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Local-field study of phase conjugation in metallic quantum wells with probe fields
of both propagating and evanescent character

Torsten Andersen* and Ole Keller
Institute of Physics, Aalborg University, Pontoppidanstræde 103, DK-9220 Aalborg Øst, Denmark

~Received 19 April 1999; revised manuscript received 3 August 1999!

The phase conjugated response from nonmagnetic multilevel metallic quantum wells is analyzed and an
essentially complete analytical solution is presented and discussed. The description is based on a semiclassical
local-field theory for degenerate four-wave mixing in mesoscopic interaction volumes of condensed media
developed by the present authors@T. Andersen and O. Keller, Phys. Scr.58, 132 ~1998!#. The analytical
solution is supplemented by a numerical analysis of the phase conjugated response from a two-level quantum
well in the case where one level is below the Fermi level and the other level is above. This is the simplest
configuration of a quantum-well phase conjugator in which the light-matter interaction can be tuned to reso-
nance. The phase conjugated response is examined in the case where all the scattering takes place in one plane,
and linearly polarized light is used in the mixing. In the numerical work we study a two-monolayer thick
copper quantum well using the infinite barrier model potential. Our results show that the phase conjugated
response from such a quantum-well system is highly dependent on the spatial dispersion of the matter re-
sponse. The resonances showing up in the numerical results are analytically identified from the expressions for
the linear and nonlinear response tensors. In addition to the general discussion of the phase conjugated
response with varying frequency and parallel component of the wave vector, we present the phase conjugated
response in the special case where the light is in resonance with the interband transition.
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I. INTRODUCTION

Since the birth of nonlinear optics1 as a discipline in phys-
ics nonlinear optical processes have been of great intere
scientists, for instance to help describe surfaces and in
faces of condensed matter.2–4 Studies of surfaces and inte
faces of condensed media belong to the regime of me
copic physics, where also quantum wells, wires, and dots
be found.5,6 Among the many nonlinear optical phenome
that has been studied in the regime of mesoscopic phy
are~i! second harmonic generation from magnetic7–10as well
as nonmagnetic11–19 systems,~ii ! sum and difference fre
quency generation,16,20 of which one of the most prominen
applications today is Sisyphus cooling of atoms,21–23 ~iii !
photon drag,24–27 ~iv! dc-electric-field induced second ha
monic generation,28,29 ~v! the second-order Kerr effect,9,30–34

~vi! electronic and vibrational surface Raman scattering,35–37

~vii ! two-photon photoemission,38–44 ~viii ! generation of
higher harmonics,45,46 ~ix! the second-order Lorenz-Mi
scattering,47 and ~x! degenerate four-wave mixing.48–52

In the present paper we study phase conjugation by
generate four-wave mixing in a quantum-well structu
where both interband and intraband transitions are allow
Phase conjugation is a nonlinear process where the resp
field is counterpropagating to an incoming probe field. T
usual descriptions~see Refs. 53–57, and references there!
of degenerate four-wave mixing~DFWM! are based on the
assumption that the field amplitudes are slowly varying
the optical wavelength scale@slowly varying envelope~SVE!
approximation#, and thus also on the electric dipole~ED!
approximation. We have previously presented the reason~in
Refs. 58 and 49! why these approximations are invalid whe
PRB 600163-1829/99/60~24!/17046~18!/$15.00
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considering optical interactions with matter of mesosco
size, especially when evanescent components of the op
field are present. Four-wave mixing in media with tw
dimensional translational invariance has so far been stu
by other authors in the context of phase conjugation of e
tromagnetic surface waves,59–61 and of a bulk wave by sur-
face waves.62–70 In these investigations macroscopic electr
dynamic approaches were used. In order to go beyond
SVE and ED approximations a nonlocal microscopic theo
ical model for optical phase conjugation by DFWM has be
constructed~see Ref. 58! for nonmagnetic media. In addition
to avoiding the SVE and ED approximations, other usua
made approximations when considering optical phase co
gation are avoided in our model, namely,~i! the paraxial
approximation,~ii ! the assumption of a lossless medium,~iii !
the assumption of a weak probe field, and~iv! the require-
ment of phase matching between the interacting fields.

In a two-dimensional translationally invariant system t
change in energy of an electron due to an electric field
either involve a change of momentum along the translati
ally invariant plane~intraband transition!, a change of energy
eigenstate perpendicular to the translationally invariant pl
~interband transition!, or both. The change of momentum
along the translationally invariant plane occurs as an addi
of the momentum parallel to the plane of the interacting fi
component~denoted byqi! to ~or subtraction from! the mo-
mentum of the electron parallel to the surface~denotedki!. It
is thus convenient to divide the photon momentumq into its
components parallel and perpendicular to that plane, i.eq
5(qi ,q'). Then the vacuum dispersion relationq•q5q2

5v2/c0
2 provides us with an extra degree of freedom, sin

qi5uqiu can be larger thanv/c0 . Using the vacuum disper
17 046 ©1999 The American Physical Society
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PRB 60 17 047LOCAL-FIELD STUDY OF PHASE CONJUGATION IN . . .
sion relation we find thatq' becomes imaginary in that cas
In the following, propagating field components thus sh
refer to the case whereq' is a real quantity, and evanesce
field components to the case whereq' is a purely imaginary
quantity. If we want to get a broad understanding of t
phase conjugated response of a probe containing both pr
gating and evanescent field components from a quant
well phase conjugator, two cases are of fundamental inte
namely,~i! the pure intraband case and~ii ! the case where
also an interband transition is involved.

The phase conjugated response from a pure intrab
quantum well we have described in Ref. 49. This analy
revealed that the phase conjugation reflection coefficien
not only highly nonuniform in theqi spectrum, but also tha
the coupling efficiency is several orders of magnitude lar
in part of the evanescent regime than in the propagating
gime. Since evanescent waves are strongly decaying in s
we further concluded that if one wants to see the phase
jugation of evanescent modes, both excitation and obse
tion should take place close to the surface of the quan
well. Furthermore was discussed the problems of excita
of the near-field regime, and the consequences from ch
ing a broad banded~with respect toqi! two-dimensional
point source~quantum wire! revealed that parts of the eva
nescent spectrum could be excited, and in Ref. 71 that p
conjugation of evanescent fields can lead to a focus of
phase conjugated field substantially below the so-called
fraction limit.72,73 Since this has also been experimenta
observed,74 we judge that it is highly relevant also to give a
account of how evanescent fields are phase conjugated
system where not only one electronic level is present.

Since including more than one interband transition will
necessary for most practical applications, we present in
paper the complete solution to the theoretical model of R
58 in the case of two-dimensional translational invarian
although a description based on the self-field approxima
according to the Fiebelman theory75,76 would be sufficient in
order to determine the dominating response. Giving a co
plete solution also allows us to comment on what we wo
lose using the self-field approximation. The solution is ba
on a discretization in the energy levels of the tw
dimensionally translational invariant medium. Contrary
discretization schemes performed in real space or Fou
space, our discretization does not in itself imply an appro
mation. Thus, once the complete orthonormal set of w
functions for the phase conjugating medium has been de
mined, the phase conjugated response can in principle
calculated from the solution presented in this paper. How
find the proper set of wave functions for a given mater
system is another problem, which for example can be trea
using one of several band-structure methods,77,78 e.g., the
Korringa-Kohn-Rostoker~KKR!,79,80 the linearized aug-
mented plane-wave~LAPW!,81 or the linear muffin-tin or-
bital ~LMTO! method.82 These methods are based on
atomic description of the potential in a certain radius of ea
atom, adding exchange and correlation terms83 and different
approximations in the regions between the atomic bou
aries. Using such a method one will probably be able to g
more accurate numerical results for specific materials, bu
the cost of the~relatively! analytical simplicity. Therefore
we will not elaborate further on this point here, but in ste
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resort to using a simple description of the matter wave fu
tions. Doing so, we will be able to present a qualitative d
cussion based on analytical expressions.

Using a two-level quantum-well phase conjugator, it
also possible to study resonant four-wave mixing, which u
til now has been studied only without spatial dispersion@at
the point (qi ,v)5(0,v21) in the qi-v plane,v21 being the
interband transition frequency#, as described in, e.g., Refs
84–87. Thus, in Sec. II we present the theory in the form
a local-field formalism, we choose a scattering geome
and the solution is presented as a discretization in the en
eigenstates. In Sec. III we prepare for a numerical calcu
tion. We start by adopting the simple infinite barrier~IB!
model to describe the quantum well. Furthermore we de
the phase conjugation reflection coefficient, and the sec
is concluded with a specific choice of a convenient system
investigate. To give an impression of the implications of o
theoretical model we have presented in Sec. IV numer
calculations for a two-level quantum-well phase conjugat
The calculation is supplemented by a discussion of the
sults, in particular an identification of the different res
nances appearing when the wave number along the sur
plane as well as the frequency varies. In Sec. V we widen
discussions, with emphasis on~i! the interband resonance
~ii ! the validity of the self-field approximation, and~iii ! the
choice of appropriate relaxation times. Finally, in Sec. V
we conclude.

