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Structure factor of thin films near continuous phase transitions

R. Klimpel and S. Dietrich
Fachbereich Physik, Bergische UniversitWuppertal, D-42097 Wuppertal, Federal Republic of Germany
(Received 23 April 1999

The two-point correlation function in thin films is studied near the critical point of the corresponding bulk
system. Based on field-theoretic renormalization-group theory, the dependences of this correlation function on
the lateral momentum, the two distances normal to the free surfaces, the temperature, and the film thickness are
determined. The corresponding scattering cross section of x rays and neutrons under grazing incidence is
calculated. This reveals the various singularities of the two-point correlation function.
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[. INTRODUCTION compared with systems exhibiting first-order phase transi-
tions, which are characterized by several competing length

Structural properties of condensed matter depend sensscales of comparable, atomic size which are difficult to de-
tively on the space dimensiah Thin films offer the oppor- termine accurately and to vary systematically and indepen-
tunity to reveal this dependence. By varying the film thick-dently.
nessL, one can interpolate smoothly betweers2 and 3. A sizable body of theoretical research has emerged de-
For crystalline materials this variation can be accomplishedcribing continuous phase transitions in thin fil(sse, e.g.,
with atomic resolution by using molecular-beam epitdds  Refs. 7—17. Initiated by the theory of finite-size scaling
an alternative, which is also applicable for fluids, thin films (see, e.g., Refs. 18—R3inter alia the shift T,(L) of the
can be built up via wetting phenomena where the film thick-critical temperature with respect to its bulk vallig=T.(L
ness is controlled by temperature or chemical poterttials.=x),?*~?6the magnetizatioci'*® as well as the free energy,
Once such films are prepared, the dependence of their struthe Casimir force, and the specific h€at° have been ana-
tural properties on the space dimension can be studied palyzed. Here we emphasize that in order to observe universal
ticularly clearly close to phase transitions. For first-orderfilm behavior, the thicknessésof the films still have to be
phase transitions the main influence of a variation of the filmarge on an atomic scale. This is assumed to be the case
thickness is to shift the phase boundaries in the phase dighroughout our analysis. The analytic description of the di-
gram (see, e.g., capillary condensatioor the shift of the mensional crossover betwedr 3 critical behavior near .
melting curvé) without much changing theocal properties and thed=2 critical behavior nearT.(L) still poses a
of condensed matter. In rare cases, however, evesttae  challengé®®” which has not yet been overcome with satis-
acterof the phase transition can change as functiob;sfee, factory quantitative accuracy. Numerous experimestse,
e.g., the possibility of continuous melting @2 (Refs. 5  e.g., Refs. 38—43and simulationgsee, e.g., Refs. 44-%6
as opposed td=3, or the crossover from a first-order phasehave been carried out to test these theoretical predictions.
transition ind=3 to a second-order phase transitiondn They lend support to the finite-size scaling theory, but still
=2 at a certain thickness of a slab of the three-states Potfsose a puzzle as a far as a detailed quantitative agreement is
model® concerned.

In the case ofirst-order phase transitions, the robustness The vast majority of these studies has been devoted to
of the local structural properties with respect to changes ointegral or excess quantities without spatial resolution. How-
the film thickness is due to the smallness of the correlatiorever, studies ofocal critical properties, such as of one- and
lengths which characterize these systems and—putting asideo-point correlation functions, near single surface have
possible wetting phenomena—thus severely limit the proparevealed a wealth of universal phenomena featuring numer-
gation of the structural changes, which necessarily occuous surface critical exponents and interesting crossover
near the confining surfaces of the film, into the interior of thephenomena—on the scale of the bulk correlation lergth
films. In contrastsecond-ordephase transitions are charac- between surface and bulk critical behaviéf2 the integral
terized by diverging correlation lengths which affect not onlyand excess quantities offer either no or only very limited
the location of phase boundaries but in addition lead to proaccess to these local properties.
nounced changes in the local properties even deep in the The successful development of surface-specific x-ray and
interior of the films if the critical point is approached. Theseneutron-scattering techniques based on exploiting total exter-
effects are thus not only particularly suitable to shed light omal reflection at grazing incidence has proven to be very
the aforementioned dependence of the structural propertidsuitful, inter alia, for facilitating a quantitative comparison
on space dimension, but they offer an additional advantagéaetween experiments and theoretical predictions of the local
the divergence of the correlation length as a function of temeritical behavior near interfac$>° These scattering tech-
perature upon approaching the critical point leads tma niques allow one to determine order-parameter profiles nor-
versalbehavior, which makes quantitativecomparison be- mal to the surface, and a depth-resolved lateral two-point
tween theoretical predictions and experiments much easier @srrelation function. In the present context such experiments

0163-1829/99/6(24)/16977126)/$15.00 PRB 60 16 977 ©1999 The American Physical Society



16 978 R. KLIMPEL AND S. DIETRICH PRB 60

have been carried out successfully for the binary alloysurface field* aboveT,, although the expected associated
FeAlL ™52 and, by using truncation rod scattering, for crossover from ordinary to normal critical behafocould

FeCo> which exhibit continuous order-disorder transitions not yet been resolved experimentally in an unequivocal way.
in the bulk. In the case of KAl the cusplike surface singu- The results of the diffuse scattering of x rays under grazing

larities of the momentum and temperature dependence of thgcidence from the (TQ) surface[equivalent to the (110)
two-point correlation function turned out to be in excellentsyrfacd of Fe;Al (Ref. 5J) are in excellent agreement with
agreement with the theoretical predlcnor’ﬁé_?The fact that, the theoretical predictios>®for the ordinary transition. But
due to the occurrence of surface segregation, suitable ch0|c§§/en for FeAl (1?0) a residual order parameter abolg

for the crystallographic orientation of the surface allows on as been reportéd:52 Thus it still remains to be seen theo-

to switch between the different surface universality classe§etically whether for theB2—DO, transition in FgAl, in

corresponding to free boundary conditions and boundary L —
conditions with surface fields, respectively, of the same bulcontrast to theéA2 B2 transition in FeCo, the (10) surface

sample®’%® offers wide ranges of interesting comparative &N support a weak effective surface field. In view of this
studie s.' state of affairs our present result are expected to be closely

