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The phase conjugated response from nonmagnetic multilevel metallic quantum wells is analyzed and an
essentially complete analytical solution is presented and discussed. The description is based on a semiclassical
local-field theory for degenerate four-wave mixing in mesoscopic interaction volumes of condensed media
developed by the present authdis Andersen and O. Keller, Phys. S&8, 132 (1998]. The analytical
solution is supplemented by a numerical analysis of the phase conjugated response from a two-level quantum
well in the case where one level is below the Fermi level and the other level is above. This is the simplest
configuration of a quantum-well phase conjugator in which the light-matter interaction can be tuned to reso-
nance. The phase conjugated response is examined in the case where all the scattering takes place in one plane,
and linearly polarized light is used in the mixing. In the numerical work we study a two-monolayer thick
copper quantum well using the infinite barrier model potential. Our results show that the phase conjugated
response from such a quantum-well system is highly dependent on the spatial dispersion of the matter re-
sponse. The resonances showing up in the numerical results are analytically identified from the expressions for
the linear and nonlinear response tensors. In addition to the general discussion of the phase conjugated
response with varying frequency and parallel component of the wave vector, we present the phase conjugated
response in the special case where the light is in resonance with the interband transition.
[S0163-182609)03448-1

[. INTRODUCTION considering optical interactions with matter of mesoscopic
size, especially when evanescent components of the optical
Since the birth of nonlinear optitas a discipline in phys- field are present. Four-wave mixing in media with two-
ics nonlinear optical processes have been of great interest thmensional translational invariance has so far been studied
scientists, for instance to help describe surfaces and inteby other authors in the context of phase conjugation of elec-
faces of condensed mattet’: Studies of surfaces and inter- tromagnetic surface wavés;®*and of a bulk wave by sur-
faces of condensed media belong to the regime of mesogace wave$? "°In these investigations macroscopic electro-
copic physics, where also quantum wells, wires, and dots cadynamic approaches were used. In order to go beyond the
be found>® Among the many nonlinear optical phenomenaSVE and ED approximations a nonlocal microscopic theoret-
that has been studied in the regime of mesoscopic physidsal model for optical phase conjugation by DFWM has been
are(i) second harmonic generation from magnetias well  constructedsee Ref. 58for nonmagnetic media. In addition
as nonmagnett¢—1° systems, (i) sum and difference fre- to avoiding the SVE and ED approximations, other usually
quency generatiotf?° of which one of the most prominent made approximations when considering optical phase conju-
applications today is Sisyphus cooling of atoths’ (iii) gation are avoided in our model, namely) the paraxial
photon drag?*~2 (iv) dc-electric-field induced second har- approximation(ii) the assumption of a lossless mediujii)
monic generatioR®?° (v) the second-order Kerr effetf?3*  the assumption of a weak probe field, afiw) the require-
(vi) electronic and vibrational surface Raman scattefiiy’  ment of phase matching between the interacting fields.

(vii) two-photon photoemissioff;#* (viii) generation of In a two-dimensional translationally invariant system the
higher harmonicé>#® (ix) the second-order Lorenz-Mie change in energy of an electron due to an electric field can
scatterind’” and (x) degenerate four-wave mixiri§->2 either involve a change of momentum along the translation-

In the present paper we study phase conjugation by deally invariant plandintraband transition a change of energy
generate four-wave mixing in a quantum-well structure,eigenstate perpendicular to the translationally invariant plane
where both interband and intraband transitions are allowedinterband transition or both. The change of momentum
Phase conjugation is a nonlinear process where the respong®ng the translationally invariant plane occurs as an addition
field is counterpropagating to an incoming probe field. Theof the momentum parallel to the plane of the interacting field
usual descriptiongsee Refs. 53—57, and references th@reincomponentdenoted byg,) to (or subtraction fromthe mo-
of degenerate four-wave mixinpFWM) are based on the mentum of the electron parallel to the surfédenoteds;). It
assumption that the field amplitudes are slowly varying ons thus convenient to divide the photon momentgrinto its
the optical wavelength scalelowly varying envelop¢SVE) ~ components parallel and perpendicular to that plane,g.e.,
approximatiol}, and thus also on the electric dipolED)  =(q;,q.). Then the vacuum dispersion relationg=g?
approximation. We have previously presented the reaons = w?/c5 provides us with an extra degree of freedom, since
Refs. 58 and 40why these approximations are invalid when q,=|q,| can be larger thaw/c,. Using the vacuum disper-
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sion relation we find thad), becomes imaginary in that case. pN

In the following, propagating field components thus shall % s = —d vacuum
refer to the case wheig, is a real quantity, and evanescent . v z quantum well
field components to the case wheyeis a purely imaginary ,
quantity. If we want to get a broad understanding of the

pha}se conjugated respon;e of a probe containing both propa- FIG. 1. The system we consider here consists of a three layer
gating and evanescent field components from a quantumgctyre, namely(j) vacuum, extending from-o to —d, (ii) quan-
well phase conjugator, two cases are of fundamental interesym wel, extending from—d to 0, and (iii) substrate(cross
namely, (i) the pure intraband case afid) the case where hatcheg, extending from 0 totc. The three incoming electromag-
also an interband transition is involved. netic fields consists of two pump fieldtabeled 1 and Rand a
The phase conjugated response from a pure intrabangtobe field. Also shown is the Cartesian coordinate system used in
guantum well we have described in Ref. 49. This analysiur calculations.
revealed that the phase conjugation reflection coefficient is
not only highly nonuniform in they, spectrum, but also that resort to using a simple description of the matter wave func-
the coupling efficiency is several orders of magnitude largetions. Doing so, we will be able to present a qualitative dis-
in part of the evanescent regime than in the propagating resussion based on analytical expressions.
gime. Since evanescent waves are strongly decaying in space Using a two-level quantum-well phase conjugator, it is
we further concluded that if one wants to see the phase coralso possible to study resonant four-wave mixing, which un-
jugation of evanescent modes, both excitation and observail now has been studied only without spatial disperdiah
tion should take place close to the surface of the quanturthe point @;,»)= (0,051 in the q;-» plane,w,; being the
well. Furthermore was discussed the problems of excitatioimterband transition frequengyas described in, e.g., Refs.
of the near-field regime, and the consequences from choog4-87. Thus, in Sec. Il we present the theory in the form of
ing a broad bandedwith respect toq;) two-dimensional a local-field formalism, we choose a scattering geometry,
point source(quantum wirg revealed that parts of the eva- and the solution is presented as a discretization in the energy
nescent spectrum could be excited, and in Ref. 71 that phasi#genstates. In Sec. Il we prepare for a numerical calcula-
conjugation of evanescent fields can lead to a focus of théon. We start by adopting the simple infinite barrigB)
phase conjugated field substantially below the so-called difmodel to describe the quantum well. Furthermore we define
fraction limit.”>"3 Since this has also been experimentallythe phase conjugation reflection coefficient, and the section
observed; we judge that it is highly relevant also to give an is concluded with a specific choice of a convenient system to
account of how evanescent fields are phase conjugated iniavestigate. To give an impression of the implications of our
system where not only one electronic level is present. theoretical model we have presented in Sec. IV numerical
Since including more than one interband transition will becalculations for a two-level quantum-well phase conjugator.
necessary for most practical applications, we present in thi$he calculation is supplemented by a discussion of the re-
paper the complete solution to the theoretical model of Refsults, in particular an identification of the different reso-
58 in the case of two-dimensional translational invariancenances appearing when the wave number along the surface
although a description based on the self-field approximatioplane as well as the frequency varies. In Sec. V we widen our
according to the Fiebelman thedfy®would be sufficient in  discussions, with emphasis @i the interband resonance,
order to determine the dominating response. Giving a comgii) the validity of the self-field approximation, ari) the
plete solution also allows us to comment on what we wouldchoice of appropriate relaxation times. Finally, in Sec. VI,
lose using the self-field approximation. The solution is basedve conclude.
on a discretization in the energy levels of the two-
dimensionally translational invariant medium. Contrary to
discretization schemes performed in real space or Fourier
space, our discretization does not in itself imply an approxi- As a forerunner for the analysis of the optical phase con-
mation. Thus, once the complete orthonormal set of wavgugation from a two-level quantum well we briefly sketch
functions for the phase conjugating medium has been detehow a local-field calculation allows one to determine the
mined, the phase conjugated response can in principle t®o-called degenerate four-wave mixing response of a meso-
calculated from the solution presented in this paper. How tscopic metallic film deposited on a dielectric substrate. To
find the proper set of wave functions for a given materialcreate a phase conjugated field, which in the plane of the film
system is another problem, which for example can be treatepropagates in a direction opposite to that of the probe field,
using one of several band-structure methdd$ e.g., the two counterpropagating pump fields must be present inside
Korringa-Kohn-Rostoker(KKR),”®8° the linearized aug- the phase conjugating medium. Although the theoretical
mented pIane-wavéI_APW),81 or the linear muffin-tin or- model developed in Ref. 58 allows us to make almost arbi-
bital (LMTO) method®® These methods are based on antrary choices of the interacting optical fields, we will in the
atomic description of the potential in a certain radius of eactpresent work assume for simplicity that the pump fields
atom, adding exchange and correlation téthasid different  propagate parallel to the plane of the film ajig have con-
approximations in the regions between the atomic boundstant amplitude across the film. The scattering geometry is
aries. Using such a method one will probably be able to giveshown in Fig. 1 together with the chosen coordinate system.
more accurate numerical results for specific materials, but atve will further limit our study to the case whe(@i) scat-
the cost of the(relatively) analytical simplicity. Therefore, tering takes place in the-z plane and(iv) the interacting
we will not elaborate further on this point here, but in steadfields are linearly polarized, either {p polarized or perpen-
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dicular to (s polarized the scattering plane. Since it is nec- 2i 1 ®
essary in a study of nonlinear optical phenomena in meso- @i(z,2";q;,») = fo (2m)2 J