II. THEORY

As a forerunner for the analysis of the optical phase c
jugation from a two-level quantum well we briefly sketc
how a local-field calculation allows one to determine t
so-called degenerate four-wave mixing response of a m
scopic metallic film deposited on a dielectric substrate.
create a phase conjugated field, which in the plane of the
propagates in a direction opposite to that of the probe fie
two counterpropagating pump fields must be present ins
the phase conjugating medium. Although the theoreti
model developed in Ref. 58 allows us to make almost a
trary choices of the interacting optical fields, we will in th
present work assume for simplicity that the pump fields~i!
propagate parallel to the plane of the film and~ii ! have con-
stant amplitude across the film. The scattering geometr
shown in Fig. 1 together with the chosen coordinate syst
We will further limit our study to the case where~iii ! scat-
tering takes place in thex-z plane and~iv! the interacting
fields are linearly polarized, either in~p polarized! or perpen-

FIG. 1. The system we consider here consists of a three la
structure, namely,~i! vacuum, extending from2` to 2d, ~ii ! quan-
tum well, extending from2d to 0, and ~iii ! substrate~cross
hatched!, extending from 0 to1`. The three incoming electromag
netic fields consists of two pump fields~labeled 1 and 2! and a
probe field. Also shown is the Cartesian coordinate system use
our calculations.
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17 048 PRB 60TORSTEN ANDERSEN AND OLE KELLER
dicular to ~s polarized! the scattering plane. Since it is ne
essary in a study of nonlinear optical phenomena in me
scopic interaction volumes to abandon macroscopic elec
dynamics, the starting point is the microscopic Maxwe
Lorentz equations. The phase conjugated field from a qu
tum well exhibiting free-electron-like dynamics in the pla
of the well ~x-y plane! can then be described using th
single-coordinate~z! loop equation88

EPC~z;qi ,v!5EPC
B ~z;qi ,v!2 im0vE E GJ ~z,z9;qi ,v!

•sJ~z9,z8;qi ,v!•EPC~z8;qi ,v!dz9dz8,

~1!

wherev is the common angular frequency of the particip
ing fields andqi is the component of the probe field in th
film plane. It is the so-called background fieldEPC

B (z;qi ,v)
which makes the loop problem different for the various no
linear ~and linear! problems. It is here given by

EPC
B ~z;qi ,v!52 im0vE GJ ~z,z8;qi ,v!•J2v

~3! ~z8;qi ,v!dz8,

~2!

whereJ2v
(3) (z8;qi ,v) is the current density driving the non

linear process. The pseudovacuum propagatorGJ (z,z9;qi ,v)
is given by

GJ ~z,z8;qi ,v!5
eiq'uz2z8u

2iq'

@ey^ ey1U~z2z8!ei ^ ei

1U~z82z!er ^ er #1
e2 iq'~z1z8!

2iq'

@r sey^ ey

1r per ^ ei #1
1

q2 d~z2z8!ez^ ez , ~3!

where the first term describes the direct propagation of
electromagnetic field from a source plane atz8 to the obser-
vation plane atz, the second term accounts for the reflecti
at the quantum-well–substrate interface, and the third t
characterizes the field generated at the observation plan
the current density prevailing in the same plane~thus named
the self-field term!. Above, ei5q21(q',0,2qi), and er
5q21(2q',0,2qi), takingqi5qiex . The quantitiesr s and
r p are the amplitude reflection coefficients at the vacuu
substrate interface in the absence of the quantum well fos-
andp-polarized fields, respectively. Both of these are in g
eral functions ofqi . Moreover, the vectorsex , ey , andez are
unit vectors along the principal axes in the Cartes
x-y-z-coordinate system,Q~¯! is the Heaviside unit step
function andd~¯! is the Dirac delta function.

The i j th tensor element of the linear response ten
sJ (z9,z8;qi ,v), appearing in Eq.~1!, is given by88,89
o-
o-
-
n-

-

-

e

m
by

-
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n

r

s i j ~z,z8;qi ,v!5
2i

\v

1

~2p!2 (
nm

E v

ṽnm~ki1qi ,ki!

3
f n~ki1qi!2 f m~ki!

ṽnm~ki1qi ,ki!2v

3 j i ,nm~z;2ki1qi!

3 j j ,mn~z8;2ki1qi! ~4!

provided the set of wave functions is complete. In Eq.~4! we
have introduced the transition current density in the mix
Fourier space, namely,

jnm~z;Qi!52
e\

2ime
F iQicm* ~z!cn~z!1ezS cm* ~z!

dcn~z!

dz

2cn~z!
dcm* ~z!

dz D G . ~5!

In relation to Eq.~4!, Qi is equal to 2ki1qi , whereki is the
wave vector of the given electron in the plane of the we
The transition current density also occurs in the nonlin
response tensor~see Appendix A! and in this context various
combinations ofqi , ki , andki appear inQi . The quantities
ca , aP$n,m%, are the one-dimensional electronic ener
eigenstates of the quantum well belonging to thez direction,
and they satisfy the field-unperturbed Schro¨dinger
equation H0ca5«aca . The quantity f a(ki) denote the
Fermi-Dirac distribution for the eigenstateCa(r )
5ca(z)exp(iki•r )/(2p), where also the solution to th
Schrödinger equation along the quantum well is taken in
account. It is given byf a(ki)5@11exp$„«a1\2k i

2/(2me)
2m…/(kBT)%#21, wherekB is the Boltzmann constant,m is
the chemical potential of the electron system, andT the ab-
solute temperature. For the various Cartesian componen
the transition current density, we use the notati
j i ,nm(z;ki), i P$x,y,z%. The complex cyclic transition fre-
quency is defined by

ṽnm~Qi ,a ,Qi ,b!5
1

\ F«n2«m1
\2

2me
~ uQi ,au22uQi ,bu2!G

2 i tnm
21, ~6!

where«n and«m are the eigenenergies of the quantum w
states belonging to thez direction, andQi ,a andQi ,b can be
any of the relevant combinations ofqi , ki , and ki . The
quantitytnm is the relaxation time.

The nonlinear current density,J2v
(3) (z8;qi ,v), is related to

the pump and probe fields by a constitutive relation of
form

J2v
~3! ~z;qi ,v!5

1

~2p!4 E JJ ~z,z8;qi ,ki ,v!]E~2ki ,v!

3E~ki ,v!E* ~z8;2qi ,v!dz81 i .t., ~7!

where

JJ ~z,z8;qi ,ki ,v!5E E JJ ~z,z8,z9,z-;qi ,ki ,v!dz-dz9

~8!
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is the relevant nonlinear response tensor when the p
fields are essentially constant~slowly varying! across the
quantum well, i.e., E(z-;2ki ,v)5E(2ki ,v) and
E(z9;ki ,v)5E(ki ,v) in Eq. ~7!. Within the framework of a
single-electron random-phase-approximation approach
explicit expression forJJ (z,z8,z9,z-;qi ,ki ,v) has been es
tablished in Ref. 58. The term ‘‘i.t.’’ denotes the so-call
‘‘interchanged term,’’ which takes into account the symm
try of the pump fields. It is obtained from the first term b
interchanging the two pump fields~the pump field wave vec
tor ki is replaced by2ki!. The explicit expression for the
simplified nonlinear conductivity tensor,JJ (z,z8;qi ,ki ,v),
can be found in Appendix A. We have, however, in Appe
dix A only listed one of the seven parts, namely, partG, of
the nonlinear conductivity tensor that appears in Ref.
since when interband transitions are strong, it is domina
the response by several orders of magnitude compared t
other six (A2F).

As a consequence of the above-mentioned choice~but in-
dependent of the direction in which the pump fields pro
gate! the number of terms in the nonvanishing elements
the nonlinear response tensor is further reduced, since
orthonormality of thez-dependent parts of the wave functio
gives

E cn* ~z!cm~z!dz5dnm , ~9!

wherednm is the Kronecker delta. Also, by integration of th
microscopic transition current density given by Eq.~5! overz
one finds

E jnm~z;Qi!dz52
e\

2ime
@ iQidnm1pz,nmez#, ~10!

where

pz,nm5E S cm* ~z!
dcn~z!

dz
2cn~z!

dcm* ~z!

dz Ddz ~11!

is proportional to thez component of the electric dipole mo
ment related to thenm transition.90

The conductivity tensorJJ (z,z8,z9,z-;qi ,ki ,v) has in
general 81 nonzero tensor elements~3333333! and con-
sists of seven different parts (A–G) after the seven differen
physical processes contributing to the response~see Ref. 58
for details!. When scattering takes place in thex-z plane
with linearly polarized light the general treatment can
split into eight separate parts related to the possible com
nations of polarization of the three different incident field
In this scattering geometryqi and ki lie along thex axis,
giving a mirror plane aty50. Consequently, only tenso
elements in the nonlinear response tensor with a Carte
index even numbered iny contributes, and the 81 tenso
elements generally appearing are reduced to 41. The se
tion of the tensor elements into the eight sets of eleme
contributing in these configurations follows in a straight fo
ward manner from the definition of the sum-product opera
‘‘ ]’’ between the nonlinear current density and the intera
ing electric fields, i.e.,@JJ ]EEE* # i5S jkhJ i jkhEhEkEj* .
The added restriction of letting the pump fields travel alo
p
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the x axis then reduces the number of contributing mat
elements from 41 to 18, since when traveling along thex
axis, the pump fields are polarized in either they direction or
thez direction. The resulting sets of tensor elements we h
presented in Table I.

