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Structure factor of thin films near continuous phase transitions

R. Klimpel and S. Dietrich
Fachbereich Physik, Bergische Universita¨t Wuppertal, D-42097 Wuppertal, Federal Republic of Germany

~Received 23 April 1999!

The two-point correlation function in thin films is studied near the critical point of the corresponding bulk
system. Based on field-theoretic renormalization-group theory, the dependences of this correlation function on
the lateral momentum, the two distances normal to the free surfaces, the temperature, and the film thickness are
determined. The corresponding scattering cross section of x rays and neutrons under grazing incidence is
calculated. This reveals the various singularities of the two-point correlation function.
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I. INTRODUCTION

Structural properties of condensed matter depend se
tively on the space dimensiond. Thin films offer the oppor-
tunity to reveal this dependence. By varying the film thic
nessL, one can interpolate smoothly betweend52 and 3.
For crystalline materials this variation can be accomplish
with atomic resolution by using molecular-beam epitaxy.1 As
an alternative, which is also applicable for fluids, thin film
can be built up via wetting phenomena where the film thi
ness is controlled by temperature or chemical potentia2

Once such films are prepared, the dependence of their s
tural properties on the space dimension can be studied
ticularly clearly close to phase transitions. For first-ord
phase transitions the main influence of a variation of the fi
thickness is to shift the phase boundaries in the phase
gram ~see, e.g., capillary condensation3 or the shift of the
melting curve4! without much changing thelocal properties
of condensed matter. In rare cases, however, even thechar-
acterof the phase transition can change as function ofL; see,
e.g., the possibility of continuous melting ind52 ~Refs. 5!
as opposed tod53, or the crossover from a first-order pha
transition in d53 to a second-order phase transition ind
52 at a certain thickness of a slab of the three-states P
model.6

In the case offirst-order phase transitions, the robustne
of the local structural properties with respect to changes
the film thickness is due to the smallness of the correla
lengths which characterize these systems and—putting a
possible wetting phenomena—thus severely limit the pro
gation of the structural changes, which necessarily oc
near the confining surfaces of the film, into the interior of t
films. In contrast,second-orderphase transitions are chara
terized by diverging correlation lengths which affect not on
the location of phase boundaries but in addition lead to p
nounced changes in the local properties even deep in
interior of the films if the critical point is approached. The
effects are thus not only particularly suitable to shed light
the aforementioned dependence of the structural prope
on space dimension, but they offer an additional advanta
the divergence of the correlation length as a function of te
perature upon approaching the critical point leads to auni-
versalbehavior, which makes aquantitativecomparison be-
tween theoretical predictions and experiments much easie
PRB 600163-1829/99/60~24!/16977~26!/$15.00
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compared with systems exhibiting first-order phase tran
tions, which are characterized by several competing len
scales of comparable, atomic size which are difficult to d
termine accurately and to vary systematically and indep
dently.

A sizable body of theoretical research has emerged
scribing continuous phase transitions in thin films~see, e.g.,
Refs. 7–17!. Initiated by the theory of finite-size scalin
~see, e.g., Refs. 18–23!, inter alia the shift Tc(L) of the
critical temperature with respect to its bulk valueTc[Tc(L
5`),24–26 the magnetization27,28 as well as the free energy
the Casimir force, and the specific heat29–35 have been ana
lyzed. Here we emphasize that in order to observe unive
film behavior, the thicknessesL of the films still have to be
large on an atomic scale. This is assumed to be the c
throughout our analysis. The analytic description of the
mensional crossover betweend53 critical behavior nearTc
and the d52 critical behavior nearTc(L) still poses a
challenge36,37 which has not yet been overcome with sat
factory quantitative accuracy. Numerous experiments~see,
e.g., Refs. 38–43! and simulations~see, e.g., Refs. 44–46!
have been carried out to test these theoretical predicti
They lend support to the finite-size scaling theory, but s
pose a puzzle as a far as a detailed quantitative agreeme
concerned.

The vast majority of these studies has been devoted
integral or excess quantities without spatial resolution. Ho
ever, studies oflocal critical properties, such as of one- an
two-point correlation functions, near asingle surface have
revealed a wealth of universal phenomena featuring num
ous surface critical exponents and interesting crosso
phenomena—on the scale of the bulk correlation lengthj—
between surface and bulk critical behavior;47,48 the integral
and excess quantities offer either no or only very limit
access to these local properties.

The successful development of surface-specific x-ray
neutron-scattering techniques based on exploiting total ex
nal reflection at grazing incidence has proven to be v
fruitful, inter alia, for facilitating a quantitative compariso
between experiments and theoretical predictions of the lo
critical behavior near interfaces.49,50 These scattering tech
niques allow one to determine order-parameter profiles n
mal to the surface, and a depth-resolved lateral two-po
correlation function. In the present context such experime
16 977 ©1999 The American Physical Society
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16 978 PRB 60R. KLIMPEL AND S. DIETRICH
have been carried out successfully for the binary al
Fe3Al,51–53 and, by using truncation rod scattering, f
FeCo,54 which exhibit continuous order-disorder transitio
in the bulk. In the case of Fe3Al the cusplike surface singu
larities of the momentum and temperature dependence o
two-point correlation function turned out to be in excelle
agreement with the theoretical predictions.55,56 The fact that,
due to the occurrence of surface segregation, suitable cho
for the crystallographic orientation of the surface allows o
to switch between the different surface universality clas
corresponding to free boundary conditions and bound
conditions with surface fields, respectively, of the same b
sample,57,58 offers wide ranges of interesting comparati
studies.

In view of these developments, and in view of the incre
ing availability of powerful synchrotron and neutron sourc
it appears promising to extend these studies of local crit
properties to thin films. There are several predictions c
cerning the behavior of one-point correlation functions
thin films such as order-parameter profiles27,28,35and energy-
density profiles.59 However, on the level of the two-poin
correlation function, so far only very little is known. Th
function depends on the lateral distancexi5xi

(2)2xi
(1) be-

tween the two pointsx15(xi
(1) ,z1) and x25(xi

(2) ,z2) ~or
equivalently the lateral momentump corresponding to the
d21 translationally invariant directions!, the coordinatesz1
andz2 perpendicular to the parallel surfaces of the film, t
film thicknessL, and temperaturet5(T2Tc)/Tc ~or equiva-
lently the bulk correlation lengthj5j0t2n). Since a full
sweep of this large parameter space is practically not p
sible for computer simulations, we have applied fie
theoretic techniques which provide analytic access to the
parameter space. This approach encompasses nonper
tive features such as scaling properties and short-dista
expansions, as well as an explicit and systematic perturba
result to first order ine542d. The latter serves to corrobo
rate the nonperturbative results and to provide numerica
sults which are not accessible by general arguments. T
explicit calculations are carried out for the fixed point of t
so-called ordinary transition for both confining surfaces
the classification scheme of surface critical phenomen48

corresponding to free boundary conditions on both sid
This is applicable to thin antiferromagnetic films near th
Néel temperature, to ferromagnetic films near their Cu
temperature in the absence of external bulk and sur
fields, and to thin films of binary alloys near their continuo
order-disorder transitions. Among the numerous ord
disorder phase transitions in binary alloys, only a few are
second order including, Fe3Al,60–62 FeCo,63 CuZn,64 and
FeAl.61 Both the B2 –DO3 transition in Fe3Al and the
A2 –B2 transitions in FeCo, CuZn, and FeAl belong to t
Ising universality class.65 For the A2 –B2 transitions it is
predicted theoretically that the (110) surface belongs to
surface universality class of the ordinary transition, wher
the (100) surface exhibits the so-called normal transition
sociated with the presence of an effective surface field.57,58

Indeed, truncation rod scattering at the FeCo (100) surf
has provided clear evidence for the presence of an effec
y
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surface field54 aboveTc , although the expected associat
crossover from ordinary to normal critical behavior66 could
not yet been resolved experimentally in an unequivocal w
The results of the diffuse scattering of x rays under graz
incidence from the (11̄0) surface@equivalent to the (110)
surface# of Fe3Al ~Ref. 51! are in excellent agreement wit
the theoretical predictions55,56for the ordinary transition. But
even for Fe3Al (11̄0) a residual order parameter aboveTc
has been reported.51,52 Thus it still remains to be seen theo
retically whether for theB2 –DO3 transition in Fe3Al, in
contrast to theA2 –B2 transition in FeCo, the (110̄) surface
can support a weak effective surface field. In view of th
state of affairs our present result are expected to be clo
applicable to thin films of Fe3Al, FeCo, CuZn, and FeAl
bounded by (110) surfaces on both sides. Among th
Fe3Al and FeCo appear to be the most promising candida
because the others exhibit strong surface segregation. Fo
assessment of the possibilities to probe critical magnetic
face transitions by grazing incidence of neutrons see Ref.

In view of the aforementioned difficulties concerning th
analytic description of the dimensional crossover we confi
our analysis to the temperature rangeT>Tc . We note that
elements of the perturbation theory for thin critical films c
be found in Ref. 68. However, we had to carry out our ow
approach because the representation given in Ref. 68 is
suited for making predictions for the scattering experimen
and because Ref. 68 contains errors. Finally we note
experience tells us that calculations carried out for
spherical model, as have been done for the present syste69

lack the quantitative reliability needed for comparison w
experiments and simulations.

In order to encourage future scattering experiments
critical thin films and to facilitate an explicit quantitativ
comparison of such data with the present theoretical pre
tions, we have calculated the singular contributions to
scattering cross section for x-ray and neutron scattering
der the condition of grazing incidence based on our res
for the critical two-point correlation function in thin films
This allows us to describe the conditions under which
various singularities of the two-point correlation function b
come visible in scattering data.

This introduction is followed by three sections, a sum
mary, and four Appendixes. In Sec. II we introduce the fie
theoretical model. The two-point correlation function is d
cussed in Sec. III, and in Sec. IV we investigate t
scattering cross section. Relations between bulk and film
plitudes are derived in Appendix A, explicit one-loop resu
are presented in Appendix B, and Appendixes C and D c
tain details required for the calculation of the scattering cr
section.

II. FIELD-THEORETICAL MODEL

The leading critical behavior in a film follows from th
statistical weight exp(2H$F%) for the configurationF(x)
5„fa(x),a51, . . . ,n… of an n-component field, which is
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proportional to the order parameter, where48,30,32

H$F~x!%5E dd21xi E
0

L

dzS 1

2
~¹F!21

t

2
F2

1
g

4!
~F2!22h•F D

1E dd21xiS c

2
F2~z50!2h1•F~z50!

1
c

2
F2~z5L !2h1•F~z5L ! D , ~2.1!

with space dimensiond and position vectorx5(xi,z) of d
21 parallel and one perpendicular components. Thez inte-
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gration extends over the interval@0,L#, wherez50 and z
5L give the positions of the film surfaces.t is the tempera-
ture parameter such that in the bulkt50 marks the transi-
tion temperature within mean-field theory. The coupling co
stant g.0 ensures the stability of the statistical weig
below the transition temperature, i.e., fort,0. c denotes the
surface enhancement, andh and h1 are bulk and surface
fields, respectively. We focus on the ordinary transition
zero fields, i.e., we adopt the fixed point valuec5` for the
surface enhancement and seth5h150. After carrying out a
Fourier transformation with respect to thed21 directions
exhibiting translational invariance parallel to the surfaces
mean-field propagator for the disordered phase (t.0) in the
p-z representation is given by48,70
GD~p,z1 ,z2 ,L,t!5E dd21xie
ip•xi^F~xi ,z1!F~0,z2!&

5
1

2b S e2buz12z2u2e2b(z11z2)1
e2b(z12z2)1e2b(z22z1)2e2b(z11z2)2eb(z11z2)

e2bL21
D , b5Ap21t.

~2.2!
u-
ion

l

pli-
The first exponential function corresponds to the bulk p
followed by the contribution from the surface atz50. Both
exponentials together give the propagator for the ordin
transition of the semi-infinite system (L5`). The remaining
ratio carries theL dependence. The propagator satisfies
Dirichlet boundary conditionsGD(z50)505GD(z5L).
Equation~2.2! represents the mean-field approximation
the two-point correlation function in the film correspondin
to the critical behavior ind54. The non-Gaussian fluctua
tions in d53 are taken into account approximately by t
one-loop correction, which amounts to the first term in
systematic expansion in terms ofe542d:

Gbare~p,z1 ,z2 ,L,t,g!

5GD~p,z1 ,z2 ,L,t!2
g

2

n12

3 E dd21q

~2p!d21E0

L

dz

3GD~p,z1 ,z,L,t!GD~q,z,z,L,t!

3GD~p,z,z2 ,L,t!1O~g2!. ~2.3!

As a regularization scheme we use a dimensional regula
tion by an analytic continuation in the space dimensiond
542e. As long asz1 andz2 are both off the surfaces, onl
bulk singularities occur. We absorb the corresponding po
in e by minimal subtraction through the standardZ factors

f5Zf
1/2fR, g5me2dpd/2Zuu, t5m2Ztt, ~2.4!

wherem is the momentum scale, and the bulkZ factors are71

Zf511O~u2!, Zu511
n18

3

u

e
1O~u2!,
t,

y

e

r

a-

s

Zt511
n12

3

u

e
1O~u2!. ~2.5!

The renormalized correlation function reads@see Eq.~2.4!#

G~p,z1 ,z2 ,L,t,u;m!5Zf
21Gbare~p,z1 ,z2 ,L,t,g!,

~2.6!

which is valid in all orders of perturbation theory. The sol
tion of the corresponding renormalization-group equat
leads to the following scaling property:

G~p,z1 ,z2 ,L,t;m!5GIp
211hgI~pj,z1 /j,z2 /j,L/j!.

~2.7!

