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Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions,
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Effective boundary conditions, in the form of two-sided impedance boundary conditions, are formulated for
the linear electrodynamics of single- and multishell carbon nanotubes~CN’s!. The impedance is derived using
the dynamic conductivity of CN’s, which is obtained for different CN’s~zigzag, armchair, and chiral! in the
frame of the semiclassical as well as quantum-mechanical treatments. Propagation of surface waves in CN’s is
considered. The phase velocities and the slow-wave coefficients of surface waves are explored for a wide
frequency range, from the microwave to the ultraviolet regimes. Relaxation is shown to qualitatively change
the dispersion characteristics in the low-frequency limit, thereby rendering the existence of weakly retarded
plasmons impossible. A dispersionless propagation regime is shown possible for the surface waves in the
infrared regime. Attenuation and retardation in metallic and semiconductor CN’s are compared.
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I. INTRODUCTION

Since the discovery by Iijima1 of quasi-one-dimensiona
crystalline structures of carbon atoms generally referred t
carbon nanotubes~CN’s!, several unique physical propertie
have been predicted theoretically and detected experim
tally. Much accumulated information is available in seve
review papers and monographs.2–7 CN’s are classified by the
dual index (m,n). The two integersm and n represent the
vector characterizing the way of turning a planar sheet in
nanotube, withn50 for zigzag CN’s,n5m for armchair
CN’s, and 0,nÞm for chiral CN’s.

Electronic properties of, and electron transport in, CN
became the focus of numerous studies.8–14 These properties
of CN’s are quite different from those of well-known ca
bonic structures such as a planar monatomic graphite s
~also calledgraphene!. Perhaps the most attractive result w
to establish a correlation between a CN’s conductivity and
geometrical configuration. A carbon nanotube can mani
either metallic or semiconductor properties, depending on
cross-sectional radius and geometric chiral angle. This
relation arises from the transverse quantization of charge
rier motion and is coupled with the quasi-one-dimensio
topology of CN’s.

Several researchers have now begun to focus their a
tions on electromagnetic processes in CN’s,5,15–22 and two
main lines of investigations can be recognized. The firs
aimed at wave processes in multi-CN samples incorpora
PRB 600163-1829/99/60~24!/17136~14!/$15.00
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either regular or irregular ensembles of CN’s5,15–18; the other
concerns the electrodynamics of single CN’s.19–22

~i! Multi-CN samples—i.e., distrbutions of CN inclusion
in some host material—furnish typical examples of partic
late composite materials. As such, their analysis5,15–18 in-
volves the following general procedure: The effective con
tutive parameters of the homogenized composite materia
evaluated using various field-averaging algorithms at f
quencies below some upper limit, taking the difference
tween the local and the homogenized fields into accoun
exhibited by, e.g., the Mossotti-Clausius formalism.16 A
comprehensive description of the electromagnetic respo
properties of these composite materials, with the effect
chirality included, was presented recently by Tasakiet al.15

~ii ! Several publications19–22 can be assigned to the se
ond main line of investigations. The polarizability tensor o
single CN per unit length was determined by Bened
et al.22 Both p and s plasmons in CN’s of different kinds
including multi-shell coaxial CN’s, were considered b
Jiang20 and Yannouleaset al.21 The occurrence of surfac
electromagnetic waves at infrared frequencies in nanotu
was predicted and their dispersion characteristics were
scribed by us elsewhere.19

Although both lines of investigation are strongly inte
twined, they are not equivalent. On the one hand, the ef
tive constitutive parameters of a particulate composite m
rial are indeed dictated by the properties of single inclusio
and the host material. On the other hand, certain prope
17 136 ©1999 The American Physical Society



b
o
e
is
it
v
e

ns
d
cs
re

-
re
ce
th
nc
o

on
r

y-
s
fo

tis

o
a

de
a

p
ld
in

ic
s
ec

i
k
h
th
so

ec
.
o
i

,
nu

-

N is

sti-

n
o-

f a

m

ng

me

the

ua-

PRB 60 17 137ELECTRODYNAMICS OF CARBON NANOTUBES: . . .
of inclusions are not manifested by composite materials
cause of homogenization, and some other properties of c
posites appear solely due to interaction betwe
inclusions.23,24 The electrodynamics of a single nanotube
of special interest not only for homogenization of compos
materials, but also because experimental methods are a
able to separate a single nanotube from others and to m
sure its individual properties.25,26

In this paper, we model the electromagnetic respo
properties of a single CN through effective boundary con
tions. This model is widely applied in microwave electroni
and antenna theory, e.g., for the design of semi-transpa
screens and helical sheaths in traveling wave tubes.27,28 In a
predecessor paper,19 we initiated the application of this ap
proach to nanotubes. It entails the replacement of a
nanotube by a continuous, infinitely thin, cylindrical surfa
on which two-sided impedance boundary conditions for
electromagnetic field are laid down. The surface impeda
tensor is expressed in terms of the dynamic conductivity
the nanotube.

Three assumptions in the derivation of the dynamic c
ductivity put restrictions on the applicability of our earlie
results19 to real CN’s as follows:

~i! In the framework of a spiral model, the real hone
comb crystalline structure of graphite was implemented a
tetragonal lattice. While that assumption is adequate
BC2N nanotubes, its application to CN’s is not always sa
factory.

~ii ! The effect of the transverse quantization of electr
momentum was neglected. Hence, our earlier results are
plicable to CN’s with large cross-sectional radii~so that the
dynamic conductivity is close to that of graphene!.

~iii ! The semiclassical approximation was used to
scribe electron motion, which is applicable only in the infr
red regime.

Our aim for this paper was to eliminate the three assum
tions, so that results of more general applicability wou
emerge. Therefore, we considered eigenwaves—includ
surface waves—in CN’s and thereby extended the appl
bility of our model to the optical and the ultraviolet regime
wherein electromagnetic processes exhibit pronounced p
liarities.

This paper is arranged as follows: In Sec. II, the dynam
conductivities of CN’s of different kinds are evaluated, ta
ing into account the actual crystalline structure of CN’s, t
transverse quantization of electron momentum, and
quantum-mechanical nature of electron motion. Compari
is made with our previous results.19 The equivalent boundary
conditions for a single-shell CN are then formulated in S
III. Corrections due to spatial dispersion are estimated
similar approach is developed in Sec. IV for multishell nan
tubes with coaxial geometry. An analysis of eigenwaves
CN’s, predicated on the equivalent boundary conditions
provided in Sec. V. Special attention is paid to their atte
ation coefficients over a wide spectral range~covering from
the microwave to the ultraviolet regimes!. The paper con-
cludes with a discussion in Sec. VI.

Parenthetically, we use a two-dimensional~2D! cartesian
coordinate system (x,y) for graphene; and the circular cylin
drical coordinate system (r,f,z) for any CN, with the CN
axis parallel to thez axis. Thex axis is oriented along the
e-
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hexagon side. The transition from graphene to a zigzag C
established by the substitution$x→z,y→f%; while the tran-
sition from graphene to an armchair CN requires the sub
tution $y→z,x→f%.

