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Conduction channels at finite bias in single-atom gold contacts
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We consider the effect of a finite voltage bias on the conductance of single-atom gold contacts. We employ
a nonorthogonak p d-tight-binding Hamiltonian combined with a local charge neutrality assumption. The
conductance and charge distributions for finite bias are calculated using the nonequilibrium-Green-function
formalism. We calculate the voltage drop through the contacts and find the main drop located near the negative
electrode. We argue that this is due to the filtkdtate resonances. The conduction is analyzed in terms of
transmission eigenchannels and density of states of the eigenchannels projected onto tight-binding orbitals. We
find a single almost fully transmitting channel with mairdycharacter for low bias while for high bias this
channel becomes less transmitting and additional channels involving drdybitals start to conduct.
[S0163-182609)05447-4

[. INTRODUCTION channel decomposition of both conductance and orbital pro-
jected density of states in order to determine the set of un-
Manipulation of single-atom gold chains connected toderlying conducting orbitals.

bulk gold electrodes and measurements of their conductance For the gold contacts, we find that the voltage drop pref-
has recently attracted much attentfcfin experiments using  erentially occurs at the negative electrode. In the limit of
superconducting electrodes it has been possible to extragero bias we find a single contributing channel with almost
transmissions of individual conductance channels for conperfect transmission consisting of orbitals,[§,,d,2) with
tacts down to the single atofnThe number of conduction Zzero angular momentum in the direction of the contact (
channels and their relation to the valence of the atoms hadirection hereaftgrand with dominatings character. For a
been established in agreement with the%)_[%/For one atom- hlgh-blas VOltage of the order of 1.5 V we find that channels
wide gold contacts a single contributing channel is found inconsisting ofd-states {,,/dy,) with higher angular mo-
accordance  with  recent conductance fluctuationmenta (,=1) come into play. The highly nonlinear experi-
measuremerfisand the earlier interpretation of the&, mentall-V characteristics seen by Costa-Kreret al."* can-

=2e?/h peak in conductance histograms of ensembles ofot be explained by our results. _ _

contacts The paper is organized as follows: First, we discuss how
However, in the case of finite voltage bias the behavior We include a nonorthogonal orbital basis in the calculation of

of the nonlinear conductance of these systems is not welectric current and in the implementation of atomic charge

understood. Yasuda and Safdiound that theG, peak in  Neutrality. This extends previous formulatiofs,***which

the conductance histogram of gold at room temperature digvere based on a orthogonal orbital basis. Then we discuss

appeared gradually between approximately 1.5 and 2.0 \how to analyze the total transmission and projected density

On the other hand measurements of lthé characteristics of Of states in terms of transmission eigenchannels. After these

these systems by Costa-Kmar and co-workefs show a formal sections we apply the formalism to specific examples

highly nonlinear behavior already in the small bias regimeof contacts containing a single atom chain. Finally, we dis-

(~0.1 V). cuss the obtained results in relation to experimental results.
In this paper we consider chains of gold atoms connected
to semi-infinite gold electrodes and calculate within a one- Il. MODEL

electron model transmissions and orbital components of the

conductance channels at finite bias voltage. We use a nonor- Self-consistenab initio method$>"*®have been used to
thogonal tight-binding model and employ the nonequilibriumcalculate the conductance of single atom contacts @ifh
Green-function approach combined with the assumption ofalence electron$C,Na,Mg,Al,S). The nonlinear conduc-
local charge neutrality of the ators® The charge neutrality tance has been calculated by Lang for single atom Al and
is fulfilled in a self-consistent manneisoin the finite bias  Al-Br contacts'’ These computational methods are very de-
situation which enables us to determine the voltage dropnanding even for simple systems. In the case of transition
along the contacf We calculate the transmission eigen- metal contacts with quite localized-states, simpler tight-
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binding methods are therefore attractive despite their more B. Self-consistent screening at finite bias
approximative natur&*®

We consider first théspin-independenbrthogonaltight-
binding Hamiltonian describing the leftl()) and right (R))
electrode states coupled via the contact region Witstates
(l@)) by the matrix element¥,

In equilibrium (no current,V=0) the number of valence
electrons associated with an atomic sit@vith orbitals «;)
can be found from the retarded Greens function,

2 0
Q=- —f deX IM[SG(e)]gqNe(e).  (6)
" ’ ’ ’ TJ —o % o
H:E/ h o L)(L |+E, hrr/[R)(R |+Z Hoorla@)(a’|
t RR “ Strictly speaking we should us¥°GS'? instead of the sim-
pler SGin this formula, but the results are equal to first order

