b cosi| ——
2kgT

In view of the foregoing equations, the estimate

After using Eqs(18) and(16), the result
eb

h

~ . 27In2
g,7~=I
zZ 772

2 2
A 2In2 e“kgT
Yo No=i B 17)

mhe o+iv

otiv B . 2\/§ezyO
0,7~

: . _ ———, m=3q, (19
easily emerges in the limih— . mmh(w+iv)
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emerges. The estimates given by EtP) are in reasonable
accord with exact values fan<60.
Let us compare Eqg17) and (19). Both show identical

frequency-dependences, but not temperature-dependence:sm)
Equation (19) contains only one temperature—dependentmus

quantity (viz, the relaxation frequency), whereas Eq(17)
includes an additional linear dependenceTorAs per Eq.

(19), o,, depends on the radiuR (via m) for small R; but

Eq. (17) clearly shows thair,, is independent of the CN
geometry for large-radius CN'’s.

G. YA. SLEPYAN et al.
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C. Armchair nanotubes

In order to evaluate the electron dispersion relation for
armchair nanotubes—classified by the dual indew,n
—from Eq. (11), the substitution{p,— p,,py— P}

t be carried out with

27whs
Ps=3mp: S=L2...m (20)
accordingly,
|
™S \/§pr \/§pr
—|co +4 cod . (22)
m 2h

E(p;,S)=%x v, \/1+4 cos(

Following the procedure described in Sec. Il B, E@). re-
duces to

27hl\3b

Axhie®n, ﬁf
3mb(w+iv)Fo §51 J —24u173b

Oz7—

) IF
vz (P, .S)—ﬁgd P,
(22

ath=0 for armchair CN’s.

ForR=3mb/27 being small,?rzz is analytically estimated
from Eq.(21) by considering only the contribution of the line
passing through the Fermi poist=m. Further manipula-
tions, analogous to that for E¢L8), lead to the estimate

0,7~

2¢e?
= (23)
mmh?(w+iv)

for armchair CN's. Let us note that E®J3) differs from Eq.
(19 only by the factory3. However, unlike Eq(23), Eq.
(19) is applicable at any value a@f below a certain limit.

Figure 3 shows the plot of,, versusm calculated nu-
mericallyvia Egs.(21) and(22). As m—o, the conductivity

applied axial electric field induces the current to flow along a
helical line. The axial and azimuthal components of the sur-

face current density are given, respectively, By= o, E2

andJj=o0,,E2 whereo, is the chiral conductivity of the
chiral CN evaluated semiclassically. A first-principles nu-

merical simulation ofTrd,Z was carried out by Miyamotet
al.,r®> whereas phenomenological modeling was presented by
us elsewheré*!® Both approaches led to the same conclu-
sion that chiral conductivity is rather small when compared
to the axial conductivity. As a result, the current chiral angle
y=tan‘1(JZ/J¢) is close tow/2, but that conclusion is in-
valid when nonlinear effects come to pl&y.

The approximate analytical expression

~ A 2\/§62y0

027~=I -
k2 JmZ+mn+n(w+iv)

is available for metallic chiral CN’s (®+n=23q),%? using a

method similar to that for deriving Eq&19) and(23). Equa-
tion (24) reduces to Eq(19) for n=0 and to Eq.(23) for

m=n. Equation(24) and the relationr,,=0 describe elec-

(24)

of armchair CN's approaches the asymptotic value for zigzagrodynamic properties of chiral conducting CN'’s, in the sim-

CN’s. An analytical estimate of the right side of E@2),

plest approximation. The evaluation of,, for chiral CN’s

carried out by the method presented in Sec. Il B, substantiy, arpitrary indicesm andn has to be carried out numeri-

ates that conclusion. Am— o, Egs.(21) and(22) reduce to
Eqgs.(8) and(17), respectively. This is in agreement with the
in-plane conductivity of graphene being isotroptc.

At finite m, the behavior ofs,, as a function ofm is
drastically different for zigzag and armchair CN’s. Indeed,

cally from Eq. (7).

E. Comparison with the spiral model

Let us now compare our obtained results with the predic-

unlike for zigzag CN's, the dependence is monotonic forfions of the phenomenological spirdielicoida) model of
armchair CN's. Physically, this follows from the fact that Romanov and Kibi€ we had used earli¢f:"In this model,

armchair CN'’s are conductors at any while zigzag CN'’s
can be either metallic or semiconducting. FoK 50, the
approximate Eq(23) fits well the results computed from Eq.
(22).

D. Chiral nanotubes

A fundamental feature which distinguishes chiral CN'’s

a CN is treated as a periodic chain of carbon atoms strung on
a helix withb as the period, and the real honeycomb crystal-
line structure of graphite is ignored. But, owing to its sim-
plicity, the spiral model is analytically tractable. In particu-
lar, this model was applied to analyze electron struéfure
and to describe electron transg8iin CN's.