II. AXIAL DYNAMIC CONDUCTIVITY OF A NANOTUBE

A. Preliminaries

To begin with, let us outline our general approach. O
applying the semiclassical approximation to describe the m
tion of p-electrons exposed to the electromagnetic field o
transversely symmetric~i.e., ]/]f[0) surface wave in a
single-shell CN, a distribution functionf (p,z,t) becomes ap-
plicable. It satisfies the Boltzmann kinetic equation

] f

]t
1eEz

] f

]pz
1vz

] f

]z
5J@F~p!; f ~p,z,t !#, ~1!

wherep is the electron’s two-dimensional quasimomentu
tangential to the CN’s surface,pz is the projection ofp on
the axis of the CN,vz5]E/]pz , E5E(p) is the electron
energy with respect to the Fermi level, andJ(F; f ) is the
collision integral. The chemical potential of graphite bei
null-valued,10 the Fermi equilibrium distribution function

F~p!5
1

11 expH E~p!

kBT J ~2!

involves only the Boltzmann constantkB and the temperature
T. In the so-called momentum-independent relaxation ti
approximation,29 the collision integral is given by

J@F~p!; f ~p,z,t !#5n@F~p!2 f ~p,z,t !#, ~3!

where n is the relaxation frequency. Conventionally,n is
assumed to be constant and equal to the reciprocal for
time of the electron mean-free path; see Jishiet al.8 for a
numerical estimate of 1/n for armchair CN’s from micro-
scopic considerations.

Let us setEz5R@Ez
0ei (hz2vt)# in the Boltzmann kinetic

equation~1!, whereh is the axial wavenumber~not to be
confused with the Planck constant\) and v is the angular
frequency of the exciting electromagnetic field. Settingf
5F1R@d f ei (hz2vt)# with d f as a small quantity to be
found, and keeping only linear terms inEz

0 , we then obtain

d f 52 i
]F

]pz

eEz
0

v2hvz1 in
. ~4!

The axial surface current densityJz5R@Jz
0ei (hz2vt)# is to be

determined by the relation

Jz5
2e

~2p\!2E E vzf d2p, ~5!

with e as the electron charge. Using both foregoing eq
tions, we get

Jz
05s̃zz~v,h!Ez

0 , ~6!

wherein
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s̃zz~v,h!52 i
2e2

~2p\!2
E E ]F

]pz

vzd
2p

v2hvz1 in
~7!

is the axial conductivity. Ass̃zz is the axial conductivity
evaluated semiclassically, it must be distinguished from th
total axial conductivityszz considered in Sect. II F.

Equation~7! is applied to zigzag and armchair CN’s
Secs. II B and II C, wherein the electron dispersion relat
E(p) as well as the range of thep integration are needed. Fo
re

h

e

i

r
ed
n

the sake of tractability, now we neglect the effect of spa
nonlocality by settingh50 in Eq. ~7!. Physically, this ne-
glect means that the third term on the left side of Eq.~1! is
discarded, just as we did elsewhere.19 The role of this non-
locality is discussed in Sec. III.

B. Zigzag nanotubes

The electron dispersion relation for CN’s can be form
lated in the framework of the tight-binding model, in stri
analogy with the counterpart relation10,11,30,31
E~p!56g0A114 cosS 3bpx

2\
D cosS A3bpy

2\
D 14 cos2S A3bpy

2\
D ~8!
f
n

us

dif-

ns

-

ig.
uc-
for a planar monatomic sheet with hexagonal lattice. He
the overlap integral g052.7 eV for carbon, andb
51.42 Å is the interatomic distance in a graphite sheet. T
positive and the negative signs in Eq.~8! correspond to the
conduction and the valence bands, respectively. The rang
the quasimomentump ~the first Brillouin zone! is confined to
the hexagons shown in Figs. 1~a! and 1~b!.

A fundamental distinction between CN’s and graphene
in the transverse quantization of charge-carrier motion,10,11

which causespx and py to exhibit discrete spectra. In orde
to derive the dispersion relation for zigzag CN’s—classifi
by the dual index (m,n50)2,3—from Eq. ~8!, we observe
that thex andy directions in Eq.~8! correspond to thez and
f directions. The substitution$px→pz , py→pf% is imple-
mented in Eq.~8! therefore. Simultaneously,pf is quantized
as follows:

pf5
2p\s

A3mb
, s51,2, . . . ,m. ~9!

FIG. 1. Configuration of the first Brillouin zone for~a! zigzag
and ~b! armchair CN’s.
,

e

of

s

The range ofp is transformed thus into the population o
straight line segments~9! located inside the hexagons show
in Fig. 1~a!.

The electron dispersion relation for zigzag CN’s th
takes the following form:

E~pz ,s!56g0A114 cosS 3bpz

2\ D cosS ps

m D14 cos2S ps

m D .

~10!

On neglecting interband transitions between states with
ferent values ofs, Eq. ~7! reduces to

s̃zz~v,0!52
4ip\e2n0

A3mb~v1 in!F0

3(
s51

m E
22p\/3b

2p\/3b

vz
2~pz ,s!

]F

]Edpz , ~11!

wheren0 is the surface density of conduction-band electro
in graphene, and

F05E E
1stBZ

F~p!d2p. ~12!

The range qualifier1stBZ refers to the first Brillouin zone.
In the limiting case of a CN with infinitely large cross

sectional radius~i.e., asm→`), the spectrum of allowed
values ofpf is continuous and the summation overs in Eq.
~11! transforms to an integration over the hexagon in F
1~a!. Physically, this means that the dynamic axial cond
tivity of a CN becomeslocally equivalent to the dynamic
conductivity of graphene, asm→`. Consequently, Eq.~11!
simplifies to

s̃zz~v,0!522ie2n0

1

~v1 in!F0
E E

1stBZ
vz

2~p!
]F

]Ed2p.

~13!

Here and hereafter, we denotes̃zz(v,0) simply ass̃zz for
notational simplicity.
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The integral in Eq.~13! can be analytically estimated a
ymptotically with respect to the large parameterl
5g0 /kBT, taking into the account that the proximal regio
of the vertices of the hexagon in Fig. 1~a! provide the main
contribution to these integrals. These vertices are the
called Fermi points ~where E50). By analogy with
Wallace,31 in the vicinity of these points the approximatio

E~p!.6
3g0b

2\
up2pFu ~14!

is applied, withpF as the constant quasimomentum cor
sponding to the particular Fermi point.

The rest of the integration procedure is as follows: T
idea is to pass from the integration overp to the integration
over E andf, extending the integration over 0<E,`. Us-
ing Eqs. ~2! and ~14!, and taking into account thatd2p
5(2\/3bg0)2EdEdf as per Wallace,31 we find

E E
1stBZ

vz
2~p!

]F

]Ed2p

>2
1

2kBTE0

` EdE

cosh2S E
2kBTD E0

2p

sin2fdf

522pkBT ln 2. ~15!

In the same fashion, from Eq.~12! we get

F05~2p\!2n0/2.
4p

27 S p\

lb D 2

. ~16!

