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A theory of linear and nonlinear optical susceptibilites of disordered composites consisting of nanospheres
in a dielectric hostMaxwell Garnett compositess developed. The theory is based on a spectral representation
in the dipole approximation. Numerical computations are performed in the framework of the dipolar spectral
theory to obtain the linear dielectric function and third-order hypersusceptibility. For the fill facttnam
0.001 to 0.12 considered, our spectral function agrees within the expected 10% error with the previously
published function. We have introduced a material independent spectral representation for hypersusceptibili-
ties. The third-order hypersusceptibilij&f) shows regions of strong enhancemény up to four orders of
magnitude for a silver composjterhe mean-field theory provides a reasonable approximation only at very low
fill factors (f<10"%). For f=0.04, the mean-field theory fails dramatically almost everywhere, except for
distant wings of the spectral conto(wery far from optical resonancesA physical effect responsible for the
failure of the mean-field theories and contributing to the resonant enhancement of nonlinear susceptibilities is
large fluctuations of local fields in the resonant regi®0163-182@09)01748-§

. INTRODUCTION r in space around an inclusion.
Conventionally in mean-field theories, the effects of local
The problem of opticaldipolan susceptibilities of com-  fields are expressed in terms of the Lorentz ffef@, uniform

posites is a long-standing one in physics going back to sucfie|d that exists in the Lorentz cavity surrounding an inclu-
names as Lorentz, Maxwell Ga_rnettz, Brugemanr’?, and  sjon. This field may exceed the macroscopic field, causing
Lorentz” Generally, the E)roblem is formulated in the follow- gnphancement of optical responses. Recently, the validity of
ing way. The composite’s geometry is given, and the dielecog 1ts ghtained using the Lorentz field concept has been
tric functions and nonlllnear suscept'lbllltles of all compo- re-evaluated on the basis of a Green's-function approach by
nents of the composite are specified. In most cases, Bagendijk and co-worker® This research showed that the
characteristic size of the geometrical features of the COMPOS§- ool orenz formula, or its equivalents such as the Lor-

fte is much smaller than optical wavelengths, so that the ntz relation and Maxwell Garnett formula, can be obtained
composite as a whole is viewed as an optically homogeneou '

medium. The problem is to find the dielectric function andconsjstently us'ing the so-calldpdependent scattering ap-
nonlinear susceptibilities of that composite medium. proximation This approach carries out the summation of dia-

The Maxwell Garmnet{MG) geometry is the one where 9rams cont_ammg as many inclusions as required, but takes
small inclusion particles, usually nanospheres, are embedd&dch inclusion into account only once. The theory of Refs. 5
in a homogeneous host medium with different dielectric@nd 6 does not invoke such approximations of uncontrollable
properties. In this paper we consider this geometry and noccuracy as mean-field approaches or decoupling of higher-
that of Brugemann, where two components of the compositegrder correlation functions. Our results obtained in the
are treated equallgeither of those can be considered as thepresent paper, however, show that for a disordered composite
host or inclusion component the Maxwell Garnett formuldor its equivalentsfails in a

The effect of composite microgeometfyr, rather, nano- resonant region where optical absorption is present. A more
geometry is often described as that of local fields, i.e., elec-realistic analytic theory by Barrerat al” was developed
tric fields induced by an exciting radiation at each of thebased on a diagrammatic approach to an expansion of the
inclusions that are different from the macroscofdawverage  inverse matrix(resolvent of coupled-dipole equations. This
field in the composite. We consider disordered compositetheory extends beyond the mean-field approximation. It de-
whose geometry is random. For a MG composite, this meangends on several approximations, among which is factoriza-
that the positions of the inclusions are random. For such &on of averages of powekgquivalent to some decoupling of
composite, the local fields at every inclusion are random as higher correlationsand a selection of diagrams in Dyson-
consequence of the structural disorder. If a theory neglecttype equations. With these approximations, the theory of
such a randomness, i.e., treats all inclusions as being equivRef. 7 is in good agreement with earlier computer
lent, we call it a mean-field theory. We emphasize that locasimulations®® We also note that Refs. 5-9 do not consider
fields in a mean-field theory are still functions of coordinatesnonlinear optical responses.
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A number of published studies devoted to calculations otions. We use this approach in our numerical calculations in
linear responses of composites have been based on spectita present paper.
expansion method by Bergmdh!! Bergman and Stroutf, Earlier we used the dipolar spectral expansion to find an
Milton,*® and Fuchs, Claro, Barrera, Rojas, and Castfiid/  enhancement of third-order nonlinear photoprocesses in
In this paper we will use our dipolar spectral appro%h, clusters?®?” We showed that fluctuations of local fields in
which is a modification of the general spectral approactsPace are very larggiant,”” and are a determining factor of
adapted for systems described by the dipole approximaﬂoﬁonlmear responses. Composites, t_hat are the subjecy of the
(see below in Sec. Il B Solutions in the dipolar spectral Present paper, differ from clusters in two respects. First, a

expansion exactly obey general relations such as the optic§PMPOSite has a host medium that can also be optically non-
theorem, dipole sum rule, etc. This automatic complianc inear. Second, a composite is infinite in all directions. These

- Co istinctions are addressed in this paper. We do not use de-
with exact properties is due only to the form of the spectralgOupling of higher-order products of fields as in Ref. 25.

expansion and orthonormality and completeness of the el? !
ecause such a decoupling would not correctly reproduce

genvector set. T.h's fact contributes to the numerical Stabllltyspatial fluctuations of the local fields established eaffier.
of our computations.

| tral h trical and material In Sec. Il A we introduce mesoscopic and macroscopic
n any spectral approach, geometrical and material probfe|gs and obtain general integral expressions for linear and

erties of the composite are completely separated. The lineqfyiinear optical responses. In Sec. Il B we start from fun-
responses of a composite are defined by spectral functiogamental equations to derive the dipolar spectral representa-
g(s) that depends only on geometry, but not on the compotjon for the required susceptibilities. In Sec. Il C we obtain
sition of a composite. The composition determines only theexpressions for a hypersusceptibilif? of a composite in a
value of the spectral parametsiin the integral expression mean-field approximation. In Sec. 1l D, in a mean-field ap-
for the susceptibility* For the Maxwell Garnett type of proximation, we find a general third-order hypersusceptibil-
composites, the spectral function has been calculated by Hinty for a composite characterized by two parametgsand

sen and Felderhdt using multipoles up td=4 for the fill  B_. We compare the results obtained with an earlier séidy.
factor of the composité<0.5. We will compare these re- In Sec. lll we present results of a detailed numerical inves-
sults to ours in this papdin Sec. Il B). tigation.