scopic interaction volumes to abandon macroscopic electro- nm
dynamics, the starting point is the microscopic Maxwell- fo(re+ ) — ()
Lorentz equations. The phase conjugated field from a quan-
tum well exhibiting free-electron-like dynamics in the plane
of the well (x-y plang can then be described using the X Jinm(Z; 26+ )
single-coordinatéz) loop equatioff

Onm( kg + 0y, K)

DK+, k) — o

XJjmn(Z": 20+ Q) (4)

provided the set of wave functions is complete. In &j.we
Epc(Zq, !w):EEC(Z;QH !w)_iﬂowf f é(z,z”;q“ L) have. introduced the transition current density in the mixed
Fourier space, namely,

-0(2",2';9,,0) -Epc(Z';q,0)dZ'dZ’,

: eh | v, 9¥n(2)
O Iz == 5 [ 1QUn(2) dn(2) + & ¥in(2) —;
e
: . dyi(2)
wherew is the common angular frequency of the participat- — (2 } (5)
ing fields andqg; is the component of the probe field in the dz

film plane. It is the so-called background fidtc(z;q;,®)  In relation to Eq(4), Q, is equal to % +q, , wherex is the
which makes the loop problem different for the various non-wave vector of the given electron in the plane of the well.
linear (and lineay problems. It is here given by The transition current density also occurs in the nonlinear
response tensdsee Appendix Aand in this context various
combinations ofy, k;, andk; appear inQ,. The quantities
B ,_. . <., (3) /ot , ¥, ae{n,m}, are the one-dimensional electronic energy
Epc(z,0y,0)= I'U“OwJ G(z,250),0)- IZ,(2530y, @)dZ, eigensta{tes o}f the quantum well belonging to hirection,
(2 and they satisfy the field-unperturbed Sainger
equation Hoya=¢e,¢,. The quantity f,(x;) denote the
3) /.. . . - Fermi-Dirac  distribution for the eigenstateV ,(r)
YvhereJEZ)(z 0, @) is the current density driving the non- (2 expix;-1)/(2m), where also the solution fo the
linear process. The pseudovacuum propaga{@,z”;q;,@)  Schralinger equation along the quantum well is taken into
is given by account. It is given byf,(r)=[1+exp{(ea+H2xZ/(2me)
— ) (kgT)}]17 1, wherekg is the Boltzmann constant is
the chemical potential of the electron system, dnithe ab-

., eldlz=7| , solute temperature. For the various Cartesian components of
Czz5a,0)= 5 —[6@g+0(z-2)ewq the transition current density, we use the notation
_ Jinm(Z:#q), i €{X,y,z}. The complex cyclic transition fre-
g iaL(z+z) quency is defined by

+6(Z’—Z)e,®er]+ T[rsey@)ey

+ ~ 1 h? ) )

1 ®nm(QuarQup) = 7| en~em* m(|Qu,a| —[Qy /%)

+rPe®e]+ —=68(z—72')e®e,, (3) €
q —

—i T, (6)

where the first term describes the direct propagation of thgvheresn ander are the eigenenergies of the quantum well

electromagnetic field from a source planezato the obser- statesfbilongllng to thedlr;z_cthn, anoQH,T(and Q(;vb can rl])e
vation plane ar, the second term accounts for the reflection"Y Of the relevant combinations of , k;, and . The
at the quantum-well—substrate interface, and the third terpftantity Tnm 1S the relaxation ‘_'m% , .
characterizes the field generated at the observation plane by 11€ nonlinear current density’®),(z 0y, @), is related to
the current density prevailing in the same platieis named the pump and probe fields by a constitutive relation of the
the self-field term Above, e=q~%(q,,0,—q,), and e  'OM

=q Y(—q,,0,—q,), takingg,=q,e,. The quantities > and

rP are the amplitude reflection coefficients at the vacuum- J@L(Z;qu )= %f f(z,z’;q” K, 0)  E(—K; )
substrate interface in the absence of the quantum wekl-for (27)
andp-polarized fields, respectively. Both of these are in gen- XE(K,,0)E*(2';—qy,0)dZ +i.t 7

eral functions ofy, . Moreover, the vectorg,, e,, ande, are

unit vectors along the principal axes in the Cartesianwhere

X-y-z-coordinate system@®(---) is the Heaviside unit step

function andd(- --) is the Dirac delta function. = . _ I o
The ijth tensor element of the linear response tensor =(zz 'q”’k”"")_f f 2(22,2",27,q; k,w)dz"dZ

7(2",2';q,,w), appearing in Eq(1), is given by®8° (8)
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is the relevant nonlinear response tensor when the pump TABLE I. Contributing tensor elements of the nonlinear con-
fields are essentially constafglowly varying across the ductivity tensor when the pump fields are propagating inxtu-
quantum well, i.e., E(z”;—k;,,0)=E(—k,,0) and rection and all fields are polarized {p) or perpendicular tgs) the
E(Z";k,,w)=E(K,w) in Eq.(7). Within the framework of a  XZ plane. The left column shows the polarization combination of

single-electron random-phase-approximation approach afjé incoming fieldspump 1, pump 2, probethe center columns
- . < Voo . shows the polarization of the phase conjugated field, and the right
explicit expression foE(z,z',2",2";q; ,k; ,®) has been es-

. ! . column shows the tensor elements contributing to the nonlinear
tablished in Ref. 58. The term “i.t.” denotes the so-calledimemction g
“interchanged term,” which takes into account the symme- i

try of the pump fields. It is obtained from the first term by jnq¢ pol. output pol. nonlinear tensor elements
interchanging the two pump fieldthe pump field wave vec-

tor k; is replaced by—k;). The explicit expression for the Sss S Eyyyy

simplified nonlinear conductivity tensoE (z,z';q; .k, ,®), pps S Eyyzz

can be found in Appendix A. We have, however, in Appen- Ssp p Exxyyr Exayyr Ezxyys Ezzyy
dix A only listed one of the seven parts, namely, FﬁrtOf ppp p Exxzzv Exzzz» szzzr Ezzzz
the nonlinear conductivity tensor that appears in Ref. 58, SpPp, psp s Eyxyzr Byxzys Byzyz Byazy
since when interband transitions are strong, it is dominating sps, pss p Eixyyzs Boxyzys Bzyyz Bzyzy

the response by several orders of magnitude compared to the

other six A—F). _ o _
As a consequence of the above-mentioned ch@ioein-  the x axis then reduces the number of contributing matrix

dependent of the direction in which the pump fields propa£lements from 41 to 18, since when traveling along the

gate the number of terms in the nonvanishing elements ofXiS, the pump fields are polarized in either jheirection or

the nonlinear response tensor is further reduced, since ti@€zdirection. The resulting sets of tensor elements we have

orthonormality of thez-dependent parts of the wave function Presented in Table |. _
gives To solve Eq.(1), we can establish a so-called coupled

antenna loop. First, we notice that each matrix element of the
linear conductivity tensofEq. (4)] with the insertion of Eqg.
J 1 (2) Ym(2)dz= S, (9 (5) can be written as a product ofzindependent term and
two terms depending om and z’, respectively. Elemeni
where s, is the Kronecker delta. Also, by integration of the then takes the form
microscopic transition current density given by E5).overz

P y
one finds (rij(z,z’;QH,w)=nEm Qa1+ @) i nm(2)ij.mn(Z"), (12

: eh
f Inm(z:Q)dz=~ 2ime['QH5Hm+ Pzomel (10 \wherej, (2)=jn(Z: 6+ g,). The variousQ quantities can
readily be identified from Eq(4), and the integrals can be
where solved using the method described in Appendix B. Inserting

Eqg. (12) into Eq. (1), we get
o dn(2) diyn(2)
pz,nm:f lﬂm(Z) dz - 'ﬁn(z) dz dz (11)

Erpc(2)=Epc(2)+ 2 Fon(2) T, (13
is proportional to the component of the electric dipole mo-
ment related to them transition?° omitting the reference tq, andw for brevity. In Eq.(13) we

" .