In view of the foregoing equations, the estimate

s̃zz. i
27 ln 2

p2 S eb

\ D 2 g0l

v1 in
n05 i

2 ln 2

p\2

e2kBT

v1 in
~17!

easily emerges in the limitm→`.

FIG. 2. Normalized semiclassical conductivitys̃zz/s̃` for zig-
zag CN’s as a function ofm ~and therefore of the cross-section

radius R!; s̃`5 limm→` s̃zz, g052.7 eV, t53310212 s and T
5264 K.
o-

-

e

For finite m, the integration on the right side of Eq.~11!
was performed numerically. Figure 2 shows the depende
of s̃zz on m. Because the radiusR of a zigzag CN is con-
nected tom by the linear relationR5A3mb/2p5, the curves
in Fig. 2 really present the dependence ofszz on the cross-
sectional radius. AsR increases (m.300), s̃zz approaches
an asymptotic value, which agrees well with that given
the asymptotic formula~17!, which corresponds to the dy
namic conductivity of semimetallic graphene.31 The fact that
CN’s are metallic atm53q ~with q as an integer!32 mani-
fests itself in sharp discontinuities ofs̃zz at those values of
m. Let us note that atm53q, two of the integration lines for
the right side of Eq.~11! go through the Fermi points, resul
ing in the drastic growth of the numerical value of the int
gral. At mÞ3q, s̃zz lies in a range typical of semiconduc
tors.

The dynamic conductivity of metallic CN’s is easily est
mated analytically for smallm. The integration in Eq.~11! is
approximately accomplished under assumption that the m
contribution is provided by the lines passing through t
Fermi pointss5m/3 ands52m/3. Using the simplest ap
proximation for the dispersion relation in the vicinity of th
Fermi points, such as Eq.~14!, we transform the integration
over pz to that overE and carry it out over the range 0<E
,`; thus,

(
s
E

22p\/3b

2p\/3b

vz
2~pz ,s!

]F~pz ,s!

]E dpz

>4E
0

2p\

vz
2~pz ,m/3!

]F~pz ,m/3!

]E dpz

>2
3b

2\

g0

kBTE0

` dE

cosh2S E
2kBTD 52

3g0b

\
. ~18!

After using Eqs.~18! and ~16!, the result

s̃zz. i
2A3e2g0

mp\2~v1 in!
, m53q, ~19!

FIG. 3. Same as Fig. 2, but for armchair CN’s.
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emerges. The estimates given by Eq.~19! are in reasonable
accord with exact values form,60.

Let us compare Eqs.~17! and ~19!. Both show identical
frequency-dependences, but not temperature-depende
Equation ~19! contains only one temperature-depend
quantity~viz., the relaxation frequencyn), whereas Eq.~17!
includes an additional linear dependence onT. As per Eq.
~19!, s̃zz depends on the radiusR ~via m) for small R; but
Eq. ~17! clearly shows thats̃zz is independent of the CN
geometry for large-radius CN’s.
e
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e
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C. Armchair nanotubes

In order to evaluate the electron dispersion relation
armchair nanotubes—classified by the dual index (m,n
5m)—from Eq. ~11!, the substitution$px→pf ,py→pz%
must be carried out with

pf5
2p\s

3mb
, s51,2, . . . ,m; ~20!

accordingly,
E~pz ,s!56g0A114 cosS ps

m
D cosS A3bpz

2\
D 14 cos2S A3bpz

2\
D . ~21!
a
ur-
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Following the procedure described in Sec. II B, Eq.~7! re-
duces to

s̃zz52
4p\ ie2n0

3mb~v1 in!F0
(
s51

m E
22p\/A3b

2p\/A3b
vz

2~pz ,s!
]F

]Edpz

~22!

at h50 for armchair CN’s.
For R53mb/2p being small,s̃zz is analytically estimated

from Eq.~21! by considering only the contribution of the lin
passing through the Fermi points5m. Further manipula-
tions, analogous to that for Eq.~18!, lead to the estimate

s̃zz. i
2e2g0

mp\2~v1 in!
~23!

for armchair CN’s. Let us note that Eq.~23! differs from Eq.
~19! only by the factorA3. However, unlike Eq.~23!, Eq.
~19! is applicable at any value ofm below a certain limit.

Figure 3 shows the plot ofs̃zz versusm calculated nu-
mericallyvia Eqs.~21! and~22!. As m→`, the conductivity
of armchair CN’s approaches the asymptotic value for zig
CN’s. An analytical estimate of the right side of Eq.~22!,
carried out by the method presented in Sec. II B, substa
ates that conclusion. Asm→`, Eqs.~21! and~22! reduce to
Eqs.~8! and~17!, respectively. This is in agreement with th
in-plane conductivity of graphene being isotropic.31

At finite m, the behavior ofs̃zz as a function ofm is
drastically different for zigzag and armchair CN’s. Indee
unlike for zigzag CN’s, the dependence is monotonic
armchair CN’s. Physically, this follows from the fact th
armchair CN’s are conductors at anym, while zigzag CN’s
can be either metallic or semiconducting. Form,50, the
approximate Eq.~23! fits well the results computed from Eq
~21!.

D. Chiral nanotubes

A fundamental feature which distinguishes chiral CN
from zigzag and armchair CN’s is in the manifestation of t
so-called chiral current.13,14,19In a chiral CN (0,nÞm), an
g

ti-

,
r

applied axial electric field induces the current to flow along
helical line. The axial and azimuthal components of the s
face current density are given, respectively, byJz

05s̃zzEz
0

and Jf
0 5s̃fzEz

0 where s̃fz is the chiral conductivity of the
chiral CN evaluated semiclassically. A first-principles n
merical simulation ofs̃fz was carried out by Miyamotoet
al.,13 whereas phenomenological modeling was presented
us elsewhere.14,19 Both approaches led to the same conc
sion that chiral conductivity is rather small when compar
to the axial conductivity. As a result, the current chiral ang
g5tan21(Jz /Jf) is close top/2, but that conclusion is in-
valid when nonlinear effects come to play.14

The approximate analytical expression

s̃zz. i
2A3e2g0

p\2Am21mn1n2~v1 in!
~24!

is available for metallic chiral CN’s (2m1n53q),32 using a
method similar to that for deriving Eqs.~19! and~23!. Equa-
tion ~24! reduces to Eq.~19! for n50 and to Eq.~23! for
m5n. Equation~24! and the relations̃fz50 describe elec-
trodynamic properties of chiral conducting CN’s, in the sim
plest approximation. The evaluation ofs̃zz for chiral CN’s
wth arbitrary indicesm andn has to be carried out numer
cally from Eq.~7!.