This holds at the fixed pointu* 53e/(n18)1O(e2), and
involves the bulk correlation lengthj5j0

1t2n, the exponents
h5O(e2), andn5 1

2 1 1
4 @(n12)/(n18)#e1O(e2). With a

suitable normalization@see, cf., Eq.~2.13!# the scaling func-
tion gI is universal. The amplitudeGI , which is fixed by this
normalization, and the amplitudej0

1 carry the nonuniversa
scaling factors. We fixj0

1 by definingj as the so-called true
correlation length72 so that j0

15m21
„11 1

4 @(n12)/(n
18)#(12CE)e1O(e2)…. This expression forj0

1 allows one
to express the momentum scalem introduced in Eq.~2.4! in
terms of the experimentally accessible, nonuniversal am
tudej0

1 :

m5~j0
1!21S 11

1

4

n12

n18
~12CE!e1O~e2! D . ~2.8!

If subsequent formulas contain the momentum scalem ex-
plicitly it is to be replaced by Eq.~2.8!; moreover we omitm
from the explicit list of variables ofG.
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Depending on the problem under consideration it is of
advantageous to use different but equivalent representa
of the correlation function such as

G~p,z1 ,z2 ,L,t !5GIIz1
12hgII~pz2 ,z1 /j,z2 /j,z2 /L !,

~2.9!

G~p,z1 ,z2 ,L,t !5GIIIL
12hgIII ~pz1 ,z1 /L,z2 /L,L/j!,

~2.10!

G~p,z1 ,z2 ,L,t !5GIVj12hgIV~pL,pz1 ,pz2 ,j/L !,
~2.11!

and

G~p,z1 ,z2 ,L,t !

5GVp211hgv„pj,p~z12z2!,p~z11z2!,L/j….

~2.12!

The nonuniversal amplitudesGx and the universal scaling
functionsgx , x5I, II, III, IV, and V, are fixed by the fol-
lowing normalizations:

lim
a→`

lim
b→`

lim
d→`

gI~a,b,g5b,d!51, ~2.13!

lim
a→0

lim
b→0

lim
d→0

gII~a,b,g5b,d!5:gII~0,0,0,0!51,

~2.14!

lim
a→0

lim
d→0

gIII ~a,b51/2,g5b51/2,d!51, ~2.15!

lim
d→0

lim
a→0

gIV~a,b5a/2,g5b5a/2,d!51, ~2.16!

and

lim
b→0

lim
a→`

lim
g→`

lim
d→`

gV~a,b,g,d!5:gV~`,0,̀ ,`!51.

~2.17!

The universal scaling functionsgx can be expressed in term
of each other because, in Eqs.~2.7! and ~2.9!–~2.12!, the
left-hand side is the same quantity and the sets of sca
variables are complete, i.e., from each set one can form
of the others by a suitable combination of variables.

Since the nonuniversal amplitudesGx correspond to the
same correlation functionG(p,z1 ,z2 ,L,t), and because the
scaling functions fixed by the normalizations in Eqs.~2.13!–
~2.17!, are universal, their ratiosGx /Gx8 are universal num-
bers. Thus a knowledge of one of them and of the co
sponding universal scaling functions determines all
others.

Moreover, as discussed in Appendix A, all nonuniver
amplitudesGx are determined by any pair of nonunivers
scale factors which characterize the criticalbulk properties.
A transparent and experimentally directly accessible cho
for the latter is the nonuniversal amplitudeB of the leading
temperature singularity of the field̂f(x)& in the bulk below
Tc ,

^f~x!&5B~2t !b, ~2.18!
n
ns

g
ny

-
e

l
l

e

and the amplitudej0
1 of the true correlation length abov

Tc . In terms of these quantities one has

GV5B2~j0
1!d221hU, ~2.19!

whereU is a universal number, whose valueU.1.58 is de-
rived in Appendix A based on Eq.~2.17!. In the following
most of our analysis focuses on the scaling functiongII used
in Eq. ~2.9!. For that case one finds~see Appendix A! the
universalratio

GII /GV52S 11e
n12

n18
1O~e2! D . ~2.20!

With these results we finally obtain

G~p,z1 ,z2 ,L,t !5B2~j0
1!d21R~z1 /j0

1!12h

3gII~pz2 ,z1 /j,z2 /j,z2 /L !,

~2.21!

where R52U„11e@(n12)/(n18)#1O(e2)….4.21 is a
universal number. Thus in all our subsequent formulas
film properties theirabsolutevalues are determined and fixe
by the two nonuniversalbulk amplitudesB andj0

1 .
The actual order parameter~OP! for a particular second-

order phase transition is proportional to the fieldf intro-
duced in Eq.~2.1!, i.e., OP(x)5bf(x). The value ofb de-
pends on the particular system~binary alloy, liquid,
ferromagnet etc.!. Moreover, any rescaling ofb by a dimen-
sionless number renders another OP which is equally v
for describing the singular behavior of the phase transiti
We emphasize that Eqs.~2.9!, ~2.19!, and~2.20! remain valid
if G is replaced bŷ OP(x)OP(x8)&, ^f(x)& by ^OP(x)&,
andB by B85bB; these replacements have to be carried
if the present field-theoretic results are used to interpret, e
the intensity of scattered x-rays or neutrons~see, c.f., Sec.
IV !. The actual choice of the OP, as it enters into the exp
sion for the scattering cross section, is borne out and tigh
the relation^OP(x)&5B8(2t)b.

III. EXPLICIT PROPERTIES OF THE TWO-POINT
CORRELATION FUNCTION

The discussion of the correlation function consists
three parts. First we setz15z2, and analyze its nonanalyti
behavior in certain limits. Then we take into account the c
z1Þz2, which helps to understand the correlations perp
dicular to the surfaces. Moreover, the discussion of this la
case turns out to be very useful for carrying out integratio
appearing in the scattering cross section to be analyze
Sec. IV. The film excess susceptibility is discussed in the
part of Sec. III.

A. Lateral two-point correlation function for z15z2

In order to investigate various asymptotic properties
the lateral behavior of the two-point correlation function, w
resort to short distance expansions~SDE’s!,73 distant wall
corrections,59 and results of the perturbation theory su
ported by appropriate exponentiations of the expli
e-expansion results. Withz15z25z, in the present context a
representation of the form
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G~p,z,L,t !5GIIz
12hg~pz,z/j,z/L ! ~3.1!

is useful. According to Eq.~2.9!, one has g(u,v,w)
5gII(u,v,v,w) with g(0,0,0)51 @Eq. ~2.14!#. For semi-
infinite systems, i.e.,L5`, the SDE in the casest50, p
→0 andp50, t→074,75 leads to the asymptotic behaviors

G~p,z,L5`,t50!5GIIz
12hg1~u5pz!

→
p→0

GIIz
12h@11A1~pz!211h i1•••#

~3.2!

and

G~p50,z,L5`,t !

5GIIz
12hg2~v5z/j! →

t→0
GIIz

12h@11B1~z/j!211h i1•••#

5GIIz
12h@11B1~z/j0

1!211h it2g111•••#, ~3.3!

respectively, with g115n(h i21), g1(u)5g(u,v50,w
50), g1(0)51, g2(v)5g(u50,v,w50), andg2(0)51. In
the case wherep50 andt50, one has

G~p50,z,L,t50!5GIIz
12hg3~w5z/L !, ~3.4!

with g3(w)5g(u50,v50,w) so thatg3(0)51. In order to
infer the first nontrivial dependence onL for L→`, accord-
ot
ing to Eq.~3.4! one can equally consider the limitz→0 for L
fixed. To this end we consider the SDE of the renormaliz
film correlation function in real space:

^f~xi ,z!f~0,z!& →
z→0

m22~mz!2(xs2x)^f'~xi!f'~0!&

5md22~mz!2(xs2x)~mxi!
22xsY~xi /L !

~3.5!

Heref' denotes the normal derivate off taken at one of the
surfaces, andY(y) is a dimensionless scaling function fo
the film which is universal up to a nonuniversal prefact
The scaling dimensions off and f' are x5 1

2 (d221h)
and xs5

1
2 (d221h i), respectively. The scaling functio

Y(xi /L) describes the influence of the distant wall atz5L
on the lateral correlations close to the near wall atz50. In
order to obtain its leading asymptotic behavior forxi /L
→0, we use the identity

G~p50,z,L,t50!5G~p50,z,L5`,t50!

2E
L

`]G~p50,z,L8,t50!

]L8
dL8.

~3.6!

The first term on the right-hand side is equal toGIIz
12h

@compare Eqs.~3.2! and ~3.3!#. The leading correction is
given by using the SDE in Eq.~3.5! for the second term:
2E
L

`]G~p50,z,L8,t50!

]L8
dL852E dd21xi E

L

`

dL8
]

]L8
^f~xi ,z!f~0,z!&

→
L→`

2E dd21xi E
L

`

dL8 ]
]L8

md22~mz!2(xs2x)~mxi!
22xsY~xi /L8!

5m21~mz!12hS z

L D 211h i

C̃ ~3.7!
a-

al-

u-
with C̃5@1/(h i21)#*dd21yy2(d231h i)Y8(y). Thus we find
g3(w→0)511C1w211h i, whereC15C̃m2h/GII is a uni-
versal number, i.e.,

G~p50,z,L→`,t50!5GIIz
12h@11C1~z/L !211h i1•••#.

~3.8!

Finally we note that due to the normalizationg(0,0,0)51
the scaling function g(u,v,w) is given by the ratio
g(pz,z/j,z/L)5G(p,z,L,t)/G(p50,z,L5`,t50) from
which the prefactorsGIIz

12h appearing in Eq.~3.1! drop out.
Thee expansions of the amplitudes of the leading asympt
terms follow from Eqs.~B6!, ~B7!, and ~B8! in Appendix
B 1:

A152F11e
n12

n18
~12CE2 ln 2!1O~e2!G ,

B152F11e
n12

n18
~12CE!1O~e2!G , ~3.9!
ic

C152F11e
n12

n18 S p2

18
2CE12~S21I 1!21D1O~e2!G .

CE'0.5772 is Euler’s constant, andS2.0.083 and I 1
.0.287 are given by Eq.~B9! in Appendix B1. Within thee
expansion the full forms of the scaling functionsg1(u),
g2(v), and g3(w) can be found in Appendix B1@see Eqs.
~B1! – ~B3!#.

In Fig. 1 we display the three scaling functionsgi , i 51,
2, and 3@Eqs.~B1!–~B3!#, corresponding to Eqs.~3.2!, ~3.3!,
and ~3.4! as obtained within mean-field theory~MFT!, i.e.,
for e50, and from renormalization-group-guided perturb
tion theory ~PT! as well as their leading behaviorgi(xi
→0)5gi ,l(xi), x15u,x25v,x35w. Within MFT the three
scaling functions have the same limiting form for small sc
ing variables withA15B15C1521 and the critical expo-
nenth i52. Beyond MFT, in Fig. 1 we useh i51.48 as the
best available estimate,48 whereas the amplitudes are eval
ated in first order ine @Eq. ~3.9! for (n,e)5(1,1)] so that
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A1.20.9099, B1.21.1409, andC1.20.9035. Within
mean-field theoryg15g2 and the leading asymptotic beha
ior g3,l provides already the full scaling functiong3. Beyond
MFT there is a small difference betweeng3 and g3,l . This
difference is much bigger for the scaling functionsg1 andg2
describing the semi-infinite system.

The above discussion demonstrates that, forz fixed, the
two-point correlation functionG(p,z,L,t) has a finite value
G(p50,z,L5`,t50) which is attained via cusplike singu
larities: ;p211h i(p→0,1/L50,t50), ;(1/L)211h i(1/L
→0,p50,t50), and ;(1/j)211h i(t→0,p50,1/L50). In
terms of these variables the critical exponent is the same
all three cases and only the amplitudes differ. These sin
larities remain if only one out of the above three variables
zero and the remaining two both vanish. This behav
which includes the smooth interpolation between the co
sponding amplitudes, is described by the scaling functi
h1 , h2, andh3 of two variables instead of the scaling fun
tions with one variable asg1(u), g2(v), andg3(w):

G~p,z,L5`,t !5GIIz
12hh1~u,v !,

h1~u,v !5g~u,v,w50!, ~3.10!

G~p,z,L,t50!5GIIz
12hh2~u,w!,

FIG. 1. The three scaling functions describing the lateral co
lationsg(pz,z/j,z/L) in the film @Eq. ~3.1!# for the limiting cases
p50, j5`, or L5`: g1(u5pz)[g(pz,0,0) @T5Tc ,L5`, Eq.
~3.2!#, g2(v5z/j)[g(0,z/j,0) @p50,L5`, Eq. ~3.3!#, and g3(w
5z/L)[g(0,0,z/L) @p50,T5Tc , Eq. ~3.4!#. The two uppermost
curves correspond to the mean-field results forgi , i 51, 2, and 3,
and to theirleading behaviorgi(xi→0)5gi ,l(xi), respectively, with
x15u, x25v, and x35w; within MFT g15g2 , g1,l5g2,l5g3,l ,
andg35g3,l . The lower six curves correspond togi(xi) @Eqs.~B1!,
~B2!, and~B3!# andgi ,l(xi) as obtained byperturbationtheory for
d53. The difference betweeng3 and g3,l is revealed only in the
inset: g1,l(u)511A1u211h i, g2,l(v)511B1v211h i, and g3,l(w)
511C1w211h i. Within MFT one hasA15B15C1521 @Eq.
~3.9!# and h i52, whereas for (n,d)5(1,3) PT yields A1

.20.9099,B1.21.1409,C1.20.9035, andh i.1.48. For van-
ishing scaling arguments all scaling functions attain 1.
or
u-
s
r,
-
s

h2~u,w!5g~u,v50,w!, ~3.11!

and

G~p50,z,L,t !5GIIz
12hh3~v,w!,

h3~v,w!5g~u50,v,w!, ~3.12!

with u5pz, v5z/j, andw5z/L. All three scaling function
can be obtained from Eq.~B17!. Since the discussion of al
three scaling functions is analogous we demonstrate
analysis only forh3(v,w). We introduce the polar coordi
natesv andw,

v5Av21w25zAj221L22,

w5arctan~v/w!5arctan~L/j!, v5v sinw, ~3.13!

w5v cosw,

which lead to

h3~v,w!5h3~v sinw,v cosw!5hpolar
(3) ~v,w!.