The linear dynamic conductivity of a chiral CN was de-
rived using the spiral model by us earl€i_et us now com-

from zigzag and armchair CN'’s is in the manifestation of thepare that resultin the achiral limi} with Eq. (17). In the

so-called chiral currentt**1°In a chiral CN (0<n#m), an

achiral limit, the helical atomic chain is transformed to a
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periodic system of coaxial atomic rings with the same dis-dispersion relation. The multiplier 2 is omitted from the ana-
tance between the atoms in a ring as between two adjacey of Eq. (30), becausa, in the spiral modéf is the den-
rings. In the tight-binding approximation, the electron disper-sity of conduction electrons, whereagaccounts for charge-
sion relation for this structure is given by carriers of both signgi.e., holes and electropnsSimple
manipulations then yield

Ep)=A|2— cos(p—zb) —cos{pib (25 -
h ho|] no=kgT/mb?A. (32
whereA is the overlap integral+ 2 eV for carbon. Both p, Therefore. we derive the ratio
and p,, vary arbitrarily within the first Brillouin zoné® as ’
the transverse quantization of electron motion was not con- No  27yo\
sidered earliéf). Equation(25) allows exact evaluation of —=—, (33
the integrals in Eq(7), after settingF= exd —&(p)/kgT], Mo 2m°A
v=const, anch=0. This results if? so that Eq(28) is rewritten as follows:
- eb|? npA 13(A/kgT 2
gzzzi(7 od 1.4/ ), (26) z;nziﬂ(i) ﬂno. (34)
w+iv lg(A/kgT) 272\ h | wtiv

wherelg(-) andly(-) are modified Bessel functions, ang  The right sides of Eq¥34) and(17) differ only by the con-

is the surface density of free electrons in the conductiorstant factor 2 In 2. This remarkable coincidence strongly sug-

band. gests that the spiral model adequately describes the conduc-
WhenA>kgT the main contribution to integral in E(7)  tivity of large-radius CN’s, and can be useful for qualitative

comes from the neighborhood of the poipt=0 where  ggtimates ofr,,.

&(p)=0. In this region, the approximation At this stage, let us emphasize an important fact: for the
) most part, the spiral model adequately reflects the properties
&(p)= ﬂ|p|2 27) of doped nanotubes such as BC while the foregoing hex-
242 ' agonal dispersion relations hold for pure carbon nanotubes.

Therefore, this section provides a comparison of the conduc-

similar to Eq.(14), turns out to be valid. Then, applying the ity of doped and carbon nanotubes with different structure.
method used for the derivation of E(L7), we obtain the

expression F. The role of interband transitions

2 ﬁoA Consideration of interband transitions entails the aban-
(28 donment of the semiclassical approximation, and the Liou-
ville equatior?*® for the density matrix must replace the
As the conditionA>kgT holds true at room temperature, classical Boltzmann equation. Alternatively, in order to find
[1(A/kgT)=1y(A/kgT) and Eq.(26) reduces to Eq(28). the conductivity of a single CN, we use the rigorous
Now we can compare Eq§l7) and(28), taking into ac- quantum-mechanical treatment of effective permittivity of a
count thatny#n,. The reason for this inequality is that, by CN-based composite material, as reported by Tasti'®
using the approximate dispersion relati@) for the spiral  and Lin and Shung? An expression for the axial conductiv-

model, we effectively substitute a square lattice for the actualfy of a single CN then emerges easily. Following Tasaki
hexagonal lattice. et all® and a previous paper of ouldwe get

o,,—=1 —.
2z ) ot+iv

i

The rationy/n, may be evaluated using a method due to 0= wa, )2 TR= —iw[ e, w)—1)/47Spr, (35

Wallacée™ as follows: By definition,
wherea,, is the axial polarizability of a single CN, () is

(" the axial component of the permittivity tensor of the CN-
No= 0 N(EF(E)E, (29 based composite material; whids the surface area of a CN
and pt is the volumetric density of CN's.
where On using the known expression ef/ ), '8°the relation
dx Oy= 0yt A (36)
= —_— Y4 zz
N(E) ZJ lgracy €] (30

is obtained for theotal axial conductivity. Hereyr,, is the
is the density of states] is an infinitely small element of semiclassical version evaluated in previous subsections,
an isoenergetic surface, and the Fermi function definegvhile
jointly by Egs.(2) and (14) is used. The integration in Eq.
(30) is carried out over an isoenergetic surface to yield A ie’(w+iv) f
o=—
No= 2272\ 2. (31) 2m*hR 5 1

Analogous expressions may be written fog with the XF[—E(pZ,s)]—F[S(pZ,s)]
Boltzmann distribution a& (&) and Eq.(27) as the electron W2 (w+iv)?—4£2%(p,,s)