E. Comparison with the spiral model

Let us now compare our obtained results with the pred
tions of the phenomenological spiral~helicoidal! model of
Romanov and Kibis12 we had used earlier.14,19 In this model,
a CN is treated as a periodic chain of carbon atoms strung
a helix withb as the period, and the real honeycomb cryst
line structure of graphite is ignored. But, owing to its sim
plicity, the spiral model is analytically tractable. In partic
lar, this model was applied to analyze electron structur12

and to describe electron transport14 in CN’s.
The linear dynamic conductivity of a chiral CN was d

rived using the spiral model by us earlier.19 Let us now com-
pare that result~in the achiral limit! with Eq. ~17!. In the
achiral limit, the helical atomic chain is transformed to
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periodic system of coaxial atomic rings with the same d
tance between the atoms in a ring as between two adja
rings. In the tight-binding approximation, the electron disp
sion relation for this structure is given by

E~p!5DF22 cosS pzb

\ D2cosS pfb

\ D G , ~25!

whereD is the overlap integral (;2 eV for carbon!. Both pz
and pf vary arbitrarily within the first Brillouin zone,33 as
the transverse quantization of electron motion was not c
sidered earlier19!. Equation~25! allows exact evaluation o
the integrals in Eq.~7!, after settingF5 exp@2E(p)/kBT#,
n5const, andh50. This results in19

s̃zz5 i S eb

\ D 2 n̂0D

v1 in

I 1~D/kBT!

I 0~D/kBT!
, ~26!

whereI 0(•) andI 1(•) are modified Bessel functions, andn̂0
is the surface density of free electrons in the conduct
band.

WhenD@kBT the main contribution to integral in Eq.~7!
comes from the neighborhood of the pointp50 where
E(p)50. In this region, the approximation

E~p!.
Db2

2\2
upu2, ~27!

similar to Eq.~14!, turns out to be valid. Then, applying th
method used for the derivation of Eq.~17!, we obtain the
expression

s̃zz5 i S eb

\ D 2 n̂0D

v1 in
. ~28!

As the conditionD@kBT holds true at room temperature
I 1(D/kBT).I 0(D/kBT) and Eq.~26! reduces to Eq.~28!.

Now we can compare Eqs.~17! and ~28!, taking into ac-
count thatn0Þn̂0. The reason for this inequality is that, b
using the approximate dispersion relation~25! for the spiral
model, we effectively substitute a square lattice for the ac
hexagonal lattice.

The ration̂0 /n0 may be evaluated using a method due
Wallace31 as follows: By definition,

n0.E
0

`

N~E!F~E!dE, ~29!

where

N~E!52E dS

ugradp Eu
, ~30!

is the density of states,dS is an infinitely small element o
an isoenergetic surface, and the Fermi function defi
jointly by Eqs. ~2! and ~14! is used. The integration in Eq
~30! is carried out over an isoenergetic surface to yield

n052p/27b2l2. ~31!

Analogous expressions may be written forñ0 with the
Boltzmann distribution asF(E) and Eq.~27! as the electron
-
nt

-

n-

n

al

d

dispersion relation. The multiplier 2 is omitted from the an
log of Eq. ~30!, becauseñ0 in the spiral model19 is the den-
sity of conduction electrons, whereasn0 accounts for charge
carriers of both signs~i.e., holes and electrons!. Simple
manipulations then yield

n̂05kBT/pb2D. ~32!

Therefore, we derive the ratio

n̂0

n0
5

27g0l

2p2D
, ~33!

so that Eq.~28! is rewritten as follows:

s̃zz. i
27

2p2 S eb

\ D 2 g0l

v1 in
n0 . ~34!

The right sides of Eqs.~34! and~17! differ only by the con-
stant factor 2 ln 2. This remarkable coincidence strongly s
gests that the spiral model adequately describes the con
tivity of large-radius CN’s, and can be useful for qualitativ
estimates ofs̃zz.

At this stage, let us emphasize an important fact: for
most part, the spiral model adequately reflects the prope
of doped nanotubes such as BC2N; while the foregoing hex-
agonal dispersion relations hold for pure carbon nanotub
Therefore, this section provides a comparison of the cond
tivity of doped and carbon nanotubes with different structu

F. The role of interband transitions

Consideration of interband transitions entails the ab
donment of the semiclassical approximation, and the Li
ville equation34,35 for the density matrix must replace th
classical Boltzmann equation. Alternatively, in order to fi
the conductivity of a single CN, we use the rigoro
quantum-mechanical treatment of effective permittivity of
CN-based composite material, as reported by Tasakiet al.15

and Lin and Shung.18 An expression for the axial conductiv
ity of a single CN then emerges easily. Following Tasa
et al.15 and a previous paper of ours,16 we get

szz5vazz/2ipR52 iv@ezz~v!21#/4pSrT , ~35!

whereazz is the axial polarizability of a single CN;ezz(v) is
the axial component of the permittivity tensor of the CN
based composite material; whileS is the surface area of a CN
andrT is the volumetric density of CN’s.

On using the known expression ofezz(v),18,15the relation

szz5s̃zz1Ds ~36!

is obtained for thetotal axial conductivity. Here,s̃zz is the
semiclassical version evaluated in previous subsectio
while

Ds5
ie2~v1 in!

2p2\R
(

s
E

1stBZ

1

E~pz ,s!
uucv~pz ,s!u2

3
F@2E~pz ,s!#2F@E~pz ,s!#

\2~v1 in!224E 2~pz ,s!
dpz ~37!
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describes the contribution of transitions between the cond
tion and valence bands. In the last expression,ucv is the
matrix element of the longitudinal velocity, which can b
approximately evaluated by the formula18,37

uucvu5\21uI@AH12* /H12]H12/]pz#u ~38!

with H12(pz ,s) as the matrix element of the Hamiltonian
electrons in a hexagonal lattice given by Lin and Shung.18

In the microwave and the infrared frequency regim
where\v!g0, the first term on the right side of Eq.~36! is
dominant—which justifies the use of the semiclassical
proach in those regimes. As the frequency increases, the
ond term catches up with the first one in magnitude and t
becomes greater. Neglecting the contribution of fr
charge-carriers36 and assumingT→0, we then recover the
results of Lin and Shung;18 in that case, the first term on th
right side of Eq. ~36! is rejected, whileF(2E)51 and
F(E)50 are set in Eq.~37!.

In the high-frequency regime, where (\v)2@4g0
2, Eq.

~37! yields

Ds.
ie2G

\2~v1 in!
, ~39!

where

G5
1

2p2\R
(
s51

m E
1st BZ

uucv~pz ,s!u2

E~pz ,s!
$F@2E~pz ,s!#

2F@E~pz ,s!#%dpz . ~40!

Thus, on comparing Eqs.~39! and ~13!, we see that the
frequency-dependence on the right side of Eq.~39! turns out
to be similar to that the semiclassical term. This implies t
the electron energy in the high-frequency field exceeds
nificantly the interband transition energies so that the mo
of charge-carriers becomes quasi-free.

The plots in Figs. 4 and 5 represent the characteri
frequency-dependences ofszz(v) for two zigzag CN’s, one
of which is metallic while the other is semiconducting. T
contribution of free charge-carriers toR@szz# is dominant at
low frequencies, but is too small to be evident in both fi

FIG. 4. Frequency-dependence of the total axial conductivity
the (9,0) metallic zigzag CN;g052.7 eV, t53310212 s, andT
5295 K. Axial conductivity is normalized bye2/2p\.
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ures. The initial decline ofI@szz#.0 with increasing fre-
quency in Fig. 4 is certainly due to free charge-carriers,
the same feature is absent from Fig. 5 because of the
density of free charge-carriers in semiconductors. As the
quency increases,I@szz# intersects the zero line and be
comes negative. This change in sign is due to interband e
tronic transitions. Optical resonances appear with furt
increase in frequency, the frequency of the lowest resona
decreasing as the CN radiusR grows. For the sameR, a
semiconducting CN resonates at a lower frequency tha
metallic CN.