The dipolar spectral expansion also provides a powerful
method of numerical solution of the problem that we use in || MESOSCOPIC THEORY OF SUSCEPTIBILITIES
the present paper. The advantage of such a method is its OF COMPOSITES

numerical stability. This is owed to a significant degree to
the fact that the exact analytical properties of the solution are
already taken into account by the mere structure of the spec- In this section we very briefly summarize general rela-
tral expansion, which is preserved irrespectively of the nutions that we need to find optical susceptibilites. We intro-
merical precision achieved. duce the mesoscopic fietsk e(r) and inductiond=d(r) that

Nonlinear optical responses of a Maxwell Garnett com-are functions of a coordinateinside a composite. The cor-
posite for an arbitrary polarization of light have been calcu-responding macroscopicompletely averagedjuantities are
lated by Sipe and Boytf Their paper consistently described denoted a€ andD,
local (mesoscopic fields inside a composite varying in
space, but did not take into account variations of those fields
from one inclusion to another. Hence, in our classification,
Ref. 20 is a mean-field theory. In the present paper, we also
calculate the same responses in a different formulation of th&here V is the volume of the composite. We consider the
mean-field approximation. The linear optical response andhird-order optical nonlinearity that for an isotropic medium
nonlinear responses for the case of nonlinearity in inclusion& defined by the following material relation between the
are identical to those of Ref. 20. In the case of a nonlineafield and induction,
host, our results are close, though not completely identical,
to those of Ref. 20.

We also note that experimental investigations of optically
nonlinear composites have recently been ddrf8 The re-

A. Integral formulas for optical responses

1 1
3 3
E- VJVe(r)d r, D= _vad(r)d r, (1)

d=e(r)e(r)+4m

B
A<r>|e<r>|2e<r>+$e2<r>e*<r>},

sults obtained in Refs. 21 and 22 are interpreted on the basis o Be o,

of the theory of Ref. 20. We show in this paper that for fill D=gcE+4m AJE|"E+EE", 2
factors of composites studied in Refs. 21 and 22, the mean-

field approach is indeed a very good one. wheree, A, andB are functions of the coordinates that ac-

Nonlinear susceptibilities of composites have been thejuire the values;,A;,B; and ¢,,Ay,By, in the inclusion
subject of a number of studié$?®=2® It has been particles and host, correspondingly, asd A., andB, are
showrt?23?4that to find the third-order susceptibiligt®) for ~ similar macroscopic quantities for the compositeordinate
a linearly polarized light of a composite from those of its independent We also emphasize that we consider optical
components, one has to know only the lo¢alesoscopic  (oscillating in time electric fields. The notations d, E, D,
field in the first order in the intensity, i.e., to solve only an etc. are used for time-independemplitudesof these fields.
optically-linear problem. The unknown nonlinedthird- We impose a boundary condition on the mesoscopic elec-
orden field is explicitly eliminated using boundary condi- trostatic potentialp(r) at the surfaces of the composite,
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e(1)=¢()cs. &) dag=aIE,. (11)

where ¢(r) is the macroscopic potential. Everywhere in thisHere and below, the Greek indices in subscripts denote Car-
paper, except for Sec. Il D, we consider a linearly polarizedesian components3, y, - - - =X,Y,z. Substituting the defini-
(say, along thez direction macroscopic fieldE, so ¢(r)=  tions of Egs.(10) and (11) into Eq. (9), we arrive at the
—Ez This corresponds to the quasistatic approximationrequired expression for the dielectric function of the compos-
whereE is a constant in spadbut, of course, oscillates with ite,
the optical frequency in timeThis approximation is valid if
the size of the composite under consideration is much
smaller than the wavelength of light. €c=¢&n
Following Refs. 12, 23, and 24, by transforming from a
bulk to surface integral over the boundary and back, one cawhere « is the average polarizability of the inclusions,s
easily derive an exact expression the volume of the composite, amdlis the number of inclu-
sions in the composite. Isotropicity, or the random orienta-
D= if d(r)e(r)der @) tion of the inclusions, is assumed to average over Cartesian
VEJv ' indices. Here and below, the summation over recurring vec-
tor indices is implied.
In what follows, we will find solutions for potentials and Similarly, substituting the expansion of E€f) into Eq.
fields as expansions over the optical nonlinearity, (4), using the generalized Gauss theorem to transform to a
surface integral and back to the volume integral, and using

N

N 1
1+47Tva), a:3_NaZI ag’g, (12

— (1 3 — A1 3
o=t .o e=dPte+.., ®  the boundary conditiongEq. (6)], for the third-order nonlin-
H 2324
where the index shows the order in the electric field ampli-€ar terms, one obtains the known 3e)xpres’§161°’1 for the
tude. Correspondingly, the boundary conditi@ yields hypersusceptibility of the composije’=A¢+ 3B,
e =d(Nlics, ¢®(r)=0|;cs. (6)

1
X =yErE f XEM)[eDn)LePn? dr, (13)
From this relation, using &eneralized Gauss theorem, we v
derive that there is no third-order correction to the macroyhere y3)(r)=A(r)+ 1B(r) is the coordinate-dependent

scopic fieldE, third-order susceptibility of the composite matter. A princi-
pal advantage of this expression is that the unknown third-
EG)= lf e®(r)d3r =0, ) qrder fielde® vanishes fro_m Eql3) as a re.sult.of applica-
Viv tion of the boundary conditions. Only the lineirst-orde)
field &%) needs to be known to find the nonlinear suscepti-
bility of the compositey®). Equation(13) is actually used in
our numeric computations.
Using Eq.(7) we can find the coefficientd, and B, of
the composite nonlinear susceptibility through the average of
the mesoscopic nonlinear polarization:

and, correspondinglyg®=E. Similarly, one can show that
there are no corrections t in any order, so that the “ex-
ternal” field E is actually the exact macroscopic field. This is
consistent with the boundary condition of E®) that sets
the potentialy as the exact macroscopic potential.
Substituting Eq.(5) into Eqg. (4) and using Eq(6), we
obtain, in first order, an expression for the dielectric function

B
& of the composite, D®)=47 AC|E|2E+7CE2E*
1
_ 1 243 1
8C—WJV8(r)[e( (n)]?dr. ®) :vad3r[s(r)e(3)(r)+4w AN (r)[2e(r)
Alternatively, the dielectric function of the composite can be B(r)
found directly from the macroscopi@veragedl first-order + ——eD2(r)eD* (1) ] (14
induction as 2
A drawback of this equation comparing to E#3) is that the
. . . 3
so=— | e(r)e®(r)d. (99  unknown third-order correction to the fiekd )(r)_ must be
VEJv found. Its advantage is that it allows one to find both the