+ é VaL|a><L|+% Varl@)(R|+H.c.|. @ in ss=5- 1, and the total number of electrons in all orbitals
remain exactly the same.
Using the nonequilibrium-Green-function formaligsee, While the number of valence electrons for the atoms well

e.g., Refs. 13,18,19 and references theré¢ie electronic inside the bulk corresponds @©=11, the low-coordinated
current through the contact can be derived for this model, atoms in the contact region will in general not be charge
neutral. Following Refs. 12 and 5 we assume charge neutral-
ity of each atom in the contact region and adjust the local
potential at each atom self consistently to achieve%hihe
local potential corresponds to a diagonal matrisPg(
TH[IM 3, (e—eVI2)]G (e)[Im Zx(e+eVI2)]G(e)}. =diag ¢;}) added to the orthogonal Hamiltonian describing
(2)  the contact. To first order i®S the nonorthogonal matrix
elements read,

(V)= Gofjxde[n,:(e— eVI2)]—ne[(e+eVi2)]

Here, G is the retarded Greens functiod X N) matrix
U[1(e+i8)—H—X] for the finite contact region, anuk is o _(al 12) S (bt b
the Fermi functionwe assume zero temperature throughout @, = (S"@oS™) =S (i + ¢))/2. ™

this papey. The self-energy2 =2, +2g, due to the cou- ;g expression ensures that a constant on-site shift of all

pling to the left and right electrodes is determined from thestates amounts to the same shift in all eigenenergies
unperturbed Y =0) electrode Greens functiafi®, 0 i

In the nonequilibrium case the chemical potentials well
inside the left and right bulk electrodes differ by, and the

[2()]ara= 2 Vo [0 Vi,. (3  charge can be writted™
LL’
2 )
A. Nonorthogonal tight-binding parameters Qi=- P _wd‘f%

Parameters for tight-binding Hamiltonians can be deter-
mined by fitting toab initio bandstructures obtained in den-
sity functional calculations. Here, we consider the case of +
gold and use a parametrization obtained by Mehl and Papa- T[SGle)Im 2g(e+eVI)G (6)]“i“inF(€+ew2)}'
constantopoulos, which is fitted to bulk gold systéths. (8)

In general the most accurate parameter fits are obtained
using a nonorthogonal tight-binding basis. It is straightfor- .0 the relation ING=G(Im3X)G it is easy to see that
ward to implement the overlagoverlap matrixS;=(ilj))  this reduces to the equilibrium expression in Eg). for V
between the :c,tatgs of thseparalte systems 52&@541, =0. We solve the set of equation®;[®]=2Z (i
®Sg) by the Lovdin constrl_,lctlor?. In terms of the matrix  _q N self-consistently and thereby include the effect
elementMo e{ho ,Ho ,Vo} in Eq. (1) corresponding to the ¢ 5 |ocal potential change in the contact due to the finite
orthogonal basis, the matrix elemen corresponding 10 piss. This method has been applied by Pernas, Marti
the nonorthogonal basis re#d, Rodero, and FloreS They considered chains connected to

M = Sl2\ - SL2 @ electrodes(Bethe lattices using a orthogonal tight-binding
S model with a single orbital per site. We will later return to
Insertingl=S~2S"2in the formula for the current, Eq2),  their results. _ o
this procedure simply amounts to replacing orthogonal pa- [N order to go beyond the charge neutrality approximation
rameters o) by nonorthogonal ones() and substituting We should solve Poisson’s equation to obtain the electrostatic
¢ by €S in all Greens-function matrices in Eq&) and(3).  Potential as discussed by McLennan, Lee, and Baitethe

The remaining overlap between the states in the finite€ontext of two-dimensional device models based on the non-
contact region and electrodéwe assume that the left and €quilibrium Green’s-function formalism.
right electrode states have no ovejlaan be included via a
redefinition of the hopplng matrix elements, as shown re- IIl. EIGENCHANNEL ANALYSIS
cently by Emberly and Kirczenot,

X{[SG(€)Im X (e—eVI2)G'(€)], o NE(e—eVI2)