{0292
StBZg( pZ ,S) CV( pZ !S)

dp, (37
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FIG. 4. Frequency-dependence of the total axial conductivity ofzagFlc?,\'l 5. Same as Fig. 4, but for the (23,0) semiconducting zig-
the (9,0) metallic zigzag CNy,=2.7 eV, 7=3%X10 ¥ s, andT '
=295 K. Axial conductivity is normalized bg?/27#. o ]
ures. The initial decline ofi[ o,,/>0 with increasing fre-
describes the contribution of transitions between the condudgiuency in Fig. 4 is certainly due to free charge-carriers, but
tion and valence bands. In the last expressify, is the the same feature is absent from Fig. 5 because of the low
matrix element of the longitudinal velocity, which can be density of free charge-carriers in semiconductors. As the fre-

approximately evaluated by the formtfid’ guency increases][ o,,] intersects the zero line and be-
comes negative. This change in sign is due to interband elec-
|6yl =% I VHISH 120H 15/ 9p, ]| (38) tronic transitions. Optical resonances appear with further

) ) o increase in frequency, the frequency of the lowest resonance
with Hq5(p,,S) as the matrix element of the Hamiltonian of decreasing as the CN radi grows. For the sam& a

electrons in a hexagonal lattice given by Lin and Shtfhg.  semjiconducting CN resonates at a lower frequency than a
In the microwave and the infrared frequency regimes,netallic CN.

wherefi o<y, the first term on the right side of E(B6) is Let us end this section by analytical estimate for the low-

dominant—which justifies the use of the semiclassical apfrequency edge of the optical transition band. Such an esti-

proach in those regimes. As the frequency increases, the Sg¢rte can be obtained from the general approximate relation

ond term catches up with the first one in magnitude and thegy; the density of electron states derived by Mintmire and

becomes greater. Neglecting the contribution of freeyhite38 The ocation of the first singularity on the density of

charge—carrjer’@ and assuming —0, we then recover the gtate curve calculated by théfrallows one to conclude that
results of Lin and Shundf in that case, the first term on the

right side of Eq.(36) is rejected, whileF(—¢&)=1 and

F(£)=0 are set in Eq(37). b 3yob/2R, metallic CN’s; @)
In the high-frequency regime, wheréi §)?>4v3, Eq. vob/2R,  semiconducting CN’s.
(37) yields
This finding correlates well with the results presented in
ie’G Figs. 4 and 5 for nanotubes of different radius and different
o= W2otin) (39  type of conductivity. The fact that the estimatd) gives the
correct values at the low-frequency edge of the optical tran-
where sition band shows its usefulness and justifies its applicability

to nanotubes of different types.

2
{F[—&(p;.9)]

1 '“f | 6cu(P2,S)|
1

G:
2m2hR =1 Jistez E(P2,S) Il. EFFECTIVE BOUNDARY CONDITIONS
FOR CARBON NANOTUBES EXPOSED TO SPATIALLY
—F[&(p,,s)]tdp;. (40) NONHOMOGENEOUS FIELDS

Thus, on comparing Eq$39) and (13), we see that the The spatial nonhomogeneity of electromagnetic field
frequency-dependence on the right side of &§) turns out  leads to the dependencefafn z that is reflected by the third
to be similar to that the semiclassical term. This implies thaterm on the left side of Eq1) as well as by the dependence
the electron energy in the high-frequency field exceeds sigef o,, on h in Eq. (7). Let us now derive the boundary
nificantly the interband transition energies so that the motiorconditions for electromagnetic field on a CN'’s surface, as-
of charge-carriers becomes quasi-free. suming the spatial nonhomogeneity to be small. This as-

The plots in Figs. 4 and 5 represent the characteristicumption allows us to expand the denominator of the inte-
frequency-dependences @f(w) for two zigzag CN’s, one grand in Eq.(7) into a power series with respect o Only
of which is metallic while the other is semiconducting. Theterms of even powers contribute to the integration guer
contribution of free charge-carriers { o,,] is dominant at  Restricting further to the quadratic term with respedhtave
low frequencies, but is too small to be evident in both fig-obtain
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TABLE |. Magnitude of the spatial dispersion parameitgffor different zigzag CN's.

CN index (17,0 (25,0 (31,0 (43,0 (100,0 (250,0 (39,0) (e=,0)

To(clve)? 0.15 0.25 0.31 0.35 0.51 0.67 1.0 0.75

2¢?
_ T i2p | H Ls—H 49
o, w,h)=0,{,0) I(27Tﬁ) (i) JJ Zﬁpzd |m ( slo=rio~Hglp=r-0) (49

(42) (in Gaussian units so that the boundary condition

whereo,(w,0) was derived in Sec. II; equivalently,

To 9
im|1+ -9 7 H
o_= o _2¢¢ N 2 M s iy az2) Helemres ™ Help-ros)
2=l 0,08~ 2 : 3jf z(;_d
(27h)° (w+iv) P, e
(43 =< 0,6 ,-r (50)

The second term on the right side of E42) is small. There-
fore, we substitutd€?=J% 0, {w,0) in the second term on
the right side of Eq(43) to get

emerges from Eq(48). In addition to Eq.(50), E, must be
continuous across the CN surfacd,e.,