To solve Eq.~1!, we can establish a so-called couple
antenna loop. First, we notice that each matrix element of
linear conductivity tensor@Eq. ~4!# with the insertion of Eq.
~5! can be written as a product of az-independent term and
two terms depending onz and z8, respectively. Elementij
then takes the form

s i j ~z,z8;qi ,v!5(
nm

Qnm
i j ~qi ,v! j i ,nm~z! j j ,mn~z8!, ~12!

where jnm(z)[ jnm(z;ex1ey). The variousQ quantities can
readily be identified from Eq.~4!, and the integrals can b
solved using the method described in Appendix B. Insert
Eq. ~12! into Eq. ~1!, we get

EPC~z!5EPC
B ~z!1(

nm
FJnm~z!•Gmn , ~13!

omitting the reference toqi andv for brevity. In Eq.~13! we
have introduced the 333 tensorFJnm(z) with the nonzero
elements

Fnm
xx ~z!52 im0v (

i P$x,z%
Qnm

xi E Gxi~z,z9! j i ,nm~z9!dz9

5
q'

qi
Fnm

zx ~z!, ~14!

Fnm
xz ~z!52 im0v (

i P$x,z%
Qnm

iz E Gxi~z,z9! j i ,nm~z9!dz9

5
q'

qi
Fnm

zz ~z!, ~15!

Fnm
yy ~z!52 im0vQnm

yy E Gyy~z,z9! j y,nm~z9!dz9, ~16!

and the elements of the vectorGmn are written

TABLE I. Contributing tensor elements of the nonlinear co
ductivity tensor when the pump fields are propagating in thex di-
rection and all fields are polarized in~p! or perpendicular to~s! the
x-z plane. The left column shows the polarization combination
the incoming fields~pump 1, pump 2, probe!, the center columns
shows the polarization of the phase conjugated field, and the r
column shows the tensor elements contributing to the nonlin
interaction.

input pol. output pol. nonlinear tensor elements

sss s Jyyyy

pps s Jyyzz

ssp p Jxxyy, Jxzyy, Jzxyy, Jzzyy

ppp p Jxxzz, Jxzzz, Jzxzz, Jzzzz

spp, psp s Jyxyz, Jyxzy, Jyzyz, Jyzzy

sps, pss p Jxyyz, Jxyzy, Jzyyz, Jzyzy
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17 050 PRB 60TORSTEN ANDERSEN AND OLE KELLER
G i ,mn5E j i ,mn~z8!EPC,i~z8!dz8, i P$x,y,z%. ~17!

To determine the phase conjugated field the quantityGmn
must be calculated. This is done by multiplication of ea
elementEPC,i(z8),i P$x,y,z% of the phase conjugated fiel
in Eq. ~1! by the relevantj i ,mn(z) followed by an integration
over the z coordinate. Hence, when the phase conjuga
light is s polarized, Eq.~13! is transformed into the following
set of linear algebraic equations:

Gy,mn2(
v l

Kyy,mn
v l Gy,v l5Vy,mn , ~18!

i.e.,n2 equations with just as many unknowns. In the case
p-polarized light, we obtain

Gx,mn2(
v l

~Kxx,mn
v l Gx,v l1Kxz,mn

v l Gz,v l !5Vx,mn , ~19!

Gz,mn2(
v l

~Kzx,mn
v l Gx,v l1Kzz,mn

v l Gz,v l !5Vz,mn , ~20!

which are 2n2 equations with just as many unknowns.
Eqs.~18!–~20! above, the elements of the vectorial quant
Vmn are given by

V i ,mn5E j i ,mn~z!EPC,i
B ~z!dz, i P$x,y,z%, ~21!

and the 333 tensorial quantityKJmn
v l (qi ,v) has the five non-

zero elements

Ki j ,mn
v l 5E j i ,mn~z!Flv

i j ~z!dz, ~22!

where the indices ‘‘i’’ and ‘‘ j’’ can take the values ofi j
P$xx,xz,yy,zx,zz%. By means of the procedure sketch
above, we have been able to transform the integral-equa
problem for the phase conjugated fieldEPC(z), @Eq. ~1!# to a
matrix problem for theGmn vectors. This discretization in th
energy levels is exact, and once the linear algebraic se
equations for theGmn vectors, truncated so as to keep on
the subspace of relevant energy levels, has been solved~nu-
merically! the phase conjugated field can be obtained fr
Eq. ~13!. Integral equations of the type given in Eq.~1! is
often solved~numerically! by discretization in the real spac
coordinate. By such a procedure one has to worry about
small discretization lengths one may dare to take from
physical point of view. The discretization in energy leve
used here does not suffer from this uncertainty.

III. NUMERICAL FRAMEWORK

Our description of the phase conjugated field has u
now been independent of the actual wave functions in
quantum well, and thus also independent of the form
potential takes across the active medium. However, if
want to perform a numerical calculation of the phase con
gated field we have to choose a definite potential across
quantum well, giving us a set of wave functions to wo
with. Below we use the infinite barrier~IB! model potential
h

d

f
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of

w
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il
e
e
e
-
he

for the numerical study, since this model is sufficient for
qualitative study.

As shown in Fig. 2, in this model the one-dimension
potentialV(z) is zero inside the quantum well~in the interval
2d<z<0! and infinite everywhere else. The stationary st
wave functions inside the quantum well are given bycn(z)
5A2/d sin(npz/d) and outside the quantum well,cn(z)50.
The associated eigenenergies are«n5(np\)2/(2med

2).
Within the IB model, Eq.~11! gives

pz,nm5
4nm@12~21!n1m#

~n22m2!d
~23!

for nÞm, and pz,nm50 for n5m. For a metallic quantum
well one may even at room temperature approximate
Fermi-Dirac distribution functions by their value at zero tem
perature, i.e.,

lim
T→0

f n~ki!5UH EF2
\2

2me
F S np

d D 2

1k i
2G J , ~24!

where EF is the Fermi energy of the system. In the low
temperature limit it is possible to find analytical solutions
the integrals overki appearing in Eq.~A1!. The explicit
calculations are tedious but trivial to carry out, and since
final expressions are rather long we do not present them h
For the interested reader some steps in the calculations
reproduced in Appendix B.

The Fermi energy is calculated from the global char
neutrality condition,88 and for a quantum well described b
the IB model, it becomes89

EF5
p\2

NFme
FZN1d1

p

2d2

NF~NF11!~2NF11!

6 G , ~25!

whereN1 is the number of positive ions per unit volume,Z
is the valence of these ions, andNF is the quantum index of

FIG. 2. Infinite barrier~IB! model potential~thick solid line! for
a quantum well with boundaries atz52d andz50. In the present
case, only one energy level below the Fermi energy~here calledu1&,
with energy «1! and one energy level above the Fermi ener
~called u2&, with energy«2! contributes to the solution. The remain
ing infinite set of energies appearing in the IB model we assume
so far away fromu1& and u2& that they do not contribute to the
solution. The dotted curves indicate the shape of the wave func
for each of the two energies. To the right is shown the poss
transitions, identified with their respective transition frequency a
relaxation time.
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the highest occupied level. From Eq.~25!, the number of
occupied levels can be calculated if the thickness is kno
and vice versa. The minimal thickness for the quantum w
to haven levels below the Fermi level can be determin
from the relationEF5«n , and the maximal thickness from
the conditionEF5«n11 . Thus forn bound states below th
Fermi energy we find the minimal and maximal thickness

dmin
n 5dmax

n215A3 pn

2ZN1
Fn22

~n11!~2n11!

6 G , ~26!

i.e., a result that depends on the number of levels below
Fermi energy and the number of conduction electrons in
film.

To estimate the amount of phase conjugated light, we
the phase conjugation~energy! reflection coefficient defined
as

RPC~qi ,v!5
I PC~2d;qi ,v!

I ~1!I ~2!I probe~2d;qi ,v!
, ~27!

in which I (1), I (2), I probe, and I PC are the intensities of the
two pump beams, the probe and the phase conjugated
respectively. Each of the intensities are given byI
5(1/2)«0c0E•E* (2p)24. The factor of (2p)24 originates
from the manner in which we have introduced the Four
amplitudes of the fields.

For the remaining part of this work we choose a cop
quantum well with N158.4731028m23 and Z51 ~data
taken from Ref. 91!. The Cu quantum well is assumed to b
deposited on a glass substrate for which we use a refrac
index n of 1.51. With this substrate, the linear vacuum
substrate amplitude reflection coefficients can be obtaine
use of the classical Fresnel formulasr s5@q'2(n2q2

2qi
2)1/2#/@q'1(n2q22qi

2)1/2# and r p5@n2q'2(n2q2

2qi
2)1/2#/@n2q'1(n2q22qi

2)1/2#. Having the pump
wavevectors parallel to thex axis then gives a pump wave
number ofki5nq51.51q.