The conductivity tensoi=(z,z,2",2";q, K, w) has in  have introduced the 333 tensorE,(z) with the nonzero
general 81 nonzero tensor elemef@x3x3x3) and con- elements
sists of seven different parté\(G) after the seven different

physical processes contributing to the respoisee Ref. 58 . , i . e
for detaily. When scattering takes place in tiez plane an(Z)Z—lﬂowi < Qnmj Gyi(2,2")ji,nm(Z")dZ
with linearly polarized light the general treatment can be o

split into eight separate parts related to the possible combi- B Q_LFZX(Z) (14
nations of polarization of the three different incident fields. g "™

In this scattering geometrg, andk; lie along thex axis,

giving a mirror plane aty=0. Consequently, only tensor ,

elements in the nonlinear response tensor with a Cartesian Fia(2)=—ignow X, Q'nsz Gyi(Z,2")ji nm(2")dZ’
index even numbered iy contributes, and the 81 tensor tepxz)

elements generally appearing are reduced to 41. The separa- i _,,

tion of the tensor elements into the eight sets of elements = q_Han(Z)v (15

contributing in these configurations follows in a straight for-
ward manner from the definition of the sum-product operator
“ " between the nonlmea: .current density and the interact- FYY(z)= _iMowQ?ﬁ’nf Gy(2.2)jynm(2)dZ', (16)
ing electric fields, i.e.,[E:EEE*]i=%,EjnEnEkE] -

The added restriction of letting the pump fields travel alongand the elements of the vectby,, are written
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) ) €, V(z)
1—‘i,mn:J'Ji,mn(Z’)EPC,i(Z,)dZ,: ie{xy,zt. (17 4 00 00
h
To determine the phase conjugated field the quarfity, “’3{32
must be calculated. This is done by multiplication of each &2t - = =1 12) Y
elementEpc(z'),i e{X,y,z} of the phase conjugated field e B £
in Eq. (1) by the relevanf; ,n(z) followed by an integration Ert = ———— - R =
over thez coordinate. Hence, when the phase conjugated 3 M
lightis spolarized, Eq(13) is transformed into the following €14 —_t |1) A 4
set of linear algebraic equations: [ Wi, T11
0 4
1_‘y,mn_g K;L/,mnry,vI:Qy,mnv (18 —:d (:) >z

i.e.,n? equations with just as many unknowns. In the case of FIG. 2. Infinite barrieIB) model potentialthick solid line for
p-polarized light, we obtain a quantum well with boundaries at —d andz=0. In the present
case, only one energy level below the Fermi endlgyre calledl),
with energy e;) and one energy level above the Fermi energy
Ly mn— EI (lex,mnrx,vl + lez,mnrz,vl):Qx,mnv (19 (called|2), with energye,) contributes to the solution. The remain-
Y ing infinite set of energies appearing in the IB model we assume are
so far away from|1) and |2) that they do not contribute to the
Tymn— 2 (K\z/lgmnrx,vl + K\zllzmnrz,vl) =Qumn, (20 solution. The dotted curves indicate the_shape of the wave func_tion
vl for each of the two energies. To the right is shown the possible
transitions, identified with their respective transition frequency and

. 2 . . .
which are 2* equations with just as many unknowns. In .qavation time.

Egs.(18)—(20) above, the elements of the vectorial quantity

Qn, are given by for the numerical study, since this model is sufficient for a
qualitative study.
Q. :f i (2)EB..(2)dz, ie{x,y,z}, 21 As shown in Fig. 2, in this model the one-dimensional
Lmn Jime(2)Epe,(2) .z} (D potentialV(z) is zero inside the quantum wélh the interval

—d=z=0) and infinite everywhere else. The stationary state
wave functions inside the quantum well are givenigyz)
=/2/d sin(n7z/d) and outside the quantum well,(z)=0.

) The associated eigenenergies afg=(nm#)?%/(2mgd?).

KY —j ji mn(2)FlL(2)dz, (22)  Within the 1B model, Eq(11) gives

and the X3 tensorial quantitK®! (q,,®) has the five non-
zero elements

ij,mn—

n+m
where the indices I and “j” can take the values ofj D :4nm[1—(—1) ]
e{xx,Xz,yy,zxzZ. By means of the procedure sketched znm (n*~m*)d
above, we have been able to transform the integral-equatiog, n#m, andp, =0 for n=m. For a metallic quantum
problem for the phase conjugated fi#ldc(2), [Eq.(D)]to@ e one may even at room temperature approximate the
matrix problem for thd',, vectors. This discretization in the - permipirac distribution functions by their value at zero tem-
energy levels is exact, and once the linear algebraic set cﬂ.’ferature, ie.,
equations for thd’,,,, vectors, truncated so as to keep only
the subspace of relevant energy levels, has been séived w2 [[nm
merically) the phase conjugated field can be obtained from lim fn(K):e{SF_ >m. (T
Eq. (13). Integral equations of the type given in Ed) is =0 ¢
often solvednumerically by discretization in the real space where &; is the Fermi energy of the system. In the low-
coordinate. By such a procedure one has to worry about howemperature limit it is possible to find analytical solutions to
small discretization lengths one may dare to take from ane integrals oven, appearing in Eq(A1). The explicit
physical point of view. The discretization in energy levels cajculations are tedious but trivial to carry out, and since the

(23

2
+Kf

} . (29

used here does not suffer from this uncertainty. final expressions are rather long we do not present them here.
For the interested reader some steps in the calculations are
1. NUMERICAL FRAMEWORK reproduced in Appendix B.

The Fermi energy is calculated from the global charge

Our description of the phase conjugated field has until,o 5ty conditiorf® and for a quantum well described by
now been independent of the actual wave functions in the,. |8 model it becom&?

guantum well, and thus also independent of the form the

potential takes across the active medium. However, if we ah? 7 Np(Ng+1)(2Ng+1)

want to perform a numerical calculation of the phase conju- &k ZN.d+ 5 6 , (29
gated field we have to choose a definite potential across the

guantum well, giving us a set of wave functions to work whereN, is the number of positive ions per unit volume,
with. Below we use the infinite barriétB) model potential is the valence of these ions, ahg is the quantum index of

" Ngm,
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the highest occupied level. From E®5), the number of 10% 3
occupied levels can be calculated if the thickness is known, kr/q ]

(pps)
(%

and vice versa. The minimal thickness for the quantum well
to haven levels below the Fermi level can be determined
from the relationég=¢,, and the maximal thickness from
the conditioné=¢,,, 1. Thus forn bound states below the
Fermi energy we find the minimal and maximal thicknesses 10°3

.3 N
dnmin:drr;la)%: \/22N+ n2

i.e., a result that depends on the number of levels below the -

Fermi energy and the number of conduction electrons in the 1024

film. 1
To estimate the amount of phase conjugated light, we use

the phase conjugatiofenergy reflection coefficient defined

as

(n+1)(2n+1)
_ 5 ,

(26)

a/q

lpc(—d;q), ) 10!
Rec(Qy,@)= |(l)|(2)|pr0be(_d;q|\ )’ @ 1\

in which I, 1), 1., andlpc are the intensities of the
two pump beams, the probe and the phase conjugated field, 1)
respectively. Each of the intensities are given by n—|]
=(1/2)eoCoE-E* (27) 4. The factor of (27) * originates 1001
from the manner in which we have introduced the Fourier 3
amplitudes of the fields.