5 im (E,|,-r+ s~ EZl,-r-5=0. (51)
_ 5—0
3=0,{0,0E+ ————T037, (44) . .
k*(1+iv/w) Equations(50) and (51) constitute the complete system of

boundary conditions for CN’s exposed to an axially polar-
ized electric field.
When the electric field is transversely polarized, the

wherek= w/c is the wave number in free space, and

~ boundary conditions
- __ A2 A2
lo ffvzagd fva%,d } . (45) .
im (Eyl,-r+ 5~ Eglo-r-)=0,
Applying for zigzag and armchair CN’s—with the respec- o0
tive electron dispersion relationd0) and (21)—we trans- lim (H —H -0 52

~ (p s) must be valid at the CN surface in the simplest approxima-

lo=— =2 E J Va(p,,s) — 2 dp, tion. The second of Eq$52) reflects the neglect of the trans-
verse current. Indeed, Benedéttal 2 showed that the trans-

1 verse polarizability of any CN is much less than its axial
(46) polarizability, thereby allowing us to neglect the transverse

surface current density. Parenthetically, EG0) and (52)

are similar to the two-sided impedance boundary conditions

for semitransparent screens in the microwave redfine.
Analysis of the physical meaning of Eq&0)—(52) is in

order. Though the CN surface possesses a periodic crystal-

line structure, Eqs(50)—(52) incorporate only constant co-

, (47)  efficients(i.e., o,, and 1), and are devoid of any periodic
functions. This is because the technique of deriving the three
equations is equivalent to the averaging of microscopic fields
over an infinitesimally small volume. In accordance with Eq.
(49), the Maxwell equations with boundary conditiof&®)—
(52) define spatially averaged currents and electromagnetic
fields induced by the currents. These fields are identical to
'fie actual ones at a certaiof the order ofb) distance from
the CN surface. For that reason, the averaged currents and
the actual currents may be treated as equivalent. The tech-
nigue of macroscopic averaging is similar to one of introduc-
- 5 ing constitutive parameters for bulk media, but differing in
It lo 4 JZ:Tr E 49) that the averaging occurs in boundary conditions, but not in
T K(1+ivie)? 922 field equations. Correspondingly, the averaging is carried out
over the 2D cylindrical element of CN surface, but not over
from Eq. (44). But the surface current density a 3D element.

dF(p,,S)
P> ng(pps)&—gdpz
S

The integrals in Eq(45) may be estimated using the method
applied in Sec. Il to determine,(w,0). Then, am— oo,
the right side of Eq(46) reduces to a constant; i.e.,

~ 3(v,: 2

C

IO4

wherevg=3vy,b/2%4. For metallic CN’s with not too large
m, the estimatd ,~10~° is given by Eq.(46), after using
Eqg. (14) and summing over only the lines intersecting the
Fermi points. In other cases, numerical evaluation of the in
tegrals must be carried out. Some computational results a
presented for zigzag CN’s in Table I.

Recalling the connection betweds, and E2, etc., we
formulate the dynamic conductivity equation




17 144 G. YA. SLEPYAN et al. PRB 60

The change-over from the semiclassical model to thelhus, a multishell CN can be treated as a single shell CN
guantum-mechanical model does not affect the boundarwith an effective radiusand effective parametergiven by
conditions. The only changes necessary are the substitutiofi&y. (55). The distinctions in the electromagnetic response
7,0, andTy—l,. Here, o,,is given by Eq.(36), the  properties of different shells become inconsequentialnfor
coefficient >1, providingog,'=No{) andl§''=1§".

K2 072€||(w'h)‘ V. SURFACE ELECTROMAGNETIC WAVES

~ H 2
lo= Z[GH((,0,0)—].] Py (1+iviw) (53 IN CARBON NANOTUBES

‘h:O A. Dispersion equation
appears from the quantum-mechanical treatment, and As an example of the application of the effective bound-
€(,n) 'is the axial component of the Ehrenreich-Cohengary conditions derived in Sec. Ill, let us emulate the prede-
tensor’ cessor papé? to examine the propagation of surface waves
along an isolated, infinitely long CN, the surrounding me-
IV. EFFECTIVE BOUNDARY CONDITIONS dium being free spacé.e., vacuun. After neglecting the
FOR MULTISHELL CARBON NANOTUBES chiral current, the electromagnetic field of such a wave is

o ) expressed in terms of the electric Hertz vediyras follows:
Present-day technology allows fabrication of multishell

CN’s of many different kind$.We restrict the analysis to E=V(V-II,) + K11, (56)
one of the many possible models, which was proposed by
Lin and Shung. In this model, a multishell CN is thought of H=—ikVXII,.

as a set oN coaxial cylindrical single-shell CN'’s with inter- . .
shell distance between 3.35 and 3.40°°&Each shell is The electric Hertz vector has only the axial component and

characterized by its own dual indem(n) which is deter- its zdependence is in the form of a traveling wave. Hence, it

mined by the shell radius. Thus, the geometrical chiral anglé&® represented by
changes from one shell to another. Most multishell CN’s

exhibit metallic properties because they contain single shells .= Uz‘
of the armchair typé. I («R)K(kp)