_ _ _ _ coefficientsA, andB, for the composite, not only their com-
Equation(9) is actually very convenient to expressina  pinationy{?’=A.+ 3B, as in Eq.(13). We will use Eq.(14)
form suitable for numerical computations. To do so, we in-jin Sec. II D to findA. andB, in a mean-field approximation.
troduce the dipole moment on ath inclusion particle:
1 1 e B. Dipolar spectral theory and susceptibilities of composites
h
da=— _f Ze(ndr, s(n= o In this section we briefly derive and summarize formulas
4 )y, s(r) ep—e&i(r) : . .
(10) of the dipolar spectral theory that constitute a basis for the
numerical computations. To insure that all definitions are
This dipole momentl, is related to the polarizability tensor consistent with the expressions used in the numerical com-
«® of anath inclusion in the composité putations, we start with the potential-theory equations in the
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form of Ref. 12 and then derive needed formulas in the di-whereZ=a51, andN is the number of inclusions. We also

polar spectral representatich. introduce the spectral variab¥and dissipation parametér
The integral equation for the electric potential in the formad®
of Ref. 12 is
X=—-ReZ, 6&6=—-ImZ, (21

¢(r):¢(r)+f ! n(r’) IG(r.r") de(r )d3r’, which will be used below to obtain a material-independent
v s(r') or! or! description. For a uniform dielectric sphere of radRs as

Y Y
(15 an inclusion, for instance, we have

where »(r) equals 1 when is inside any inclusion, and is ao=R3(e;— ) (84 281). (22)
zero otherwise, an(r,r’) is the Green'’s function for the o '
Laplace operator and the bOLfndary problegnunder con- We will follow the dipolar spectral theory developed in
sideration. In particularG(r,r')|;.s=0, that insures the Refs. 18 and 29. For this purpose, we introduce
compliance of Eq(15) with boundary conditior(3). 3N-dimensional vectorgd),|E), . . ., with the components

Equation (15 can be rewritten in terms of the electric (aBld)=d.z, (aB|E)=E, (and similarly for other vec-
fields and a sum over inclusion particles, tors) and obtain a single equation in &l&imensional space,

1 1 (Z+W)|d)=|E), (23
eﬁ(r)=E/3+4—E J ——— W, (r,r")e,(r")d%, _ _ _ _ _ _ _
T b JVpS(r') where the dipole-interaction operator is defined by its matrix
(16)  elements asiB|W|jy) =Wy, (r,r;). The main advantage of
where we have introduced the dipole-interaction tensor the spectral thet_)ry is the separation of the geometrical and
material properties of a system. The latter enter the theory
only through the parametét, while geometry is taken into
G(r,r'). (17)  account by the eigenvectors of HQ3).
g ar’y The solution of Eq(20) is determined by the eigenvalues
w, and eigenvectoréeigenmodes|n) of the W operator®

Jd d
Wp(rr')=—4m— —

For a composite large enoudlthe size of the composite

greatly exceeding the typical separation between the inclu- (W=wj,)[n)=0, (24)
siong, we can replace the Green'’s function by its expression
for an infinite medium and obtain where n=1, ..., is the eigenmode’s number. These
eigenmodes are the surface plasmons in the whole
(r—1)285,~3(r—1"),(r—r"),  composite’ -
o s , I#r The solution of Eq(23) is given by Eq.(11), where the

Wiy (r,r')= [r=r’| polarizability «'® of anath inclusion in the composite in the

0, r=r’. form of the spectral expansithis

(18) .

Let us set e V, (whereV, is the volume of arith inclu- aff%ay)zzb: ap m\/‘by :nz;) (@Bm(byn)(Z+w,) .
sion) in Eq. (16). Assuming that the inclusions are far from ' (25)
each other relative to their sizes, on the right-hand side of
Eq. (16) for b+a, we can replac&V,,(r,r') by Wg,(r,rp), The dielectric function of the composif&qg. (12)] can be

wherery, is the position of the center of theth inclusion,  written in the spectral representation in Bergman’s form
and, taking into account a definition of E{.0), we obtain

u
1 1 s=sh(1— —g(_:du), (26)
eﬁ(r)—ﬂ ——— Wy, (r,r")e,(r")d’’
VaS(r') where Bergman’s spectral variabde=¢,,/(e,—&.) can be
related to our variabl@ as
= Eﬁ—ga W, (1,rp)dp, - (19

s=%(1—R82). (27)
The right-hand side of Eq19) has the meaning of a local
field acting on theath inclusion, and its left-hand side can be We note that the spectral function satisfies exact sum fdles,
expressed in terms of the polarizability, of an isolated
inclusion. For simplicity, we will assume that all inclusions 1 S (S 1
are identical in shapéspheres and composition. This will fo g(s)ds=1, s= fo g(s)s ds= §(1_f)! (28)
transform Eq(19) into the familiar form of the dipole-dipole
Interaction equation, whereg(s)=(1/f)g(s) is the normalized spectral functioh,

N is the fill factor, i.e., the fraction of the composite’s volume

Zdis=E .— W (T ) dp 20 occupied by inclusions, anslis the centroid of the spectral
ap=h bzl pr(Ta:Mo)dy 20 function. In the dipolar spectral theot¥,
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_ 1 @ sion of the type of Eq(32) for the hypersusceptibility®) of
9(X)= "mg'mé app(Z). (29 the composite. Instead, we will compyi® numerically. A
=0 quantity needed for this computation is the mesoscopic linear
This dipolar spectral function satisfies the sum rtilésatin ~ field e*)(r) in the host. From Eq(19), this field can be

terms of the variables have the forms written in the form
1 (1 1 N
fog(s)ds=1, s= fog(s)de 3 (30) e(ﬁl)(r)=EB—b§1 W, (r,rp)dp, . (33

Comparison of Eqs(28) and (30) confirms that the dipolar Finally, we will find the hypersusceptibility by numerical
theory is the first nonvanishing approximation in the param-ntegration over a regioN,, occupied by the hogbutside of
eterf<1, as one would expect. Consequently, the redshift othe inclusiony cf. Eq.(13),

the centroids of the spectral function with an increasefa$

absent in the dipolar theory. Because of these inherent limi- 3)— ﬁz 1-f 160 (r) 2 (1) ]2 or
tations of the dipolar theory, we limit ourselves to consider- n @ V| E|°E? v, ’
ing only small values of the fill factorf0.12). Our results (34)

will then contain a relative error on the order of 10%, which
is acceptable for the objectives of this paper. We compare
our results for thdinear responses with multipolar calcula-
tions of Ref. 19 in Sec. Il B. This comparison confirms that
for f=<0.1 there is a reasonably good qualitative agreement, To introduce the mean-field approximation, we use a
in particular, the spectral broadening of the spectral functiorcoated sphere model. Here a spherical inclusion of rejus