The expression for the current, EQ), can be written in
VoL (R)— VaL(R)~ €SaL(R) - (5)  the Landauer-Biiiker form?2°
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I(V)=Gofoc de[ng(e—eVI2) —ng(e+eVi2)]
X Tt (e)t(e)], C)

with the identification of the (left-to-right) transmission am-
plitude matrixt,

12

t(E)Z Im ER

eV
Im 2|_< €E— —(—

1/2
e+—” G(e) 5

2

(10

The transmissioreigenchannelgrovide a direct picture
of the electronic states that contribute to the conductande.
The eigenchannels are defined in terms of (leé to right)
transmission matriz®

uy

ot

t=Ugdiag{| 7| }U] . (11)

They split the total conductance into individual contribu-
tions,

Local potential (eV)
o

y
-1012 3 4567 012345¢86738 910
Layer # Layer #

G=GoX |7l (12) _ o
n FIG. 1. The layer averaged atomic potential shiftg;f, .yer)
for different bias voltages for the chains of lengti{ia® and 6(b).
Layer —1 corresponds to the firg100 surface layer of the semi-
infinite electrode. Below the change in local potentiaitage drop
[{di)Layed V) —{Pi)Layed0)] is shown. The largest voltage drop is
Projected density of states seen close to the negative electrghidt) between layer 2 and 3 for

The local density of stategot including bound states both (&) and (b).
can be split into a sum of eigenchannel components. The
individual components can be calculated from the functional
derivative of the transmission matrix with respect to the local E =GP.G (16)
potentialV(r),?’ de 4 “

The eigenchannel transmissiohs,|2, are the eigenvalues of
t't.

following formula for the PDOS split into eigenchannel
an components:
(13

A factor of 2 for_sp.in has been.incllud_ed_. pl€)=— 3 > IM[X"P,GX]- (17)

In the tight-binding formulation it is instead relevant to T n
calculate the density of states of the individual eigenchannels
projected onto selected orbitdBDOS. Following Refs. 28 We will use the nonorthogonal tight-binding orbitals cen-
and 27 the tight-binding analog of E€L3) can be obtained tered on a central atom in the contact region in the projec-
by simply exchanging th&/-derivative with the derivative tion.
with respect to the on-site element of the Hamiltonign
corresponding to orbitadk,

st
Uit ——-u,
oV(r)

/ whereP,, is the matrix projecting onto orbital, we get the
|Tn|2-

- 2
p(r,e)z—; ; Im

IV. CALCULATIONS

2 at We limit our study to a few simpl tact tri
__Z e o0 2 y w simple contact geometries
Pal€)=— T En: Im( ULt &gaUL> / [7l* A4 \hich contain an atomic chain in order to extract some gen-
eral features. In these structures all interatomic distances are

However, in the present case where the Greens function i&ken to be equal to the bulk distance. We would probably
known, a more direct formula can be derived by defining theh@ve to use tight-binding parameters fittecatinitio calcu-

matrix X, which diagonalize the matrix inside the trace in lations of the specific systems if we were to focus in on the
Eq. (2) detailed behavior for small variations in the geometry—e.g.,

changes in bond lengths and bond angles in the atomic chain.

X~ (Im=2) G (Im 2R)G]X =diag| 7|2} (15)  This is outside the scope of the present paper. In the calcu-

lations we first consider the two structures depicted in Fig. 1.

Using the relation betweenand G [Eq. (10)] in Eqg. (14),  They consist of a chain of 3 or 6 gold atoms attached to
and layers of 4 and 9 atoms in both ends which again are con-

nn
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FIG. 2. The density of states projected onto the orbitals of the R ; V9
middle atom of the 3-atom chain (s along the chain, contributions 0.8 i
from the almostx«—y symmetric states are included in the curves 0.6 i x a 0
labeled byp,, d,4, anddy,) and the corresponding transmissionvs 0.4 i
energy. The bulk electrode Fermi energy is at zero. (efht): 0.2 ’ -
Without (with) the self-consistent on-site potential. ° 3 R T o ]

Energy (eV)

. . 2
nected to the(100) faces of two perfect semi-infinite gold ~ F!G- 3. The eigenchannel transmissios;|*, of the 3-atom
electrodes. chain for different voltage biagV=0,0.5,1.0,1.5,2.0. An almost

The electrode Greens functions in H), g(o), are con- fully transmitting single-channekolid line) is seen inside the volt-

. ! . i h I j I
structed from the solutions of the bulk eigenstates using thﬁlge window and two near degenerate channels are seen just below