The basic assumption of the Lin-Shung model is the neypere A is an amplitudey, is the unit vector in the axial
glect of intershell interactions. This implies that She"'to'direction,h is the guide wave number to be determinki
shell jumps of electrons are forbidden, and an electroqin integer,f(:\/ﬁz—_kz while 1,(-) andK,(-) are the modi-
moves over a particular shell as if all other shells are absen;red Bessel function%l.,The upper and the lower lines in Eq.
Assuming these conditions to be valid, we can impose th%57) correspond to the regions<R andp>R, respectively
boundary condition50) on each shell, while ensuring that Equations(56) and (57) automatically satiéfy the continﬁ-

T2z z_andlo change from shel_l to shell. Thus, in order to in- ity condition for E, at p=R; hence, all we have to do is to
vestigate the electromagnetic response &f-shell CN, we fulfill Eq. (50). Substitution of Eqs(56) and (57) into Eq.

will have to separat®&+1 partial regions and impose Eqgs. (50), followed by the use of the Wronskian of modified

(50) 6.‘”"(51) atn cylindric.al boundaries. This will lead to. Bessel function$! leads to the following dispersion equation
2N simultaneous algebraic equations, which can be quitq it respect tox

cumbersome to handle.

|KKMKKKR1dmdM’ (57)

However, a simplified approach is described in Appendix |2 ic 1+ (klk)?
A. This approach is applicable for sufficiently thin CN'’s of (—) [(kR)K|(kR)= - : 20|
large radius, i.e., when the CN thickness: Ry,— Rin; is K 4mkRO2,| © (1+iviw)

much smaller than the internal and the external radius of the (58
chosen CN. Suppos&l=2 and the parameterk® and
o (q=1,2) are known. If the illuminating field depends as
exp(hz) on z Eq. (50) across each interface reduces to the
second relations in Eq$Al) and (A2) with

Equation(58) is general in its applicability: It is appli-
cable to single shell as well as multishell CN'’s, whether the
surface conductivity model is semiclassical or quantum-
mechanical. For a multi-shell CNR®'", ¢¢!", and I must

5 be used in lieu oR, o,,, andl,, respectively, in Eq(58).

1+ 1§ . g=12. (54
K2(1+iviw)? ° )4770(2? a 54 B. Attenuation

gq:

Let us consider surface waves in the infrared regime
where the frequency of the illuminating electromagnetic
wave significantly exceeds the relaxation frequefiay., »
> ), and the contribution of free electrons to the conductiv-
ity is dominant. The attenuation coefficient is small in this

N N N regime (10 °<kb<10 %) and can be easily estimated.
eff_ 2 SO jeffo 2 (@) (@) 2 o quards_ that e_nd, let us ut_iIize _the fact that the slow-wave
T = T A B coefficient in the infrared regime is small; i.¢h|?>k? and
(55 |k|?>>k2 Then, with

We then consider arequivalentsingle-shell CN of cross-

sectional radiuRR®''=(R;+R,)/2, and apply the boundary

conditions(A1) with ¢&; replaced by, defined in Eq(A8).
The same approach may be adopted wNRen2; then,

g
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R=«R oz(v I—(kR)Z—HOI?Z é: —ic -
’ (kR)2—1,R?’ Amo,(1+iviw)’
(59
Eq. (58) is rewritten as follows:
g@:w:mg 1+i—a(®)|. (60
1—1,R?/(kR)? w

In the free-electron approximation, the parameteis real

and positive valued, while the contribution of resonant tran-

sitions makest complex valued.
Since we assumed that> v, the contribution from elec-

tron collisions can be treated perturbativéfyLet R=R(®)
+ R, whereR(© is the solution of Eq(60) for »=0, and
SR is a small correction. Expandin@(ﬁ) into a Taylor
series and taking into account th@tR(®)) = kRE, we obtain

SR=ikRE&v

w—C

-1
< ] a(R©). (62)
R=R(0)

Writing the guide wavenumber d&is=R[h]+iJ[h], we then
get the attenuation coefficient

-1

RO .
o R(O))

dQ

dR

EQ( ﬁ(O))

j[h]zi)‘i[h]R2 @

ﬁz—h(o)]
(62)
from Eq. (61).
When 1,=1.07x10"°, for instance, Q(R)=R/2 and
dQ/dR=1/2 for R<0.1. In this case, the simple ratio

h] v

Rh] ©

(63

results from Eq(62).
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FIG. 6. Frequency-dependence of the complex-valued slow-
wave coefficieni3 for an azimuthally symmetric surface wave in a
(9,0) metallic zigzag CN. Input parameter are the same as in Fig. 4.

wave. This cut-off respects to the excitation of a one-
dimensional acoustic plasmon in Fermi liqditl.