For the remaining part of this work we choose a copper
quantum well withN,=8.47x10?®m™2 and Z=1 (data
taken from Ref. 9L The Cu quantum well is assumed to be
deposited on a glass substrate for which we use a refractive 10~ PR L Bk e
index n of 1.51. With this substrate, the linear vacuum- L 10° 10!
substrate amplitude reflection coefficients can be obtained by . HHN LL\\WL U

use of the classical Fresnel formulas=[q, —(n%qg?
—a))la, +(n°g°~qgH)*?]  and rP=[n’q, —(n’q’

w/w21

—q)Y?)[n%q, +(n?9?>—q?)Y?]. Having the

FIG. 3. The phase conjugation reflection coefficient from a two-

number ofk,=nq=1.51g.

probe field gives-polarized phase conjugated response, and where

the pump fields arg polarized(pps. The response is plotted as

isophotes(contours of equal intensity{m*W?] on a logarithmic

IV. NUMERICAL RESULTS FOR A TWO-LEVEL scale as a function df) the frequencyw normalized to the transi-
QUANTUM WELL tion frequencyw,; and (i) the parallel component of the wave

To calculate the phase conjugated response from a quaMector, normalized to the vacuum wave number. The difference
tum well with an arbitrary number of bound eigenstates Om;{)etween two neighboring contours is one order of magnitude. To

would have to superimpose interband and intraband contrindicate the absolute amplitude, the isophote of valuedor/w?

butions. Thus in a study of the complete response wher2S Peen plotted using a long-dashed curve and the isophote with
local-field effects are neglected one basically would have t¢"29"tude 10" m /W= with a short-dashed curve. On tlg/q

add the contributions from the various pairs of levels Iocate%‘fle’/tkforismgse ha‘? bee.:'h plotted lon il'near_sg"’l'e in the range
in different subbands or in the same band. Seen in this light, - /4= >+ and on afogaritmic scale a oue/q=0.1.

thorough treatments of the single-level case, where only in- . i )
traband transitions are allowed, and the two-level case,:\/ms'”(ﬂ/d) and i(2) = \/ms'”(ZZWZ/d)- l'he assocl-
where transitions between two eigenstates located in differdted energies tpen becomg = (7%)“/(2med*), and &,

ent bands occur, would form a good qualitative starting point= (277:)7/(2m.d), respectively. The quantum well with
for analyses of multilevel quantum-well systems. The singlethe various relevant energies and wave functions, as well as
level case we have studied beféPeand the following treat- the electronic excitations are shown in schematic form in
ment will thus be directed towards a description of the phas&ig- 2. In the present two-level case Eg3) becomes
conjugated response from a two-level quantum well. Thus,

we choose the simplest possible configuration in which in- 16

terband transitions can occur, i.e., a quantum well with only pzqnm=ﬁsgr(n—m), (28)

one bound state below the Fermi energy. Above the Fermi

energy we also assume that only one bound state can lehere fi,m)e{(1,2),(2,1}. If just the ground state should
reached, and thus the wave functions ang(z) have an energy less than the Fermi energy, we see from Eq.
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FIG. 4. The phase conjugation reflection coefficient from a two-  FIG. 5. The phase conjugation reflection coefficient from a two-
level metallic quantum well is plotted in one of the cases whereevel metallic quantum well is plotted in the other case where
p-polarized probe field givegp-polarized phase conjugated re- p-polarized probe field giveg-polarized phase conjugated re-
sponse. In this case the pump fields a#golarized (thus named sponse, this time witlp-polarized pump fieldgéppp). As in Figs. 4
ssp. The response is plotted as isophdi@é/W?] on a logarithmic ~ and 5, the response is plotted as isophfite$W?] on a logarithmic
scale as a function df) the frequencyw normalized to the transi- scale as a function df) the frequencyw normalized to the transi-
tion frequencyw;, and (ii) the parallel component of the wave tion frequencyw;, and (ii) the parallel component of the wave
vector, normalized to the vacuum wave number. The differencevector, normalized to the vacuum wave number. Again, the differ-
between two neighboring isophotes is one order of magnitudeence between two neighboring contours is one order of magnitude,
Again, the two isophotes of magnitude 3 and 10 **m*%W? has  and as before, the long- and short-dashed curves represents magni-
been plotted with long- and short-dashed curves, respectively. Agides of 102° and 10 3 m*W?, respectively. In the big picture,
before, below 0.1¢,/q has been plotted on a linear scale while q,/q is plotted on a logarithmic scale, while in the strip it is plotted
above it is logarithmic. on a linear scale.

(26) that the film thickness must be less thaty,, two states iss,—&;=8.70eV, and the corresponding reso-
=3/37/(2ZN,). The minimal thickness is in the IB model nance in the optical spectrum is found at the wavelength
zero, but in reality the smallest thickness is a single mono=142.4 nm.

layer. Using Eq(26) the maximal thickness for a two-level
Cu quantum well then becomes,,,~3.82 A, which is more
than two monolayers and less than three. Thus we have two
obvious choices for the thickness of the quantum well, Among the eight possible ways of using linearly polarized
namely, a single monolayer or two monolayers. We chooséight in our chosen scattering configuration, two combina-
two monolayers, since by this choice the two energigand  tions give ans-polarized response when using polarized

€, are closest to each other, and thus the energy needed foipaobe field, the pump fields being eitherpolarized orp
resonant transition to occur is lowest. Two monolayers ofpolarized, but with the same polarization for both pump
copper roughly corresponds to a thicknesslef3.6 A (bulk  fields. When the pump fields asepolarized, the nonlinear
valug. With this choice, the energy difference between theconductivity tensor element that contributes to the response

A. Phase conjugation reflection coefficient
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) ) . o shown as a function ofi) the optical frequency normalized to the
FIG. 6. The phase conjugation reflection coefficient from a two-i, sition frequency ¢/ w,y) and(ii) the parallel component of the

level metallic quantum well is plotted in one of the cases where, ;e vector normalized to the vacuum wave numleprq). This
p-polarized probe field givespolarized phase conjugated response.fig,,re shows only the pure resonances. The broadening due to the

In this case, pump field 1 is polarized while pump fielg 219 relaxation times is neglected by setting them all to infinity.
polarized(spp. The response is plotted as isophded/W?] on a
logarithmic scale as a function @ the frequency» normalized to  fie|ds have to be of the same polarization, and can either be
the transition frequency,, and(ii) the parallel component of the - 5 o b polarized. Withs-polarized pump fieldgssp four ten-
wave vector, normalized to the vacuum wave number. The differsq; alements of the nonlinear conductivity tensor contribute
ence between two neighboring contours is one order of magnltudq0 the phase conjugated resporisee Table)l The phase
. . 5 4 2
;he ablsct’tluée amphtulde O':jtheh '?phrme Or]: dv?kl]ue. %nh/\iv h.‘:f aSonjugated response is shown in the normaliaed, plane
een plotied using a 'ong-dashed curve and the 1Sophote WIth Mag =" 4 | the other case, another four tensor elements of
nitude 10 **m*/W< with a short-dashed curve. The strip below is . L .
. . . i i .~ the nonlinear conductivity tensor contribute to the phase con-
plotted in a linear scale i, /q while the rest is on a logarithmic . . .
jugated response when the pump fields agolarized(see
scale. . . ;
Table ). We have in Fig. 5 shown the phase conjugated
_ _response for this configuratidppp) in the normalizedo-q,
is Eyyyy. Altogether the phase conjugated response in th|§)|ane_
purely s-polarized casécalled “ss$') is negligible, since it In the remaining four cases, the response has a different
is tens of orders of magnitude less than those of the othggolarization than the probe field. This is obtainable by the
combinations. If, on the other hand, the pump fields @re use of differently polarized pump fields. In order to achieve
polarized pps),E,,,,is the element of the nonlinear con- an s-polarized response from ppolarized probe field one
ductivity tensor that contributes. Plotted as isophdtEn-  makes use of two differently polarized pump fields, and four
tours of equal intensifyin the normalizedw-q, plane(w  tensor elements of the DFWM response tensor contribute to
normalized to the interband transition frequeney; andq, the solution, cf. Table I. Similarly, two differently polarized
normalized to the vacuum wave numbhefc,), the resultis pump fields are needed in order to produce-polarized
shown in Fig. 3. response from as-polarized source. For this process, an-
Two other combinations of polarization giyepolarized  other four tensor elements of the nonlinear conductivity ten-
response using xpolarized probe field. As above, the pump sor contributes according to Table I. Since the resonance
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structure of these last four cases are similar, it is sufficient TABLE Il. Restrictions on the valid combinations of quantum
here to discuss the result obtained for just one of those case®imbers for a two-level quantum well in the nonlinear conductivity
Thus, in Fig. 6 the result is shown for the case where pumgensor for the three combinations of polarized light of the pump
field 1 is s polarized and pump field 2 and the probe gre fields treated in this communication. Pump field 1 is indekeaind
polarized(spp. pump field 2 is indexedh in Eq. (Al).