~3.14!

Since the limitv→0, i.e., 1/j→0 and 1/L→0, is equivalent
to the limit z→0 for j andL fixed the resulting singularity is
compatible with the SDE, so that

hpolar
(3) ~v→0,w!5H0

(3)~w!1H1
(3)~w!v211h i1•••.

~3.15!

The explicit form of the scaling functionh3(v,w), as ob-
tained from perturbation theory inO(e), is in accordance
with Eq. ~3.15!, and renders explicit results for the coeffi
cientsH0

(3)(w) andH1
(3)(w):

H0~w!5hpolar
(3) ~v50,w!5h3~v50,w50!51 ~3.16!

is independent ofw and equal to 1 due to the normalizatio
g(u50,v50,w50)51. With this result thee expansion of
H1

(3)(w) follows by comparing thee expansion of the right-
hand side of Eq.~3.15! with the limit v→0 of thee expan-
sion of hpolar

(3) (v,w). As expected, one finds thatH1
(3)(w)

interpolates smoothly between the valueH1
(3)(w50)5C1

@see Eq.~3.9!# corresponding to the amplitude of the sing
larity ;(1/L)211h i for u50 and v50 and the value
H1

(3)(w5p/2)5B1 @see Eq.~3.9!# corresponding to the am
plitude of the singularity;(1/j)211h i for u50 andw50.
In Fig. 2 all three amplitude functionsH1

(1)(w), H1
(2)(w), and

H1
(3)(w) @see Eqs.~B10!–~B12!# are shown in MFT and in

first order in e ~PT!. Within MFT H1
(1)(w) of the semi-

infinite system is constant andH1
(2)(w)5H1

(3)(w) exhibit a
nontrivial dependence onw. Beyond MFT all three functions
interpolate between the amplitudesA1 , B1, andC1 @see Eq.
~3.9!# in a nontrivial way.

In Figs. 3, 4, and 5 we display the full scaling function
h1(u,v), h2(u,w), and h3(v,w), respectively. In order to
obtain such a scaling function beyond the leading asympt

-
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form we first subtract its leading contribution in i
e-expanded form inO(e) from the full expression of the
scaling function, and add the leading exponentiated contr
tion afterwards. This exponentiation scheme is consis
with the explicit expanded form up to and includingO(e). In
Figs. 6, 7, and 8, we show cross sections of the thr
dimensional plots in order to illustrate the emergence of

FIG. 2. G(p→0,z,L5`,t→0), G(p→0,z,L→`,t50), and
G(p50,z,L→`,t→0) attain their maximum valueG(p50,z,L
5`,t50)5GIIz

12h via cusplike singularities H1
(1)(w)@z(p2

1j22)1/2#211h i with w5arctan@(pj)21#, H1
(2)(w)@z(p2

1L22)1/2#211h i with w5arctan(pL), and H1
(3)(w)@z(j22

1L22)1/2#211h i with w5arctan(L/j), respectively, interpolating
smoothly between the singularityA1(pz)211h i for (t50,L5`)
and B1(z/j)211h i for (p50,L5`), C1(z/L)211h i for (p50,t
50) andA1(pz)211h i for (L5`,t50), andC1(z/L)211h i for (t
50,p50) and B1(z/j)211h i for (L5`,p50), respectively. In
O(e) of PT, the amplitude functionsH1

( i )(w), i 51, 2, and 3, are
given by Eqs.~B10!, ~B11!, and ~B12!. In O(e) one hasH1

(1)(0)
5H1

(2)(p/2)5A1.20.9099, H1
(1)(p/2)5H1

(3)(p/2)5B1

.21.1409, andH1
(2)(0)5H1

(3)(0)5C1.20.9035. Within MFT
H1

( i )(w50)5H1
( i )(w5p/2)521 and H1

(1)(w) is constant; more-
over H1

(2)(w)5H1
(3)(w) but not constant.

FIG. 3. The exponentiated scaling functionh1(u5pz,v5z/j)
@Eq. ~3.10!# corresponding to the caseL5`. We show the contour
lines h1(u,v)5hpolar

(1) @v5(u21v2)1/2,w5arctan(v/u)# for h150.8,
0.75, 0.7, 0.65, 0.6, 0.55, 0.5, and 0.45, with their projections o
the uv plane as well ash1(u,v50)5g1(u) @Eq. ~3.2!# and h1(u
50,v)5g2(v) @Eq. ~3.3!#, which are discussed in Fig. 1. Th
dashed lines correspond to the leading singularitiesg1(u→0)51
1A1u211h i andg2(v→0)511B1v211h i, respectively.
u-
nt

e-
e

p211h i cusplike singularity upon varyingt or L, the
(1/j)211h i cusplike singularity upon varyingp or L, and the
(1/L)211h i cusplike singularity upon varyingt or p, respec-
tively.

B. Perpendicular correlations

In a semi-infinite system the perpendicular correlations
real space define the exponenth'5(h1h i)/2 through the
limit G(xi ,z1→`,z2 ,L5`,t);z1

2(d221h') with xi and
z2 fixed. A Fourier transformation leads to the relatio
G(p50,z1 ,z2 ,L5`,t);z1

12h' with z2 fixed and z1→`.

to

FIG. 4. The exponentiated scaling functionh2(u5pz,w5z/L)
@Eq. ~3.11!# at bulk criticality t50. We show the contour lines
h2(u,w)5hpolar

(2) @v5(u21w2)1/2,w5arctan(u/w)# for h250.8,
0.75, 0.7, 0.65, 0.6, 0.55, and 0.5 with their projections onto theuw
plane as well ash2(u,w50)5g1(u) @Eq. ~3.2!# and h2(u50,w)
5g3(w) @Eq. ~3.4!#. The dashed lines correspond to the leadi
singularities g1(u→0)511A1u211h i and g3(w→0)51
1C1w211h i, respectively. In the latter case the difference betwe
the leading behavior and the full scaling functiong3(w) is hardly
visible. Thus the leading dependence onz/L for p50, t50 re-
mains valid nearly up to the middle of the film atz/L50.5.

FIG. 5. The exponentiated scaling functionh3(v5z/j,w
5z/L) @Eq. ~3.12!# for lateral momentump50. We show the con-
tour lines h3(v,w)5hpolar

(3) @v5(v21w2)1/2,w5arctan(v/w)# for
h350.8, 0.75, 0.7, 0.65, 0.6, 0.55, 0.5, and 0.45 with their proj
tions onto thevw plane as well ash3(v,w50)5g2(v) @Eq. ~3.3!#
and h3(v50,w)5g3(w) @Eq. ~3.4!#. The dashed lines correspon
to the leading singularitiesg2(v→0)511B1v211h i and g3(w
→0)511C1w211h i, respectively. In the latter case the differen
between the leading behavior and the full scaling functiong3(w) is
hardly visible. Thus the leading dependence onz/L for p50 and
t50 remains valid nearly up to the middle of the film atz/L50.5.
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Note that in real space G(xi ,z1 ,z2 ,L5`,t50)
increasesas function ofz1 for z2 and xi fixed, reaches a
maximum at a certain valuez1* 5z2f (xi /z2) and finally van-
ishes forz1→`. This increase for 0,z1,z1* leads to the
divergence ;z1

12h', 12h'.0.25, of G(p50,z1 ,z2 ,L
5`,t50)5*dxi^f(0,z1)f(xi ,z2)&. The coordinatesz1
and z2 can be interchanged. Actually conformal invarian
fixes completely the functional form ofG(p50,z1 ,z2 ,L

FIG. 7. The scaling functiong2(v5z/j) @Eq. ~3.3!# with the
cusplike singularityg2(v→0)511B1v211h i evolves out of the
scaling functionsh1(u5pz,v) @Eq. ~3.10!# andh3(v,w5z/L) @Eq.
~3.12!# in the limits u→0 andw→0, respectively, which are ana
lytic functions ofv, with a maximum atv50, for uÞ0 or wÞ0.
The various curves correspond to vertical cuts of the surface sh
in Fig. 3 for u5const withw5z/L50 and in Fig. 5 forw5const
with u5pz50, respectively.

FIG. 6. The scaling functiong1(u5pz) @Eq. ~3.2!# with the
cusplike singularityg1(u→0)5 11A1u211h i evolves out of the
scaling functionsh1(u,v5z/j) @Eq. ~3.10!# andh2(u,w5z/L) @Eq.
~3.11!# in the limits v→0 andw→0, respectively, which are ana
lytic functions ofu, with a maximum atu50, for vÞ0 or wÞ0.
The various curves correspond to vertical cuts of the surface sh
in Fig. 3 for v5const withw5z/L50 and in Fig. 4 forw5const
with v5z/j50, respectively.
5`,t50) ~see Ref. 76!. The SDE leads up to a consta
amplitude to the expression

G~p50,z1 ,z2 ,L5`,t50!

;~z1z2!(12h)/2S Q~z12z2!
z2

z1
1Q~z22z1!

z1

z2
D (h i21)/2

1••• ~3.17!

@see Eq.~4.68! in Ref. 77#. The explicit calculation to first
order ine gives

G~p50,z1 ,z2 ,L5`,t50!

5GII~z1z2!(12h)/2S Q~z12z2!
z2

z1
1Q~z22z1!

z1

z2
D (h i21)/2

~3.18!

for arbitraryz1 andz2. This perturbation theory guided resu
for d53 has a structure similar to the exact result from co
formal theory ind52 ~see Refs. 76 and 77!. Therefore, one
is led to the conclusion that Eq.~3.18! is a good approxima-
tion for the exact correlation function ind53. Guided by
these considerations we find that in the case that the v
ablesp, t, and 1/L are small but nonzero, the explicit resul
for G obtained from thee expansion can be cast into th
following forms:

n

n

FIG. 8. The scaling functiong3(w5z/L) @Eq. ~3.4!# with the
cusplike singularityg3(w→0)5 11C1w211h i evolves out of the
scaling functionsh3(v5z/j,w) @Eq. ~3.12!# andh2(u5pz,w) @Eq.
~3.11!# in the limits v→0 andu→0, respectively, which are ana
lytic functions of w for uÞ0 or wÞ0. The various curves corre
spond to vertical cuts of the surface shown in Fig. 5 forv5const
with pz50 and in Fig. 4 foru5const withz/j50. We note that,
different from Figs. 6 and 7, the scaling functionsh3(vÞ0,w) and
h2(uÞ0,w) are nonmonotonous functions and exhibit a maximu
at wÞ0 and a local minimum atw50.
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G~p→0,z1 ,z2 ,L5`,t50!

5GIIFQ~z22z1!z1
12hS z2

z1
D 12h'

3@11A1~pz2!211h i1•••#

1Q~z12z2!z2
12hS z1

z2
D 12h'

3@11A1~pz1!211h i1•••#G , ~3.19!

G~p50,z1 ,z2 ,L5`,t→0!

5GIIH Q~z22z1!z1
12hS z2

z1
D 12h'

3F11B1S z2

j D 211h i

1•••G
1Q~z12z2!z2

12hS z1

z2
D 12h'

3F11B1S z1

j D 211h i

1•••G J , ~3.20!

and

G~p50,z1 ,z2 ,L→`,t50!

5GIIH Q~z22z1!z1
12hS z2

z1
D 12h'

3F11C1S z2

L D 211h i

1•••G
1Q~z12z2!z2

12hS z1

z2
D 12h'

3F11C1S z1

L D 211h i

1•••G J . ~3.21!

These expressions are valid for arbitraryz1 andz2 as long as
the scaling variablespz1,2, z1,2/j, andz1,2/L are small. The
explicit e expansion provides the amplitudesA1 , B1, andC1
given by Eq.~3.9!. For the special casez15z2, Eqs.~3.19!–
~3.21! reduce to Eqs.~3.2!, ~3.3!, and ~3.8!. In the limits p
50, t50, andL5`, Eqs.~3.19!–~3.21! reduce to Eq.~3.17!
@recall h'5(h i1h)/2#.

Finally we note that Eqs.~3.19!, ~3.20!, and ~3.21!, and
the full film correlation functionG(p,z1 ,z2 ,L,t) up to first
order in e @see Eq.~B17! in Appendix B 2#, satisfy the so-
called product rule derived by Parry and Swain for the c
relation function algebra of inhomogeneous fluids@see Eq.
~2.20! in Ref. 78#:

G~p,z1 ,z2 ,L,t !G~p,z2 ,z3 ,L,t !

5G~p,z2 ,z2 ,L,t !G~p,z1 ,z3 ,L,t ! ~3.22!

for all 0,z1<z2<z3,L. The second identity derived b
Parry and Swain@see Eq.~2.21! in Ref. 78# is trivially ful-
filled in the disordered phase considered here because
-

in-

volves the derivative of the order-parameter profile wh
vanishes aboveTc . A nontrivial test of this relation would
require results for the ordered phase belowTc .

C. Susceptibility

As became apparent in Sec. III B, the full dependence
the correlation functionG on all its variablesp, z1 , z2 , L,
andt is rather complicated. Therefore, it increases the cla
to consider a spatially averaged quantity which still displa
interesting specific properties of the critical behavior in
film geometry. The singular part of the total susceptibil
per area defined as

x~L,t !5E
0

L

dz1E
0

L

dz2G~p50,z1 ,z2 ,L,t ! ~3.23!

provides such a reduced but still interesting quantity in tha
depends only on two variablesL and t. In addition, this sus-
ceptibility is directly accessible in an experiment whic
probes the response of a thin magnetic film on the app
external field in the limit of vanishing field strength.