We turn now to the discussion of numerical results ob-
tained for finite v. The influence of interband transitions

makesé both frequency-dependent and complex-valued. Al-
though knowledge of the relaxation frequencys now nec-
essary, the available values of the relaxation timel/v
vary significantly from one anoth&r>43-4A theoretical es-
timate for armchair CN’'s is7T~1.4x10 12 s at room
temperatur&*® which is in good agreement with the results
of dc measuremerfts (r=3%x10"% s) and microwave
measurementd (r=10"% s). Chauvetet al*® reported the
value =10 13 s from electron spin resonance experiments,
whereas the estimate=4x10 '* s was used by Ma and
Yuar”’ for zigzag CN'’s. Finally, the valuer=2x10" 4
s—which is the relaxation time in ordinary graphite—was
used by Tasakét all® for chiral CN’s. In the present work,
we setr=3x10 1?s,

The frequency-dependences of the slow-wave coefficients
of a ¢-independent wavel £0) are depicted in Figs. 6 and

Analytical estimate of the attenuation coefficient appears; for a metallic CN and a semiconducting CN, respectively.

to be impossible in the low-frequency regime<v). The

In the low-frequency regimed(< ) we havekb<<10"7, so

same situation also holds for the optical resonance regimepat93[ 8] andJ[ 8] are comparable in value. This indicates

whose lower edges is determined from E§) and whose

that guided surface wave propagation is totally impractical in

bandwidthZiw~6y,. In these regimes, the transcendentaline |ow-frequency regime; but that does not mean that CN’s

Eqg. (60) has to be numerically handled in the complex
plane, as we now discuss.

C. Modes with polar symmetry

As the complex-valued slow-wave coefficieBt=k/h is

conventionally used for surface waves in the literature on

microwaves, we change our emphasis now fioto 5.

Let us begin by inferring the general characteristics of B

surface wave propagation from E@O) in the collisionless
limit »=0. Equation(60) has only one real root for a given

[, i.e., there is only one surface wave possible with a particu-

lar polar symmetry. Sincé>0 in the free-electron approxi-
mation, the conditionv=0 requires the denominator in

Eq. (60) to be positive. That condition holds true when

R<kR/\T,, thereby yielding3>\T,. The condition g

are weak conductors of low-frequency electric signals. How-

108
1: Re(B)

CN (23,0)
2: -Re(B)Im(B)

100

FIG. 7. Same as Fig. 6, but for the (23,0) semiconducting zig-

= \/T_O therefore defines the cut-off frequency for the surfacezag CN.
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ever, it is essential that the condititnl o<1 holds true at istics are similar to those for axially symmetric surface
w=v for typical CN lengthlcy~1 wm. We conclude that waves; and, in particular, strong retardation must be men-
CN’s conduct(low-frequency electrical signals like electric tioned.
circuits(i.e., unaccompanied by wave procegsasich is in The waveguiding properties of CN’s should be compared
accord with general electromagnetic thefty. to those of structures—such as metal spirals, dielectric rods
Weakly attenuated surface waves appear in the infraregind two-wire transmission lings—that are commonplace in
regime (10°<kb<10"°%), so that metallic CN's appear the area of microwaves. For instance, in a dielectric rod, a
very promising for experimental research on surface WaVueakly retarded surface wave exists wita 1 at low fre-
propagation. Figures 6 and 7 show that the retardaipA]  guencies, with the field structure resembling a slightly dis-

in a semiconducting CN is smaller than in a metallic CN byqteq plane wavé! In contrast, that surface wave cannot be
an order of magnitude in the chosen spectral regime, but thﬁ)und in a CN

respective values di[ 5] are comparable. This allows us to In order to elicit the difference between two these struc-

conclude that the effect of attenuation in semiconductin . ; .
CN'’s far exceeds that in metallic ones. Furthermore, sinc%ure§' let us turn to dispersion equati@d) at|>1, assum-

semiconducting CN's are characterized by large retardatiofd R<1. As the approximatior(R)K(R)~(2)"* then
(2x 10 3<R[B]<2x 10 2), the electromagnetic field is holds true, the solution of Eq60) takes the form
strongly localized in the vicinity of the CN surface. This

means that surface wave propagation in a semiconducting

CN is very sensitive to shape deformation. Finally, the phase

velocity and the slow-wave coefficient are independent of

frequency in the infrared regime. Hence, a infrared wavevhich yields

packet will propagate in a semiconducting CN without dis-

R?2=2IkRE(1+ 21 &l /KR), (64)

tortion, a property of importance for potential applications of < -1
CN’s in infrared devices. 2= ﬂ (65)
The situation changes dramatically in the spectral regime 1+2|“g|0/kR '

of optical resonances. Attenuation substantially increases;

and both attenuation and retardation manifest sharp oscilla}:or a metal spiral and a dielectric rod, the same expression

tions at resonant frequencies. holds, but with the second term in the denominator on the