g(s) present in the dipolar theory is much greater than theonsisting of a material with dielectric functios is sur-
shift of its centroid. This allows us to proceed with the mainfounded by a spherical shell of the host with dielectric func-
goal of this paper: consideration of tmenlinear suscepti- ~ flon&p. The external radius of this shell is set toRewhere
bilities, with confidence. R is the mean radius of a volume containing one inclusion.
Let us now find the nonlinear optical responses of theBY this definition, the fill factorf = (Ry/R)®. The rest of the
composite. In the general case, both the inclusions and ho8ystem, i.e., the region at>R, is set to be the average
are optically nonlinear. In this case, as follows from Eg), =~ composite medium with the dielectric functian, of the
the hypersusceptibility of the composite is the sum of hypercomposite. The electric field in this composite medium is
susceptibilities for both inclusions and the host in the com-£qual to the meafmacroscopig uniform field E that deter-
posite. Therefore, we can consider those contributions sep#lines the boundary condition at the host-composite inter-
rately. face. The boundary conditions at the two interfaces of the
In the case of nonlinear inclusions and an optically linearmodel (at r=R, and r=R) are the known electrostatic
host (“internal nonlinearity”), assuming that these inclu- conditions® of continuity of the potentia(r) and of the
sions are uniform spheres of radii, we find the linear normal component of inductiomgd(r).

C. Composite’s dielectric function e and hypersusceptibility
x¥ in mean-field approximation

(first-orde) internal fieldel" in anath inclusion as Solving the electrostatic equaticfin the linear approxi-
mation with the corresponding boundary conditions, we eas-
W qalE :i 3ey, ' (31) ily obtain }?)e field in the inclusiong~(r) for r<Ry, and in
ap By=vye RS &i—ep the host,g;’(r) for R=r>R,:
Substituting this into Eq(13) and assuming a linedsay, z) 1) 3ep, _ect2e
polarization of the macroscopic fiek we arrive at a closed & :si +2e;, B. EB= 3e;,
expression for the enhancement coefficigﬁf for the com-
posite in the case of nonlinear inclusions: 3(rE)r—r2E
o () =E + aq = . (35)
Xc
G =2 _191202(| (@ |2( o®)2 _ _ .
I Xi(3) flal®a <|aﬁz| (a37) )- (32) Here we have introduced the effective lo¢hbrent? field

E,, and the polarizabilityry of an inclusion is given by Eq.
Here the fill factor of the composité=V;/V=(V—-V)/V,  (22). A self-consistency condition of E¢9), or, alterna-
whereV; is the combined volume of all inclusion particles, tively, the boundary conditions at the two interfaces of the
andV,, is the total volume of the host not occupied by the problem, along with the solution of E¢85), yield the known
inclusions. Here and below the angular brackets denote stajaxwell Garnett formula for the dielectric function of the
tistical averaging over random positions of the inclusions incomposite, which we write in explicit form as
the composite, and also over any other random variables in

the system. In accord with the notations throughout in this 1+2fB _ap & —é&p (36)
. . - A =_.—-_' "

paper, a subscript denotes macroscopic quantities for the ¢ 1-fp Rg g+ 2ep

composite.

Now we consider the case of a nonlinear host, while the For the mean-field model under consideration, a general
inclusions are considered as optically linéaexternal non-  formula (13) for the case of nonlinearity in the inclusions
linearity”). In this case one cannot arrive at a closed expresreduces to
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3X|(3) Ro e(l)(r)‘Z e(r))2 be found in terms of th_e known coefficients, gnd By, fpr_
g?»): 3J ( ) dsr. (37) the host. Though we will not use the composite coefficients
4mR>Jo E | E A andBc in the present numerical computations to compare
Substitution of the first of Eqs35) into Eq. (37) yields a them with results of the spectral theory, these _coefﬂments by
known expressiof! for the hypersusceptibility of a compos- themselves are of interest because they provide a complete

ite in the mean-field approximation for the case of nonlineard€scription of the third-order susceptibility of an isotropic
ity in the inclusions: composite. We will compare our result to the previous theory

of Ref. 20, and show that they differ in terms proportional to

X(s) e +2e |2/ +2g.\2 higher powers of the filling factol. Note that our result for
(=22 —¢| = n| [ £ct 28 38) the case of nonlinearity in inclusiori&ternal nonlinearity
B e +2¢ | gi+2¢ (38) i Y

Xi i h i h does not differ from that of Ref. 20.

) o An electrostatic equation for the third-order field is
For the case of n0n|lnear|ty in the hOSt, from E]ﬁ) we &d(3)(r)/ar20 From thiS, tak|ng Ein) and (5) into ac-

obtain, for our model, count, we obtain equations for the inclusion regios R,

(3)
(3):3Xh J'R
¢ 47R3JR,

(39 Ae®(r)=0, (43

e(l)(r)‘Z e(l)(r) 2
E ( E )d3r.

Substituting the second of Eq&35) and performing some g for the host regiorR=r=R,,
elementary but tedious integrations, we obtain, for the mean-
field hypersusceptibility of the composite for the case of the
nonlinear host, 4 d

Ap®(r)=— Ahe‘l’(lr)Ele(l)(r)l2
3) &h

X 1
B=2C _~12In[2(1— 2 22
9y '=—5 —e P7IpPI*(1-D)[8F(1+f+1%)[8]°B B J
x5 +o €[NP 49
+6f(1+1)|B8|28+2f(1+1)B3
+18F(| 8|2+ B2+ 5], (40) whereg(l)(r) is given by Eq.(35). o N
To find both the unknown hypersusceptibility coefficients
where A; andB., we need to include at least two components in
the macroscopic field, i.e., set=¢,E,+e,E,. We seek the
_ gct2ey (41) solution of Eqs(43) and(44) as a spherical harmonic expan-
3ep sion
Our equation(40) is somewhat different from the corre-
sponding result of Sipe and Boydee Eq(6.23 in Ref. 20 5 At r
that can be written in the form o1 =2 \/ 5= Rim(NYim| ~ |, (45
™ 21+1 r
X 1
9="5 =g |pI*p’(8f| 8?7+ 6| |75+ 21 5° where the summation ovéris extended ovef=1 and 3.
Xh Substituting fieldg35) into Eq. (44) and expanding over
+18f(| 8|2+ B2)+5(1—1)]. (42) spherical harmonics, we obtain an equationRgg, the only

of the radial function®R,, that we need to know,
As one can conclude from comparison of E@GK) and(42),

the latter takes into account only the lowest power of the fill
factor f. As a result of this, in particular, the expression of 1 d?[rR(r)] B 2R4(1) . {gl,BIBIZRg ngS