. ! . . . . dotted line for 0 V (bottom paneél For higher bias voltages these
ideal Constructhn e.g. described in Ref. 29, Thls implies .tha egenerate channels begin tF;) enter the 3oltage windOV\?. Very small
the on-S|t§(reIat|ve to the bulk _e_Iec_;tr_ode chemical pote_r)tlal peaks are just resolved corresponding to a 4th channel—the remain-
and hopping terms of the sem|-|nf|n|te_ele<_:trodes are f_|xed %g eigenvalues are vanishiri§.005.

bulk values for all electrode atonfgray in Fig. 1. For finite

bias the chemical potential of a electrode is shifted and so the

on-site term of the electrode atoms is shifted accordinghtributes to the current. The PDQSf. Fig. 2) resolved into
with the same amount. For the atoms in the contact regioits eigenchannel components using E#j7) for the first 3
(white in Fig. ) the (layer averagedpotential shifts calcu- channels is presented in Fig. 4 for 0 Volt and 2 Volt. From

lated self-consistently for different bias voltages are showrFigs. 3 and 4 it is seen that tle,/d, -derived channels first

in Fig. 1. begin to contribute inside the voltage window from a voltage
In Fig. 2 we show the density of states projected onto thévias of about 1.5 V.
orbitals of the middle atom in the 3-atom chain witleft In Fig. 4 a peak is seen at the upper edge of the

pane) and without(right pane] the self-consistent potential. d,.-PDOS, which is followed by a peak in tlePDOS with
In both cases the presence of thstates is reflected in the a decaying tail towards higher energies. At this point in Fig.
transmission vs. incident electron energy. We note that thé the first eigenchannel has a dip where a 4th channel con-
inclusion of the self-consistent potential shifts ttiestates tribution can just be resolved. Except for this thep,, and
closerto the Fermi level, and the state PDOS shows more d,. orbitals combine into a single eigenchannel. A very nar-
narrow features since these states are being shifted out edw peak in PDOS is seen in Fig. 2 corresponding to the
resonance with the states on the contacting atoms. Aroundd,,/d,2_2 orbitals, but the corresponding resonant tunnel-
Er a significantd component is present in the self-consistenting peaks are not seen in Fig. 3.
case together with the/p, component whereas tleandp, We have also considered shorter and longer chains. In
components dominate around the bulk electrégein the  contrast to the result for the 3 atom long chain we find for a
non-self-consistent case. Both results yield a conductancg atom long chain that thp,/p, orbitals play a more pro-
plateau aiG, aroundEg . nounced role in the 2nd and 3rd eigenchannels and the model
In Fig. 3 we show the eigenchannel transmissions for theredict a noticeable contribution from the 2nd and 3rd eigen-
self-consistent calculation of the 3-atom chain. At zero volt-channels of about 0.05 arourtg .
age a single eigenchannel is almost fully transmitting around Formation of longer chains of gold atoms has been pre-
Er while the remaining eigenchannels have transmissions alicted by molecular-dynamics simulatigsee, e.g., Ref. 30
0.005 or less in accordance with Ref. 8. For a finite bias théor a chain with 6 atomsand seen experimentally at low
states in an energy windovertical lineg of width eV con-  temperature for chains containing 4 or 5 atdmdzor the
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hak 1
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0 - 025 0 025 0 05 1 1.6

1 ka/2n DOS (1/eV)
= FIG. 6. The band-structure and orbital DOS for the infinite gold
o chain with bulk interatomic distance. A finite broadening is used in
e the DOS figure. The different line types refer to the orbitals as in
Q Figs. 2 and 4.
o

X 7(b)] we find a considerable decreasd ¥ compared to the
o loweer ™" | ]| e (100 result (~30%).
-4 -3 -2 -1 0 1 -3 -2 1 0 1
Energy (eV) Energy (eV)

Voltage drop
FIG. 4. The orbital projected DO&orresponding to Fig.)Zor

the first eigenchannélippe) and the total of the almost degenerate VW€ note that the potential shift shown in Figbjifor the
2nd and 3rd channeldower) for 0 V (left pane} and 2 V (right ~ © atom chain is almost constant along the four middle atoms.

pane). The change in local potentialvoltage drop takes place
mainly in the first part of the chain between the first two

chain of 6 atoms depicted in Fig. 1, we find that the upperatoms(2-3) and in the entrance in-between the first lagBr

edge of thel-band contributions gets quite closeBp. This ~ and the first aton(2). This is also the case for the 3-atom

is expected already from the bandstructure of the infinitechains connected to th@00) or (111) electrodes.

chain(Fig. 6) where the upper edge of tlg,/d,, bands are

just cuttingEg . The correspondence between onset of chan- Layer #

nels in Fig. 5 at zero V and onset of bands in Fig. 6 is clear

except for the very narrow,,/d,2_2 bands.