Ir&lthe uI];traviOI?t and the soft x-ray regime?st(;0.0l), right side of Eq.(65) being negligible compared to unity.
conditions for surface wave propagation again beComes aRyance retardation in a metal spiral or a dielectric rod is very

propriate: attenuation significantly decreases and frequency; i But the second term is very strofig., >1) for a CN

dependence g8 becomes muted. Clearly, that is so, becausednd retardation is therefore high.

mainly free electrons are responsible for the conductivity in Let us now move on to a system of two parallel CN's
theHuItraV|oIet/sof(';_x£_r ayt E]‘cnd th;mf_rafred :jeglm_es. ¢ separated by the distanbg, which is the nanoscale analog
owever, as distinct from the nfrareéd regime, SurfaCeq¢ o \yell-known two-wire transmission 1iné$.Guided

wave p_ropagatlon n the uItraon_et and Fhe. soft x-ray re- ropagation of transverse electromagn€fiEM) waves is a
gimes is characterized by essential qualitative peculiaritie haracteristic of such lines. However, as different from con-

that qc.) not follow from _the presented model. First, resonantentional two-wire transmission lines, a TEM wave cannot
transitions corresponding ter electrons appear in the guided by the two parallel CN's because of strong retar-

spectrunt.’*! .Second, ditfraction by crystalline lattice O,f dation. This may be proven by examining the simplest anti-
CN’s comes into play because, owing to strong retardation,

SN . symmetric guided wave in the two-CN line, assumibng
the surface wavelength is significantly less than that in free_ 5 110 dispersion relation for this wave is obtained by the
space. For that reason, narrow forbidden gaps arise in t

. l . .
soft x-ray region. These gaps are centered at frequencies g@_ethod of images, which leads to Eq(60) with

termined by the Bragg conditiam(u,- ;) = N, whereey is
an arbitrary lattice vector an is an integer. For instance, . R214(R)
the Bragg condition readily shows that the center frequencies QR)= o7
of the first gap for armchair and zigzag CN’s are given by the 1=Ro/(kR)
relationskb= 7 3//3 andkb=273/3, respectively. Let us .
also note that, as a CN is electrically large in the ultravioletAssuming the conditioiR<1 to be satisfied at low frequen-
and the soft x-ray regimes, macroscopic averaging of theies, we come to Eq(65 where the substitution 12
electromagnetic field must be abandoned as also the effective In(b,/R) must be performed. The retardation then is quite
boundary conditiong56). Boundary conditions for unaver- large, although it is much smaller than the retardation of a
aged fields will be analogous t66), with the axial conduc- surface wave with=1 in a single CN.
tivity o,, a periodic function of spac¥.Detailed investiga- Finally, let us consider the propagation of fast guided
tion of the contribution ofr-electrons and diffraction by the waves in hollow metallic waveguides. Such waves also do
crystalline lattices of CN’s are beyond the scope of thenot exist in single nanotubes even at high frequendd® (
present work. ~1), due to the high transparency of CN’s. The parameter
&, involved in boundary conditiofAl) ranges in value from
D. Other modes 10% to 1 for realistic CN’s, and corresponds to the trans-

Axially nonsymmetric(i.e., | #0) surface waves can also mission coefficien{t|~1 in Eq.(A7). Consequently, a CN
propagate in CN’s. Qualitatively, their dispersion character<an then function only as a highly leaky waveguide.

[Ko(R)—Ko(b,RIR)].  (66)
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VI. CONCLUDING REMARKS Ay a)
In this paper, we presented analytical expressions for the
axial dynamic conductivity of CN’s, with ! &
(i) the actual hexagonal crystalline structure of carbon ac- 6 5 x
counted for, and I 0
(i) both semiclassical as well as quantum-mechanical 6

analyses employed.
The derived expressions were correlated with computa- i Z
tional results for different types of CN'&igzag, armchair, y b)
chiral), both metallic and semiconducting. Using the devel-
oped theory of linear conductivity, we set up effective
boundary conditions for the electromagnetic field across a
CN surface. We applied these conditions to enlarge our un- I X
derstanding of the electrodynamics of single CN.
Our formalism can be utilized for consideration of diffrac- i 0 Son

t!o_n problems in different types of na}notub?s, viz., CN_,S of FIG. 8. Schematics of the boundary value problems involving

f|n|te_ length, bent a_nd corrugated CN's, CN S_W'th JunCtIonS’the transmission of a perpendicularly polarized plane-wave incident

multi-shell CN's with hexagonal cross sectibhetc. The (a) two parallel impedance planes, afi an equivalent imped-

derived effective boundary conditions can also serve as thgnce plane.

basis for description of interaction of CN’s with beams of

eleggg?ﬁviggg%tggrr] c(:)?agrl?iggdp:;trl%ise. wave propagation ex:[hose _of guided sur_face waves |n.CN’s,_ and we cor_mlude that
a CN is an electronic waveguide in the infrared regime. CN'’s

emplifies the application of the formalism developed, and 'tas quantum wires of a special type have been treated by Tans

is of significance in its own right too. Such waves can beet al;**and our comparison substantiates the validity of their

excited by directing laser or electron beams along a CN axis; h
These surface waves are characterized by strong retardatiGh oo - . : .
The interior of a CN can be fillddby a medium with a

and, consequently, have large field gradients in the trans'ermittivity different from that of free space. This can impart