From the scaling properties forG one obtains the follow-
ing scaling property forx @see Eqs.~2.21! and ~A11!#:

x~L,t !5B2~j0
1!d11S L

j0
1D 32h

Rf ~y5L/j!5L32hGII f ~y!,

~3.24!

where

f ~y!5E
0

1

dx1E
0

1

dx2x1
12hgII~0,x1y,x2y,x2! ~3.25!

is a universal scaling function. Fory→`, i.e., L→` and t
fixed the scaling functionf (y) vanishes as follows:

f ~y→`!5Ay221h1By231h1Cy231he2y1O~e22y!
~3.26!

with

A512 ẽ1O~e2!,

B522H 11 ẽFpS 1

2
2

1

A3
D 21G J 1O~e2!, ~3.27!

C54H 12 ẽFp

2 S 12
1

A3
D 11G J 1O~e2!,

so that, withg5n(22h) andgs5g1n,

x~L→`,t !5B2~j0
1!d11RH L

j0
1
At2g1Bt2gs

3F11
C
Be2L/j1O~e22L/j!G J . ~3.28!

The first term (;t2g) corresponds to the bulk contributio
of the total susceptibility.~We recall thatx is the total sus-
ceptibility per areaAi of one surface and that the total vo
ume of the system isAiL.! The universal amplitudeA @Eq.
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~3.27!# is in accordance with the corresponding known u
versal amplitude ratios.79,80 The second term (;t2gs) corre-
sponds to the sum of the excess susceptibilities of two se
infinite systems within the surface universality class of
ordinary transition resembling the two bounding surfaces
the film. The corresponding universal amplitudeB @Eq.
~3.27!# of the semi-infinite systems is in accordance with t
corresponding result in Ref. 81. Finally, the last term;e2L/j

in Eq. ~3.28! is the actual finite-size contribution induced b
the finite distanceL between the two surfaces confining th
film. It is interesting to note that the structure of this finit
size termCt2gsexp(2L/j) differs from its counterparts fo
the free energy and specific heat in two respects@see Eqs.
~4.8! and ~6.14! in Ref. 30~a!#: ~i! For ordinary-ordinary
boundary conditions the finite size terms of the latter t
both vanish;exp(22y) for largey5L/j. ~ii ! The prefactor
Ct2gs is replaced byC8t2kyk/(2n) with k5as22 ~free en-
ergy! and k5as5a1n ~specific heat!, respectively. From
the explicit result inO(e) we infer that in the case of th
excess susceptibility this power law in front of the expone
tial is either missing or has an exponent ofO(e2). In order to
make clearer the comparison between the finite-size sca
of the free energy and specific heat on one hand, and
susceptibility on the other hand, we rewrite the susceptibi
as

x~L,t !5B2~j0
1!d11RS L

j0
1D gs /n

$Ay2g/n1By2gs /n1g~y!%

~3.29!

where (22h5g/n, 32h5gs /n)

g~y!5 f ~y!2Ay221h2By231h. ~3.30!

The finite-size scaling for the singular partFsing of the free
energy of a film has a similar form@d5(22a)/n, d21
5(22as)/n] @see Eq.~4.11! in Ref. 30~a!#
th
-

li
e
t

ur
-

i-
e
f

-

ng
he
y

Fsing

kbTc~`!
5

Ai

~j0
1!d21 S L

j0
1D (as22)/n

3$Aby2(a22)/n1Asy
2(as22)/n1Q~y!%.

~3.31!

Ai is the area of the cross section of the film. In both E
~3.29! and ~3.31! the first two terms correspond to the bu
and surface contributions, respectively. In both cases
curly bracket represents a universal scaling function. For
susceptibility the finite-size part vanishes as

g~y→`!5Cy2gs /ne2y1O~e22y! ~3.32!

whereas for the free energy one has

Q~y→`!5C8y2(as22)/(2n)e22y1O~e23y!. ~3.33!

At this point we note that the film susceptibility has al
been discussed by Nemirovsky and Freed@see Eqs.~3.14d!
and~3.16d! in Ref. 68#. Instead of the (p,z1 ,z2) representa-
tion of the propagator employed here, they used a disc
spectral (p-k j ) representation. In the discrete representat
the propagator for Dirichlet boundary conditions is given

GD, j~p,t!5
1

p21t1k j
2

, k j5p~ j 11!/L,

j 50,1,2, . . . . ~3.34!

The (p,z1 ,z2) and (p-k j ) representations are related by th
formula

GD~p,z1 ,z2 ,L,t!5
2

L (
j 50

`

sin~k j z1!sin~k j z2!GD, j~p,t!.

~3.35!

The one-loop contribution to the total susceptibility is giv
by
2
g

2

n12

3 E
0

L

dz1E
0

L

dz2E dd21q

~2p!d21E0

L

dzGD~p50,z1 ,z,L,t!GD~q,z,z,L,t!GD~p50,z,z2 ,L,t!

52
g

2

n12

3 E
0

L

dz1E
0

L

dz2E dd21q

~2p!d21E0

L

dzS 2

L D 3

(
m1 ,m2 ,m350

`

3sin~km1
z1!sin~km1

z!GD,m1
~p50,t!sin2~km2

z!GD,m2
~q,t!sin~km3

z!sin~km3
z2!GD,m3

~p50,t!. ~3.36!
riti-
ure
t
n

After performing the integrations, one has to evaluate
triple sum. In their calculation of the susceptibility Ne
mirovsky and Freed omitted the termsm1Þm3 in the above
sum, which leads to an erroneous expression for the sca
function f (y). If, however, all terms in the triple sum ar
properly taken into account, one obtains, as expected,
same correct result forf (y) as via the (p,z1 ,z2) representa-
tion.

The above discussion focused on the limity5L/j→`,
i.e., on increasing the film thickness at a fixed temperat
In the opposite limity→0 the film thickness is kept fixed
e

ng

he

e.

and one approaches the bulk critical temperatureTc(L5`),
wherej diverges asj0

1$@T2Tc(L5`)#/Tc(L5`)%2n. For
Dirichlet boundary conditions, as considered here, the c
cal temperature of the film occurs at a lower temperat
Tc(L),Tc(L5`). Therefore, the film is not critical a
Tc(L5`), and thus the susceptibility is an analytic functio
of t aroundt5@T2Tc(L5`)#/Tc(L5`)50. Therefore, the
finite-size scaling functiong(y→0) has the form

g~y→0!52Ay2g/n2By2gs /n1D1Ey1/n1O~y2/n!,
~3.37!
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with

D5
1

12F12 ẽS p2

60
112b211D G1O~e2! ~3.38!

and

E52
1

120F11 ẽS 4a22
17p2

504
1102b4210b221D G1O~e2!,

~3.39!

so that

f ~y→0!5D1Ey1/n1O~y2/n!. ~3.40!

The numbersa2 , b2, andb4 are given in Eq.~B26! in Ap-
pendix B 3. For (n,d)5(1,3) the values of the amplitudes t
first order in e are D.0.081 42 andE.20.013 75; forA
andB, see Eq.~3.27!. The explicit form of the scaling func
tion and its limiting behaviors are given in Appendix B
Figure 9~a! showsf (y) within mean-field theory and within
perturbation theory in first ordere as well as its correspond
ing asymptotic behaviors for large and small values ofy; Fig.
9~b! displaysg(y) for large values ofy.

Our investigations are restricted to temperaturesT>Tc .
Recently Leite, Sardelich, and Coutinho-Filho~LSC!82 ana-
lyzed amplitude ratios of the specific heat and the susce
bility above (T.Tc) and below (T,Tc) the bulk critical
temperature in the parallel plate geometry for various bou
ary conditions. These amplitude ratios are functions of
scaling variableL/j6 @where j6 is the correlation length
above (1) and below (2) the bulk critical temperature#, and
describe the surface excess and finite-size contribution
the system. Their result for the amplitude function of t
susceptibility aboveTc @see the expression forC1 in Eq.
~22! in Ref. 82# can be expressed in terms of the scali
function f (y) as introduced in Eq.~3.24!. Within this frame-
work the results of LSC to first order ine for Dirichlet
boundary conditions are equivalent to the following vers
of the scaling functionf (y):

f LSC~y!5y22F12
e

3
1

e

3E0

1

ds f1/2SAs
y

p D2
ep

6y G1O~e2!,

~3.41!

with

f 1/2~a!5E
a

`~u22a2!21/2du

exp~2pu!21
. ~3.42!

For small values of the scaling variabley, this scaling func-
tion f LSC(y) deviates even within mean-field theoryqualita-
tively from the actual correct formf (y) given in Eqs.~B23!
and~3.40!. Moreover, fory&10 the difference betweenf LSC
andf becomes larger than 10% inO(e) and larger than 25%
within mean-field theory. These discrepancies are due to
fact that even within mean-field theory the results of LSC
not reproduce the correct surface excess contributions81 and
finite-size contribution@Eq. ~B23!#.
ti-

-
e

of

he
o

IV. SCATTERING CROSS SECTION

A. Scattering theory

As pointed out in Sec. I the diffuse scattering of x ra
and neutrons under grazing incidence allows one to probe
local structure factor near interfaces and in thin films. In t
section we discuss how the singularities of the two-po
correlation function near criticality in a film, as calculate
above, translate into singularities of the diffuse scatter
intensity under the aforementioned experimental conditio

We consider a film (0<z<L) composed of a material 2
sandwiched in between two half-spaces filled with mater
1 (z,0) and 3 (z.L), respectively~see Fig. 10!. An incom-
ing plane wave of x rays or neutrons with momentumK i

5(k i ,qi) impinges on the 1-2 interface at an angle
incidence a i so that qi5Kisina and k i
5Kicosai(coswi ,sinwi ,0). l52p/Ki is the wavelength of
the x rays or neutrons. We assume that media 1 and 3
homogeneous, and that the 1-2 and 2-3 interfaces are l
ally flat so that their contributions to diffuse scattering can

FIG. 9. Universal scaling functionsf (y) ~a! @Eq. ~3.24!# and
g(y) ~b! @Eqs. ~3.29! and ~3.30!# of the film susceptibility for Di-
richlet boundary conditions at both surfaces. The dashed lines
the MFT results, whereas the full lines include non-Gaussian fl
tuations obtained by PT in first ordere @Eqs. ~B22!, ~B23!, and
~3.30!#. The dotted lines indicate the asymptotic behaviors off (y
→0), f (y→`), g(y→0), and g(y→`) given by Eqs.~3.40!,
~3.26!, ~3.37!, and~3.32!, respectively. The dotted lines correspon
to the e expansion of these asymptotic behaviors up toO(e) in
order to be compatible with the full scaling functionsf (y) and
g(y), whosee expansions up toO(e) are shown here as full lines
The dash-dotted curves show the exponentiated forms of
asymptotic behaviors given by Eqs.~3.40!, ~3.26!, ~3.37!, and
~3.32! using thee-expansion results for the amplitudes but the b
available numbersh50.031 andn50.630 for the critical expo-
nents.f (y) has a turning point (d) at y51.851 in MFT and aty
51.376 inO(e); f (0)5D @Eq. ~3.38!#.
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ignored. Within the plane of incidence there is a specula
reflected wave withK r5(k i ,2qi). The mean value of the
electron density in the case of x rays and of the scatte
length in the case of neutrons determine the intensity of
reflected beam whereas fluctuations around the mean v
give rise to scattered intensity in off-specular directio
K f5(k f ,qf,0) with qf52K fsinaf and k f
5K fcosaf(coswf ,sinwf ,0). We consider only elastic scatte
ing, i.e., Ki5K f5Kr[K. ~For the more complex case o
neutron scattering under grazing incidence from magn
systems, see Ref. 83.!

In order to proceed, we assume that the mean value
the electron density or of the scattering length density
each medium is constant and varies steplike across the
interfaces 1-2 and 2-3. This gives rise to the following in
ces of refraction:50

z,0:n5n151, 0,z,L:n5n2512d21 ib2 ,
~4.1!

z.L:n5n3512d31 ib3 .

In Eqs.~4.1! we consider the case that medium 1 is vacu
and the generic case for hard x rays that Ren,1 in con-
densed matter. Although for neutrons one can also h
Re n.1, in order to limit the number of possible relativ
values of the indices of refraction for the materials 1, 2, a
3 we do not analyze this latter case in more detail. For x r
d5l2(r e/2p)( iNiZi and the extinction coefficientb
5(l/4p)( iNisa,i[lmabs/4p, where r e5e2/4pe0mc2

52.81431025 Å is the classical electron radius, andNi the
number density of atoms of speciesi with Zi electrons and
absorption cross section sa,i . For neutrons d
5(l2/2p)( iNibi and b5(l/4p)( iNis t,i where bi is the
nuclear scattering length of speciesi. s t,i is the cross section
taking into account incoherent scattering and nuclear re

FIG. 10. A film (0,z,L) filled with material 2 is sandwiched
in between a half-spacez,0 filled with material 1 ~typically
vacuum! and a half-spacez.L filled with material 3 acting as a
supporting substrate for the film. A plane wave with wave vec
K i5(k i ,qi)5Ki(cosaicoswi ,cosaisinwi ,sinai) impinges on the
1-2 interface atz50. The reflected beam has the wave vectorK r

5(k i ,2qi); the transmitted beam is not shown. Fluctuations in
film give rise to an off specular elastic diffuse scattering withK f

5(k f ,qf) 5K f(cosafcoswf ,cosafsinwf ,2sinaf), K f5Ki5K.
y
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tions. Typically d and b are of the order 1025. For Ren
,1, total external reflection occurs fora,ac . For L5`
one hasac12.(2d2)1/2, whereas forL50 ac13.(2d3)1/2.
Since the angle of total reflection depends only on the
ference n(z→2`)2n(z→1`).0, for any finite 0,L
,` the incoming wave is totally reflected fora,ac13, in-
dependent of the index of refraction within the film. Non
theless the types of waves propagating in the film depend
whethera:ac12 ~see below!. For the present setup the wav
field has the formC(r ,K i)5eiki•r ic(z,a) with

c~z,a!5H eiq1(a)z1r L~a!e2 iq1(a)z, z,0

s1~a!eiq2(a)z1s2~a!e2 iq2(a)z, 0<z<L

tL~a!eiq3(a)z, z.L,
~4.2!

where

r L~a!5@~q12q2!~q21q3!