Eqg. (42) does not tend to zero when the host vanishes, i.e., dr2 r2 ;10 57

for f—1, which should hold for the case of optical nonlin- (46)

earity in the host. At the same time, our equati{df) does

clearly possess this property. We note, however, that this )

difference is less significant than it might seem to be, beWhere the notations are

cause one does not actually expect that either of the formulas

in the limit of f —1 may be applicable to real systems. A

Q=——plpl*,

D. Composite’s hypersusceptibility parametersA, and B h
in mean field approximation

In this section, in the framework of the mean-field ap-
proximation, we will find the coefficient®\, and B, that
completely characterize the hypersusceptibility of an isotro-
pic composite for the case of external nonlinea¢itg., non-
linear host and linear inclusionsThese coefficients should

3 1
01= Ez(|Ex|2+|Ez|2)<§Ah+ EBh)

1 1
+E;‘(E§+E§)(§Ah+58h), (47)
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3
+E:<E§+E§>[Ah(2|ﬂ|2+ 532)

1
—5Bn(28°=36%)|.
The solution of Eq(46) has the form

1 Lol 1 1 1
Rlo(r):—§91Q3|,3| Ropg—gngRor—era“rbr—z,
(48)

wherea andb are two coefficients of the general solution of
the homogeneous equation that should be found from the

Ac=p2|p|2(1—f)[Ah

Bc=p2|p|2(l—f)[Bh
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7
1+ gf(1+f+f2),32|/3|2

o f(1+1‘)l33+—3 f(1+6)BIB%+ —12f(B2+|B|2)
10 10 5
1 |2 3

+ EBh[gf(1+f+f2)ﬁ2|ﬁ|2+ gf(1+f)ﬁ3

(52)

9 12
+ 2 f(L+h)BlBI2+ gf(,32+|,3|2)} ,

6
1+ gf(1+f+f2),32|/3|2

1 3 6
- LD SN AlBR S5 AP

2 3
+A, gf(1+f+f2),82|,8|2+ gf(1+f)ﬁ3

boundary conditions.

Application of those conditions at=R results in the ex-

pressions
_ 2 f3 2L f2+1h
a=-30:QF8(B*~ z9.Qf*+ zh,

b=R3

2 1
9:Q 38|82+ gngfz— §h) ,

where the constartt is defined as

4 2
h=— 8—[ {AC—Ah(1+S) 1+ §(2 ReS+|S|2))
h

1
— £Bn(1+5%)(25+ 8% |E,(|E{*+|E)

1 1
+ —Bc—gAh(lJrS)(Z ReS+|S?)

2

1
1+ g(2s+ ?)

1
_EBh(1+S*)

andS=(e.—¢p)/ep.-

The solution inside the inclusiofi.e., for r<R;) obvi-

ously has the form

|
$r =2, 2|+1R|m(Ro>( )m( ) (51)

E:<E§+E§>],

9 12
+ {1+ 0B+ S 1B+ ] (53
One can easily verify that the sufq+B_/2 as given by Egs.
(52 and (53) does indeed reproduce the result of E4Q)
obtained by an independent approach. Similar to @g),
these values oA; andB, are not in a complete agreement
with the corresponding result of Ref. 20: only terms contain-
ing the lowest powers dfagree[see Eq(6.23 in Ref. 20.
Finally, we note that exactly the same result as in E§2)
and (53) can be obtained by using the integral relat{d#)
instead of the boundary condition fdr

. NUMERICAL RESULTS
A. Numerical procedures

We have performed numerical computations of linear and
nonlinear susceptibilities of Maxwell Garnett composites.
The computations are based on the spectral theory as given
by Egs.(12), (25), (32), and(34). A considerable advantage
of the spectral theof§l is that the geometry of the composite
and dielectric properties of its constituents are separated. In
particular, the eigenvalue problem of E¢$8) and(24) de-
pends only orgeometryof the composite, while the spectral
expansions for fields and polarizabilities dependi@tectric
propertiesof the inclusions and host. This is a common ad-
vantage of spectral theories that is inherent in the general
spectral theory?

We have solved the eigenproblé@d) by known Lanczos
algorithms? for large-scale diagonalization, and stored the
eigenvectors and eigenvalues obtained. Once stored, these
data have been used to compute spectral contours of com-
posite’s dielectric function and hypersusceptibility.

We have generated a composite by randomly placing

To obtain this equation, we have used the boundary condspheres at sites of a cubic lattice. The radigsof a sphere

tion of potential continuity.

is arbitrarily set to equal 1. A specific value &, only

Applying the continuity condition for the normal compo- determines a reference scale for the spectral parardetad

nent of inductiond®)(r) for an interface ar=R, to Egs.

the dissipation paramete¥ of the theory[see Eqgs(21) and

(45) and (51), we finally obtain the required expressions for (22)]. We place fromN=75 to 1500 spheres into the unit

A. andB. in terms ofA,, andBy,:

cell to achieve a fill factor fronf=0.001 to 0.12. To de-
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factor f =0.12 that we uséas the most difficult case for us
The heightimaximum valug of our spectral functioriFig. 1)
for f=0.12 is~8, while that of Ref. 19 is~9 for f=0.1.
The red-wing edge of our spectral function issat0.15, and
the same value one finds in Fig. 4 of Ref. 19 fer0.1. The
shift of the peak ofy(s) in Ref. 19 forf=0.1 is~0.015, an
order of magnitude smaller than its half-width, as expected.
This explains a reasonably good agreenfeiithin ~ 10 per-
FIG. 1. Normalized spectral function §4(s) for the values of ceny of the dipolar results of the present paper with multi-
the fill factor shown in the figure. The calculations are doneNor polar results of Ref. 19 for the range of values G#1
=500 inclusion spheres per unit cell. <0.12 considered by us.