The 1B model only offers a crude description of the elec-

tronic properties of a quantum well, since, for example, th h Eterms3-4 Zterms5-8 = terms 9-10
electron density profile at the ion-vacuum edge is poorlyg s l=v=m v=nOm=| v=n=|
accounted for. This gives too sharp a profile and underesti p l=vm=| v=nOm=I v=nil#v
mates the spill-out of the wave function. Altogether one, D ey v£nOma| vEnDl£v

should be careful to put too much reality into the IB model
when treating local-field variatior(gelated to, sayg, orq,)
on the atomic length scale. Furthermore, neglecting théntegrals overs; shown in Appendix B, the solution to the
Bloch character of the wavefunctions accounting for the dyterms with three multiplied denominators is reduced in Eg.
namics in the plane of the well is doubtful in investigations (B3) to the problem of finding a basic solution to the inte-
of the local field among the atoms of the quantum well. Thegrals overk; for each of these denominators multiplied by a
crucial quantity in the abovementioned context is the Fermik-independent factor. The resulting integrals do not contain
wave numberks=(2m.&:)Y¥#%, and in relation of Figs. sharp resonances, but the factors in front of them do, when
3-6, only results for, /q ratios less than approximately ~ ajb;—b;a;=0, fori,je{1,2,3} andi#j. In order to make
an analytical treatment of the resonances appearing in the
Ke ZN.d 1 nonlinear conductivity tensor we in the following define a
H: 2 + 4d?’ term of the nonlinear conductivity tensor as a product of
) . three denominators in Eqg(Al), and number them
appears reliable. Thus we have cut off our results at the Ilnq’ 2,..., 12.However, not all terms gives contributions

9;/9=ke/q in the w/ w21-q,/q plane in Figs. 3-6. to the result in a two-level quantum well. The terms that does
In many theoretical studies of the properties of phase cong ot give any contributions are the terms with @ Gontribu-

jugated fields it is assumed that the phase conjugator i§sn in the denominator. i.e.. terms 1—2 and 11-12. When
ideal®~%*By this is meant that the phase conjugation reflecthe denominators of the rest of the tertBs-10 are put into
tion coefficient is independent of the angle of incidense Ofhe form of Eq.(B1), a total of four differenta’s and nine
the (propagating probe field(and maybe also of the state of yiterentiy's appear. They are listed in Appendix C. Since we
polarization). As we concluded for the single-level quantum 4re |0oking for the location of the resonances in the system it

49
well,™ and as we can now see for the two-level quantums reasonable in the following analysis to let the respective
well in Figs. 3—6 this assumption is not such a good approxiye|axation timesr,,, in Egs.(C5)—(C13) be infinite.

mation, at least not for a metallic quantum well system. In terms of thea’s and b's listed in Appendix C, we
observe that the third term d&&;;, has resonances k)
a,bp,—bZa,=0, (i) asbi,—bSa,=0, and (i) asb?

Looking at Figs. 3—6, a number of resonances occur—bSa,=0. After insertion of the relevard’s andb’s, sub-
They can be accounted for from the analytic solution to Egstitution of k; in favor of nw/cq (since kj=nw/cq in our
(A1) by looking at the denominators appearing in the anatreatment, and a normalization ofg, to g, i.e., g
lytic decomposition of the products, as given by E@2) =(q,/q)w/cy, we may solve the resulting second order
and(B3) in Appendix B. These resonances are shown on thequations with respect tm as a function ofg,/q. Then
scale of Figs. 3—6 in Fig. 7. In the analytic solution of theresonance conditiofi) gives

(29

B. Resonant structure of the DFWM reflection coefficient

mec(% n_QH/q 2mec(%

o= mng n_QH/qi \/( )2+ , EyTE  EmTé&n , (30
fing,/q n+q,/q fing,/q n+q,/q/  A%n+q/q)[ n q;/q
I
resonance conditiofii) becomes mecg
B mecg _ﬁnq”/q
w_ﬁnq”/q +\/( MeCH )2+ 2mecs sy=e, &1~ en
—— 2 .
. \/( mecg )2+ Zmecg en—€) €m—€n ﬁnq”/q ﬁ QH/q n n+qH/q
B finq,/q An |n+aqy/q g /q | (32)
(31

and condition(iii ) is

In some of the above equations, some of the solutions can be
ruled out immediately, since, for example, in E§1) the
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TABLE Ill. Resonances generated by E¢30)—(40) are shown as a function of the valid combinations of quantum numbens,,|)
and the sign appearing in front of the square roots. In each of upper and lower parts of the table, the upper row shows the generating equation
and the next four rows show the values of the quantum numbers, which can take the value 1 or 2 in a two-level quantum well. The last four
rows show the resonances resulting from use of the quantum numbers in the respective equations for eaemdignthe first two of
these rows being associated with the normal term, and the last two with the interchanged term. A zero in the last four rowswrefers to
=0, and the lettera—| refers to the resonances shown in Fig. 7. An asterisk is used when the value of a quantum number is indifferent, and
a dash in the output field appears when the result is outside the shown range in Fig. 7. Sif83 Ea linear solution inw the sign does
not apply, and the result is listed under the plus sign for simplicity. It should be noted {84 gthat the combinations of quantum numbers
that give rise to the resonanckse, i, h, andl are going into resonanae after they have reached the line @tw,;= 1.

Eq. (30) Eq. (31) Eq. (32) Eq. (33 Eq. (34) Eq. (35)
n *111222 *111222 *111222 * kK *xxx 111222 *111222
m n122112 n122112 * ok ok ok ok ok ok * 12 nnn222111 n122112
\Y * 1x 2% 12 * ok ok ok ok ok k n122112 m21 *12112122 n212121
| v2viliv2l n212121 n212121 * ok v21121212 *ok ok ok ok k%
+ --di--e  ------- 0-hc-h- 0g- Oeadi-hjf - ------
- Oa---j- Ob--ch-  ------- - Oad- hfe
+ 0---ckhb 0Oe-dfha  ------- 0g- Ob--1-hkc 0---hch
---lc-b - ----- O-hfdh- oo aaae e
Eq. (36) Eq. (37) Eq. (38) Eq. (39) Eq. (40)
n * ok ok ok ok ok ok *kk 1 x 122 *111222 *111222 *xx 111222
m *111222 nnn2*211 nl122112 n122112 nnn222111
v ml22112 *121n212 * kK Kk k% n212121 *12112122
I m212121 v21im122 n212121 *ok ok ok ok k% v21121212
e --hc--b -2 --- --b--1-hc
- Ohdeaf- 0g--0-hg O-hc--b Oad- hfe O-b---khec
+ Oh-b-c- 0g--0-hg Oahf- - - 0---hch Oa----jhf
R N --h-d-e - ------ --ed-i-h-

minus in front of the square root gives only rise to negativethe values of the quantum numbersm v, andl in order to
values of w in the “interchanged term” (when K, get a nonzero result. Comparing E¢a1) and (10) we ob-
= —nw/Cy). serve that if pump field onéndexedk) is s polarized then

In the fourth term ofZ;,, we observe that in addition to |=v, while |#v if it is p polarized. Similarly, if the other
a resonance of typéi), resonances appear @v) a,by,  pump field(indexedh) is s polarized we gem=1, while we
—b3,a,=0 and (v) ash3,—bfa,=0. Again inserting the get m+1 if it is p polarized. These conditions are summa-
respectivea’s andb’s from Appendix C, substitutingw/c,  rized in Table I, and the contributions from Edq80)—(33)
for k;, and normalizingq, to the vacuum wave number, to the resonances in Fig. 7 are shown in Table IlI for the
resonance conditiofiv) becomes valid combinations of quantum numbers.