1e2iq2L~q11q2!~q22q3!#/L~a!,

s1~a!52q1~q21q3!/L~a!,

s2~a!52q1~q22q3!e2iq2L/L~a!, ~4.3!

tL~a!54q1q2ei (q22q3)L/L~a!,

L~a!5~q11q2!~q21q3!1e2iq2L~q12q2!~q22q3!.

Since the scattering cross section is independent of the in
sity of the incoming beam without loss of generality, w
have set the amplitude ofC(r ,K i) equal to 1. The vertical
components of the momentum are given by

q1~a!5K sina,
~4.4!

qj~a!5KAnj
22cos2a.KAsin2a22d j12ib j

5KAsin2a2sin2ac1 j12ib j , j 52,3.

In the limiting case that the film turns into a semi-infini
substrate, i.e.,L5`, one has

c`/2~z,a!5H eiq1(a)z1r `/2~a!e2 iq1(a)z, z,0

t`/2~a!eiq2(a)z, z>0,
~4.5!

with

r `/2~a!5~q12q2!/~q11q2!, t`/2~a!52q1 /~q11q2!.
~4.6!

The vertical momentum componentsqj (a) have a positive
imaginary part which is due to the extinction coefficientb j
for a.ac1 j and which is present fora,ac1 j even in the
absence of absorption. This gives rise to an exponenti
damped evanescent wave with a penetration depthl j
5@ Im qj (a)#21 which increases steeply fora↗ac1 j and
would diverge ifb j50. Within the film there is a superpo
sition of two fieldss1(a)eiq2(a)z and s2(a)e2 iq2(a)z @Eq.
~4.2!#; in the three casesa,ac12 and b250, a.ac12 and
b2Þ0, anda,ac12 andb2Þ0, q2(a) has a nonzero imagi
nary part leading to an exponentially increasing and decre
ing contribution for increasingz. The decreasing part corre
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sponds to the damping of the incident wave, whereas
increasing part corresponds to the damping of the refle
wave generated by the interface 2-3.

Equation ~4.2! describes the wave fieldC(r ,K i) in the
absence of any fluctuations. This wave field is scattere
the fluctuating inhomogeneities within the film giving rise
diffuse scattering intensities in off-specular directions.

The computation of this intensity requires one to spec
the nature of fluctuations. In the present context this amou
to specifying the kind of system undergoing the continuo
phase transition in the film, and choosing the appropr
order parameter. As described in Sec. I, the most promis
candidates for these kinds of phenomena are binary al
undergoing a continuous order-disorder phase transition
cerning the occupation of fixed lattice sites$Rl%. ~Magnetic
films are equally well suited. However, the magnetic scat
ing of neutrons83 or of x rays is more complicated, and re
quires separate analyses. Although the details will dif
from the analysis given below, the key features of the sin
larities are expected to be borne out similarly.! In these sys-
tems a given configuration is characterized by spin-type v
ables $Sl561% such that Sl511 (21) states that the
lattice siteRl is occupied by aB (A) atom. Accordingly the
number density of electrons for such a configuration is

r~r !5
1

2 (
l

$rB~r2Rl !1rA~r2Rl !

1Sl@rB~r2Rl !2rA~r2Rl !#%, ~4.7!

whererA(B)(r ) is the electron number density in a single u
cell Vcell occupied by anA(B) atom.@In the case of neutron
scattering,r(r ) stands for the scattering length density a
rA(B)(r )5bA(B)d(r ), where bA(B) is the mean scattering
length of the nuclei of speciesA(B).# The ordered state o
this system corresponds to a configuration in which the s
of Sl alternates from one lattice site to any of the neighbor
ones. In this ground state the staggered ‘‘magnetizatio
OPl5Sle

i tm•Rl is spatially constant if the reciprocal lattic
vector tm of the sublattice structure is chosen such t
ei tm•(Rl2Rl 8)521 for nearest-neighbor sitesRl and Rl 8 . In
reciprocal space the positions of the reciprocal sublat
vectorstm are halfway in between the reciprocal-lattice ve
tors Gm , with eiGm•Rl characterizing the underlying lattic
structure of the solid.~For the sake of simplicity, as far as th
scattering theory is concerned, here we do not explicitly c
sider the case of systems like Fe3Al whose description re-
quires the introduction of several sublattices.! Upon ap-
proaching the critical temperature of the continuous ord
disorder transition, the thermal average^OPl& vanishes,
qualifying OPl as an appropriate order parameter.

In the critical contribution to thebulk scattering cross sec
tion a nonzero value of̂OPl& leads to superlattice Brag
peaks:49

S ds

dV D
bulk

Bragg

5r e
2S K f

K
3eD 2

^OPl&
2

NV

Vcell
~2p!3

3(
m

uF̃e2Wu2d~K i2K f2tm!, ~4.8!
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wherer e is the classical electron radius,K f /K are the direc-
tions of observation,e is the polarization vector of the in
coming electromagnetic wave, andF̃5(FA2FB)/2, where
FA(B)(K )5*Vcell

d3rrA(B)(r )eiK•r is the atomic form factor

of the atomA(B), e2W(K ) is the Debye-Waller factor, and
NV is the number of lattice sites in the sample. With t
independent knowledge of all prefactors in Eq.~4.8! the
asymptotic temperature dependence of (ds/dV)bulk

Bragg yields
^OPl&5B8(2t)b. As discussed in Sec. II, this experiment
value for B8 enters into Eq.~2.21! and there replacesB if
G(p,z1 ,z2 ,L,t) corresponds to the pair correlation functio
^OPlOPl 8& as considered below. Similarly the singular d
fuse scattering around a superlattice Bragg peaktm is given
by

S ds

dV D
bulk

di f f use

5r e
2S K f

K
3eD 2

uF̃e2Wu2 (
Rl ,Rl 8

~^OPlOPl 8&

2^OPl&^OPl 8&!eiq•(Rl2Rl 8)

→r e
2S K f

K
3eD 2

uF̃e2Wu2
NV

Vcell
Gbulk~q,t !,

~4.9!

with q5K f2K i2tm . In the second part of Eq.~4.9! we
have performed the continuum limit, replacing the latti
sums by integrals@see Eq.~A3! and the last paragraph i
Sec. II#, because forj→` the lattice structure becomes i
relevant. From studying the temperature dependence of
~4.9! for T.Tc , one can infer the correlation lengthj and its
amplitudej0

1 introduced in Sec. II. We note that forq small
compared with the inverse lattice spacinga, Eqs. ~A3! and
~A5! can be applied to Eq.~4.9! providedB is replaced byB8
as determined from Eq.~4.8!.

Equipped with this knowledge about the critical bulk sc
tering ~i.e., above the angle of total reflection and for a bu
sample!, we can now turn to the critical diffuse scatterin
from the film. Within the so-called distorted wave Born a
proximation and for the model of the film as described abo
one finds the following expressions for the singular part
the coherent scattering cross section:49

ds

dV
5r e

2 Ai

~Vcell
i a!2

uF̃e2Wu2S,

~4.10!

S5E
0

L

dz1E
0

L

dz2c f~z1!c i~z1!c i* ~z2!c f* ~z2!

3G~p,z1 ,z2 ,L,t !,

whereAi5NiVcell
i is the illuminated surface area, whereNi

is the number of lattice sites at the surface andVcell
i is the

two-dimensional unit cell of the surface,a is the lattice spac-
ing of the cubic lattice,c i , f(z)[c(z,a5a i , f) @see Eq.~4.2!
and Fig. 10#, andp5k f2k i2tm assuming that the film sur
faces are cut such thattm is parallel to them.G is the lateral
Fourier transform of the two-point order parameter corre
tion function
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G~p,z1 ,z2 ,L,t !5
Vcell

i

Ni
(

r i
(m) ,r i

(m8)

eip•(r i
(m)

2r i
(m8))

3@^OP~r i
(m) ,z1!OP~r i

(m8) ,z2!&

2^OP~r i
(m) ,z1!&^OP~r i

(m8) ,z2!&#

→E d2r ie
2 ip•r iG~r i ,z1 ,z2 ,L,t ! ~4.11!

on the lattice and in the continuum limit, respectively. Th
after replacing the nonuniversal amplitudeB in Eq. ~2.21! by
B8 as obtained from Eq.~4.8! for ^OPl&, we can study the
scattering cross section in Eq.~4.10! by using all the infor-
mation aboutG(p,z1 ,z2 ,L,t) obtained in Sec. III, provided
all lengths and 1/p are sufficiently large compared with th
lattice spacinga so that the continuum description is app
cable.

In view of the properties of the wave functionsc „only
their functional forms for 0<z<L enter into S @see Eq.
~4.2!# and of the scaling form forG(p,z1 ,z2 ,L,t) @see Eq.
~2.21!#…, one has, fora i , f ,ac12,c13!1 andb2,350,

S5B8~j0
1!d11RS L

j0
1D 32h

sS pj,
L

j
,
l i

L
,
l f

L
,

a i

ac12
,
ac12

ac13
D ,

~4.12!

where the dimensionless functions is given by@Eq. ~2.21!#

s5E
0

1

dx1E
0

1

dx2c f~z15x1L !c i~z15x1L !

3c i* ~z25x2L !c f* ~z25x2L !x1
12h

3gIIS pLx2 ,
L

j
x1 ,

L

j
x2 ,x2D . ~4.13!

The two variablespj and L/j of s stem from the scaling
function, of the pair correlation function whereas the dep
dences ofs on l i /L, l f /L, a i /ac12, andac12/ac13 are due
to the wave functions. Fora i , f,ac12,

l i , f5
l 0
(2)

A12S a i , f

ac12
D 2

~4.14!

correspond to thepenetration depths ofthe incoming~i! and
outgoing ~f! evanescent wave, respectively,within the film
material 2. l 0

(2)5(Kac12)
21 is the minimal penetration dept

l i , f(a i , f50) in the film material. Typicallyl 0 is of the order
of 30 Å.50 For a i.ac12 and a f.ac12 the corresponding
quantitiesl i and l f , respectively, are purely imaginary.

B. Interplay of length scales

The scattering cross section reflects the rich interplay
five length scales: 1/p, j, l i , l f , andL. Scaling reduces tha
to four independent scaling variables; moreover, there
parametric dependence ona i /ac12 and on the material con
stantac12/ac13. It is beyond the scope of the present ana
sis to provide an exhaustive discussion of the full dep
-

f

a

-
-

dence on all these variables. Instead we discuss some ge
aspects and analyze a few specific cases in more deta
order to highlight the key features of the diffuse scatter
intensity. The following cases have to be distinguished~for
T>Tc!.

~Ia! l i , f!L and total reflection at 2-3 interface:ds/dV is
proportional to the scattering volumeAimin(li ,l f). ~1! j
! l i , f!L: bulk behavior convoluted with evanescent wave
~2! j; l i , f!L: crossover bulk-̀ /2 surface behavior convo
luted with evanescent waves.~3! l i , f!j!L: `/2 surface be-
havior convoluted with evanescent waves.~4! l i , f!j;L:
`/2 surface behavior plus distant wall correction convolu
with evanescent waves.~5! l i , f!L!j: film behavior near
one wall convoluted with evanescent waves.

~Ib! l i , f!L, and no total reflection at 2-3 interface: th
difference from case~Ia! is exponentially small, i.e.,;e2LK.
~The volume contribution tods/dV from material 3 is in-
significant because it does not exhibit critical fluctuations!

~IIa! l i , f;L, and total reflection at 2-3 interface: cros
over betweends/dV;Aimin(li ,l f) to ds/dV;AiL. ~1! j
! l i , f;L: `/2 surface behavior convoluted with film wav
functions.~2! j; l i , f;L: crossover bulk-̀ /2 surface behav-
ior convoluted with film wave functions.~3! l i , f;L!j→`:
film behavior convoluted with film wave functions.

~IIb! l i , f;L, and no total reflection at 2-3 interface: cros
over ds/dV;Aimin(li ,l f)→AiL. ~Again, the volume contri-
bution from material 3 is regarded to be insignificant and
not taken into account.!

~IIIa! l i , f@L, and total reflection at 2-3 interface
ds/dV;AiL. ~1! j!L! l i , f : bulk behavior convoluted
with film wave functions.~2! j;L! l i , f : crossover between
bulk and film behavior~including two surface contributions
and distant wall corrections! convoluted with film wave
functions.~3! L!j! l i , f : film behavior convoluted with film
wave functions.~4! L!j; l i , f : film behavior convoluted
with film wave functions.~5! L! l i , f!j→`: film behavior
convoluted with film wave functions.

~IIIb ! l i , f@L, and no total reflection at 2-3 interface
ds/dV;AiL. ~The volume contribution from material 3 i
regarded to be insignificant.!

~IVa! l i , f imaginary, and total reflection at 2-3 interfac
ds/dV;AiL. ~1! j!L: three-dimensional bulk behavio
probed by undistorted plane waves.~2! L!j: film behavior
probed by undistorted plane waves.

~IVb! l i , f imaginary, and no total reflection at 2-3 inte
face: ds/dV;AiL ~in addition to an insignificant volume
contribution from material 3!.

C. Susceptibility from the scattering cross section

For large penetration depthsl i , f@L, the product of wave
fields in Eq.~4.13! is approximately constant. In this case f
p50 the universal scaling functions of Eq. ~4.13! reduces
up to a prefactor to the scaling functionf of the total suscep-
tibility @see Eqs.~3.24! and ~3.25!#, i.e.,

sS L

j D5sS pj50,
L

j
,
l i

L
5`,

l f

L
5`,

a i

ac12
,1,

ac12

ac13
D; f S L

j D .