IV. NUMERICAL RESULTS FOR A TWO-LEVEL
QUANTUM WELL

To calculate the phase conjugated response from a q
tum well with an arbitrary number of bound eigenstates o
would have to superimpose interband and intraband co
butions. Thus in a study of the complete response wh
local-field effects are neglected one basically would have
add the contributions from the various pairs of levels loca
in different subbands or in the same band. Seen in this li
thorough treatments of the single-level case, where only
traband transitions are allowed, and the two-level ca
where transitions between two eigenstates located in dif
ent bands occur, would form a good qualitative starting po
for analyses of multilevel quantum-well systems. The sing
level case we have studied before,49 and the following treat-
ment will thus be directed towards a description of the ph
conjugated response from a two-level quantum well. Th
we choose the simplest possible configuration in which
terband transitions can occur, i.e., a quantum well with o
one bound state below the Fermi energy. Above the Fe
energy we also assume that only one bound state ca
reached, and thus the wave functions arec1(z)
n,
ll

s

e
e

se

ld,

r

r

ve

by

n-
e
ri-
re
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d
t,
-

e,
r-
t
-

e
s,
-
y
i

be

5A2/d sin(pz/d) and c2(z)5A2/d sin(2pz/d). The associ-
ated energies then become«15(p\)2/(2med

2), and «2
5(2p\)2/(2med

2), respectively. The quantum well with
the various relevant energies and wave functions, as we
the electronic excitations are shown in schematic form
Fig. 2. In the present two-level case Eq.~23! becomes

pz,nm5
16

3d
sgn~n2m!, ~28!

where (n,m)P$(1,2),(2,1)%. If just the ground state should
have an energy less than the Fermi energy, we see from

FIG. 3. The phase conjugation reflection coefficient from a tw
level metallic quantum well is plotted in the case wheres-polarized
probe field givess-polarized phase conjugated response, and wh
the pump fields arep polarized~pps!. The response is plotted a
isophotes~contours of equal intensity! @m4/W2# on a logarithmic
scale as a function of~i! the frequencyv normalized to the transi-
tion frequencyv21 and ~ii ! the parallel component of the wav
vector, normalized to the vacuum wave number. The differe
between two neighboring contours is one order of magnitude.
indicate the absolute amplitude, the isophote of value 10220 m4/W2

has been plotted using a long-dashed curve and the isophote
magnitude 10230 m4/W2 with a short-dashed curve. On theqi /q
scale, the response has been plotted on a linear scale in the
0<qi /q<0.1 and on a logarithmic scale aboveqi /q50.1.
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~26! that the film thickness must be less thandmax

5A3 3p/(2ZN1). The minimal thickness is in the IB mode
zero, but in reality the smallest thickness is a single mo
layer. Using Eq.~26! the maximal thickness for a two-leve
Cu quantum well then becomesdmax'3.82 Å, which is more
than two monolayers and less than three. Thus we have
obvious choices for the thickness of the quantum w
namely, a single monolayer or two monolayers. We cho
two monolayers, since by this choice the two energies«1 and
«2 are closest to each other, and thus the energy needed
resonant transition to occur is lowest. Two monolayers
copper roughly corresponds to a thickness ofd53.6 Å ~bulk
value!. With this choice, the energy difference between

FIG. 4. The phase conjugation reflection coefficient from a tw
level metallic quantum well is plotted in one of the cases wh
p-polarized probe field givesp-polarized phase conjugated re
sponse. In this case the pump fields ares-polarized~thus named
ssp!. The response is plotted as isophotes@m4/W2# on a logarithmic
scale as a function of~i! the frequencyv normalized to the transi-
tion frequencyv12 and ~ii ! the parallel component of the wav
vector, normalized to the vacuum wave number. The differe
between two neighboring isophotes is one order of magnitu
Again, the two isophotes of magnitude 10220 and 10230 m4/W2 has
been plotted with long- and short-dashed curves, respectively
before, below 0.1,qi /q has been plotted on a linear scale wh
above it is logarithmic.
-

o
l,
e

r a
f

e

two states is«22«158.70 eV, and the corresponding res
nance in the optical spectrum is found at the wavelengtl
5142.4 nm.

A. Phase conjugation reflection coefficient

Among the eight possible ways of using linearly polariz
light in our chosen scattering configuration, two combin
tions give ans-polarized response when using ans-polarized
probe field, the pump fields being eithers polarized orp
polarized, but with the same polarization for both pum
fields. When the pump fields ares-polarized, the nonlinear
conductivity tensor element that contributes to the respo

-
e

e
e.

s

FIG. 5. The phase conjugation reflection coefficient from a tw
level metallic quantum well is plotted in the other case whe
p-polarized probe field givesp-polarized phase conjugated re
sponse, this time withp-polarized pump fields~ppp!. As in Figs. 4
and 5, the response is plotted as isophotes@m4/W2# on a logarithmic
scale as a function of~i! the frequencyv normalized to the transi-
tion frequencyv12 and ~ii ! the parallel component of the wav
vector, normalized to the vacuum wave number. Again, the diff
ence between two neighboring contours is one order of magnit
and as before, the long- and short-dashed curves represents m
tudes of 10220 and 10230 m4/W2, respectively. In the big picture
qi /q is plotted on a logarithmic scale, while in the strip it is plotte
on a linear scale.
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is Jyyyy. Altogether the phase conjugated response in
purely s-polarized case~called ‘‘sss’’ ! is negligible, since it
is tens of orders of magnitude less than those of the o
combinations. If, on the other hand, the pump fields arp
polarized (pps),Jyyzz is the element of the nonlinear con
ductivity tensor that contributes. Plotted as isophotes~con-
tours of equal intensity! in the normalizedv-qi plane ~v
normalized to the interband transition frequencyv21 andqi

normalized to the vacuum wave numberv/c0!, the result is
shown in Fig. 3.

Two other combinations of polarization givep-polarized
response using ap-polarized probe field. As above, the pum

FIG. 6. The phase conjugation reflection coefficient from a tw
level metallic quantum well is plotted in one of the cases wh
p-polarized probe field givess-polarized phase conjugated respon
In this case, pump field 1 iss polarized while pump field 2 isp
polarized~spp!. The response is plotted as isophotes@m4/W2# on a
logarithmic scale as a function of~i! the frequencyv normalized to
the transition frequencyv12 and ~ii ! the parallel component of the
wave vector, normalized to the vacuum wave number. The dif
ence between two neighboring contours is one order of magnit
The absolute amplitude of the isophote of value 10220 m4/W2 has
been plotted using a long-dashed curve and the isophote with m
nitude 10230 m4/W2 with a short-dashed curve. The strip below
plotted in a linear scale inqi /q while the rest is on a logarithmic
scale.
is

er

fields have to be of the same polarization, and can eithe
s or p polarized. Withs-polarized pump fields~ssp, four ten-
sor elements of the nonlinear conductivity tensor contrib
to the phase conjugated response~see Table I!. The phase
conjugated response is shown in the normalizedv-qi plane
in Fig. 4. In the other case, another four tensor element
the nonlinear conductivity tensor contribute to the phase c
jugated response when the pump fields arep polarized~see
Table I!. We have in Fig. 5 shown the phase conjuga
response for this configuration~ppp! in the normalizedv-qi

plane.
In the remaining four cases, the response has a diffe

polarization than the probe field. This is obtainable by t
use of differently polarized pump fields. In order to achie
an s-polarized response from ap-polarized probe field one
makes use of two differently polarized pump fields, and fo
tensor elements of the DFWM response tensor contribut
the solution, cf. Table I. Similarly, two differently polarize
pump fields are needed in order to produce ap-polarized
response from ans-polarized source. For this process, a
other four tensor elements of the nonlinear conductivity t
sor contributes according to Table I. Since the resona

-
e
.

r-
e.

g-

FIG. 7. Resonances of the nonlinear conductivity tensor
shown as a function of~i! the optical frequency normalized to th
transition frequency (v/v21) and~ii ! the parallel component of the
wave vector normalized to the vacuum wave number (qi /q). This
figure shows only the pure resonances. The broadening due to
relaxation times is neglected by setting them all to infinity.
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structure of these last four cases are similar, it is suffici
here to discuss the result obtained for just one of those ca
Thus, in Fig. 6 the result is shown for the case where pu
field 1 is s polarized and pump field 2 and the probe arep
polarized~spp!.

The IB model only offers a crude description of the ele
tronic properties of a quantum well, since, for example,
electron density profile at the ion-vacuum edge is poo
accounted for. This gives too sharp a profile and undere
mates the spill-out of the wave function. Altogether o
should be careful to put too much reality into the IB mod
when treating local-field variations~related to, say,qi or q'!
on the atomic length scale. Furthermore, neglecting
Bloch character of the wavefunctions accounting for the
namics in the plane of the well is doubtful in investigatio
of the local field among the atoms of the quantum well. T
crucial quantity in the abovementioned context is the Fe
wave numberkF5(2meEF)1/2/\, and in relation of Figs.
3–6, only results forqi /q ratios less than approximately

kF

q
5lAZN1d

2p
1

1

4d2, ~29!

appears reliable. Thus we have cut off our results at the
qi /q5kF /q in the v/v21-qi /q plane in Figs. 3–6.