Finally, we have considered a contact consisting of a 3
atom long chain attached to layers of 3 and 7 atoms in both S
ends which again are connected to {i41) faces of two
perfect semi-infinite electroddsee Fig. 7. For zero bias we
find again a single almost fully transmitting chanieig.
7(a)] but the high transmission is only maintained in a rather
narrow energy window arounBg in contrast to the100)
results. A single-atom gold contact in thEl]) direction has
also been considered by Cuewesal® in the case of zero -1k ' . ‘ : : .
bias. They also found that the channel transmission peaked
close toEg with almost full transmission. However in that
study thed electrons were neglected. For high bidsg.

AT

2.0

-1 0 1 2 3 4 5 6 7

Local potential (e

1
0.8
0.6
0.4
0.2

1
0.8
0.6
0.4
0.2

0

2.0

Eigenchannel Transmission

Eigenchannel Transmission

-4 -3 -2 -1 0 1
Energy (eV)

-4 -3 =2 0 1
Energy (eV) FIG. 7. The voltage drop for 2 V biasiia 3 atom contact

connected ta111) electrodes(upper pangl Below we show the
FIG. 5. Eigenchannel transmissions for the 6 atom chain. eigenchannel transmissions f@ 0-V and (b) 2-V bias.
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The calculated voltage drop has no symmetry despite the Filling=1 Almost Filled Almost Empty
left-right symmetry of the gold contacts. The main voltage
drop is located near the the negative electrdgé Figs. 1 — V=0
and 7. This is in contrast to the calculations by Pernas -= V>0

et al X for the symmetrics-orbital chains connected to Bethe
lattices, which yield a left-right antisymmetric voltage drop.
An explanation for this can be found in the difference in
electronic structure: The system examined by Pernas anc
coworkerd® has besides the left-right symmetry also Ee
electron-hole symmetry which impliegf. Eq. 8 that the
local potential ®(V), becomes an odd function d For a
left-right symmetric contact the voltage drop will therefore
be left-right antisymmetric. However, in general there will
be an asymmetry in the DOS or in the orbital filling of the
system and thus we cannot expect a symmetric voltage drog
from Eq.(8). For example, electrodes with fcc or bec lattice
W”Iltnic;t iuas\t/ri SiSZTCT ﬁg:\(:siggrstr? eroggsdeltsfFae;Tr: g?(ra]ecrgziact FIG. 8. A single state coupled to the left and right electrodes

. B . with equal and constant coupling. For the half-filled resonance the
state at energy, (with respect t&Er=0) connected to wide . o
. . . . charge will not change with bias and thus the resonance energy
band electrodes in a symmetric wa¥; ;r(€)=iT". In this

. . . remain fixed. The local potential shift will decrea@ecreasg the
case Eq. 8 yields a relation for the on-site enesgiV), resonance energy with bias for the almost filledhpty resonance

By

+80(V)+ (eVi2) +80(V)— (eV/Z)} in order to fix its charge.
arctan———=——| +arctapg——————
2r 2r the apparent gradual destabilization of the one-atom contacts
£0(0) between 1.5 and 2.0 V observed by Yasuda and S3kai.
=2 arcta{u— . (189  accordance with this, long chains was reported to be stable
2r for a bias 6 1 V in Ref. 2.

It can be seen from this that a half-filled resonancg0) The large increase in conductance found in Ref. 11 is not
=0, will keep this value for finite bias. On the other hand, aseen in the results in the present paper. In contrast to this we
resonance with higher fillinfie,(0)<0] will lower its on-  find that the increased bias will cause a snjéllo0) elec-
site energy further for finite bias to compensate depopulatrodeg or moderate[(111) electrode$ decrease in the con-
tion. The voltage drop between the resonance and the negguctance. We should keep in mind, however, that tunneling
tive electrode will therefore be larger than the voltage dropcurrents through the vacuum gab between the electrodes is
between the resonance and the positive electrode. For a legt included in the present calculation and could contribute
than half filled resonance the situation is reversed. This i @ significant way'
illustrated in Fig. 8. For the long chains, thd-derived electronic states inside
For the gold contacts the DOS shown in Fig. 2 disp|aysthe chain will approach the one-dimensional band states with
large resonance features at the upper edge af-#tate con- the sharp onset in the corresponding transmission channels
tributions just below the Fermi energy. Above the Fermi en-close to Fermi energy cf. Figs. 5 and 6. In the calculation the
ergy the DOS is more smooth. We can understand why thétrict local charge neutrality forces tliestates down in en-
main voltage drop takes place at the negative electrode fd@rdy with increased bias preventing nonlinearity due to these
high bias from the simple argument above. For low ha§  states. In a more relaxed description of screening one can
eV in Fig. 1(a)] where the resonance peaks are not enteringmagine that thel states may enter already in the small bias