The resonances conditions in the fifth term®f., are
(i) @b, +bia,=0, (vii) asbh,—bya,=0, and (viii)
asbit.+b>a;=0. By insertion of the respectiv@s andb’s
and resonance conditidn) is equivalent to Eq(31), taking ~ from Appendix C, substitution df, by nw/c,, and normal-
into account the interchanged term. In our configuration, thézation of g, to the vacuum wave number, resonance condi-
choice of a two-level quantum well puts some restrictions ortion (vi) becomes

1
wzﬁ(sv—&‘m), (33)

o meCSZi\/( MeC3 2)2+ 2 2mgcin Sn—8m+8\,—8|, 34
fi(q,/9) i(q,/q) fif(n—q,/q)q,/q| q,/q n
condition (vii) gives
o= MeCh i\/( meCo )2+ 2mzec3 Zm Fn Zm By (35
fing,/q fing,/q fin | q/q n—q,/q
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and casdVviii ) becomes MeC3
w=
MeC3 ing;/q
- #ingy/q +\/ MeCo |© MeC
“Nlinaral “#qrglentevmeneil

N \/( mecﬁ )2+ 22mec(2) Em— & N &y~ &nm .
hing,/q hcqi/q[ n n—a;/q (37)
(36) and (x) resonances equivalent to those given in &9). In
the seventh term d€ .y, there is a resonances of the type of
The sixth term of=, has a resonance of the typé), and case(|x) and furthermore afxi) agbp,,— b8 a,=0 and(xii)

further resonances dix) aby,—by;a,=0 and (x) a;b);  azb’,—b%a,=0. As in the previous cases we insert the dif-
—bya,=0. Insertion of the differenta’s and b's, k” ferenta’s and b's found in Appendix C, replacd, with
—nw/co, and normalizingg; to the vacuum wave number nw/cy, and normalizey, to the the vacuum wave number.
gives(ix) resonances at Then casdxi) gives resonances at

mecg n+q/q \/( MeCo n+qu/q)2 2MeC5[N+0y/d en—em , &1=en -
ﬁr‘QH/qn ai/q fing;/q n—q,/q A%n n—q/q q,/q n—q,/q/’
[
and caseXxii) the resonances are equivalent to Bf). The  |=n, (iii) when pump field one is polarized and the other

eighth term of=;;, has a resonance of the type glven in onep polarized we get eithem=v or |=v, and(iv) in the

MeC3

E€m—E&n En—&y

+
ai/q n

case(xi), and additional resonances (afii) a;b;,,—br,a, opposite case we get either=v or m=n. These conditions
=0 and (xiv) asby,—bpa;=0. Repeating the procedure are summarized in Table I, and the contributions from Egs.
from above, we get for cadiii) the solution (34)—(39) to the resonances in Fig. 7 are shown in Table III
for the valid combinations of quantum numbers. It should be
= - noted that in Eq(34), the combinations of quantum numbers
Ainq,/q that give rise to the resonandese, i, h andl are going into
m.c2 |2 2m.c2 resonancem after they have reached the line @tw,;=1.
ev-0 e-0 . .
+ \/( ) +— None of the other equations contributes to resonance
ingi/a)  A%(n—q,/q) For the ninth term of:”kh the resonances are &tv)
(39 a2bnm b|ma2—0, (xvi) asbl,—b3.a,=0, and (xvii)
and in case(xiv) gives resonances equivalent to the result@abim = bymay=0. After insertion of the reIevara’s andb's
given in Eq.(32). Again, when considering a two-level quan- from Egs.(C1)—(C13), k;=nw/c, and a normalization ofj,
tum well in our configuration, some restrictions apply to theto the vacuum wave number, the resulting second order
quantum numbers. If we again compare E@sl) and (10) equations can be solved with respectdas a function of
we see that if pump field onéndex k) is s polarized, then ;/d. Then casexv) is equivalent to Eq(33), and cases
v=n, and if it is p polarized, thernv#n. Additionally, if ~ (xvi) and(xvii) to Eq.(35). Finally, in the tenth term oy,
pump field two(index h) is s polarized,m=1, and ifitisp @ resonance of the type given by caxei) occur. Two other
polarizedm=1. This has the consequences thiathe quan-  resonances are located @viii) ajby,+bja,=0 and at
tum numbersn and m can be chosen arbitrarily when both (xix) a,bd+b3,a;=0, respectively. Inserting the’s and
pump fields ares polarized,(ii) when both pump fields aig  b’s given in Appendix C and using the same substitution and
polarized we either genh=n andl=v, or we getm=v and  normalization as above, cageviii) gives

Em™E&n &7 &y

a,/q n

MeCH n+0q,/q \/( MeCH n+q/Q)2 2mech 0

~Ang/qn—q/q" fing,/q n—q,/q h%(n—q,/q)

and cas€xix) has a solution equivalent to the one given inwhen it isp polarized,v # n. Similarly, when pump field two
Eq. (36). As before we find by a comparison of Eq#1) (indexedh) is s polarized we get=v, and when it isp
and (10) that some selection rules appear when choosing golarized,| #v. Then, if both pump fields arepolarized we
two-level quantum well in our configuration, since whenmay in a two-level quantum well choose=n or m#n. In
pump field one(indexedk) is s polarized we get=n, and the case where both pump fields arpolarized, the result is
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identically zero. In the case where pump field ons j®lar- 10
ized and pump field two ip-polarized we may choose either ]
m=1| or m=v, while in the opposite case we may choose ]
eitherm=| or m=n. As before, these conditions are sum- 107
marized in Table Il, and the contributions from E4O0) to
the resonances in Fig. 7 are shown in Table Il for the valid
combinations of quantum numbers.

In the linear conductivity tensdiEg. (4)] resonances oc-
cur whena,b? —a,b% =0, where

10715 =P

102

Rpc(Gj,w) [m*/W?]

1 ot
brl]?HZ%(sn—sm)-F z_me_”'nnlr (42) 107 -

The solutions are;=0 or w=0, independent of the values 1
of n andm. Adding this resonance to the ones we found in 10 — ——rirr
Egs. (30)—(40) the resonances appearing in Figs. 3—6 have 01 1 10
been identified. Q. E. D. w/wa

~ While most of the resonances described above and shown gy g, The phase conjugation reflection coefficient is shown for
in Fig. 7 are clearly pronounced in Figs. 3—6, the resonancge four combinations of polarization presented in Figs. 3—6 in the
namedm does not appear so clearly, although in Figs. 5 anthormalized angular frequency range €.&/w,;<10 for a constant

6 the curves indicate that something is present around thgalue of the parallel wave vectog,=0.4q. Thus the four curves
position of m. This resonance is Striking by the fact that it represent theppp (dash-dot curvg pps (fully drawn curve, ssp
approaches the Fermi wave number when the frequency ajpdashed curve andssp(dotted curve configurations.

proaches zero. It might also be appropriate here to mention

that the resonances namadndb have the asymptotic value resonance at the interband transition frequency, which ex-
of q,=1/n in the low end of the normalizeq,-» spectrum, perimentally is rather easy to tune into. Until now, resonant
and that the resonances nanteahdd approaches,=n for ~ four-wave mixing has been studied in other cont&t§!but

high values ofy, /q and low values of»/ w,,. The resonance always at the pointd,w)=(0,w,7) in the q;-w plane. To
namedh is the interband resonance. go beyond that, we have plotted the phase conjugated re-
sponse in the case where the interband transition is resonant
(along the linear path in the normalizeg-» plane where
w=wyy) in Fig. 11.

To give an impression of the magnitude of the phase con- In configurations with only a single source field in the
jugated response, we have in Figs. 3—6 highlighted the isdfield-matter interaction, such as, e.g., in linear response,
photes with magnitude of 18° and 103°m*%W?2 by draw-  second-harmonic generation, photon drag, and photoemis-
ing them with a long-dashed curve and a short-dashed curvsjon the so-called self-field approximation has proven to be
respectively. Their positions in the normalizggrw plane
shows quite clearly that most of the area reachable within a ]
single-mode experiment should produce a phase conjugated oo
response of a magnitude comparable to what one gets from 1
second-harmonic generatigoompare Refs. 11-16, 18, 19, ]
95). 107 ]

Knowing the positions of the resonances in the normal-
ized g;-w plane, one could of course be tempted to plot the
magnitude of the phase conjugated response along paths fol-
lowing each of the resonancés.g., following the path of
resonance, and its continuation inten) in order to give an
improved understanding of the importance of the different
resonances. However, since it would be rather difficult in an
experiment to follow such a path, and since the exact posi-
tions of the resonances probably will be shifted in a practical ]
situation, we have chosen not to do so. We have instead in 1035 — — e
Figs. 8, 9, and 10 plotted the intensity of the phase conju- 01 1 10
gated field along linear cuts in the normalizedq, plane at w/wa

9,/9=0.4, g;/q=3.0, and w/w,;=1.5, respectively. Fol- FIG. 9. The phase conjugation reflection coefficient is shown for

lowing the curves in Figs. 8—10 along their respective pathne four combinations of polarization presented in Figs. 36 in the

on Figs. 3—6, the appearance and dissapearance of each reggmalized angular frequency range €.&/w,,< 10 for a constant

nance along the path is easily identified. From Figs. 8—10 i{alue of the parallel wave vectay,=3.0q. The ppp configuration

also appears that some of the regions in Figs. 3 and 4 witkesult is drawn using a dash-dot type of curve, while pps, ssp

high density of isophotes are zeros rather than resonancesand spp configurations are drawn using dotted, dashed, and fully
One of the resonances are of special interest, namely, thi¥awn curves, respectively.