In many theoretical studies of the properties of phase c
jugated fields it is assumed that the phase conjugato
ideal.92–94By this is meant that the phase conjugation refl
tion coefficient is independent of the angle of incidense
the ~propagating! probe field~and maybe also of the state o
polarization!. As we concluded for the single-level quantu
well,49 and as we can now see for the two-level quant
well in Figs. 3–6 this assumption is not such a good appro
mation, at least not for a metallic quantum well system.

B. Resonant structure of the DFWM reflection coefficient

Looking at Figs. 3–6, a number of resonances occ
They can be accounted for from the analytic solution to E
~A1! by looking at the denominators appearing in the a
lytic decomposition of the products, as given by Eqs.~B2!
and~B3! in Appendix B. These resonances are shown on
scale of Figs. 3–6 in Fig. 7. In the analytic solution of t
t
es.
p

-
e
y
ti-

l

e
-

e
i

e

n-
is
-
f

i-

r.
.
-

e

integrals overki shown in Appendix B, the solution to th
terms with three multiplied denominators is reduced in E
~B3! to the problem of finding a basic solution to the int
grals overki for each of these denominators multiplied by
ki-independent factor. The resulting integrals do not cont
sharp resonances, but the factors in front of them do, w
aibj2biaj50, for i , j P$1,2,3% and iÞ j . In order to make
an analytical treatment of the resonances appearing in
nonlinear conductivity tensor we in the following define
term of the nonlinear conductivity tensor as a product
three denominators in Eq.~A1!, and number them
1, 2, . . . , 12.However, not all terms gives contribution
to the result in a two-level quantum well. The terms that do
not give any contributions are the terms with a 2v contribu-
tion in the denominator, i.e., terms 1–2 and 11–12. Wh
the denominators of the rest of the terms~3–10! are put into
the form of Eq.~B1!, a total of four differenta’s and nine
differentb’s appear. They are listed in Appendix C. Since w
are looking for the location of the resonances in the syste
is reasonable in the following analysis to let the respect
relaxation timestnm in Eqs.~C5!–~C13! be infinite.

In terms of thea’s and b’s listed in Appendix C, we
observe that the third term ofJ i jkh has resonances at~i!
a1bnm

4 2bv l
2 a250, ~ii ! a3bnm

4 2bnl
6 a250, and ~iii ! a3bv l

2

2bnl
6 a150. After insertion of the relevanta’s andb’s, sub-

stitution of ki in favor of nv/c0 ~since ki5nv/c0 in our
treatment!, and a normalization ofqi to q, i.e., qi

5(qi /q)v/c0 , we may solve the resulting second ord
equations with respect tov as a function ofqi /q. Then
resonance condition~i! gives

TABLE II. Restrictions on the valid combinations of quantu
numbers for a two-level quantum well in the nonlinear conductiv
tensor for the three combinations of polarized light of the pu
fields treated in this communication. Pump field 1 is indexedk, and
pump field 2 is indexedh in Eq. ~A1!.

k h J terms 3–4 J terms 5–8 J terms 9–10

s s l5v5m v5n∧m5 l v5n5 l
s p l5v∧mÞ l v5n∧mÞ l v5n∧ lÞv
p p mÞ l ∧ lÞv vÞn∧mÞ l vÞn∧ lÞv
v5
mec0

2

\nqi /q

n2qi /q

n1qi /q
6AS mec0

2

\nqi /q

n2qi /q

n1qi /qD 2

1
2mec0

2

\2~n1qi /q! F«v2« l

n
1

«m2«n

qi /q G , ~30!
n be
resonance condition~ii ! becomes

v5
mec0

2

\nqi /q

6AS mec0
2

\nqi /qD 2

1
2mec0

2

\2n F «n2« l

n1qi /q
1

«m2«n

qi /q G ,
~31!

and condition~iii ! is
v52
mec0

2

\nqi /q

6AS mec0
2

\nqi /qD 2

1
2mec0

2

\2qi /q F«v2« l

n
1

« l2«n

n1qi /qG .
~32!

In some of the above equations, some of the solutions ca
ruled out immediately, since, for example, in Eq.~31! the
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TABLE III. Resonances generated by Eqs.~30!–~40! are shown as a function of the valid combinations of quantum numbers (n,m,v,l )
and the sign appearing in front of the square roots. In each of upper and lower parts of the table, the upper row shows the generatin
and the next four rows show the values of the quantum numbers, which can take the value 1 or 2 in a two-level quantum well. The
rows show the resonances resulting from use of the quantum numbers in the respective equations for each sign1 and2, the first two of
these rows being associated with the normal term, and the last two with the interchanged term. A zero in the last four rows rev
50, and the lettersa–l refers to the resonances shown in Fig. 7. An asterisk is used when the value of a quantum number is indiffer
a dash in the output field appears when the result is outside the shown range in Fig. 7. Since Eq.~33! is a linear solution inv the sign does
not apply, and the result is listed under the plus sign for simplicity. It should be noted in Eq.~34!, that the combinations of quantum numbe
that give rise to the resonancesb, e, i, h, and l are going into resonancem after they have reached the line atv/v2151.

Eq. ~30! Eq. ~31! Eq. ~32! Eq. ~33! Eq. ~34! Eq. ~35!

n * 1 1 1 2 2 2 * 1 1 1 2 2 2 * 1 1 1 2 2 2 * * * * * * 1 1 1 2 2 2 * 1 1 1 2 2 2
m n 1 2 2 1 1 2 n 1 2 2 1 1 2 * * * * * * * * 1 2 n n n 2 2 2 1 1 1 n 1 2 2 1 1 2
v * 1 * 2 * 1 2 * * * * * * * n 1 2 2 1 1 2 m 2 1 * 1 2 1 1 2 1 2 2 n 2 1 2 1 2 1
l v 2 v 1 v 2 1 n 2 1 2 1 2 1 n 2 1 2 1 2 1 * * * v 2 1 1 2 1 2 1 2 * * * * * * *
1 - - d i - - e - - - - - - - 0 - h c - h - 0 g - 0 e a d i - h j f - - - - - - -
2 0 a - - - j - 0 b - - c h - - - - - - - - - - - - - - - - - 0 a d - h f e
1 0 - - - c k b 0 e - d f h a - - - - - - - 0 g - 0 b - - l - h k c 0 - - - h c b
2 - - - l c - b - - - - - - - 0 - h f d h - - - - - - - - - - - - - - - - -

Eq. ~36! Eq. ~37! Eq. ~38! Eq. ~39! Eq. ~40!

n * * * * * * * * * * 1 * 1 2 2 * 1 1 1 2 2 2 * 1 1 1 2 2 2 * * * 1 1 1 2 2 2
m * 1 1 1 2 2 2 n n n 2 * 2 1 1 n 1 2 2 1 1 2 n 1 2 2 1 1 2 n n n 2 2 2 1 1 1
v m 1 2 2 1 1 2 * 1 2 1 n 2 1 2 * * * * * * * n 2 1 2 1 2 1 * 1 2 1 1 2 1 2 2
l m 2 1 2 1 2 1 v 2 1 1 m 1 2 2 n 2 1 2 1 2 1 * * * * * * * v 2 1 1 2 1 2 1 2
1 - - - - - - - - - - - - - - - - - h c - - b - - - - - - - - - b - - l - h c
2 0 h d e a f - 0 g - - 0 - h g 0 - h c - - b 0 a d - h f e 0 - b - - - k h c
1 0 h - b - c - 0 g - - 0 - h g 0 a h f - - - 0 - - - h c b 0 a - - - - j h f
2 - - - - - - - - - - - - - - - - - h - d - e - - - - - - - - - e d - i - h -
iv

r,

th
o

a-

he

di-
minus in front of the square root gives only rise to negat
values of v in the ‘‘interchanged term’’ ~when ki

52nv/c0!.
In the fourth term ofJ i jkh we observe that in addition to

a resonance of type~ii !, resonances appear at~iv! a2bnm
4

2bnv
3 a250 and ~v! a3bnv

3 2bnl
6 a250. Again inserting the

respectivea’s andb’s from Appendix C, substitutingnv/c0
for ki , and normalizingqi to the vacuum wave numbe
resonance condition~iv! becomes

v5
1

2\
~«v2«m!, ~33!

and resonance condition~v! is equivalent to Eq.~31!, taking
into account the interchanged term. In our configuration,
choice of a two-level quantum well puts some restrictions
e

e
n

the values of the quantum numbersn, m, v, andl in order to
get a nonzero result. Comparing Eqs.~A1! and ~10! we ob-
serve that if pump field one~indexedk! is s polarized then
l 5v, while lÞv if it is p polarized. Similarly, if the other
pump field~indexedh! is s polarized we getm5 l , while we
get mÞ l if it is p polarized. These conditions are summ
rized in Table II, and the contributions from Eqs.~30!–~33!
to the resonances in Fig. 7 are shown in Table III for t
valid combinations of quantum numbers.