Let us end this section by analytical estimate for the lo
frequency edge of the optical transition band. Such an e
mate can be obtained from the general approximate rela
for the density of electron states derived by Mintmire a
White:38 The ocation of the first singularity on the density
state curve calculated by them38 allows one to conclude tha

\v,H 3g0b/2R, metallic CN’s;

g0b/2R, semiconducting CN’s.
~41!

This finding correlates well with the results presented
Figs. 4 and 5 for nanotubes of different radius and differ
type of conductivity. The fact that the estimate~41! gives the
correct values at the low-frequency edge of the optical tr
sition band shows its usefulness and justifies its applicab
to nanotubes of different types.

III. EFFECTIVE BOUNDARY CONDITIONS
FOR CARBON NANOTUBES EXPOSED TO SPATIALLY

NONHOMOGENEOUS FIELDS

The spatial nonhomogeneity of electromagnetic fie
leads to the dependence off on z that is reflected by the third
term on the left side of Eq.~1! as well as by the dependenc
of szz on h in Eq. ~7!. Let us now derive the boundar
conditions for electromagnetic field on a CN’s surface,
suming the spatial nonhomogeneity to be small. This
sumption allows us to expand the denominator of the in
grand in Eq.~7! into a power series with respect toh. Only
terms of even powers contribute to the integration overp.
Restricting further to the quadratic term with respect toh, we
obtain

f
FIG. 5. Same as Fig. 4, but for the (23,0) semiconducting z

zag CN.
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TABLE I. Magnitude of the spatial dispersion parameterl̃ 0 for different zigzag CN’s.

CN index ~17,0! ~25,0! ~31,0! ~43,0! ~100,0! ~250,0! (3q,0) (`,0)

l̃ 0(c/vF)2 0.15 0.25 0.31 0.35 0.51 0.67 1.0 0.75
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s̃zz~v,h!5s̃zz~v,0!2 i
2e2

~2p\!2

h2

~v1 in!3E E vz
3 ]F

]pz
d2p,

~42!

wheres̃zz(v,0) was derived in Sec. II; equivalently,

Jz
05s̃zz~v,0!Ez

02 i
2e2

~2p\!2

h2Ez
0

~v1 in!3E E vz
3 ]F

]pz
d2p.

~43!

The second term on the right side of Eq.~42! is small. There-
fore, we substituteEz

0.Jz
0/szz(v,0) in the second term on

the right side of Eq.~43! to get

Jz
05s̃zz~v,0!Ez

01
h2

k2~11 in/v!2
l̃ 0Jz

0 , ~44!

wherek5v/c is the wave number in free space, and

l̃ 05
1

c2E E vz
4]F

]E d2pF E E vz
2 ]F

]Ed2pG21

. ~45!

Applying for zigzag and armchair CN’s—with the respe
tive electron dispersion relations~10! and ~21!—we trans-
form Eq. ~45! to

l̃ 05
1

c2 (
s
E vz

4~pz ,s!
]F~pz ,s!

]E dpz

3F(
s
E vz

2~pz ,s!
]F~pz ,s!

]E dpzG21

. ~46!

The integrals in Eq.~45! may be estimated using the metho
applied in Sec. II to determineszz(v,0). Then, asm→`,
the right side of Eq.~46! reduces to a constant; i.e.,

l̃ 0.
3

4 S vF

c D 2

, ~47!

wherevF53g0b/2\. For metallic CN’s with not too large
m, the estimatel̃ 0;1025 is given by Eq.~46!, after using
Eq. ~14! and summing over only the lines intersecting t
Fermi points. In other cases, numerical evaluation of the
tegrals must be carried out. Some computational results
presented for zigzag CN’s in Table I.

Recalling the connection betweenEz and Ez
0 , etc., we

formulate the dynamic conductivity equation

Jz1
l̃ 0

k2~11 in/v!2

]2Jz

]z2
5s̃zzEz ~48!

from Eq. ~44!. But the surface current density
-

-
re

Jz5 lim
d→0

c

4p
~Hfur5R1d2Hfur5R2d! ~49!

~in Gaussian units!, so that the boundary condition

lim
d→0

F11
l̃ 0

k2~11 in/v!2

]2

]z2G ~Hfur5R1d2Hfur5R2d!

5
4p

c
s̃zzEzur5R ~50!

emerges from Eq.~48!. In addition to Eq.~50!, Ez must be
continuous across the CN surface,19 i.e.,

lim
d→0

~Ezur5R1d2Ezur5R2d!50. ~51!

Equations~50! and ~51! constitute the complete system o
boundary conditions for CN’s exposed to an axially pola
ized electric field.

When the electric field is transversely polarized, t
boundary conditions

lim
d→0

~Efur5R1d2Efur5R2d!50,

lim
d→0

~Hzur5R1d2Hzur5R2d!50 ~52!

must be valid at the CN surface in the simplest approxim
tion. The second of Eqs.~52! reflects the neglect of the trans
verse current. Indeed, Benedictet al.22 showed that the trans
verse polarizability of any CN is much less than its ax
polarizability, thereby allowing us to neglect the transve
surface current density. Parenthetically, Eqs.~50! and ~52!
are similar to the two-sided impedance boundary conditi
for semitransparent screens in the microwave regime.28

Analysis of the physical meaning of Eqs.~50!–~52! is in
order. Though the CN surface possesses a periodic cry
line structure, Eqs.~50!–~52! incorporate only constant co
efficients~i.e., s̃zz and l̃ 0), and are devoid of any periodi
functions. This is because the technique of deriving the th
equations is equivalent to the averaging of microscopic fie
over an infinitesimally small volume. In accordance with E
~49!, the Maxwell equations with boundary conditions~50!–
~52! define spatially averaged currents and electromagn
fields induced by the currents. These fields are identica
the actual ones at a certain~of the order ofb) distance from
the CN surface. For that reason, the averaged currents
the actual currents may be treated as equivalent. The t
nique of macroscopic averaging is similar to one of introdu
ing constitutive parameters for bulk media, but differing
that the averaging occurs in boundary conditions, but no
field equations. Correspondingly, the averaging is carried
over the 2D cylindrical element of CN surface, but not ov
a 3D element.
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The change-over from the semiclassical model to
quantum-mechanical model does not affect the bound
conditions. The only changes necessary are the substitu
s̃zz→szz and l̃ 0→ l 0. Here, szz is given by Eq.~36!, the
coefficient

l 0.
k2

2@e uu~v,0!21#

]2e uu~v,h!