the voltage window we find a almost left-right antisymmetric voltage regime and could lead to some nonlinearity for the
voltage drop. chain with 6 or more atoms, but for the 3 atom chain this

does not seem possible.
V. DISCUSSION On the other hand, electron-ele_ctron interaction beyond
the simple charge neutrality used in the present paper may
The transmission functions presented in Figs. 3, 5, and play a role for long ordered chains. It can also be relevant in
change significantly with increased bias: The local chargehe “coupled quantum dot” limit of large atomic separation
neutrality forces thed,,/d,, states down in energy and de- in the chain. Large atomic separations in gold chains have
lays the onset of the derived eigenchannels. The transmissidieen suggested by some experimértslowever the appar-
of thes/p,/d,2 (1,=0) channel within the voltage window ent stability of these chains are in contrast to density func-
is lowered with increasing bias. The partially opeg/d,, tional simulations”? Jonsonet al®® have suggested a Lut-
transmission channels as well as the lowering ofstpe/d,2  tinger liquidlike effect as an explanation of the observed low
transmission in the high bias regime lead to an increasetlias nonlinearity in Ref. 11. Kawahitet al** have calcu-
electron-ion momentum transféelectron wind where the lated the conductance for asstate tight-binding model in-
current carrying electrons are backscattered. The backscatteruding a local Hubbard term at zero bias. It would be of
ing takes place mainly between the first two atoms in thdnterest to include a Hubbard interaction in the present type
entrance of the chain according to the voltage drop in Fig. 1of calculation in order to elucidate the role of electron-
An increased electron wind could be part of the reason foelectron interactions further.



17 070 BRANDBYGE, KOBAYASHI, AND TSUKADA PRB 60

In conclusion, we have calculated the finite bias conduc- ACKNOWLEDGMENTS
tance of single-atom gold contacts within a local charge neu-
tral tight-binding model. We find that the voltage drop takes The authors thank M. Mehl for helpful communications,
place mainly near the negative electrode and attribute this tand A-P. Jauho and N. A. Mortensen for useful comments on
the d-state resonances just below the Fermi energy. We hawhe manuscript. Discussions with S. R. Bahn, K. Hansen, K.
analyzed the results in terms of transmission eigenchannel®V/. Jacobsen, H. Nakanishi, and K. Stokbro are gratefully
At low bias voltage a single free electronlike channel con-acknowledged. This work has been supported by the Core
sisting of I,=0 states §,p,, and d,2) is conducting. For Research for Evolutional Science and Technol(@REST)
high-bias voltage purd state channels with,=1(d,,/d,,) of the Japan Science and Technology Corporatksil) and
begin to contribute to the conductance. the Danish technical research council.

1H. Ohnishi, Y. Kondo, and K. Takayanagi, Natuteondon 395, 19A-p. Jauho, N.S. Wingreen, and Y. Meir, Phys. Re\o® 5528

780(1998. (1994.
2A.l. Yanson, G.R. Bollinger, H.E. van den Brom, N. Agrand 20M. J. Mehl and D. A. Papaconstantopoulos, Gomputational
J.M. van Ruitenbeek, Natut@ondon 395 780(1998. Materials Scienceedited by C. FongWorld Scientific, Sin-

3E. Scheer, N. Agra) J.C. Cuevas, A. Levy Yeyati, B. Ludoph, A. gapore, 1998 M.J. Mehl and D.A. Papaconstantopoulos, Phys.