A quantitative distinction o§(s) of Ref. 19 from Fig. 1 is

scribe an infinite composite, we impose periodic conditions,;mewhat larger amplitude of the oscillations seen in the

at the boundary of the unit cell. This is equivalent to replac- ; I L
) : ) spectral wings of both the results. These oscillations origi-
ing the dipole tensoWg,(rq,r,) in the formulas of Sec. I B P d g

by a periodic tenso¥, (r1.r,) defined as nate from in.teractio.n of the nearest_ neighbors and, thergfore,
By 12 should be different in the two theories because of the differ-
ent small-scale order. In fact, our model is the lattice gas
Vﬁy(rl,r2)=2 Wp,(rq,r,—L), (54) (randomly occupied sites on a regular latjicehile that of
- Ref. 19 is a hard-sphere gas with randomly positioned non-
where the sum is extended over all lattice vectorsThe  overlapping spheres. We point out that the exact shape of the

above-mentioned formulad.2), (25), (32), and(34) are still  spectral functiorfamplitude of the oscillations, in particu)ar
applicable if one understands that the summation over incluis not very important, because the actual susceptibility is
sions, Xy, . . ., is performed within the unit cellN is the  obtainedcf. Eq.(26)] by the integration along a line shifted
number of inclusions in that cel\/ is its volume, and/, is  from the real axis due to dissipation (Bj which brings

the volume occupied by the host in the unit cell. about smoothing of the spectral contour. Note that our choice

Obviously, one cannot numerically compute the infiniteof the random lattice-gas model is dictated by our intent to
sum in Eq.(54). In reality, this sum can be computed by exclude closely packed neighbors, where the dipolar ap-
either the known Ewald metho@ee, e.g., Ref. 32or by  proximation might have failed.
simply truncating it at a large but finite number of repeated Though the spectral function shown in Fig. 1 is sufficient
cells. We have employed the last approach. The unit cell igo calculate the linear susceptibility of a composite with the
chosen as a cube, the lattice is cubic, and the truncated corgiven geometry and an arbitrary material composition, it is
posite is a large cube. This procedure preserves the symmetso useful to discuss trends susceptibilities and their relation
try of the unit cell. The number of terms in the sum in Eq.to a mean-field theory as function of the fill factbfor a
(54) taken into account is from £30 25°. We have carefully  specific composite. As such, we chose a composite of silver
checked that this number of repeated cells is sufficient t@pheres in a purely refractingno dissipation host of &,
achieve a targeted numerical precisi@ee Fig. 9 and the =2.0. We have chosen silver impurities because of the very
corresponding discussion in Sec. Il).CFrom 150 to 1000 |ow dissipation in silver in the red part of the visible spec-
realizations of a random-composite unit cell have been genrum. This leads to a number of resonant enhancement phe-
erated by the Monte Carlo method, depending on the numbefomena including giant enhancement of Raman scattering
of inclusionsN used to achieve required statistical accuracy(see, e.g., the theory and comparison with experiment in Ref.

Numerical results to be discussed below are calculated ig4).
both the spectral form that is invariant with respect to the |n Fig. 2 we show the real and imaginary parts of the
material composition of a composite and for a specific comrelative dielectric function of a composite=¢. /¢, for the
position. That is, the specific computations are made for silfj|| factor in the range 0.004f<0.12 as functions of the
ver nanospheres in a hypothetical host whose dielectric conight frequency» (indicated as photon energyBoth the
stant is realistically chosen ag=2.0. The optical constants results of the present theofgee Eqs(12) and(25)] and a

of silver are taken from Ref. 33. mean field theorfMaxwell Garnett formula; see E436)]
are plotted. As one can see, for small fill factors (0801
B. Dielectric function =<0.01), there is a good overall agreement between the

present computations and Maxwell Garnéthean-field
theory. With an increase dfto 0.04, this agreement deterio-
Jates, especially for Ima. While our computations, in agree-
ment with Ref. 19, show a pronounced widening of the spec-
tral profile, the Maxwell Garnett formula predicts a narrow

The maximum information about linear susceptibility is
contained in the spectral functiog(s); see Eq.(26). We
show results of our computations of the normalized spectr
function g(s)=(1/f)g(s) in Fig. 1. As we see, the spectral
function at small values dfis a narrow peak that broadens eak moving very slightly toward the red winjVe note
asfincreases. The centroid of the peak stays at its position G4t the Maxwell Garnett formula satisfies the exact sum rule
s= 3 in accord with Eq(30). In the corresponding results of (28) and, consequently, possesses the peak of absorption at
Hinsen and Felderhdkee Fig. 4 in Ref. 19 the behavior is  the correct central frequendyThe same trend is even more
qualitatively similar except for a small shift of the centraid  pronounced for the highest fill factor of our computations,
Quantitatively, let us compare our results at the highest fillf =0.12.
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1.01?66 e £20 001 O.Ilm € £20.001 weak pole; see Eq25)]. In thg thrmodynqmic Iimi(the

1 oa ﬂ — sT o 08 — T size of the system tends to mﬂmty at a given fill fac)tor_

1.02 | MG ‘ P MG these poles overlap. This, most likely, leads to a weaker sin-
1. —’Jif‘ 0.06 " gularity, such as a branch cut. For this reason, the present

0.98 | 2'04 theory does not predict, to be as large in the resonant

0.96 i

region as for the mean-field theory.

A singularity in the dielectric functioripolarizability per
inclusion in the composijds of principal interest because its
high values may lead to a dielectric instability. A similar
effect is the formation of a gap in the density of states in
doped semiconductofs.In our case, the condition of dielec-
tric stability is that the maximum eigenvalje,| does not
exceed the maximum possiblat any frequencymagnitude
of the spectral variablgX|, or

gi+2ey
Re——|.
€~ &np

(55

1
ma>4wn|<ma>$
0

Note that the spectruw,, depends only on the geometry of
the composite, and does not dependRy ¢;, or g. Ob-
viously, the stability conditior§55) can always be satisfied if
the inclusions are small enougR{—0).

Any mean-field theory, the Maxwell Garnett theory in
particular, requires that the mean field is much greater than
the difference of the local fields at different inclusions. In
other words, all inclusion should be equivalent, apdtial
fluctuations of the local field measured at a given distance
from any of the inclusions should be small compared to the
fields themselves. Previously, we have shown thafrfmtal

FIG. 2. Realleft column and imaginaryright column parts of clusters the situ_ation ig completely _opposite: thellong—ran_ge
the relative dielectric function of the composites s, /s,,, for the ~ nature of the dipole-dipole interaction causes giant spatial
fill factors f shown in the graphs. The computations are done forfluctuations of the local field€. Undoubtedly, a similar situ-
N=500 inclusion spheres of silver in the unit cell. The solid lines ation should take place for fractal composites., compos-
denote the result of the present theory as given by Eg®.and  ites with a fractal cluster in a host medium as the unit)cell
(25). The dashed line is a plot of the Maxwell Garnett formula for A question is whether there are significant spatial fluctua-
a composite with the sanfeand dielectric properties. The plots are tions of local fields for a nonfractal Maxwell Garnett com-
given as functions of the photon ener@V) for solid silver nano-  posite. The above-discussed results for the dielectric function
spheres as inclusions in a uniform host with=2.0. suggest that those fluctuations should be large in the resonant

(absorption region.