\r;e;iﬁg';'éxgrgLane6'23;2%333Itéf?ggthasnugf?ncae V\éaevi? mtljesr- ew properties to guided surface wave propagation in CN's.
9p Y Finally, surface wave propagation can be controlled by ex-
est, therefore, for laser-control movement of small

$52.53 ternal quasielectrostatic and quasimagnetostatic fields, which

patA“CL%hparison of the properties of the guided surfaceWOU|d alter the surface impedance and, therefore, the
waves considered with those af plasmon@2! yields re- waveguiding characteristics of CN’s. That exciting prospect

: ) . will be reported in detail separately.
sults of some interest. In the strong retardation regime, P P y

V(Vﬁe) dominates ovek?I1, in Eq. (56) for the electric
field. Neglecting the weaker term and making the substitu- ACKNOWLEDGMENTS
tion k~h in Eq. (50), we see that the electric field is de-
scribed by a quasistatic potential, which is the same ag for
plasmons. Thus, the guided surface waves investigated in t
present paper and the plasmons model the same type of
electronic excitation in CN'’s.

However, the results of the two models are not completely APPENDIX A
equivalent. Jiarj and Yannoule&$ used a hydrodynamic ) )
description of the motion of charge carriers, thereby disal- We consider two different boundary values problems and
lowing relaxation processes. As a consequence, wavenur§Stablish their conditional equivalence as follows:
bersh of 7 plasmons can vary in a wide range, and, in
particular, can be small. Our model incorporates a more ad- 1st boundary value problem
equate kinematic theory that involves attenuation too. It fol- ) .
lows from our theory that relaxation processes make the L€t & perpendicularly polarized plane wai,=E, =0,
smallh regime (weak retardation totally impractical for ~H.=0} be incident at angle with respect to they axis on
guided wave phenomena. Moreover, relaxation processes affé® system of two infinitesimally thin planeg==J, as
essential in the optical regime, wherein resonant transition§nOWn in Fig. 8a). The fields in the three regions—Region |
come to play. (y>96), Il (6>y>—¢) and Il (y<— 5)—must satisfy the

Our formalism allows us to compare carbon nano-following boundary conditions:
waveguides with electronic waveguid¥swhich are quan-
tum wires placed over metallic planes—e.g.g d#5a) 47AS EIZ: E'Z'
wires of rectangular cross-section buried in InP. As per L | N
Wesstion,>* plasma waves propagate in such electronic Ez=i&(Hx—Hy)
waveguides in the millimeter-wave and the infrared regimes.
These plasma waves exhibit some properties analogous tmd

The research was partially supported through INTAS un-
der Project No. 96-0467 and BMBF under Project No. WEI-
1-98.

y=34, (A1)
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el El-e!

E||:i§2(H||_H|||) ’ y:_6 (AZ) Elzigeff(Hl—H”) y y:O (AS)

Here, the impedance; and ¢, depend on the angle of in- g gaometry of the situation is shown in Figbg With
cidenced. The sole cartesian component of the electric field

may be represented in the three regions as E!=gikxsinf(gikycosd g pglkycosty =y~
Z ’ ’

EIZ= eikx sin a(efiky cosa+|7eiky cosf)), y> 5, (A6)

Il _ ¥ Aik(x sin §—y cos6)
EIZI:eikxsine(éefikycos(9+6eikycos(9), 5>y>_5, EZ te ' y<0’

(A3)  we get
EIZII :Eeik(x sinfg—y cosa)’ y< _ 5' E— 2i§effCOSt9 (A7)
wherer, t, a, andb are unknown amplitudes. Using addi- © 1-2i&eccos6’
tionally the magnetic field compone#t, = (ik) "19E,/dy,
in the boundary condition@1) and(A2), one can determine .
all the unknown amplitudes. Most importantly, provided qulvalehce of the two problems S
|ké cosh|<1, we obtain the transmission amplitude Clearly, the right sides of Eq$A4) and (A7) coincide if
we let
. §16
2i cosé
< &1+ & &162
t=— 56, (A4) geffzﬁ- (A8)
1-2i cosé L2
&1+&

This shows that a system of two very closely spagesl,

|kés cosf|<1) impedance planes is equivaleifior incident

planewavesto a single impedance plane, with the imped-
Let us now repeat the 1st problem, but for only two re-ance of the equivalent plane related to the impedances of

gions. Regions 1y>0) and Il (y<0) are separated by the both actual planes by E¢A8). This equivalence leads to the

planey=0 on which the following boundary conditions pre- boundary condition transfer technique, which is extremely

vail: effective for many multilayered problems.

2nd boundary value problem
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