~4.15!

In this limit the dependences ona i /ac12 and onac12/ac13
drop out fora i,ac13; for a i.ac13 there is an insignificant
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bulk contribution from material 3. The five different cas
~1!–~5! in case~IIIa! are characterized by the various cont
butions of asymptotic behaviors to the scaling functions(y
5L/j); f (y) @see Eqs. ~3.26! and ~3.40!#, i.e., bulk
Ay221h, surfaceBy231h, distant wallCy231he2y, and film
behaviorD1Ey1/n. In Fig. 11 we show the normalized sca
ing function of the scattering cross sections0(y)
5s(y)/s(0) @Eq. ~4.13!# within mean-field and first-orde
perturbation theory, as well as the asymptotic behaviors
the normalized scaling functionf 0(y)5 f (y)/ f (0) of the to-
tal susceptibility f (y→0) @Eq. ~3.40!# and f (y→`) @Eq.
~3.26!# using mean-field exponents and amplitudes and b
values for the exponents and amplitudes to first order ine,
respectively. Cases~IIIa! or ~IIIb ! with lateral momentum
p50 are the appropriate scattering setups in order to m
sure the various asymptotic behaviors of the total susce
bility by varying the temperature.

Figure 12 shows the ratio of the normalized scaling fu
tions f 0(y)/s0(y)5@ f (y)/s(y)#@s(0)/ f (0)# for all four
cases~Ia! – ~IVa! within MFT and PT, respectively. Fo
large penetration depthsl i , f@L @see case~IIIa!# the deviation
of the scaling functions0(y) of the scattering cross sectio
from the scaling functionf 0(y) of the total susceptibility is
small @see the solid lines in Figs. 12~a! and 12~b!#. If the
penetration depths are of the order of the film thickne
l i , f;L @see case~IIa!#, the wave fields in Eq.~4.13! contrib-
ute, and the deviation from the total susceptibility becom
visible at large values of the scaling variabley. Fory→0 and
y→` the dotted lines attain constant values, so that there
the same critical exponents but different amplitudes for
leading asymptotic behaviors ofs0 and f 0. If the penetration
depths are smaller than the film thickness,l i , f!L @see case
~Ia!#, this deviation is much more pronounced~see dashed

FIG. 11. Scaling function of the scattering cross sections @Eq.
~4.13!# for large penetration depthsl i , f@L and vanishing latera
momentump50 as a function of the scaling variabley5L/j
within MFT ~dashed line! and perturbation theory~full line!. The
dotted and dashed-dotted lines correspond to the asymptotic be
iors f 0

(as)(y) of the normalized scaling functionf 0(y)5 f (y)/ f (0)
of the total susceptibilityf (y) @Eqs.~3.26! and~3.40!# in MFT and
PT to first order ine using in addition the best available exponen
respectively.
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lines!. The difference in the amplitudes is decreased ifa i , f
.ac12, i.e., for imaginaryl i , f @see case~IVa!, and dash-
dotted lines#.

D. Dependence on the film thickness

In order to reveal the (1/L)211h i cusp singularity in the
scattering cross section, we consider the casep5t50 and
introduce the corresponding scattering function

SL5E
0

L

dz1E
0

L

dz2c f~z1!c i~z1!c i* ~z2!c f* ~z2!

3G~p50,z1 ,z2 ,L,t50!, ~4.16!

where the wave fields are given in Eq.~4.2!. For the corre-
lation functionG we use the asymptotic expansion given
Eq. ~3.21!. Furthermore we introduce the scattering functi
of the semi-infinite system

S`/25E
0

`

dz1E
0

`

dz2c`/2
( f ) ~z1!c`/2

( i ) ~z1!c`/2
( i )* ~z2!c`/2

( f )* ~z2!

3G~p50,z1 ,z2 ,L5`,t50!, ~4.17!

with the wave fields and the correlation function given
Eqs. ~4.5! and ~3.18!, respectively. The ratio of Eqs.~4.16!
and ~4.17! defines the scattering function

S~LK;a i ,a f ,ac12,ac13,b2 ,b3!5
SL

S`/2
~4.18!

av-

,

FIG. 12. Ratio of the normalized scaling functions of the to
susceptibility@Eq. ~3.24!# and of the scattering cross section@Eq.
~4.13!# within MFT ~a! and PT ~b!. We use the normalization
s0(y)5s(y)/s(0) and f 0(y)5 f (y)/ f (0). Thevarious lines in~a!
and~b! correspond to different penetration depthsl i , f : ~Ia! l i , f!L,
~IIa! l i , f;L, ~IIIa! l i , f@L, and~IVa! l i , f imaginary~no total reflec-
tion at the interface 1-2! as marked in~b!. The curves correspond to
l i5 l f . In case~IVa!, the indicated value ofL/ l i , f corresponds to its
imaginary part.
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16 992 PRB 60R. KLIMPEL AND S. DIETRICH
for p5t50, where the film thicknessL and the momentum
K of the scattered wave form the scaling variable, the ang
a5$a i , f ,ac12,c13% characterize the scattering geometry, a
the extinction coefficientsb5$b2 ,b3% take into account
photo absorption. From Eqs.~C3!–~C8! in Appendix C, one
obtains the asymptotic expansion

S~LK→`;a,b!5s0~LK;a,b!

1s1~LK;a,b!C1S 1

LK D 211h i

1•••,

~4.19!

with

s0~LK→`;a,b!;11s0
(1)~LK;a,b!e2LKs0

(2)(a,b),
~4.20!

s1~LK→`;a,b!;s1
(0)~LK5`;a,b!

1s1
(1)~LK;a,b!e2LKs1

(2)(a,b),

andC1 given by Eq.~3.9!. The functionss0 ands1 carry the
L dependence of the wave functions~see Appendix D!. The
L dependence due to the correlation function is given by
cusp singularityC1(1/LK)211h i. The range of the values o
the scaling variable (LK)21 is limited by the validity of the
continuum theory applied here, i.e.,L*30 Å and the
distorted-wave Born approximation, i.e.,K*1 Å21, leading
to (LK)21& 1

30 . For small angles, i.e., for grazing incidenc
scattering experiments Eq.~4.4! reduces

q1~a!.Ka, qj~a!.KAa22ac1 j
2 12ib j , j 52,3.

~4.21!

Photoabsorption,b2Þ0, or evanescent scattering,a i , f
,ac12, turn q2 into an imaginary quantity, which leads to
real part ofs0

(2) ands1
(2) in Eq. ~4.20!. If at least one anglea i

or a f is larger than the critical angleac12, the functionss0
(1)

ands1
(2) have real and imaginary parts. In the latter case

expects that the scattering functionS in Eq. ~4.19! exhibits
an oscillatory behavior. In Fig. 13 we show the exponen
ated scattering function and its asymptotic form for vario
scattering geometries. The exponentiated form is obtaine
subtracting the leading behavior of the one-loope-expanded
result @defined by Eq.~4.18!#, and by adding the leading
behavior @see Eq.~C2!# calculated with the best availabl
critical exponents (h.0.031,h'.0.75, andh i.1.48). The
dashed line in Fig. 13 corresponds to the leading asympt
behavior, if theL dependence of the wave fields is neglect

S~LK→`;a,b!511s1
(0)~LK5`;a,b!C1S 1

LK D 211h i

1•••. ~4.22!

Thus the full lines in Fig. 13 take into account the wholeL
dependence stemming from both the scattering theory
the correlation function, whereas the dashed lines take
account only the leading asymptoticL dependence of the
correlation function. The oscillatory behavior appearing
a i"ac12"a f stems from the scattering theory~see Fig. 13!.

For the casea i , f,ac12,c13 in Fig. 13, half of the maxi-
mum value of the scattering functionS is reached forLK
s
d

e

e

-
s
by

tic
:

nd
to

r

.1.531023. This corresponds to a film thicknessL

.600 Å , i.e., 200 ML~with K.1 Å21 and 1 ML is ap-
proximately 3 Å thick!; 90% of the maximum value ofS is
reached forLK.531025 which corresponds to a film thick
nessL.20 000 Å or 6700 ML. This demonstrates the slo
convergence to the semi-infinite limit. The spatial resoluti
is determined by the uncertainty of the film thickness. W
DL.3 Å ~1 ML! this givesKDL.3 leading to a resolution
of D(LK)21;3/(LK)2, which is not visible on the scale o
Fig. 13. Based on these considerations, we conclude tha
oscillations are experimentally accessible.

E. Emergence of cusp singularities

In the following we analyze how the cusp singulariti
emerge in the limit of vanishing scaling variables. To th
end we chose, as an example, a scattering function of the
scaling variablesp/K andLK. Analogous to Eq.~4.16!, we
define the quantity

Sp,L5E
0

L

dz1E
0

L

dz2c f~z1!c i~z1!c i* ~z2!c f* ~z2!

3G~p,z1 ,z2 ,L,t50!. ~4.23!

Together with Eq.~4.17!, this leads to the scattering functio

S~p/K,LK;a,b!5
Sp,L

S`/2
~4.24!

FIG. 13. Scattering functionS(LK;a,b) @Eq. ~4.18!, full lines#
and its asymptotic formS(LK→`;a,b) @Eq. ~4.22!, dashed lines#
for three different scattering geometries:a i,a f,ac12,ac13, a i

,ac13,ac12,a f , and a i,ac12,ac13,a f . For a i , f,ac12,c13

the scattering function decreases monotonously. If one of the an
a i or a f is larger thanac12 oscillations emerge. This effect i
enhanced ifac13.ac12. In the asymptotic form of Eq.~4.22!
~dashed lines! there are no oscillations. In all three cas
b2,350.331025 and (a i ,a f ,ac12,ac1350.06°,0.11°,0.26°,0.36°!,
~0.06°,0.40°,0.36°,0.26°!, and ~0.06°, 0.40°,0.26°,0.36°!, respec-
tively.
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where a5$a i , f ,ac12,c13% denotes the set of angles, andb
5$b2,3% the extinction coefficients. As in Sec. III A and Eq
~3.13!, we introduce polar coordinates

v5A~p/K !21~LK !22, w5arctan~pL!,
~4.25!

~LK !215v cosw, p/K5v sinw.

This leads to the relation

S~p/K,LK;a,b!5S@v sinw,~v cosw!21;a,b#

5Spolar~v,w;a,b!, ~4.26!

so that the leading asymptotic behavior is given by

Spolar~v→0,w;a,b!5S0~w;a,b!1S1~w;a,b!v211h i

1•••, ~4.27!

with S0(w;a,b)51. The amplitudeS1 of the leading
asymptotic behaviorv211h i depends not only on the pola
variablew, as it is the case for the corresponding correlat
function ~see Sec. III A!, but also on the parametersa andb
characterizing the scattering process. Within mean-fi
theory this amplitude is defined in Appendix C 2 by E
~C19!. In Fig. 14~a! we show the exponentiated scatteri
function S(p/K,LK;a,b) @Eq. ~4.24!#, where we have sub
tracted the leading asymptotic behavior from the mean-fi
expression of the scattering function and added the expo
tiated form,@see Eqs.~C11! and~C19! in Appendix C 2#; the
scattering functionS @Eq. ~4.24!# is a sum@see Eq.~D1! in
Appendix D# of functions of the typeS as discussed in Eq
~C11! in Appendix C 2. Figure 14~b! illustrates the emer-
gence of the (p/K)211h i cusp for increasing film thickness
i.e., (LK)21→0. Figure 14~c! shows the emergence of th
@1/(LK)#211h i cusp for vanishing lateral momentump/K
→0. In the latter case the vertical cross sections of the m
fold are not monotonous; they exhibit a maximum (d) at
1/LÞ0. Figure 14 corresponds to scattering anglesa i , f
,ac12,c13 which yields a monotonous behavior of the sc
tering function. Analogous considerations describe the em
gence of the cusp singularities in thej-L and j-p depen-
dences~see Appendix C 2!.

V. SUMMARY

By using field-theoretic renormalization-group theory, w
have studied the singular part of the two-point correlat
function in a film of thicknessL near the critical pointTc of
the corresponding bulk system. ForT>Tc and Dirichlet
boundary conditions, we have obtained the following m
results.

~1! The two-point correlation function as a function of th
lateral momentump corresponding to thed21 translation-
ally invariant directions of the film geometry, the coordinat
z1 and z2 perpendicular to the parallel surfaces, the fi
thicknessL, and temperaturet5(T2Tc)/Tc ~or equivalently
the bulk correlation lengthj5j0

1t2n) exhibits three cusp
singularities:p211h i for t50 andL5`, (1/j)211h i for p
50 and L5`, and (1/L)211h i for p5t50 @see Eqs.
~3.19!–~3.21! and Fig. 1#. The emergence of these three cu
singularities is revealed by studying appropriate scal
n

ld
.

ld
n-

i-

-
r-

n

n

s

g

functions of two scaling variables@see Eqs.~3.10!–~3.12!
and Figs. 2–8#.

~2! The film correlation function calculated up to firs
order perturbation theory ine542d satisfies the so-called
product rule derived by Parry and Swain for the correlat
function algebra of inhomogeneous fluids in Ref. 78@see Eq.
~3.22!#.

~3! By settingp50 and integrating over the perpendicul
coordinatesz1 and z2, we obtain the total susceptibility o
the film @Eq. ~3.23!#. Its dependence onL andj is described
by a universal scaling functionf (y5L/j) @see Eq.~3.24!
and Fig. 9#, and exhibits a typical film behavior:f (y) is
analytic for y→0 and f (y→`) contains the bulk, surface
and finite-size contributions@see Eqs.~3.40! and ~3.26!, re-
spectively#. These properties are similar to those of the s
cific heat of a critical film.30 Our results correct previou
findings in the literature68,82 @see the discussions of Eq
~3.36! and ~3.41!#.