Interestingly enough, for the real part of the susceptibility, To answer this question directly, we show in Fig. 3 the
the overall agreement with Maxwell Garnett formula is notrelative intensity of the local fields at different inclusions
bad even forf =0.12, except for the very central region of (more specifically, square of the local polarizability is the
the absorption band. In that region, the Maxwell Garnett forquantity plotted. One can see that indeed in the resonant
mula possesses a pole singularity. In contrast, in the preserggion there are very strongby orders of magnitude
theory, there are multiple pol¢svery eigenvalue generates a changes of the local fields from one inclusion to another,

12314 5 6

FIG. 3. Spatial distribution of the intensity of induced dipoles at different inclusions. This distribution is plotted in the following way: A
composite is generated and local dipole polarizabili&%% are found for each inclusion from E¢R5). Then inclusions are projected onto
thexy plane. If there are several inclusions projected onto the same site, one of them is randomly left. The square of the local polarizability
%|a£;az)|2 for each of the inclusions left is plotted as the vertical coordinate. The left panel shows the distribution for the resonafibregion
terms of the spectral parameﬂESX: —0.01), while the right one is for the off-resonant regispectral WingRSX: -1.0).
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FIG. 4. Real(left pane) and imaginary(right panel parts of the
dielectric functione . of the composite for the fill factor=0.12 and
the indicated numbeN of inclusion spheres in the unit cell. The
curves are shown as functions of the photon energy.

which we refer to as spatial fluctuations. In contrast, for an 1072
off-resonant regiorisee the right panel in Fig.)3such fluc- 107*
tuations are much less pronounced. This explains why the
Maxwell Garnett theory works in the spectral wings but fails
o Central(re§onarvt region. One may expect that the function of the photon energy for the fill factors shown in the fig-
effect of the spatial fluqtgaﬂons Gmnllnearsuscept|pll!tles ures. The solid curve is for the present spectral thégy. (32)],
will be much more significant. We show below that it indeed 5,4 the dashed curve is for the mean-field theldy. (38)]. The

is the case.

Previously we have predicted giant fluctuations of local
fields in fractal clusters and composifésdowever, there is  which causes spatial fluctuations of the local fields and ren-
a major distinction between fractal and nonfractal composders the mean-field approximation inapplicable. With an in-
ites: as we have shown above, the spatial fluctuations for grease off to the values of 0.04 and 0.12, the mean-field
nonfractal Maxwell Garnett composite are strongest in thexpproximation fails completely, even on the order of magni-
resonant region|K|<1), while for fractal composites they tude, except for the very far wings of the spectral contour.
are most pronounced in a far-wing, off-resonant regionThe mean-field theory greatly overestimatg$) in the re-
(IX|=1). This difference notwithstanding, the fluctuating gion of the surface-plasmon resonariae~3 eV) and un-
singular spatial distributions in Fig. 3 are similar to spatialderestimatesy® farther away from this resonance. The
distributions obtained earlier for inhomogeneously localizedyresent theory predicts a significant enhancement of the hy-
excitations in fractal cluster§:%® persusceptibilityy®, though this enhancement is much less

In numerical computations with periodic boundary condi-than predictetf*° and observet! for fractal clusterscom-
tions there is always a question whether the size of the uniosites.
cell is sufficient. To answer this question, in Flg 4 we Aswe emphasized above in Secs. Il B and Il B, the spec-
present a plot of the dielectric function for a composite withtral representation of the linear susceptibility has a great ad-
the fill factor f=0.12 computed with different numbers of vantage of being material independent. In contrast to the lin-
inclusions in the unit cell. As we see, the dependenc&on ear case, the nonlinear susceptibilities directly depend on the
levels off betweerN=500 and 1500, the two values used in dissipation in the medium. Therefore, one cannot directly
the present calculations. The conclusion is that the size of thgeneralize the spectral theory to the nonlinear case. Never-
unit cell used is sufficient. theless, we will show below that the dependence on the dis-
sipation can be parametrized in such a way that it acquires a
universal scaling form in the most interesting part of the
spectral region, where the enhancement of the nonlinear po-
larizability due to the composite structure is large.

Now we consider the nonlineghypepsusceptibilityy The above-mentioned generalization can be implemented
in the case of a composite consisting of nonlinear inclusiony expressing the enhancement faagét’ as a function of
embedded in an optically linear host. We performed computhe spectral variableX and 5. A plot of |g®®)(X)| for differ-
tations for such composites withi =500 inclusions in the ent values ofs is presented in Fig. énote that the range of
unit cell. Figure 5 presents the absolute values of the ens=0.001-0.1 is realistig. As we see, for smallX| the en-
hancement factay®= )/ x{* calculated from the spectral hancement factor dependence levels off, reaching a maxi-
theory[Eg. (32)] and from the mean-field theof§eq. (38)]  mum. As the plot in the right panel shows, the dependence
for fill factors in the range 0.064f<0.12. For the very on & in the region|X|=1 is scaling with a trivial index of
diluted composites f(=0.001,0.01), the spectral profile of —2, |g®|=Cé 2, where C does not depend o@. This
|g®®| consists of two peaks. The one at the absorption freresult is the required spectral representation for the nonlinear
qguency(the right one of the twpis in reasonable agreement susceptibility, which depends only on geometry but not on
with the mean-field formula. However, there is also anothethe material composition of a composite. At the same time,
considerable peak, redshifted from the absorption frequencyhe universalfor a given geometnydependence on the spec-
This peak has no counterpart in the mean-field curve. Thisral parameterX and é can be easily translated for any spe-
shifted peak is due to the interaction between inclusionsgific material into the dependence on light frequency using

FIG. 5. Magnitude of the enhancement coefficigigf®)|
=[x®1 x| for nonlinear inclusions of silver in a linear host as a

curves are plotted on a logarithmic scale.

C. Hypersusceptibilities for composite with nonlinearity
in inclusions
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FIG. 6. Spectral representation of the nonlinear enhancement: tg lgt
Magnitude of the enhancement coefficiégt®)| for the fill factor o £=0.12

f=0.12(500 inclusions of silver in the unit celfor a linear host
and nonlinear inclusions as functions of the spectral varif¥le
(the actual region plotted is foK<<0, corresponding to visible
light) for different values of the dissipation paramedfaieft pane).
The right panel shows similar plots whelg®)| is normalized by
multiplication by 62. Note the double logarithmic scale.

w (ev)

_— : : FIG. 8. Magnitude of the enhancement coefficigg®]
the definition of Eq(21). For instance, for silver the spectral _ |x® x| for optically linear inclusions of silver in the nonlinear

para_mgters de_pend on theh fref((]fuenC)ll 6|1S shown in Fig. 7. host as functions of the photon energy for the fill factors shown in
Itis interesting to note that fdractal clusters or compos- the figures. The solid curve is for the present thddry. (32)], and

ites, scaling ins takes place in the opposite limiting case, for e gashed curve is for the mean field theldgy. (40)]. The curves
|X|=1, with an index of-3. We attribute this distinction to e plotted on a logarithmic scale.

a different spectral distribution of the density of eigenmodes.