V. DISCUSSION

Rpo(gj),w) [m*/W?]

10

10%
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FIG. 10. The phase conjugation reflection coefficient is drawn FIG. 11. The phase conjugation reflection coefficient is shown
on a logarithmic scale for the four combinations of polarizationon a logarithmic scale for the four combinations of polarization
presented in Figs. 3—6 in the normalized parallel wave vector rangpresented in Figs. 3—6 in the normalized parallel wave vector range
0=q,/q=<kg/q for a constant value of the angular frequensy 0=<gq,/g=<Kkg/q when the value of the angular frequency is exactly
=1.5w,,. In the strip to the left, the abscissa is linear, while it is equal to the interband transition frequensy w,;. As in Fig. 10,
logarithmic in the right part of the figure. The scale of the ordinatethe strip to the left shows the range<@,/q<0.1 with linear ab-
is the same in both frames. The upper cu(dash-dot shows the  scissa, while the rest is plotted with logarithmic abscissa. The scale
result for theppp configuration of polarizations, while the dashed of the ordinate is the same for both frames. In this figure, the dash-
curve shows theps result, the fully drawn curve shows ttesp  dot curve corresponds to thppp case as in the previous figure, but
result, and the dotted curve shows gppresult. the dotted curve to th@ps result. The fully drawn curve corre-

sponds to thesspcase as before, and the dashed curve tosgie
quite effective. The founding argument to use the self-fieldresult.
approximation is that the dynamics across the quantum well
(in the z direction herg are dominating over motion in the nances around,/q=0, while theppp case do not. Thus, for
plane of the quantum welk-y plane herg Let us as a test near-normal incidense of the probe, the phase conjugated
in the following look at the consequences of applying thereflection coefficient is larger for some of the mixed modes
self-field approximation in the present case of degeneratthan for the purep-polarized configuration, indeed leaving
four-wave mixing, where three incident fields are present. room for experiments that cannot be described within the

Working within the framework of the self-field approxi- framework of the self-field approximation.
mation, we observe from E3) that the phase conjugated  All in all, we may conclude from the above discussion
response would have been limited to the cases where nonlithat although the argument behind the self-field approxima-
ear and linear current densities is produced inzbgection.  tion remains intact, when one allows more than one incident
Hence, only tensor elements wiik=z would contribute. field to participate in the interactiofas in, e.g., sum and
Then, from Table | we observe that the contributions fi@m difference frequency generation, or degenerate four-wave
the two cases where the pump fields have the same polarizazixing), one should be careful in applying the self-field ap-
tion and the probe field is polarized(sssand pps, and(ii) proximation in cases where mixed polarizations of the inci-
the mixed-pump configuratiorsppandpspwould have been dent fields are allowed.
neglected. Thus, the data presented in Figs. 3 and 6 would Outside the resonances the influence of the relaxation
have been absent. While this is certainly a good approximatime is insignificant, but around the resonances the choice of
tion in the pures-polarized case, the argument is not so goodrelaxation time has a great influence on the widththe g,
in cases with pump or probe dynamics in thealirection.  spacé and amplitude of each resonance. Choosing adequate
Using the argument of the dominatiaglynamics, it is strik-  relaxation timesr,,, is a difficult problem and it appears
ing that the mixed-pump configurations withpolarized from Fig. 12 how big impact the relaxation time has on the
probe field survives the self-field approximation while the phase conjugation reflection coefficient. The intraband relax-
two others do not, because we would expect more dynamicestion time in the occupied stater,;) has been chosen in
in the z direction from the latter two. Another interesting accordance with Ref. 49 to be 3 fs. For the unoccupied state
conclusion is that with the loss of Fig. 3 we would also losethe relaxation timer,, (see Fig. 2 has been chosen to ap-
the resonances namgdk, andl in Fig. 7. At the same time proach infinity. In the present case where also interband tran-
we would keep the essentially nonresonaspcase. Com- sitions contribute to the phase conjugated response, the in-
paring the raw amplitudes of the different configurations wetraband relaxation time is of little importance, and thus it is
can see from Figs. 3—6 and 8-10 that in most regions of théhe choice of interband relaxation timésere 7,; and 7;,)

g,-w plane, theppp configuration gives a response that is athat are critical. In the present calculation we assume no
few orders of magnitude larger than the other configurationsielaxation from statél) to state|2), letting 7;,— .
but we also observe that the three other cases have reso- The phase conjugation reflection coefficient has in Fig. 12
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magnitude, thus essentially assuming a better conductance
than in cas€ii). The valuegi)—(iii) are the same values as
we chose in our description of the single-level quantum-well
case where only intraband transitions were alloffetpt
U since the interband transition is of a more bulklike character
o1 ' 10 100 | o0 we have in the present calculations chosgp=200fs. We
notice that in the case where both pump fieldssgpelarized
102 (polarized in the plane of the quantum wethe phase con-
jugated response does not vary as a function of the interband
10" i relaxation time, whereas in the other three cases the general
0.1 ! 10 100 1000 tendency is that they have larger magnitudes for larger val-
; ues of the relaxation time.

102

Rpc(q),w) [m*/W?]

VI. CONCLUSIONS

1000 . . . . .
Our main conclusion from this work is that DFWM in a
thin metallic film gives rise to several resonance structures

even in the propagating regime of the spectrum. Further-

o2 depp A T more the coupling by the phase conjugation reflection coef-

B ficient is of a magnitude that is well within experimental
0.1 1 10 100 1000 . . . . .
ar/a b reach. Thus, als_o single mode excitation in the experimen-
tally feasible regiméup to arounch= 3) should be possible
FIG. 12. The phase conjugation reflection coefficient is shownby use of the standard Oftoor Kretschmanif techniques,
for interband transition resonance for different values of the inter-and a qualitative comparison with the present work should be
band relaxation timer,;={3,30,200 fs, and 2 ps. The fully drawn possible. However, for a better quantitative comparison in a
curve corresponds to 200 fs, the long-dashed curve to 30 fs, thepecific system, it will be necessary to refine the numerical
short-dashed curve to 3 fs, and the dotted curve to 2 ps. calculation by, e.g., abandoning the IB model in favor of one
of the flavors of the KKR, LAPW, or LMTO models, al-
been plotted for four values of the relaxation time from statethough such a task may prove to be strenuous.
|2) to state|1), namely, (i) 30 fs and(ii) 200 fs, which are
typical values one would find for bulk copgémt (i) room
temperature andii) at 77 K, (iii) 3 fs, and(iv) 2 ps. The APPENDIX A: NONLINEAR CONDUCTIVITY TENSOR
value in casdii) is obtained by a conjecture based on the
difference between measured data for a lead quantuni®well
and the bulk value for lead at room temperature. The differ
ence between the relaxation times measured by Jalochowsl’i
Strazak, and ZdyB° is for two monolayers approximately
one order of magnitude. Cager) is included to see the established foFG(z z',2",7";q;,k;,) in Ref. 58. Upon
effect of raising the value of the relaxation time one order ofintegration overz” andz” [and use of Eq(9)] one gets

Under the assumption that the electron dynamics is free-
electron-like in the plane of the quantum well the nonlinear

psponse functiort (z,2";q, .k, ,») [given by Eq.(8), and
with tensor elementsz”kh] can be obtained from the results

5 1 12 1 £ (s —Kp) = (1)
Eijkn(z,2";9;, k), 0) = > f H<~I(K I ()

8t (277) (iw)imi J @ (i +0,6)— o Oim( =Ky k) — @

f|<:q|—k|)—fv<:qo) 1 +( fitk—k) = fu(r)  false+a) —fu ()