]h2 U
h50

~11 in/v!2 ~53!

appears from the quantum-mechanical treatment,
e uu(v,h) is the axial component of the Ehrenreich-Coh
tensor.39

IV. EFFECTIVE BOUNDARY CONDITIONS
FOR MULTISHELL CARBON NANOTUBES

Present-day technology allows fabrication of multish
CN’s of many different kinds.7 We restrict the analysis to
one of the many possible models, which was proposed
Lin and Shung.5 In this model, a multishell CN is thought o
as a set ofN coaxial cylindrical single-shell CN’s with inter
shell distance between 3.35 and 3.40 Å.40 Each shell is
characterized by its own dual index (m,n) which is deter-
mined by the shell radius. Thus, the geometrical chiral an
changes from one shell to another. Most multishell CN
exhibit metallic properties because they contain single sh
of the armchair type.5

The basic assumption of the Lin-Shung model is the
glect of intershell interactions. This implies that shell-t
shell jumps of electrons are forbidden, and an elect
moves over a particular shell as if all other shells are abs
Assuming these conditions to be valid, we can impose
boundary condition~50! on each shell, while ensuring tha
szz and l 0 change from shell to shell. Thus, in order to i
vestigate the electromagnetic response of aN-shell CN, we
will have to separateN11 partial regions and impose Eq
~50! and ~51! at N cylindrical boundaries. This will lead to
2N simultaneous algebraic equations, which can be q
cumbersome to handle.

However, a simplified approach is described in Appen
A. This approach is applicable for sufficiently thin CN’s o
large radius, i.e., when the CN thicknessd5Rext2Rint is
much smaller than the internal and the external radius of
chosen CN. SupposeN52 and the parametersl 0

(q) and
szz

(q) ,(q51,2) are known. If the illuminating field depends
exp(ihz) on z, Eq. ~50! across each interface reduces to t
second relations in Eqs.~A1! and ~A2! with

jq5S 11
h2

k2~11 in/v!2
l 0
( i )D c

4pszz
(q)

, q51,2. ~54!

We then consider anequivalentsingle-shell CN of cross-
sectional radiusRe f f5(R11R2)/2, and apply the boundar
conditions~A1! with j1 replaced byje f f defined in Eq.~A8!.

The same approach may be adopted whenN.2; then,

szz
e f f5 (

q51

N

szz
(q) , l 0

e f f5 (
q51

N

l 0
(q)szz

(q)Y (
q51

N

szz
(q) .

~55!
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Thus, a multishell CN can be treated as a single shell
with an effective radiusand effective parametersgiven by
Eq. ~55!. The distinctions in the electromagnetic respon
properties of different shells become inconsequential form
@1, providingszz

e f f.Nszz
(1) and l 0

e f f. l 0
(1) .

V. SURFACE ELECTROMAGNETIC WAVES
IN CARBON NANOTUBES

A. Dispersion equation

As an example of the application of the effective boun
ary conditions derived in Sec. III, let us emulate the pre
cessor paper19 to examine the propagation of surface wav
along an isolated, infinitely long CN, the surrounding m
dium being free space~i.e., vacuum!. After neglecting the
chiral current, the electromagnetic field of such a wave
expressed in terms of the electric Hertz vectorPe as follows:

E5¹~¹•Pe!1k2Pe , ~56!

H52 ik¹3Pe .

The electric Hertz vector has only the axial component a
its z dependence is in the form of a traveling wave. Hence
is represented by

Pe5AuzH I l~kr!Kl~kR!

I l~kR!Kl~kr!
J eihzeil f, ~57!

whereA is an amplitude,uz is the unit vector in the axia
direction,h is the guide wave number to be determined,l is
an integer,k5Ah22k2, while I l(•) andKl(•) are the modi-
fied Bessel functions.41 The upper and the lower lines in Eq
~57! correspond to the regionsr,R andr.R, respectively.

Equations~56! and~57! automatically satisfy the continu
ity condition for Ez at r5R; hence, all we have to do is to
fulfill Eq. ~50!. Substitution of Eqs.~56! and ~57! into Eq.
~50!, followed by the use of the Wronskian of modifie
Bessel functions,41 leads to the following dispersion equatio
with respect tok:

S k

k D 2

I l~kR!Kl~kR!5
ic

4pkRszz
F12

11~k/k!2

~11 in/v!2
l 0G .

~58!

Equation~58! is general in its applicability: It is appli-
cable to single shell as well as multishell CN’s, whether t
surface conductivity model is semiclassical or quantu
mechanical. For a multi-shell CN,Re f f, szz

e f f , and l 0
e f f must

be used in lieu ofR, szz, and l 0, respectively, in Eq.~58!.

B. Attenuation

Let us consider surface waves in the infrared regi
where the frequency of the illuminating electromagne
wave significantly exceeds the relaxation frequency~i.e., v
@n), and the contribution of free electrons to the conduct
ity is dominant. The attenuation coefficient is small in th
regime (1025,kb,1023) and can be easily estimated.

Towards that end, let us utilize the fact that the slow-wa
coefficient in the infrared regime is small; i.e.,uhu2@k2 and
uku2@k2. Then, with
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R̆5kR, a~R̆!5
~kR!21 l 0R̆2

~kR!22 l 0R̆2
, j̆5

ic

4pszz~11 in/v!
,

~59!

Eq. ~58! is rewritten as follows:

Q~R̆!5
R̆2I l~R̆!Kl~R̆!

12 l 0R̆2/~kR!2
5kRj̆F11 i

n

v
a~R̆!G . ~60!

In the free-electron approximation, the parameterj̆ is real
and positive valued, while the contribution of resonant tra
sitions makesj̆ complex valued.

Since we assumed thatv@n, the contribution from elec-
tron collisions can be treated perturbatively.42 Let R̆5R̆(0)

1dR̆, whereR̆(0) is the solution of Eq.~60! for n50, and
dR̆ is a small correction. ExpandingQ(R̆) into a Taylor
series and taking into account thatQ(R̆(0))5kRj̆, we obtain

dR̆. ikRj̆nFv
dQ
dR̆

U
R̆5R̆(0)

G21

a~R̆(0)!. ~61!

Writing the guide wavenumber ash5R@h#1 iI@h#, we then
get the attenuation coefficient

I@h#.
R̆(0)

R@h#R2

n

v
Q~R̆(0)!FdQ

dR̆
U

R̆5R̆(0)
G21

a~R̆(0)!

~62!

from Eq. ~61!.
When l 0.1.0731025, for instance, Q(R̆).R̆/2 and

dQ/dR̆.1/2 for R̆,0.1. In this case, the simple ratio

I@h#

R@h#
.

n

v
~63!

results from Eq.~62!.
Analytical estimate of the attenuation coefficient appe

to be impossible in the low-frequency regime (v<n). The
same situation also holds for the optical resonance reg
whose lower edges is determined from Eq.~8! and whose
bandwidth\v'6g0. In these regimes, the transcenden
Eq. ~60! has to be numerically handled in the complexk
plane, as we now discuss.

C. Modes with polar symmetry

As the complex-valued slow-wave coefficientb5k/h is
conventionally used for surface waves in the literature
microwaves, we change our emphasis now fromh to b.