Urbina, Nature(London 394, 154 (1998. http://cst-www.nrl.navy.mil, and parameters for gold at http://
*M. Brandbyge, M.R. S@nsen, and K.W. Jacobsen, Phys. Rev. B, cst-www.nrl.navy.mil/bind/au_par_99
P.O. Lavdin, Sov. J. Chem. Phy48, 365(1950.
56, 14 956(1997). 22t e, e
5J.C. Cuevas, A. Levy Yeyati, and A. MartRodero, Phys. Rev. Schr tlnge;s eqléatlo_ntln ttk? nonort logonétlh ad Bl‘l_ESl/”_
Lett. 80, 1066(1998. is transformed into the wusual orthogonal version,

(STY2HS Y2 (SY2)) = ¢(SY%)), where we identify Hq
=S 1/2Hsf 1/2.

23E. Emberly and G. Kirczenow, Phys. Rev. L&, 5205(1998.

24In the calculation of the self-consistent potential we use a finite
broadening equal to the energy grid spacingle meV) in

63.C. Cuevas, A. Levy Yeyati, A. MarttRodero, G. Rubio Bol-
linger, C. Untiedt, and N. Agrai Phys. Rev. Lett81, 2990
(1998.

"M. Tsukada, N. Kobayashi, and M. Brandbyge, Prog. Surf. Sci.
59, 245(1998; N. Kobayashi, M. Brandbyge, and M. Tsukada,  order to describe the LDOS of the quite localized states

Jpn. J. Appl. Phys., Part 336 38 (1999. (dyy.dy2_y2) in the narrow contact part. Figure 4 does not in-
8B. Ludoph, M.H. Devoret, D. Esteve, C. Urbina, and J.M. van  ¢jude this broadening.

Ruitenbeek, Phys. Rev. Le&2, 1530(1999. 25\, Bittiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B
9M. Brandbyge, J. Sciita, M.R. Sensen, P. Stoltze, K.W. Ja- 31, 6207(1985.

cobsen, J.K. Miskov, L. Olesen, E. Laegsgaard, |. Stensgaard?5Th. Martin and R. Landauer, Phys. Rev4B, 1742(1992. The

and F. Besenbacher, Phys. RevbB 8499(1995. unitary matricedJ; ,r can be found by diagonalizinigt andtt .
OH. Yasuda and A. Sakai, Phys. Rev.5B, 1069(1997. 2’M. Brandbyge and M. Tsukada, Phys. Rev.38, R15 088
113.L. Costa-Kraner, N. Garca, P. Gara-Mochales, P.A. Serena, (1998.

M.l. Marques, and A. Correia, Phys. Rev. 85, 5416(1997). 28R. Dashen, S-K. Ma, and H.J. Bernstein, Phys. RE87, 345
127 Levy Yeyati, A. Martn-Rodero, and F. Flores, Phys. Rev. B (1969.

56, 10 369(1997. 2AR. Williams, P.J. Feibelman, and N.D. Lang, Phys. Re&3
13p L. Pernas, A. Mam-Rodero, and F. Flores, Phys. Rev4R, 5433(1982.

R8553(1990). 30M.R. Strensen, M. Brandbyge, and K.W. Jacobsen, Phys. Rev. B
14C. sirvent, J.G. Rodrigo, S. Vieira, L. Jurczyszyn, N. Mingo, and 57, 3283(1998.

F. Flores, Phys. Rev. B3, 16 086(1998. 1A, Garce-Marfn, T. Lopez-Ciudad, J.A. Torres, A.J. Cadnoan
15N D. Lang, Phys. Rev. B2, 5335(1999; 55, 4113(1997); N.D. J.I. Pascual, and J.J. Saenz, Ultramicrosco@y199 (1998.

Lang and Ph. Avouris, Phys. Rev. Lefl, 3515(1998. 323 A. Torres, E. Tosatti, A. Dal Corso, F. Ercolessi, J.J. Kohanoff,
163.L. Mozos, C.C. Wan, G. Taraschi, J. Wang, and H. Guo, Phys. F.D. Di Tolla, and J.M. Soler, Surf. Sci. Le#t26, L441(1999.

Rev. B56, R4351(1997). 33M. Jonson, L.V. Krive, P. Sandstmy and R.l. Shekhter, Super-
1"N.D. Lang, Phys. Rev. B5, 9364(1997). lattices Microstruct23, 957 (1998.

¥M.J. McLennan, Y. Lee, and S. Datta, Phys. Rev4® 13 846 %Y. Kawahito, H. Kasai, H. Nakanishi, and A. Okiji, Surf. Sci.
(1991). 409, L709 (1998.