The resonances conditions in the fifth term ofJ i jkh are
~vi! a1bnm

4 1blm
1 a250, ~vii ! a4bnm

4 2bvm
5 a250, and ~viii !

a4blm
1 1bvm

5 a150. By insertion of the respectivea’s andb’s
from Appendix C, substitution ofki by nv/c0 , and normal-
ization of qi to the vacuum wave number, resonance con
tion ~vi! becomes
v52
mec0

2

\~qi /q!2 6AS mec0
2

\~qi /q!2D 2

1
2mec0

2n

\2~n2qi /q!qi /q F«n2«m

qi /q
1

«v2« l

n G , ~34!

condition ~vii ! gives

v5
mec0

2

\nqi /q
6AS mec0

2

\nqi /qD 2

1
2mec0

2

\2n F«m2«n

qi /q
1

«m2«v

n2qi /qG , ~35!
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and case~viii ! becomes

v5
mec0

2

\nqi /q

6AS mec0
2

\nqi /qD 2

1
2mec0

2

\2qi /q F«m2« l

n
1

«v2«m

n2qi /qG .
~36!

The sixth term ofJ i jkh has a resonance of the type~vi!, and
further resonances at~ix! a2bnm

4 2bv l
7 a250 and ~x! a4bv l

7

2bvm
5 a250. Insertion of the differenta’s and b’s, ki

5nv/c0 , and normalizingqi to the vacuum wave numbe
gives ~ix! resonances at
in

e

u
n-
he

th

in

g
n

v5
mec0

2

\nqi /q

6AS mec0
2

\nqi /qD 2

1
mec0

2

\2nqi /q
@«m1«v2«n2« l #,

~37!

and ~x! resonances equivalent to those given in Eq.~35!. In
the seventh term ofJ i jkh there is a resonances of the type
case~ix!, and furthermore at~xi! a3bnm

4 2bnl
6 a250 and~xii !

a3bv l
7 2bnl

6 a250. As in the previous cases we insert the d
ferent a’s and b’s found in Appendix C, replaceki with
nv/c0 , and normalizeqi to the the vacuum wave numbe
Then case~xi! gives resonances at
v5
mec0

2

\nqi /q

n1qi /q

n2qi /q
6AS mec0

2

\nqi /q

n1qi /q

n2qi /qD 2

1
2mec0

2

\2n Fn1qi /q

n2qi /q

«n2«m

qi /q
1

« l2«n

n2qi /qG , ~38!
r

qs.
III
be
rs

der

nd
and case~xii ! the resonances are equivalent to Eq.~31!. The
eighth term ofJ i jkh has a resonance of the type given
case~xi!, and additional resonances at~xiii ! a1bnm

4 2bnv
8 a2

50 and ~xiv! a3bnv
8 2bnl

6 a150. Repeating the procedur
from above, we get for case~xiii ! the solution

v5
mec0

2

\nqi /q

6AS mec0
2

\nqi /qD 2

1
2mec0

2

\2~n2qi /q! F«m2«n

qi /q
1

«n2«v

n G ,
~39!

and in case~xiv! gives resonances equivalent to the res
given in Eq.~32!. Again, when considering a two-level qua
tum well in our configuration, some restrictions apply to t
quantum numbers. If we again compare Eqs.~A1! and ~10!
we see that if pump field one~index k! is s polarized, then
v5n, and if it is p polarized, thenvÞn. Additionally, if
pump field two~index h! is s polarized,m5 l , and if it is p
polarized,mÞ l . This has the consequences that~i! the quan-
tum numbersn and m can be chosen arbitrarily when bo
pump fields ares polarized,~ii ! when both pump fields arep
polarized we either getm5n and l 5v, or we getm5v and
lt

l 5n, ~iii ! when pump field one iss polarized and the othe
onep polarized we get eitherm5v or l 5v, and~iv! in the
opposite case we get eitherm5v or m5n. These conditions
are summarized in Table II, and the contributions from E
~34!–~39! to the resonances in Fig. 7 are shown in Table
for the valid combinations of quantum numbers. It should
noted that in Eq.~34!, the combinations of quantum numbe
that give rise to the resonancesb, e, i, h, andl are going into
resonancem after they have reached the line atv/v2151.
None of the other equations contributes to resonancem.

For the ninth term ofJ i jkh the resonances are at~xv!
a2bnm

4 2blm
3 a250, ~xvi! a4bnm

4 2bvm
5 a250, and ~xvii !

a4blm
3 2bvm

5 a250. After insertion of the relevanta’s andb’s
from Eqs.~C1!–~C13!, ki5nv/c0 and a normalization ofqi

to the vacuum wave number, the resulting second or
equations can be solved with respect tov as a function of
qi /q. Then case~xv! is equivalent to Eq.~33!, and cases
~xvi! and~xvii ! to Eq.~35!. Finally, in the tenth term ofJ i jkh
a resonance of the type given by case~xvi! occur. Two other
resonances are located at~xviii ! a1bnm

4 1bv l
9 a250 and at

~xix! a4bv l
9 1bvm

5 a150, respectively. Inserting thea’s and
b’s given in Appendix C and using the same substitution a
normalization as above, case~xviii ! gives
v5
mec0

2

\nqi /q

n1qi /q

n2qi /q
6AS mec0

2

\nqi /q

n1qi /q

n2qi /qD 2

1
2mec0

2

\2~n2qi /q! F«m2«n

qi /q
1

« l2«v

n G , ~40!
and case~xix! has a solution equivalent to the one given
Eq. ~36!. As before we find by a comparison of Eqs.~A1!
and ~10! that some selection rules appear when choosin
two-level quantum well in our configuration, since whe
pump field one~indexedk! is s polarized we getv5n, and
a

when it isp polarized,vÞn. Similarly, when pump field two
~indexedh! is s polarized we getl 5v, and when it isp
polarized,lÞv. Then, if both pump fields ares polarized we
may in a two-level quantum well choosem5n or mÞn. In
the case where both pump fields arep polarized, the result is



r
se
-

li

-

s
in
v

ow
nc
n
t
it
a

tio
e

on
is

rv

in
at
fro
,

a
th
s

en
a

os
ica
d
ju

at
r

0
wi
e
, t

ex-
ant

re-
nant

e
se,

mis-
be

for
the

for
the

ully

PRB 60 17 057LOCAL-FIELD STUDY OF PHASE CONJUGATION IN . . .
identically zero. In the case where pump field one iss polar-
ized and pump field two isp-polarized we may choose eithe
m5 l or m5v, while in the opposite case we may choo
either m5 l or m5n. As before, these conditions are sum
marized in Table II, and the contributions from Eq.~40! to
the resonances in Fig. 7 are shown in Table III for the va
combinations of quantum numbers.

In the linear conductivity tensor@Eq. ~4!# resonances oc
cur whena2bnm

4 2a2bnm
10 50, where

bnm
10 5

1

\
~«n2«m!1

\qi
2

2me
2 i tnm

21. ~41!

The solutions areqi50 or v50, independent of the value
of n andm. Adding this resonance to the ones we found
Eqs. ~30!–~40! the resonances appearing in Figs. 3–6 ha
been identified. Q. E. D.

While most of the resonances described above and sh
in Fig. 7 are clearly pronounced in Figs. 3–6, the resona
namedm does not appear so clearly, although in Figs. 5 a
6 the curves indicate that something is present around
position of m. This resonance is striking by the fact that
approaches the Fermi wave number when the frequency
proaches zero. It might also be appropriate here to men
that the resonances nameda andb have the asymptotic valu
of qi51/n in the low end of the normalizedqi-v spectrum,
and that the resonances namedc andd approachesqi5n for
high values ofqi /q and low values ofv/v21. The resonance
namedh is the interband resonance.

V. DISCUSSION

To give an impression of the magnitude of the phase c
jugated response, we have in Figs. 3–6 highlighted the
photes with magnitude of 10220 and 10230m4/W2 by draw-
ing them with a long-dashed curve and a short-dashed cu
respectively. Their positions in the normalizedqi-v plane
shows quite clearly that most of the area reachable with
single-mode experiment should produce a phase conjug
response of a magnitude comparable to what one gets
second-harmonic generation~compare Refs. 11–16, 18, 19
95!.

Knowing the positions of the resonances in the norm
ized qi-v plane, one could of course be tempted to plot
magnitude of the phase conjugated response along path
lowing each of the resonances~e.g., following the path of
resonancei, and its continuation intom! in order to give an
improved understanding of the importance of the differ
resonances. However, since it would be rather difficult in
experiment to follow such a path, and since the exact p
tions of the resonances probably will be shifted in a pract
situation, we have chosen not to do so. We have instea
Figs. 8, 9, and 10 plotted the intensity of the phase con
gated field along linear cuts in the normalizedv-qi plane at
qi /q50.4, qi /q53.0, and v/v2151.5, respectively. Fol-
lowing the curves in Figs. 8–10 along their respective p
on Figs. 3–6, the appearance and dissapearance of each
nance along the path is easily identified. From Figs. 8–1
also appears that some of the regions in Figs. 3 and 4
high density of isophotes are zeros rather than resonanc

One of the resonances are of special interest, namely
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resonance at the interband transition frequency, which
perimentally is rather easy to tune into. Until now, reson
four-wave mixing has been studied in other contexts,84–87but
always at the point (qi ,v)5(0,v21) in the qi-v plane. To
go beyond that, we have plotted the phase conjugated
sponse in the case where the interband transition is reso
~along the linear path in the normalizedqi-v plane where
v5v21! in Fig. 11.