~4! In view of proposed experimental tests with x rays a
neutrons under grazing incidence~see Fig. 10!, as discussed
in detail in Sec. I, we have calculated the critical diffu

FIG. 14. Scattering functionS(p/K,LK;a i , f ,ac12,c13,b2,3) @Eq.
~4.24!# for t50. ~a! shows the exponentiated scaling functio
S(p/K,LK5`;a,b) @Eq. ~C13!# and S(p/K50,LK;a,b) @Eq.
~C14!# and their corresponding leading asymptotic behaviors@Eqs.
~C15! and ~C17!, respectively# ~dashed lines!. For the leading
asymptotic behavior we use the best available exponenth i.1.48
and an amplitude function which is consistent with the mean-fi
expression @see Eq. ~C19!#. The corrections to the leading
asymptotic behavior are calculated within mean-field theory.
the scaling functionS(p/K,LK;a,b) we plot contour lines (S
50.8, 0.75, 0.7, 0.65, 0.65, and 0.6! and their projections onto the
@p/K,1/(LK)# plane~full lines! which clearly deviate from circular
shapes, lines forS(p/K,LK51.531024, 331024, 4.531024, 6
31024, 7.531024; a,b) ~dotted lines! and S(p/K51.531024,
331024, 4.531024, 631024, 7.531024, LK;a,b) ~dash-dotted
lines!. In ~b! and ~c! we show the aforementioned vertical cro
sections. The emergence of the@1/(LK)#211h i cusp is not monoto-
nous; the vertical cross sections exhibit maxima (d) at 1/LÞ0. The
scattering parameters are chosen thata i,a f,ac12,ac13 with
(a i ,a f ,ac12,ac13)5(0.06°,0.11°,0.26°,0.36°) andb25b350.3
31025.
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16 994 PRB 60R. KLIMPEL AND S. DIETRICH
scattering from the film within the so-called distorted-wa
Born approximation. The scattering intensity is a function
the lateral momentum transferp, film thicknessL, bulk cor-
relation lengthj, penetration depthsl i , f of the incoming~i!
and outgoing~f! waves, the critical angles of total reflectio
ac12 and ac13 and the extinction coefficientsb2 and b3 of
the film ~2! and the underlying substrate~3! ~see Fig. 10!.

~5! For various ratios ofL, j, andl i , f , the scattering func-
tion shows the crossover between analytic, bulk, surface,
finite-size behaviors~see Figs. 11 and 12!. By varying the
temperature, a scattering experiment forp50 and l i , f@L
gives access to the aforementioned scaling functionf (y) of
the total susceptibility@Eq. ~4.15!#.

~6! For p5t50 the leading singular behavior of the sca
tering function is given by the cusp singularity (1/LK)211h i,
where K is the momentum of the incoming wave@Eq.
~4.19!#. The maximal scattering intensity forL→` is
reached only very slowly. For certain scattering geomet
the L dependence exhibits an oscillatory behavior~see Fig.
13!.

~7! The film thickness and momentum cusp singularit
of the correlation function are borne out in the scatter
cross section, and are analyzed in Fig. 14.
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APPENDIX A: AMPLITUDES

The amplitudes of the singular behavior of bulk corre
tion functions are nonuniversal. There are two independ
ones in the sense that any two of them allow one to exp
any other in terms of these two and universal amplitu
ratios.79,80As one of these nonuniversal amplitudes in Sec
we have introduced and fixed the amplitudej0

1 of the bulk
correlation length@see Eq.~2.8!#. Other nonuniversal ampli
tudes are given by the temperature dependence of the m
value of the fieldf(x) below Tc ,

^f~x!&5B~2t !b, ~A1!

by the decay of the two-point correlation function in re
space atTc for large distancesux2x8u,

^f~x!f~x8!&5Dux2x8u2(d221h), ~A2!

and in momentum space for smallq,

E ddxeiq•(x2x8)^f~x!f~x8!&5Gbulk~q,t50!5D̂q221h,

~A3!

where

D̂/D5X5222hpd/2
G~12h/2!

G@d/22~12h/2!#
. ~A4!

D̂ can be expressed in terms ofB, j0
1 , and a universal num

ber R,79,80
f

nd

s

s
g

n
37

-
nt
ss
e
I

an

l

D̂5B2~j0
1!d221hR, ~A5!

with R5RcQ3 /(Rj
1)d. For (n,d)5(1,3) one has Rc

.0.066,Q3.0.922, andRj
1.0.27,79,80 leading toR.3.09.

A Fourier transformation in thez direction of the bulk
correlation functionGbulk(q)5D̂q221h with q25p21k2 is
leading to itsp-z representation

Gbulk~p,z12z2!5E
2`

` dk

2p
D̂

eik(z12z2)

~p21k2!(22h)/2

5
D̂

2p
p211hE

2`

`

dk
eikp(z12z2)

~11k2!(22h)/2
.

~A6!

For p(z12z2)→0, this leads to

Gbulk~p!5p211h
D̂

2Ap

G~1/22h/2!

G~12h/2!
. ~A7!

In the limits L→`, z11z2→`, j→`, and p(z12z2)→0,
the two-point correlation function in the film reduces to
bulk form. According to Eqs.~2.12! and ~2.17!, this implies

GV5
D̂

2Ap

G~1/22h/2!

G~12h/2!

5B2~j0
1!d221h

R

2Ap

G~1/22h/2!

G~12h/2!

5B2~j0
1!d221hU. ~A8!

For the three-dimensional Ising model, the universal num
U has the valueU.1.58.

The knowledge of the perturbative result fo
G(p,z1 ,z2 ,L,t) ~see Appendix B 2! enables one to expres
the nonuniversal amplitudesGx , x5I–IV, in terms of GV .
For example the universal ratioGII /GV is determined by the
normalizations of the scaling functions, i.e.,gII(0,0,0,0)51
@Eq. ~2.14!# andgV(`,0,̀ ,`)51 @Eq. ~2.17!#. Thee expan-
sion of this ratio is given by

GII /GV52S 11e
n12

n18
1O~e2! D . ~A9!

The amplitudesGx , x5I–IV, can have bulk, half-space, o
film character, depending on the normalization limits of t
scaling functionsgx . GII and GV are half-space and bulk
amplitudes, respectively. Bulk amplitudes are independen
the boundary conditions, half-space amplitudes depend
the boundary condition of the surface, and film amplitud
depend on the boundary conditions of both surfaces. C
bining Eqs.~A9!, ~A8!, and~A5!, we arrive at
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GII5B2~j0
1!d221hS 11e

n12

n18
1O~e2! D

3R
1

Ap

G~1/22h/2!

G~12h/2!
. ~A10!

With R.3.09@Eq. ~A5!# andh.0.031 one has, for the thre
dimensional Ising model,

GII5RB2~j0
1!d221h.4.21B2~j0

1!d221h. ~A11!

APPENDIX B: ONE-LOOP RESULTS

1. Correlation functions for z15z2

With the abbreviationẽ5e@(n12)/(n18)#, so that ẽ
5 1

3 , 2
5 , and 5

11 for the Ising, XY, Heisenberg model ind
53, the renormalized two-point correlation function in on
 -

loop order@Eqs.~2.3!–~2.6!# is given explicitly as~see also
Ref. 84!

G~p,z,L5`,t50!

5GIIz
12hg1~u5pz!

5m2hz12hS 12e22u

2u
1

ẽ

4u
@22Ei~22u!

1e2uEi~22u!1e22uEi~2u!#1O~e2! D . ~B1!

Ei(x) is the exponential integral function. In accordan
with the normalizationg1(0)51 this yieldsGII5m2h@11 ẽ
1O(e2)#.

The temperature dependence is described by the sca
function g2(v), with g2(0)51:
G~p50,z,L5`,t !5GIIz
12hg2~v5z/j!

5m2hz12hF 12e22v

2v
1

ẽ

2v
S ~e22v21!K0~2v !12e22v(

k50

`

v2k11

C~k11!2 ln v1
1

2k11

~k! !2~2k11!
D 1O~e2!G .

~B2!

C(x) andK0(x) denote the psi and Bessel functions, respectively85 ~see also Ref. 86!.
Finally, the dependence of the critical structure factor on the film thickness is governed by a third scaling functiong3(w),

g3(0)51, 0<w<1:

G~p50,z,L,t50!5GIIz
12hg3~w5z/L !

5m2hz12hF12w1 ẽH 2
p2

18
w~12w!22~122w!S 11CE1 ln w1

S3,2
2 ~w!1I 2

2~w!

w D
1~12w!@21CE1 ln w2S2,1

1 ~w!2I 1
1~w!#J 1O~e2!G ~B3!
with the abbreviations

Sk,l
6 ~w!5 (

n5k

`
Bn~2w!6Bn~w!

n! ~n2 l !
,

I k
6~w!5E

1

` dx

ex21

e2xw6exw

xk
. ~B4!

Bn(w) are Bernoulli polynomials.85 For the critical structure
factor in the semi-infinite system, one has

G~p50,z,L5`,t50!5GIIz
12h5m2hz12h@11 ẽ1O~e2!#.

~B5!

From the explicit forms forgi , i 51, 2, and 3, in Eqs.~B1! –
~B3!, together withh i522 ẽ1O(e2), one infers the limit-
ing behaviors
g1~u→0!511A1u211h i1O~u2!

A152@11 ẽ~12CE2 ln 2!1O~e2!#, ~B6!

g2~v→0!511B1v211h i1O~v1/n!

B152@11 ẽ~12CE!1O~e2!#, ~B7!

and

g3~w→0!511C1w211h i1O~w2!

C152F11 ẽS p2

18
2CE12~S21I 1!21D1O~e2!G ,

~B8!

whereCE'0.5772 is Euler’s constant.S2 is given by a sum
over Bernoulli numbers andI 1 by integrals
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S25 (
n52

`
Bn

n! ~n21!
.8.287731022,

~B9!

I 15E
1

`

dx
1

ex21

1

x
.0.2868.

For the exponentiation of the scaling functionsh1(u,v),
h2(u,w), and h3(v,w), we have calculated the amplitud
functions H1

(1)(w), H1
(2)(w), and H1

(3)(w) @see Eqs.~3.14!
and ~3.15!#. Their e expansions are

H1
(1)~w!52F12 ẽS ln

sinw

2
1

cosw

2
ln

11cosw

12cosw
1a1D

1O~e2!G ,
~B10!

w5arctan@~pj!21#,

H1
(2)~w!5sin~w!

11e2 tanw

12e2 tanw
1 ẽFsin~w!

11e2 tanw

12e2 tanw S 12CE

2 ln~2 sinw!2I0~w!1I1~w!cotw1
1

12
cot2w D

2
cosw

3~12e2 tanw!~12e22 tanw!
G1O~e2!,

~B11!
w5arctan~pL!,

and
H1
(3)~w!5sin~w!

11e2 tanw

12e2 tanw
1 ẽS sin~w!

11e2 tanw

12e2 tanw

3@12CE2 ln~sinw!1I 1
1~w!1I 1

2~w!#

1
sinw

~12e2 tanw!~12e22 tanw!

3~2p18I 0
0~w!tanw!D 1O~e2!,

~B12!
w5arctan~L/j!,

with a1.0.2704 and the integrals

I0~w!5E
0

` dt

et21
S 1

t12 tanw
1

1

t22 tanw D , ~B13!

I1~w!5E
0

` dt

et21
S t

t22 tanw
2

t

t12 tanw D , ~B14!

I 0
0~w!5E

1

`

dt
At221

e2t tanw21
, ~B15!

and

I 1
6~w!5E

1

`

dt
At221

e2t tanw21

t

t61
. ~B16!

2. Correlation function for z1Þz2

This is the most general case from which all results giv
above can be derived. We presentG(p,z1 ,z2 ,L,t) in terms
of the scaling functiongI @Eq. ~2.7!#:
G~p,z1 ,z2 ,L,t !5GIp
211hgI~x5pj,u5z1 /j,v5z2 /j,y5L/j!

5m2hp211hF x

2a H e2auu2vu2e2a(u1v)1
e2a(u2v)1e2a(v2u)2e2a(u1v)2ea(u1v)

e2ya21
J

1 ẽ@J0~x,u,v,y!1Jp~x,u,v,y!1J1~x,u,v,y!#1O~e2!G , ~B17!

with

J0~x,u,v,y!52
x

a3E1

`

ds
As221

e2ys21
H e2auu2vu~11auu2vu!2e2a(u1v)@11a~u1v !#

1
1

e2ya21
Fe2a(u2v)S 11a~u2v !1

2ya

12e22yaD 1e2a(v2u)S 11a~v2u!1
2ya

12e22yaD
2e2a(u1v)S 11a~u1v !1

2ya

12e22yaD 2ea(u1v)S 12a~u1v !1
2ya

12e22yaD G J , ~B18!

Jp~x,u,v,y!5
p

4

x

a2

1

~12e22ya!2
$~11e22ya!~e2a(u1v)1ea(u1v22y)!22e22ya~e2a(v2u)1e2a(u2v)!%, ~B19!

and
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J1~x,u,v,y!52
1

4

x

a2 H e2a(u1v)
J~u,v !

12e22ya
1ea(u1v22y)

J~y2u,y2v !

12e22ya

2e2a(v2u)S Q~v2u!1
1

e2ya21
D J~y2u,v !2e2a(u2v)S Q~u2v !1

1

e2ya21
D J~y2v,u!J , ~B20!

with a5A11x2 and

J~x1 ,x2!5E
1

`

ds
As221

12e22ysF S 1

s1a
2

1

sD ~e22x1s1e22x2s!2S 1

s2a
2

1

sD ~e22(y2x1)s1e22(y2x2)s!G . ~B21!