Let us begin by inferring the general characteristics
surface wave propagation from Eq.~60! in the collisionless
limit n50. Equation~60! has only one real root for a give
l, i.e., there is only one surface wave possible with a part
lar polar symmetry. Sincej̆.0 in the free-electron approxi
mation, the conditionn50 requires the denominator i
Eq. ~60! to be positive. That condition holds true whe

R̆,kR/A l̃ 0, thereby yieldingb.A l̃ 0. The condition b

5A l̃ 0 therefore defines the cut-off frequency for the surfa
-

s

e,

l

n

f

-

e

wave. This cut-off respects to the excitation of a on
dimensional acoustic plasmon in Fermi liquid.43

We turn now to the discussion of numerical results o
tained for finite n. The influence of interband transition
makesj̆ both frequency-dependent and complex-valued.
though knowledge of the relaxation frequencyn is now nec-
essary, the available values of the relaxation timet51/n
vary significantly from one another.8,15,43–47A theoretical es-
timate for armchair CN’s ist;1.4310212 s at room
temperature,8,45 which is in good agreement with the resul
of dc measurements43 (t.3310212 s! and microwave
measurements44 (t510213 s!. Chauvetet al.46 reported the
valuet510213 s from electron spin resonance experimen
whereas the estimatet.4310214 s was used by Ma and
Yuan47 for zigzag CN’s. Finally, the valuet.2310214

s—which is the relaxation time in ordinary graphite—w
used by Tasakiet al.15 for chiral CN’s. In the present work
we sett.3310212 s.

The frequency-dependences of the slow-wave coefficie
of a f-independent wave (l 50) are depicted in Figs. 6 an
7 for a metallic CN and a semiconducting CN, respective
In the low-frequency regime (v<n) we havekb,1027, so
thatR@b# andI@b# are comparable in value. This indicate
that guided surface wave propagation is totally impractica
the low-frequency regime; but that does not mean that C
are weak conductors of low-frequency electric signals. Ho

FIG. 6. Frequency-dependence of the complex-valued sl
wave coefficientb for an azimuthally symmetric surface wave in
(9,0) metallic zigzag CN. Input parameter are the same as in Fig

FIG. 7. Same as Fig. 6, but for the (23,0) semiconducting z
zag CN.
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ever, it is essential that the conditionh8l CN!1 holds true at
v<n for typical CN lengthl CN;1 mm. We conclude that
CN’s conduct~low-frequency! electrical signals like electric
circuits ~i.e., unaccompanied by wave processes!, which is in
accord with general electromagnetic theory.48

Weakly attenuated surface waves appear in the infra
regime (1025,kb,1023), so that metallic CN’s appea
very promising for experimental research on surface w
propagation. Figures 6 and 7 show that the retardationR@b#
in a semiconducting CN is smaller than in a metallic CN
an order of magnitude in the chosen spectral regime, but
respective values ofI@b# are comparable. This allows us t
conclude that the effect of attenuation in semiconduct
CN’s far exceeds that in metallic ones. Furthermore, si
semiconducting CN’s are characterized by large retarda
(231023,R@b#,231022), the electromagnetic field is
strongly localized in the vicinity of the CN surface. Th
means that surface wave propagation in a semiconduc
CN is very sensitive to shape deformation. Finally, the ph
velocity and the slow-wave coefficient are independent
frequency in the infrared regime. Hence, a infrared wa
packet will propagate in a semiconducting CN without d
tortion, a property of importance for potential applications
CN’s in infrared devices.

The situation changes dramatically in the spectral reg
of optical resonances. Attenuation substantially increa
and both attenuation and retardation manifest sharp osc
tions at resonant frequencies.

In the ultraviolet and the soft x-ray regimes (kb.0.01),
conditions for surface wave propagation again becomes
propriate: attenuation significantly decreases and freque
dependence ofb becomes muted. Clearly, that is so, becau
mainly free electrons are responsible for the conductivity
the ultraviolet/soft x-ray and the infrared regimes.

However, as distinct from the infrared regime, surfa
wave propagation in the ultraviolet and the soft x-ray
gimes is characterized by essential qualitative peculiari
that do not follow from the presented model. First, reson
transitions corresponding tos electrons appear in th
spectrum.20,21 Second, diffraction by crystalline lattice o
CN’s comes into play because, owing to strong retardat
the surface wavelength is significantly less than that in f
space. For that reason, narrow forbidden gaps arise in
soft x-ray region. These gaps are centered at frequencie
termined by the Bragg conditionh(uz•ed)5Np, whereed is
an arbitrary lattice vector andN is an integer. For instance
the Bragg condition readily shows that the center frequen
of the first gap for armchair and zigzag CN’s are given by
relationskb5pb/A3 andkb52pb/3, respectively. Let us
also note that, as a CN is electrically large in the ultravio
and the soft x-ray regimes, macroscopic averaging of
electromagnetic field must be abandoned as also the effe
boundary conditions~56!. Boundary conditions for unaver
aged fields will be analogous to~56!, with the axial conduc-
tivity szz a periodic function of space.49 Detailed investiga-
tion of the contribution ofs-electrons and diffraction by the
crystalline lattices of CN’s are beyond the scope of
present work.

D. Other modes

Axially nonsymmetric~i.e., lÞ0) surface waves can als
propagate in CN’s. Qualitatively, their dispersion charact
d
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istics are similar to those for axially symmetric surfa
waves; and, in particular, strong retardation must be m
tioned.

The waveguiding properties of CN’s should be compa
to those of structures—such as metal spirals, dielectric r
and two-wire transmission lines50—that are commonplace in
the area of microwaves. For instance, in a dielectric rod
weakly retarded surface wave exists withl 51 at low fre-
quencies, with the field structure resembling a slightly d
torted plane wave.51 In contrast, that surface wave cannot
found in a CN.

In order to elicit the difference between two these stru
tures, let us turn to dispersion equation~60! at l .1, assum-
ing R̆!1. As the approximationI l(R̆)Kl(R̆);(2l )21 then
holds true, the solution of Eq.~60! takes the form

R̆2.2lkRj̆~112l j̆ l 0 /kR!, ~64!

which yields

b2.H 11
2l j̆/kR

112l j̆ l 0 /kR
J 21

. ~65!

For a metal spiral and a dielectric rod, the same expres
holds, but with the second term in the denominator on
right side of Eq.~65! being negligible compared to unity
Hence, retardation in a metal spiral or a dielectric rod is v
small. But the second term is very strong~i.e.,@1) for a CN,
and retardation is therefore high.

Let us now move on to a system of two parallel CN
separated by the distanceb2, which is the nanoscale analo
of the well-known two-wire transmission lines.50 Guided
propagation of transverse electromagnetic~TEM! waves is a
characteristic of such lines. However, as different from co
ventional two-wire transmission lines, a TEM wave cann
be guided by the two parallel CN’s because of strong re
dation. This may be proven by examining the simplest a
symmetric guided wave in the two-CN line, assumingb2
@R. The dispersion relation for this wave is obtained by t
method of images,51 which leads to Eq.~60! with

Q~R̆!5
R̆2I 0~R̆!

12R̆2l 0 /~kR!2
@K0~R̆!2K0~b2R̆/R!#. ~66!