In configurations with only a single source field in th
field-matter interaction, such as, e.g., in linear respon
second-harmonic generation, photon drag, and photoe
sion the so-called self-field approximation has proven to

FIG. 8. The phase conjugation reflection coefficient is shown
the four combinations of polarization presented in Figs. 3–6 in
normalized angular frequency range 0.1<v/v21<10 for a constant
value of the parallel wave vector,qi50.4q. Thus the four curves
represent theppp ~dash-dot curve!, pps ~fully drawn curve!, ssp
~dashed curve!, andssp~dotted curve! configurations.

FIG. 9. The phase conjugation reflection coefficient is shown
the four combinations of polarization presented in Figs. 3–6 in
normalized angular frequency range 0.1<v/v21<10 for a constant
value of the parallel wave vectorqi53.0q. The ppp configuration
result is drawn using a dash-dot type of curve, while thepps, ssp,
and spp configurations are drawn using dotted, dashed, and f
drawn curves, respectively.
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quite effective. The founding argument to use the self-fi
approximation is that the dynamics across the quantum
~in the z direction here! are dominating over motion in th
plane of the quantum well~x-y plane here!. Let us as a tes
in the following look at the consequences of applying t
self-field approximation in the present case of degene
four-wave mixing, where three incident fields are presen

Working within the framework of the self-field approx
mation, we observe from Eq.~3! that the phase conjugate
response would have been limited to the cases where no
ear and linear current densities is produced in thez direction.
Hence, only tensor elements withi 5z would contribute.
Then, from Table I we observe that the contributions from~i!
the two cases where the pump fields have the same pola
tion and the probe field iss polarized~sssandpps!, and~ii !
the mixed-pump configurationssppandpspwould have been
neglected. Thus, the data presented in Figs. 3 and 6 w
have been absent. While this is certainly a good approxi
tion in the pures-polarized case, the argument is not so go
in cases with pump or probe dynamics in thez direction.
Using the argument of the dominatingz dynamics, it is strik-
ing that the mixed-pump configurations withs-polarized
probe field survives the self-field approximation while t
two others do not, because we would expect more dynam
in the z direction from the latter two. Another interestin
conclusion is that with the loss of Fig. 3 we would also lo
the resonances namedj, k, andl in Fig. 7. At the same time
we would keep the essentially nonresonantsspcase. Com-
paring the raw amplitudes of the different configurations
can see from Figs. 3–6 and 8–10 that in most regions of
qi-v plane, theppp configuration gives a response that is
few orders of magnitude larger than the other configuratio
but we also observe that the three other cases have

FIG. 10. The phase conjugation reflection coefficient is dra
on a logarithmic scale for the four combinations of polarizati
presented in Figs. 3–6 in the normalized parallel wave vector ra
0<qi /q<kF /q for a constant value of the angular frequencyv
51.5v21. In the strip to the left, the abscissa is linear, while it
logarithmic in the right part of the figure. The scale of the ordin
is the same in both frames. The upper curve~dash-dot! shows the
result for theppp configuration of polarizations, while the dashe
curve shows thepps result, the fully drawn curve shows thessp
result, and the dotted curve shows thespp result.
d
ll

te
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ld
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e
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so-

nances aroundqi /q50, while thepppcase do not. Thus, fo
near-normal incidense of the probe, the phase conjug
reflection coefficient is larger for some of the mixed mod
than for the purep-polarized configuration, indeed leavin
room for experiments that cannot be described within
framework of the self-field approximation.

All in all, we may conclude from the above discussio
that although the argument behind the self-field approxim
tion remains intact, when one allows more than one incid
field to participate in the interaction~as in, e.g., sum and
difference frequency generation, or degenerate four-w
mixing!, one should be careful in applying the self-field a
proximation in cases where mixed polarizations of the in
dent fields are allowed.

Outside the resonances the influence of the relaxa
time is insignificant, but around the resonances the choic
relaxation time has a great influence on the width~in the qi

space! and amplitude of each resonance. Choosing adeq
relaxation timestnm is a difficult problem and it appear
from Fig. 12 how big impact the relaxation time has on t
phase conjugation reflection coefficient. The intraband rel
ation time in the occupied state (t11) has been chosen in
accordance with Ref. 49 to be 3 fs. For the unoccupied s
the relaxation timet22 ~see Fig. 2! has been chosen to ap
proach infinity. In the present case where also interband t
sitions contribute to the phase conjugated response, the
traband relaxation time is of little importance, and thus it
the choice of interband relaxation times~heret21 and t12!
that are critical. In the present calculation we assume
relaxation from stateu1& to stateu2&, letting t12→`.

The phase conjugation reflection coefficient has in Fig.

n

e

FIG. 11. The phase conjugation reflection coefficient is sho
on a logarithmic scale for the four combinations of polarizati
presented in Figs. 3–6 in the normalized parallel wave vector ra
0<qi /q<kF /q when the value of the angular frequency is exac
equal to the interband transition frequencyv5v21. As in Fig. 10,
the strip to the left shows the range 0<qi /q<0.1 with linear ab-
scissa, while the rest is plotted with logarithmic abscissa. The s
of the ordinate is the same for both frames. In this figure, the da
dot curve corresponds to thepppcase as in the previous figure, bu
the dotted curve to thepps result. The fully drawn curve corre
sponds to thesspcase as before, and the dashed curve to thespp
result.
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been plotted for four values of the relaxation time from st
u2& to stateu1&, namely,~i! 30 fs and~ii ! 200 fs, which are
typical values one would find for bulk copper91 at ~i! room
temperature and~ii ! at 77 K, ~iii ! 3 fs, and~iv! 2 ps. The
value in case~iii ! is obtained by a conjecture based on t
difference between measured data for a lead quantum w96

and the bulk value for lead at room temperature. The diff
ence between the relaxation times measured by Jalochow
Strȯżak, and Zdyb96 is for two monolayers approximatel
one order of magnitude. Case~iv! is included to see the
effect of raising the value of the relaxation time one order

FIG. 12. The phase conjugation reflection coefficient is sho
for interband transition resonance for different values of the in
band relaxation timet21P$3,30,200% fs, and 2 ps. The fully drawn
curve corresponds to 200 fs, the long-dashed curve to 30 fs,
short-dashed curve to 3 fs, and the dotted curve to 2 ps.
e

l
r-
ki,

f

magnitude, thus essentially assuming a better conducta
than in case~ii !. The values~i!–~iii ! are the same values a
we chose in our description of the single-level quantum-w
case where only intraband transitions were allowed,49 but
since the interband transition is of a more bulklike charac
we have in the present calculations chosent215200 fs. We
notice that in the case where both pump fields ares-polarized
~polarized in the plane of the quantum well!, the phase con-
jugated response does not vary as a function of the interb
relaxation time, whereas in the other three cases the gen
tendency is that they have larger magnitudes for larger
ues of the relaxation time.

VI. CONCLUSIONS

Our main conclusion from this work is that DFWM in
thin metallic film gives rise to several resonance structu
even in the propagating regime of theqi spectrum. Further-
more the coupling by the phase conjugation reflection co
ficient is of a magnitude that is well within experiment
reach. Thus, also single mode excitation in the experim
tally feasible regime~up to aroundn53! should be possible
by use of the standard Otto97 or Kretschmann98 techniques,
and a qualitative comparison with the present work should
possible. However, for a better quantitative comparison i
specific system, it will be necessary to refine the numer
calculation by, e.g., abandoning the IB model in favor of o
of the flavors of the KKR, LAPW, or LMTO models, al
though such a task may prove to be strenuous.

APPENDIX A: NONLINEAR CONDUCTIVITY TENSOR

Under the assumption that the electron dynamics is fr
electron-like in the plane of the quantum well the nonline
response functionJJ (z,z8;qi ,ki ,v) @given by Eq.~8!, and
with tensor elementsJ i jkh# can be obtained from the resul

established forJJ G(z,z8,z9,z-;qi ,ki ,v) in Ref. 58. Upon
integration overz9 andz- @and use of Eq.~9!# one gets

n
r-

he
J i jkh~z,z8;qi ,ki ,v!52
1

8\3

1

~2p!2

2

~ iv!3 (
nmv l

E 1

ṽnm~ki1qi ,ki!2v
H F S f l~ki2ki!2 f m~ki!

ṽ lm~ki2ki ,ki!2v

1
f l~ki2ki!2 f v~ki!

ṽv l~ki ,ki2ki!2v
D 1

ṽvm~ki ,ki!22v
1S f l~ki2ki!2 f v~ki!

ṽv l~ki ,ki2ki!2v
1

f n~ki1qi!2 f v~ki!

ṽnv~ki1qi ,ki!1v
D

3
1

ṽnl~ki1qi ,ki2ki!
G E j h,ml~z-;2ki2ki!dz-E j k,lv~z9;2ki2ki!dz9 j j ,vn~z8;2ki1qi!

1F S f l~ki2ki!2 f m~ki!

ṽ lm~ki2ki ,ki!2v
1

f l~ki2ki!2 f v~ki2ki1qi!

ṽv l~ki2ki1qi ,ki2ki!1v
D 1

ṽvm~ki2ki1qi ,ki!

1S f l~ki2ki!2 f v~ki2ki1qi!