3. Susceptibility

The one-loop result of the total susceptibility@Eq. ~3.23!# for Dirichlet boundary conditions is given by (gs5g1n)

x~L,t !5B2~j0
1!d11RS L

j0
1D gs /n

f ~y5L/j!, ~B22!

with

f ~y!5y22S 12 ẽ2
2

y H 11 ẽFpS 1

2
2

1

A3
D 21G J 1

4

y

1

ey11
2 ẽH 4

y

1

ey11
1

2

y

e2y

~11e2y!2
pS 12

11e2y

A3
D

1S 418
e2y

~11e2y!2
2

12

y

12e2y

11e2yD E1

`

ds
As221

e2sy21
1

2

y

12e2y

11e2yE1

`

ds
As221

e2sy21

3S 1

s21
2

1

s11
1

2

s11/2
2

2

s21/2D J D 1O~e2!. ~B23!
e

E

In the limit y→`, the two integrals entering into Eq.~B23!
vanish,;e22y, and therefore they do not contribute to th
terms considered in Eq.~3.26!. However, in the limity→0
these two integrals contribute to the terms considered in
~3.40!:

J0~y!5E
1

`

ds
As221

e2sy21

5
p2

24
y222

p

4
y211a22

1

4
ln y1O~y! ~B24!

and

J1~y!5E
1

`

ds
As221

e2sy21
S 1

s21
2

1

s11
1

2

s11/2
2

2

s21/2D
5pSA32

3

2D y212
p

2A3
1

A3

12
py1b2y22

A3

720
py3

1b4y41O~y5!, ~B25!

with
q.

a25
5

8
2

1

2 S (
n52

`
Bn

n! ~n21!
1E

1

` dx

ex21

1

xD .0.440 165,

~B26!

b256S (
n50

`
Bn

n! ~n23!
1E

1

` dx

ex21

1

x3D
.29.131 4531022,

b4518S (
n50

`
Bn

n! ~n25!
1E

1

` dx

ex21

1

x5D .5.987931023.

APPENDIX C: CROSS SECTION

1. Integration of the asymptotic limits

Equation~4.10! involves integrals of the following kind:

E
0

L

dz1e2k1z1E
0

L

dz2e2k2z2G~p,z1 ,z2 ,L,t !, ~C1!

where k jP$6 i @q2(a f)6q2(a i)#, 6 i @q2* (a f)6q2* (a i)#%,
j 51 and 2@see Eq.~4.2!, as well as Eqs.~D1! and ~D2! in
Appendix D# andk j (a)[K f j (a i ,a f ,ac12) ~see above!. The
asymptotic behavior of Eqs.~3.19!, ~3.20!, and~3.21! can be
summarized by the formula
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Gas~p,z1 ,z2 ,L,t !5GIIH Q~z22z1!z1
12hS z2

z1
D 12h'

1Q~z12z2!z2
12hS z1

z2
D 12h'

1CS Q~z22z1!z1
12hS z2

z1
D 12h'

z2
211h i

1Q~z12z2!z2
12hS z1

z2
D 12h'

z1
211h i D J

5GII$d~z1 ,z2!1a~p,z1 ,z2 ,L,t !%. ~C2!
The expressiond(z1 ,z2) corresponds to the leading contr
bution C50. C is an abbreviation for the three quantitie
A1p211h i for t50 andL5`, B1(1/j)211h i for p50 and
L5`, andC1(1/L)211h i for p5t50 in Eqs.~3.19!, ~3.20!,
and ~3.21!. For the quasi-Laplace transform of the contrib
tion d(z1 ,z2),

D̄~k1 ,k2 ,L !5E
0

L

dz1e2k1z1E
0

L

dz2e2k2z2d~z1 ,z2!

~C3!

one finds, withf j5k j /K, j 51 and 2,
D̄~k1 ,k2 ,L ![D̄~ f 1 , f 2 ,LK !5K231hF 1

f 1f 2~ f 11 f 2!
2

e2 f 1LK

f 2
2f 1

2
e2 f 2LK

f 1
2f 2

1e2( f 11 f 2)LKS LK

f 1f 2
1

f 1
21 f 1f 21 f 2

2

f 1
2f 2

2~ f 11 f 2!
D

1
ẽ

2 H 22

f 1f 2~ f 11 f 2!
2e2( f 11 f 2)LK

f 1
21 f 2

2

f 1
2f 2

2~ f 11 f 2!
1

1

f 1
2f 2

@ ln~ f 1 / f 211!1Ei„1,~ f 11 f 2!LK…2Ei~1,f 2LK !#

1
1

f 2
2f 1

@ ln~ f 2 / f 111!1Ei„1,~ f 11 f 2!LK…2Ei~1,f 1LK !#1
e2 f 1LK

f 2
2f 1

@12CE2 ln f 22 ln LK2Ei~1,f 2LK !#

1
e2 f 2LK

f 1
2f 2

@12CE2 ln f 12 ln LK2Ei~1,f 1LK !#J 1O~e2!G . ~C4!

In the limiting case of a semi-infinite film (L→`), Eq. ~C4! reduces to

D̄~ f 1 , f 2 ,LK5`!5K231hF 1

f 1f 2~ f 11 f 2! S 11 ẽH 12
f 11 f 2

2 f 1
ln~11 f 1 / f 2!2

f 11 f 2

2 f 2
ln~11 f 2 / f 1!J D1O~e2!G . ~C5!

The corresponding expression for the leading correction term

Ā~ f 1 , f 2 ,LK !5E
0

L

dz1e2k1z1E
0

L

dz2e2k2z2a~p,z1 ,z2 ,L,t ! ~C6!

is

Ā~ f 1 , f 2 ,LK !5K231hK12h iCF 1

f 1
2f 2

2 $12e2 f 1LK~11 f 1LK !2e2 f 2LK~11 f 2LK !

1e2( f 11 f 2)LK@11~ f 11 f 2!LK1 f 1f 2~LK !2#%

2
ẽ

2

1

f 1
2f 2

2
„222CE2 ln f 1f 22Ei~1,f 1LK !2Ei~1,f 2LK !

1e2 f 1LK$211~11 f 1LK !@CE211 ln f 22 ln LK1Ei~1,f 2LK !#%

1e2 f 2LK$211~11 f 2LK !@CE211 ln f 12 ln LK1Ei~1,f 1LK !#%

1e2( f 11 f 2)LK@LK~ f 11 f 2!~112lnLK !12~11 ln LK !12 f 1f 2~LK !2ln LK#…1O~e2!G , ~C7!

with the semi-infinite limitL→`:

Ā~ f 1 , f 2 ,LK5`!5K231hK12h iC8F 1

f 1
2f 2

2 S 11 ẽH CE211
1

2
ln f 1f 2J D1O~e2!G , ~C8!
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whereC8 is an abbreviation for the two quantitiesA1p211h i, for t50 andL5`, andB1(1/j)211h i, for p50 andL5`.
Distant wall corrections to the semi-infinite system vanish exponentially. In order to obtain the analytic expressions
~C4! and ~C7!, we have expandedd(z1 ,z2) and a(p,z1 ,z2 ,L,t) in terms ofe using for thee expansion of the exponent
h i522 ẽ1O(e2), h'512 ẽ/21O(e2), andh5O(e2). The functionEi(1,z) is the exponential integral defined by

Ei~1,z!5E
1

`e2zt

t
dt52Ei~2z!. ~C9!

This function is numerically more suitable than the exponential integralEi(z),

Ei~z!52E
2z

` e2t

t
dt, ~C10!

appearing in the formulas for the correlation function.

2. Integration of the mean-field correlation function

Equation~C1! for the full mean-field correlation function yields

S@b5A~p/K !21~jK !22,LK, f 1 , f 2#

5E
0

L

dz1e2k1z1E
0

L

dz2e2k2z2G~p,z1 ,z2 ,L,t !

5GIIK
231h

1

2b H 12e2( f 11b)LK

~ f 11b!~ f 22b!
2

12e2( f 11 f 2)LK

~ f 11 f 2!~ f 22b!
1

12e2( f 11 f 2)LK

~ f 11 f 2!~ f 21b!

2
e2( f 21b)LK2e2( f 11 f 2)LK

~ f 12b!~ f 21b!
2

~12e2( f 11b)LK!~12e2( f 21b)LK!

~ f 11b!~ f 21b!

1
1

e2bLK21
S ~12e2( f 11b)LK!~12e2( f 22b)LK!

~ f 11b!~ f 22b!
1

~12e2( f 12b)LK!~12e2( f 21b)LK!

~ f 12b!~ f 21b!

2
~12e2( f 11b)LK!~12e2( f 21b)LK!

~ f 11b!~ f 21b!
2

~12e2( f 12b)LK!~12e2( f 22b)LK!

~ f 12b!~ f 22b! D J , ~C11!
x

-

using the notation of Appendix C 1. The above formula e
hibits the following limiting expressions:

S~b50,LK5`, f 1 , f 2!5GIIK
231h

1

~ f 11 f 2! f 1f 2
,

~C12!

S~b,LK5`, f 1 , f 2!5GIIK
231h

1

~ f 11 f 2!~ f 11b!~ f 21b!
,

~C13!

and
- S~b50,LK, f 1 , f 2!

5GIIK
231hH 1

~ f 11 f 2! f 1f 2
2

1

f 1
2f 2

2

1

LK

1
e2 f 1LK1e2 f 2LK

f 1
2f 2

2

1

LK

2S 1

~ f 11 f 2! f 1f 2
1

1

f 1
2f 2

2

1

LK D e2( f 11 f 2)LKJ .

~C14!

Equations~C12!–~C14! lead to the following three cusp sin
gularities:
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S~p→0,t50,LK5`, f 1 , f 2!

S~p50,t50,LK5`, f 1 , f 2!
512F f 11 f 2

f 1f 2
G211h iS p

K D 211h i

1O~p2!, ~C15!

S~p50,t→0,LK5`, f 1 , f 2!

S~p50,t50,LK5`, f 1 , f 2!
512F f 11 f 2

f 1f 2
G211h i

3S 1

jK D 211h i

1O~j1/n!,

~C16!

and

S~p50,t50,LK→`, f̃ 1 , f̃ 2!

S~p50,t50,LK5`, f 1 , f 2!

5
f 1f 2~ f 11 f 2!

f̃ 1 f̃ 2~ f̃ 11 f̃ 2!
2F f 1f 2~ f 11 f 2!

f̃ 1
2 f̃ 2

2 G211h i

3S 1

LK D 211h i

1O~e2L!. ~C17!

We note that the last two arguments of the nominator
denominator on the left-hand side of Eq.~C17! are in gen-
eral, as indicated, different from each other. ForL5` the
variables f j are given by 2 i @q2(a f)1q2(a i)#/K or
i @q2* (a i)1q2* (a f)#/K, whereas forL,` the variablesf̃ j

are given by 2 i @kq2(a f)1 lq2(a i)#/K or i @mq2* (a i)
1nq2* (a f)#/K with any combination ofk,l ,m,n561 @see
the exponentials in the last lines of Eqs.~D1! and ~D2! in
Appendix D#.

For the exponentiation of thep-L, j-L, andp-j depen-
dences, we introduce polar coordinates@see Eq.~3.13!#

v5A~p/K !21~LK !22, w5arctan~pL!,
~C18!

1

LK
5v cosw,

p

K
5v sinw
d

leading to the scaling functionS(v,w, f̃ 1 , f̃ 2)5S(p/K
5v sinw, LK5(v cosw)21, f̃1,f̃2) and to its asymptotic ex-
pansion

S~v→0,w, f̃ 1 , f̃ 2!

S~v50,f 1 , f 2!

5
f 1f 2~ f 11 f 2!

f̃ 1 f̃ 2~ f̃ 11 f̃ 2!
2sin~w!

11e22tanw

12e22tanw

3F f 1f 2~ f 11 f 2!

f̃ 1
2 f̃ 2

2 G211h i

v211h i1•••. ~C19!

Because in this section we consider only mean-field sca
functions, a simple substitution of the scaling variablep/K
by 1/jK in Eq. ~C18! leads to the same result for thej-L
dependences. The semi-infinite system is described by
coordinates

v5A~p/K !21~jK !22,

w5arctan
1

pj
,

1

jK
5v sinw,

p

K
5v cosw, ~C20!

leading to the asymptotic behavior of the scaling function

S~v→0,f 1 , f 2!

S~v50,f 1 , f 2!
512F f 11 f 2

f 1f 2
G211h i

v211h i1•••,

~C21!

which is independent ofw.

APPENDIX D: PRODUCTS OF WAVE FUNCTIONS

In order to illustrate the type of transformations appear
in Eqs. ~4.10! and ~C1!, we present the explicit expressio
for the product of wave functions in Eq.~4.2!:
rms
c f~z1!c i~z1!c i* ~z2!c f* ~z2!5@s1~a f !e
iq2(a f )z11s2~a f !e

2 iq2(a f )z1#@s1~a i !e
iq2(a i )z11s2~a i !e

2 iq2(a i )z1#

3@s1* ~a i !e
2 iq2* (a i )z21s2* ~a i !e

iq2* (a i )z2#@s1* ~a f !e
2 iq2* (a f )z21s2* ~a f !e

iq2* (a f )z2#

5 (
k,l ,m,n56

sk~a f !sl~a i !sm* ~a i !sn* ~a f !e
i [kq2(a f )1 lq2(a i )]z1e2 i [mq2* (a i )1nq2* (a f )]z2, ~D1!

wheres and q are defined in Eqs.~4.3! and ~4.4!. Thus the scattering cross section is proportional to a sum of 16 te
involving integrations overz1 andz2.

For the limiting case of a semi-infinite half-space one has

c`/2
f ~z1!c`/2

i ~z1!c`/2
( i )* ~z2!c`/2

( f )* ~z2!5tsi~a f !e
iq2(a f )z1tsi~a i !e

iq2(a i )z1tsi* ~a i !e
2 iq2* (a i )z2tsi* ~a f !e

2 iq2* (a f )z2

5utsi~a f !u2utsi~a i !u2ei [q2(a f )1q2(a i )]z1e2 i [q2* (a i )1q2* (a f )]z2. ~D2!

In this limit the above sum reduces to a single term.
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