In a Maxwell Garnett composite, a nonfractal system, eigen-

modes are more abundant near the surface-plasmon res$Scopic fields in a large volume of the host around each of
nance (X|=1), while in fractal systems a strong pair corre- the inclusions. At the same time, optical absorptidielec-

lations brings about a shift of the eigenmode density towardriC losseg are concentrated in a relatively small volume of
larger|X|. This also leads to another principal distinction of the inclusions. Below we test numerically these qualitative
a Maxwell Garnett composite from fractal systems. That isarguments.

the third-order enhancement in fractals actuatigreases The enhancement coefficient for the case under consider-
not decreases, with|X|, approximately, in a scaling ation g®=x®/x{¥ in the present theory has been calcu-
manner® lated in accord with Eq(34), where numerical integration is
carried out by the Monte Carlo method with 3000 trials per
-~ EE B |X|3+do one realization of the composite at each spectral point. The
gr= ?IX Im o= 8 (56) uncertainty of the Monte Carlo integration is much less than

the width of the lines in the corresponding plgsee below
where I=d,>0 is a nontrivial index, optical spectral dimen- The mean field approximation is calculated from E3g).
sion. The enhancement factors for composites Witk 500 in-
clusions in the unit cell for the fill factors 0.061f <0.12 are
D. Hypersusceptibilities for composite presented in Fig. 8. The behavior of the enhancement factor

with nonlinearity in host in this case is similar to that for the case of nonlinearity in

) ) ) _the host(cf. Fig. 5, though the enhancement is appreciably

Here we consider a case where the inclusions are opticallijigher. Also, in all of the visible to infrared spectral range

linear, and all nonlinearity is in the host. One can expect thafhere is optical enhancemejnf®)|>1 in contrast to Fig. 5.
in this case a higher enhancement and lower dielectric 10ssese mean-field theory gives a reasonable agreement with the

can be achieved, because the outer electric field around fasent computations only for the lowest fill factor presented,
resonant dielectric sphere is higher than the internal field; — 9 901. Similar to the case nonlinear inclusions.f ds-

The long range of the dipolar fields brings about strong Me¢reases, a peak grows to the red region from the surface
plasmon resonance of inclusions dominating the picture at
f=0.001. Atf =0.04, the mean-field theory fails completely,
! even on the order of magnitude. This is due to development
21 i of the giant fluctuations of local fields introduced in Ref. 27.
To check numerical consistency, we present in Fig. 9 re-
sults of the computation ofg®)| for different numbers of
w (eV) inclusions in the unit celN (the left panel and for different
! L numbers of repetitions of the unit céthe right panel The
main conclusion that one can draw from this figure is that
FIG. 7. Dependence of the spectral paramatésolid line) and ~ both the number of inclusions and the number of cells are
dissipation parametet (dashed lingon light frequency for a silver ~ sufficient(the curves shown overlap within their widths for
nanosphere. most of the spectral region
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FIG. 9. Magnitude of enhancement coeffici¢gt®| for the fill
factor f=0.12 and different unit cell sized=79, 500, and 1337
(left pane) and different numbers of repetition of the unit cell in the FIG. 10. Same as in Fig. 6, but for the case of a nonlinear host
composite(right pane). Data are plotted for optically linear inclu- and linear inclusions.
sions in a nonlinear host. Note the double logarithmic scale.

1
1074107310210 1 10 107%107%*107%210t 1 10

of composites. However, for the sake of testing our methods,

Finally, we discuss whether for the case of nonlinearity inwe have also calculated linear responses. The spectral func-
the host there is a scaling ihsimilar to that shown in Fig. 6. tion computed agrees within the expected 10% error with the
In Fig. 10 we show spectral dependencégdf| in terms of ~ previous calculations of Ref. 19.
the spectral variabl and dissipation parametér We con- We have suggested a material-independent spectral repre-
clude that in this case as well, the enhancement factor fogentation for nonlinear susceptibilities, which is not quite
IX|<1 scales agg®|~Cs 2. This provides the spectral trivial, because the corresponding spectral function depends
representation for the nonlinear susceptibility, giving adirectly on the dissipation, unlike that for the linear suscep-
material-independent description of the results. tibilites. We have achieved this goal by choosing the spectral

In recent experiments, cancellation of Imy(® due to  variablesX and s, and showing that there is a scalingdrin
nontrivial consequences of local-field effects has been obthe region of optical enhancement.
served, predicted on the basis of a mean-field theory. In these We conclude that the mean-field approximation does not
experiments, both the host and inclusions are optically nondescribe the susceptibilities under consideration in the reso-
linear. Correspondingly, our theoretical prediction for thenant region where optical absorption is present. For the lin-
nonlinear susceptibility would be a sum of the correspondingear dielectric function, the disagreement of the mean-field
contributions found above and in Sec. Il C. All the observa-approximation(Maxwell Garnett theoryis more significant
tions of Ref. 22 are in a good agreement with the mean-fieldor the imaginary part, which is understandable, because
theory of Ref. 20. The reason for such good an agreement isn & is nonzero only the region of optical absorption.
that the fill factor in Ref. 22 is very lowf=2.2x10 5. At We have found that there is a significably several or-
such values of, the present theory predicts the mean-fieldders of magnitudeenhancement of the nonlinear susceptibil-
theory to be completely applicablef. the panels forf ity x{*) in the resonant region. For the nonlinear responses,

=0.001 in Figs. 5 and)8 the mean-field theory is applicable only for very low fill
factors f=0.001). For larger fill factors, it completely fails
IV. CONCLUSIONS to describe the maximum magnitudeven on the order of

_ _ . ~ magnitude of x¥) and its spectral contour. The likely cause
Let us very briefly summarize the major results obtainedof this dramatic behavior is the presence of giant spatial fluc-

without repeating most of the discussion already givenuations of local field¥ related to the long-range nature of
above. We have calculated both linear;) and nonlinear the dipole interaction.

( Xf)) optical susceptibilities of Maxwell Garnett composites
in a dipolar spectral theory. The theory is asymptotically
exact for composites where typical distances between inclu-
sions are much greater than the sizes of the inclusions. In our The authors are grateful to J. E. Sipe for many useful
range of the fill factors (0.064f=<0.12), our computations discussions and participation in the formulation of the prob-
should have an error of 10% or less. For the sake of comlem. We greatly appreciate helpful comments and sugges-
parison, we have also computed these susceptibilities in #ons by D. Bergman, R. Fuchs, and B. I. Shklovskii. Com-
mean-field approximation. ments by P. Visscher regarding the treatment of the periodic
Our main goal has been finding nonlinear susceptibilitiedoundary conditions are gratefully acknowledged.
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