ṽv l~ki2ki1qi ,ki2ki!1v
1

f n~ki1qi!2 f v~ki2ki1qi!

ṽnv~ki1qi ,ki2ki1qi!2v
D 1

ṽnl~ki1qi ,ki2ki!
G
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3E j h,ml~z-;2ki2ki!dz-E j k,vn~z9;2ki2ki12qi!dz9 j j ,lv~z8;2ki22ki1qi!

1F S f l~ki1qi!2 f m~ki!

ṽ lm~ki1qi ,ki!1v
1

f l~ki1qi!2 f v~ki2ki1qi!

ṽv l~ki2ki1qi ,ki1qi!2v D 1

ṽvm~ki2ki1qi ,ki!

1S f l~ki1qi!2 f v~ki2ki1qi!

ṽv l~ki2ki1qi ,ki1qi!2v
1

f n~ki1qi!2 f v~ki2ki1qi!

ṽnv~ki1qi ,ki2ki1qi!2v D 1

ṽnl~ki1qi ,ki1qi!22vG
3E j h,lv~z-;2ki2ki12qi!dz-E j k,vn~z9;2ki2ki12qi!dz9 j j ,ml~z8;2ki1qi!J
3 j i ,nm~z;2ki1qi!d2k i. ~A1!
to

e
-
k

-

m

,

ith

e

hat

n
one

ber

q.
APPENDIX B: ON THE SOLUTION TO THE INTEGRALS
OVER ki IN THE LOW-TEMPERATURE LIMIT

In this appendix we discuss how analytical solutions
the integrals over the electronic wave vectorki , appearing in
the linear and nonlinear conductivity tensor may be obtain
and for simplicity the discussion is limited to cover the low
temperature limit. These integrals can, when scattering ta
place in thex-z plane, be expressed as a sum over terms
the general type

Fpq
b ~n,$a%,$b%,s!5E

2`

` E
2`

` kx
pky

qf n~ki1sex!

)k51
b @akkx1bk#

dkxdky ,

~B1!

wherep,k,b are nonnegative integers, andq is an even non-
negative integer. The functions depends on~i! the quantum
numbern, which is a positive nonzero integer,~ii ! a set of
real quantities,$a%[$a1 ,...,ab% appearing in front of the
integration variablekx in the denominator,~iii ! a set of com-
plex nonzero quantities,$b%[$b1 ,...,bb% appearing also in
the denominator, and~iv! the real quantitys representing the
displacement~in the x direction! of the center of the Fermi
Dirac distribution function from (kx ,ky)5(0,0). The quan-
tity s together with each element in the set$a% are in general
functions of the parallel components of the probe and pu
wave vectors,qi andki . Each element in the set$b% is fur-
thermore a function oft, the relaxation time.

The combinations ofp andq needed in Eq.~B1! in order
to solve the integrals overki in the nonlinear conductivity
tensor are (p,q)P$(0,0),(0,2),(0,4),(1,0),(1,2),(2,0)
(2,2),(3,0),(4,0)%, andbP$1,2,3%. However, functions with
b52 andb53 can be expressed in terms of functions w
b51 in the following way:

Fpq
2 ~n,a1 ,a2 ,b1 ,b2 ,s!

5
a1Fpq

1 ~n,a1 ,b1 ,s!2a2Fpq
1 ~n,a2 ,b2 ,s!

a1b22a2b1
, ~B2!

and
d,

es
of

p

Fpq
3 ~n,a1 ,a2 ,a3 ,b1 ,b2 ,b3 ,s!

5
a1

2Fpq
1 ~n,a1 ,b1 ,s!

~a2b12b2a1!~a3b12b3a1!

1
a2

2Fpq
1 ~n,a2 ,b2 ,s!

~a2b12b2a1!~a3b22b3a2!

1
a3

2Fpq
1 ~n,a3 ,b3 ,s!

~a3b12b3a1!~a3b22b3a2!
. ~B3!

Equations~B2! and~B3! are given with the provision that th
values of the differentak are nonzero,kP$1,2% in Eq. ~B2!
and kP$1,2,3% in Eq. ~B3!. If any ak , for instance,a1 ,
becomes zero, we see from Eq.~B1! that the order~in kx! of
the denominator becomes smaller by 1. This implies t
Fpq

2 (n,0,a2 ,b1 ,b2 ,s)5Fpq
1 (n,a2 ,b2 ,s)/b1 in Eq. ~B2!. The

similar conclusion for Eq. ~B3! is Fpq
3 (n,0,a2 ,a3 ,b1 ,

b2 ,b3 ,s)5Fpq
2 (n,a2 ,a3 ,b2 ,b3 ,s)/b1 . Analogous reduc-

tions applies for any otherak50.
In the low-temperature limit the Fermi-Dirac distributio

function is zero outside the Fermi sphere and equal to
inside, and it is therefore advantageous to shiftkx by 2s, and
afterwards carry out the integrations in polar (r ,u) coordi-
nates. Usingkx5r cosu, ky5r sinu, anddkxdky5rdudr,
the integrals to be solved are of the type

Fpq
1 ~n,a,b,s!5E

0

a~n!E
0

2p r ~r cosu2s!p~r sinu!q

b2as1ar cosu
du dr,

~B4!

dropping the now superfluous index ona and b. The upper
limit of the radial integration isa(n)5AkF

22(pn/d)2,kF

.pn/d. If kF,pn/d, the Fermi-Dirac distribution function
is zero, and thus the integral vanishes. Physically,a(n) may
be characterized as the two-dimensional Fermi wave num
for electrons in subbandn.

Since the following treatment is a formal solution of E
~B4!, we will also drop the reference ton for brevity, letting
a[a(n). To solve Eq.~B4!, let us make the substitutions

h[
b2as

aa
, r[au, ~B5!
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and thereby turn Eq.~B4! into

Fpq
1 ~a,h,s!5

aq

a E
0

1E
0

2p

3
uq11~au cosu2s!p~12cos2 u!q/2

h1u cosu
du du,

~B6!

i.e., compared to the possible values ofp andq, an expres-
sion where the angular integral is expressed as a sum
terms of the form cosh u in the nominator, whereh
P$0,1,2,3,4%. To carry out the angular integrals we putt
5exp(iu) so that the integrals become of the type

E
0

2p cosh u

h1u cosu
du5

1

2hiu R ~11t2!h

th~ t2t1!~ t2t2!
dt.

~B7!

In Eq. ~B7!, the poles att6 in the t plane are located at

t652
h

u
6AS h

u D 2

21, ~B8!

and the integration runs along the unit circle. Sincet1t2

51, one of these poles is located inside the unit circle wh
the other is outside. Whenh.0 there is an additional pole of
order h at t50. Using the unit circle as contour, residu
calculations give the nontrivial solutions

E
0

2p 1

h1u cosu
du5

2p

Ah22u2
, ~B9!

E
0

2p cosu

h1u cosu
du5

2p

u F12
h

Ah22u2G , ~B10!

E
0

2p cos2 u

h1u cosu
du5

2ph

u2 F h

Ah22u2
21G , ~B11!

E
0

2p cos3 u

h1u cosu
du5

p

u
1

2ph2

u3 F12
h

Ah22u2G ,

~B12!

E
0

2p cos4 u

h1u cosu
du5

2ph3

u4 F h

Ah22u2
21G2

ph

u2 .

~B13!

To finish the formal solution,~i! insert these results into Eq
~B6!, ~ii ! carry out the elementary radial integrations~see,
e.g., Ref. 99, Sec. 2.27!, ~iii ! backsubstituteh, and~iv! check
convergence fora→0. Step~iv! can be carried out by use o
a binomial series expansion of the square roots appear
n

of

e

g,

and a comparison the the result one gets by settinga50
already in Eq.~B4!. The solution to the integrals appearin
in Eqs. ~4! and ~A1! are then found in a straightforwar
manner, but since the algebraic expressions are rather l
we will omit presenting them here~they can be found in Ref
89 together with explicit expressions for the case wherea
50!.

APPENDIX C: DENOMINATOR COEFFICIENTS

a15
\ki

me
, ~C1!

a25
\qi

me
, ~C2!

a35
\

me
~qi1ki!, ~C3!

a45
\

me
~qi2ki!, ~C4!

bnm
1 5

1

\
~«n2«m!1

\ki
2

2me
2v2 i tnm

21, ~C5!

bnm
2 5

1

\
~«n2«m!2

\ki
2

2me
2v2 i tnm

21, ~C6!

bnm
3 5

1

\
~«n2«m!1

\qi
2

2me
1v2 i tnm

21, ~C7!

bnm
4 5

1

\
~«n2«m!1

\qi
2

2me
2v2 i tnm

21, ~C8!

bnm
5 5

1

\
~«n2«m!1

\

2me
~qi2ki!

22 i tnm
21, ~C9!

bnm
6 5

1

\
~«n2«m!1

\

2me
~qi

22ki
2!2 i tnm

21, ~C10!

bnm
7 5

1

\
~«n2«m!1

\qi

2me
~qi22ki!1v2 i tnm

21,

~C11!

bnm
8 5

1

\
~«n2«m!1

\ki

2me
~2qi2ki!2v2 i tnm

21,

~C12!

bnm
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