@y (K, 0= K) — o) Oyn(Kg ) — 20  \ @y (K, —K) -0 @ (Kt K)o

1
@ (g + 0y, —k

JJ jh,mI(ZW;ZKH_kH)dsz J(Z": 2= K)AZ'j; yn(Z' 520+ 1)
I

1

Dym( k= K+, 5)

N ( (kg —Ky) — ("u)+fl("'n_kn)_fv("\\_k\\+Q\\)

Om(r =K, k) -0 oy (g—K+0q,5—k)+o

+( fi (e — k) = f, (kg =K+ ) N folr+a) —fu(g—k+0qp)
@y (k= K+, 6—K)+o (Kt —K+g) o

—
@n (ke + 0,6 —K)
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Xf J'h,m|(2mi2'<u—ku)d2'"f Jiwn(Z": 20— Ky +20,)d2'j (25206 — 2K+ Q)

(f|(K+Q)—fm(K) f|(:<“+q”)—fv(:<—k|+q|)) 1
+| | = + = =
O+, K)o 0y (g—K+ 0,5+ 9) — o) Oyn(K =K+, k)

1
@ (K0, K1) — 20

(f|('f|+Q|)—fv(K_k+Q|) fo(rg+a)—fu(,g—k+qp)
@y (k—K+q,+0) 0 oK+, K5—K+g) o

XJ J'h,lv(Z"/iZKH_kn+2CI||)dZWJ Jiwn(Z":20 =K +20))dZ'jj mi(2; 26+ Q)

X Jinm(Z: 2+ 0 d? k. (A1)
|
APPENDIX B: ON THE SOLUTION TO THE INTEGRALS F34(n,a1,8,,83,b1,b;,b3,5)
OVER k; IN THE LOW-TEMPERATURE LIMIT
In this appendix we discuss how analytical solutions to ~ aiFpq(n,ay,by,9)
the integrals over the electronic wave vedkpr appearing in ~ (aghy—bya;)(agb;—bsay)
the linear and nonlinear conductivity tensor may be obtained, —
and for simplicity the discussion is limited to cover the low- N asFpq(n.az,by,s)
temperature limit. These integrals can, when scattering takes (ayb;—byay)(azbh,—bsa,)
place in thex-z plane, be expressed as a sum over terms of 5 a
the general type azFpq(n,az,bs,s) ©3)
(agh; —hsay)(ash,—bsay) -
= (o kPO (g +S€)) EquationgB2) and(B3) are given with the provision that the
fffq(n,{a},{b},s):f f Hﬁy[a—_’_bdede, values of the differeng, are nonzeroke{1,2 in Eq. (B2)
—ooJ e Il o[ @mex+ k]

and ke{1,2,3 in Eq. (B3). If any a,, for instance,a,,
becomes zero, we see from EBJ) that the ordefin «,) of

the denominator becomes smaller by 1. This implies that
wherep,k, 8 are nonnegative integers, agds an even non-  Fog(n.02,.b1,b,,5) = Fp(n,az,b,,5)/b; in Eq. (B2). The
negative integer. The functions depends(dnthe quantum  similar conclusion for Eq.(B3) is F;,(n,0a;,a3,b;,
numbern, which is a positive nonzero integdii) a set of b2,b3,s)=f§q(n,a2,a3,b2,b3,s)/bl. Analogous reduc-
real quantities{aj={a,,...,az} appearing in front of the tions applies for any othea,=0.

integration variablec, in the denominatoniii ) a set of com- In the low-temperature limit the Fermi-Dirac distribution
plex nonzero quantitiegb}={b,,...,bs} appearing also in function is zero outside the Fermi sphere and equal to one
the denominator, an@v) the real quantitys representing the inside, and it is therefore advantageous to shifby —s, and
displacementin the x direction of the center of the Fermi- afterwards carry out the integrations in polar ) coordi-
Dirac distribution function from £, «,)=(0,0). The quan- nates. Using«,=r cosé, x,=r sin¢, anddxd«,=rdadr,

tity stogether with each element in the $a} are in general the integrals to be solved are of the type

functions of the parallel components of the probe and pump

(B1)

wave vectorsq, andk;. Each element in the séb} is fur- ] (e (27 r(r cosf—s)P(r sing)4
thermore a function of, the relaxation time. Fpq(nia,b,s)= o Jo b—astar cosd 6 dr,
The combinations op andq needed in Eq(B1) in order (B4)

to solve the integrals oves; in the nonlinear conductivity
tensor are ,q)<{(0,0),(0,2),(0,4),(1,0),(1,2),(2,0), dropping the now superfluous index arandb. The upper
(2,2),(3,0),(4,0), andB e{1,2,3}. However, functions with  limit of the radial integration i:e,oz(n):\/kzF—(wn/d)z,kF
B=2 andB=3 can be expressed in terms of functions with>zn/d. If ke<zrn/d, the Fermi-Dirac distribution function
B=1 in the following way: is zero, and thus the integral vanishes. Physicalyn) may
be characterized as the two-dimensional Fermi wave number
for electrons in subband.

ff,q(n,al,az,bl,bz,s) Since the following treatment is a formal solution of Eq.
(B4), we will also drop the reference tofor brevity, letting
al}%q(n!alablvs)_azféq(n,az,bz,S) © a=a(n). To solve Eq.B4), let us make the substitutions
aib,—azb; 7 b—as
n= , r=au, (B5)

and aa
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and thereby turn EqB4) into and a comparison the the result one gets by setiind
a already in Eq.B4). The solution to the integrals appearing
1 _at (lfem in Egs. (4) and (A1) are then found in a straightforward
da,7,8)=— ; . .
a manner, but since the algebraic expressions are rather long,
1 i we will omit presenting them herghey can be found in Ref.
ud**(au cosf—s)P(1-cos 6)* 46 du 89 together with explicit expressions for the case wrere
7n+Uucosd ' =0).
(B6)
. _ APPENDIX C: DENOMINATOR COEFFICIENTS
i.e., compared to the possible valuespofind g, an expres-
sion where the angular integral is expressed as a sum of rk,
terms of the form cds in the nominator, whereh aFE, (€D
€{0,1,2,3,4. To carry out the angular integrals we put
=exp( ) so that the integrals become of the type hq
a=—, (C2
fzw cod' ¢ 4o 1 fﬁ (1+tH)N Me
o mtucosd  2Mu J th(t—t,)(t—t.) 5
(B7) ag=—(aqtk)), (C3
e
In Eq. (B7), the poles at.. in thet plane are located at
h
2 a,=—(q;— k), C4
ti=—zt (z) 1 8 4 me(QM 0 (C4)
u u
- - L - 1 hk?
and the integration runs along the unit circle. Sirige_ bt =~ (e, )+ o —it (C5)
=1, one of these poles is located inside the unit circle while nm= g LT eI ome nm’
the other is outside. Whem>0 there is an additional pole of )
order h at t=0. Using the unit circle as contour, residue b2 1 Ak c6
calculations give the nontrivial solutions am=7 (en~ &m)~ m, I Tam, (C6)
2 1 21 1 hqz
_ 3 _ I .o
JO 77+UCOS(9d0_ 7]2_u2’ (BY) bnm_g( em)+ me+“)—|7'nn}|a (C?
2
27 cosé 2 1 haj o
f 7 _do= m 1— _ " . (B10) bﬁmZ%( ep—&m)+ m—w—lrnnl], (C8
o mtucosé u ‘/n?_u? e
27 cod 6 27y i b> Zi(s —¢ )+i(qu—ku)2—i771 (C9
— _ nm ﬁ n m 2m nm:?
fo 7+ U cosé 0= 22 1. (B1D N
6 _1 h 2
2w C0§ 0 T 277772 n bnm_ﬁ ( m)+ (q\l kl\)_ITnmv (Clo)
L s PR
o mtucosé u u 2_u? .
(B12 me:%(sn m)+ (qH 2ky) + o — nnji’
J’27T cod 6 o 27y’ 7 1 T (C1y)
o mtucosd = u? V72 —u2 T 1 ik
(B13 bam= 7 7 (en— m)+ (ZQH k) —o—i7m,
To finish the formal solution(i) insert these results into Eq. (C12

(B6), (ii) carry out the elementary radial integratiofsee,

e.g., Ref. 99, Sec. 2.21iii ) backsubstitute;, and(iv) check 1 .o
g #i) 7, and(v) D= (e )+ o (ku 2q) — 0Tk

convergence foa— 0. Step(iv) can be carried out by use of nm-z

a binomial series expansion of the square roots appearing, (C13
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