Assuming the conditionR̆!1 to be satisfied at low frequen
cies, we come to Eq.~65! where the substitution 1/2l
→ ln(b2 /R) must be performed. The retardation then is qu
large, although it is much smaller than the retardation o
surface wave withl 51 in a single CN.

Finally, let us consider the propagation of fast guid
waves in hollow metallic waveguides. Such waves also
not exist in single nanotubes even at high frequenceskR
;1), due to the high transparency of CN’s. The parame
j1 involved in boundary condition~A1! ranges in value from
103 to 105 for realistic CN’s, and corresponds to the tran
mission coefficientu t̆ u;1 in Eq. ~A7!. Consequently, a CN
can then function only as a highly leaky waveguide.
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VI. CONCLUDING REMARKS

In this paper, we presented analytical expressions for
axial dynamic conductivity of CN’s, with

~i! the actual hexagonal crystalline structure of carbon
counted for, and

~ii ! both semiclassical as well as quantum-mechan
analyses employed.

The derived expressions were correlated with compu
tional results for different types of CN’s~zigzag, armchair,
chiral!, both metallic and semiconducting. Using the dev
oped theory of linear conductivity, we set up effecti
boundary conditions for the electromagnetic field acros
CN surface. We applied these conditions to enlarge our
derstanding of the electrodynamics of single CN.

Our formalism can be utilized for consideration of diffra
tion problems in different types of nanotubes, viz., CN’s
finite length, bent and corrugated CN’s, CN’s with junction
multi-shell CN’s with hexagonal cross section,40 etc. The
derived effective boundary conditions can also serve as
basis for description of interaction of CN’s with beams
electrons and other charged particles.

The investigation of guided surface wave propagation
emplifies the application of the formalism developed, and
is of significance in its own right too. Such waves can
excited by directing laser or electron beams along a CN a
These surface waves are characterized by strong retard
and, consequently, have large field gradients in the tra
verse~i.e., xy) plane. As the result, such surface waves m
manifest a strong pondermotive effect and may be of in
est, therefore, for laser-control movement of sm
particles.52,53

A comparison of the properties of the guided surfa
waves considered with those ofp plasmons20,21 yields re-
sults of some interest. In the strong retardation regim
¹(¹•PW e) dominates overk2PW e in Eq. ~56! for the electric
field. Neglecting the weaker term and making the subst
tion k'h in Eq. ~50!, we see that the electric field is de
scribed by a quasistatic potential, which is the same as fop
plasmons. Thus, the guided surface waves investigated in
present paper and thep plasmons model the same type
electronic excitation in CN’s.

However, the results of the two models are not complet
equivalent. Jiang20 and Yannouleas21 used a hydrodynamic
description of the motion of charge carriers, thereby dis
lowing relaxation processes. As a consequence, waven
bers h of p plasmons can vary in a wide range, and,
particular, can be small. Our model incorporates a more
equate kinematic theory that involves attenuation too. It f
lows from our theory that relaxation processes make
small-h regime ~weak retardation! totally impractical for
guided wave phenomena. Moreover, relaxation processe
essential in the optical regime, wherein resonant transiti
come to play.

Our formalism allows us to compare carbon nan
waveguides with electronic waveguides,54 which are quan-
tum wires placed over metallic planes—e.g., In0.53Ga0.47As
wires of rectangular cross-section buried in InP. As p
Wesstro¨m,54 plasma waves propagate in such electro
waveguides in the millimeter-wave and the infrared regim
These plasma waves exhibit some properties analogou
e
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to

those of guided surface waves in CN’s, and we conclude
a CN is an electronic waveguide in the infrared regime. CN
as quantum wires of a special type have been treated by T
et al.;43 and our comparison substantiates the validity of th
approach.

The interior of a CN can be filled7 by a medium with a
permittivity different from that of free space. This can impa
new properties to guided surface wave propagation in CN
Finally, surface wave propagation can be controlled by
ternal quasielectrostatic and quasimagnetostatic fields, w
would alter the surface impedance and, therefore,
waveguiding characteristics of CN’s. That exciting prosp
will be reported in detail separately.
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APPENDIX A

We consider two different boundary values problems a
establish their conditional equivalence as follows:

1st boundary value problem

Let a perpendicularly polarized plane wave$Ex5Ey50,
Hz50% be incident at angleu with respect to they axis on
the system of two infinitesimally thin planesy56d, as
shown in Fig. 8~a!. The fields in the three regions—Region
(y.d), II ( d.y.2d) and III (y,2d)—must satisfy the
following boundary conditions:

Ez
I 5Ez

II

Ez
I 5 i j1~Hx

I 2Hx
II !

J , y5d, ~A1!

and

FIG. 8. Schematics of the boundary value problems involv
the transmission of a perpendicularly polarized plane-wave incid
on ~a! two parallel impedance planes, and~b! an equivalent imped-
ance plane.
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Ez
II 5Ez

III

Ez
II 5 i j2~Hx

II 2Hx
III !

J , y52d. ~A2!

Here, the impedancesj1 and j2 depend on the angle of in
cidenceu. The sole cartesian component of the electric fi
may be represented in the three regions as

Ez
I 5eikx sin u~e2 iky cosu1 r̆ eiky cosu!, y.d,

Ez
II 5eikx sin u~ ăe2 iky cosu1b̆eiky cosu!, d.y.2d,

~A3!

Ez
III 5 t̆ eik(x sin u2y cosu), y,2d,

where r̆ , t̆ , ă, and b̆ are unknown amplitudes. Using add
tionally the magnetic field componentHx5( ik)21]Ez /]y,
in the boundary conditions~A1! and~A2!, one can determine
all the unknown amplitudes. Most importantly, provide
ukd cosuu!1, we obtain the transmission amplitude

t̆.2

2i cosu
j1j2

j11j2

122i cosu
j1j2

j11j2

. ~A4!

2nd boundary value problem

Let us now repeat the 1st problem, but for only two r
gions. Regions I (y.0) and II (y,0) are separated by th
planey50 on which the following boundary conditions pre
vail:
h

v.

hy

hy

a-
d

-

Ez
I 5Ez

II

Ez
I 5 i je f f~Hx

I 2Hx
II !

J , y50. ~A5!

The geometry of the situation is shown in Fig. 8~b!. With

Ez
I 5eikx sin u~e2 iky cosu1 r̆ eiky cosu!, y.0,

~A6!

Ez
II 5 t̆ eik(x sin u2y cosu), y,0,

we get

t̆52
2i je f f cosu

122i je f f cosu
. ~A7!

Equivalence of the two problems

Clearly, the right sides of Eqs.~A4! and ~A7! coincide if
we let

je f f5
j1j2

j11j2
. ~A8!

This shows that a system of two very closely spaced~i.e.,
ukd cosuu!1) impedance planes is equivalent~for incident
planewaves! to a single impedance plane, with the impe
ance of the equivalent plane related to the impedance
both actual planes by Eq.~A8!. This equivalence leads to th
boundary condition transfer technique, which is extrem
effective for many multilayered problems.
v-
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v-
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