In view of these developments, and in view of the increas@PPlicable to thin films of Fél, FeCo, Cuzn, and FeAl
ing availability of powerful synchrotron and neutron sources,2ounded by (110) surfaces on both sides. Among them
it appears promising to extend these studies of local critical Al and FeCo appear to be the most promising candidates
properties to thin films. There are several predictions conP€cause the others exhibit strong surface segregation. For an
cerning the behavior of one-point correlation functions in@SSessment of the possibilities to probe critical magnetic sur-
thin films such as order-parameter profife-35and energy- face transitions by grazing incidence of neutrons see Ref. 67.

density profile$® However, on the level of the two-point In view of the aforementioned difficulties concerning the
correlation function. so far’ only very little is known. This analytic description of the dimensional crossover we confine

our analysis to the temperature ranfe T.. We note that
elements of the perturbation theory for thin critical films can
be found in Ref. 68. However, we had to carry out our own
approach because the representation given in Ref. 68 is not
suited for making predictions for the scattering experiments,
and because Ref. 68 contains errors. Finally we note that
. < : experience tells us that calculations carried out for the
lently the bulk correlation lengtiE={ot ). Since a full spﬁerical model, as have been done for the present system,

sweep of this large parameter space Is pract|call_y NOt POSack the guantitative reliability needed for comparison with
sible for computer simulations, we have applied f'eld'?xperiments and simulations

theoretic techniques vyhich provide analytic access to the ful In order to encourage future scattering experiments for
parameter space. This approach encompasses nonperturgﬁﬁcal thin films and to facilitate an explicit quantitative

tive feqtures such”as scahngr ptrop((ajrtlest andt.short-tdlsbtatrj %mparison of such data with the present theoretical predic-
expansions, as wetl as an explicit and systematic perturba IVt']'eons, we have calculated the singular contributions to the

result to first order ine=4-d. The latter serves to corrobo- scattering cross section for x-ray and neutron scattering un-
rate the nonperturbative results and to provide numerical r€gq yhe congdition of grazing incidence based on our results
sults_ \.Nh'Ch are not access@le by general arguments. The?gr the critical two-point correlation function in thin films.
explicit calculations are carried out for the fixed point of the.l.hiS allows us to describe the conditions under which the
so-called .o'rdlr'1ary transition for both cor_lf_lnlng surfaces Nyarious singularities of the two-point correlation function be-
the classification scheme of surface critical phenorffena come visible in scattering data

cor_re_spond|_ng to free _boun(jary condmo_ns_on both S'de.s' This introduction is followed by three sections, a sum-
This is applicable to thin antiferromagnetic films near the|rmary and four Appendixes. In Sec. Il we introduce,the field-

Neel temperature, to ferromagnetic films near their Curletheoretical model. The two-point correlation function is dis-
temperature in the absence of external bulk and surfac

field d o thin fi  bi I thei i €ussed in Sec. Ill, and in Sec. IV we investigate the
1€10S, and fo thin Tims ot binary alloys near their con Inuousscattering cross section. Relations between bulk and film am-
order-disorder transitions. Among the numerous order-

disorder phase transitions in binary alloys, only a few are oPliIUdeS are derived in Appendix A, explicit one-loop results
. . ’ re presen in Appendix B, and Appendix nd D con-
second order including, BAl %% FeCo® Ccuzn® and are presented in Append and Appendixes C and D co

i ; tain details required for the calculation of the scattering cross
FeAl®! Both the B2-DO; transition in FgAl and the a g

. . section.
A2-B2 transitions in FeCo, CuZn, and FeAl belong to the
Ising universality clas& For the A2—B2 transitions it is
predicted theoretically that the (110) surface belongs to the

function depends on the lateral distange=x{”)—x{" be-
tween the two points; = (x{",z;) and x,=(x{?,z,) (or
equivalently the lateral momentum corresponding to the
d—1 translationally invariant directionsthe coordinateg;
andz, perpendicular to the parallel surfaces of the film, the

film thicknessL, and temperature=(T—T,)/T, (or equiva-

surface universality clgs_s of the ordinary transition, v_vhereas Il. FIELD-THEORETICAL MODEL
the (100) surface exhibits the so-called normal transition as-
sociated with the presence of an effective surface fiefd. The leading critical behavior in a film follows from the

Indeed, truncation rod scattering at the FeCo (100) surfacstatistical weight exp{ H{®}) for the configuration®(x)
has provided clear evidence for the presence of an effectives (¢,(x),a=1,...,n) of an n-component field, which is
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proportional to the order parameter, wH&rg3? gration extends over the intervg0,L], wherez=0 andz
=L give the positions of the film surfaces.s the tempera-
E(V(I))2+ Z(bz ture parameter such that in the butk0 marks the transi-
2 2 tion temperature within mean-field theory. The coupling con-
stant g>0 ensures the stability of the statistical weight
+ E(q>2)2_ h- q)) below the transition temperature, i.e., o€ 0. c denotes the
4! surface enhancement, amdand h, are bulk and surface
c fields, respectively. We focus on the ordinary transition at
+f dd‘1x|(§d>2(z= 0)—h;-®(z=0) zero fields, i.e., we adopt the fixed point valte o for the
surface enhancement and keth;=0. After carrying out a

H{(I)(x)}zf dd‘lx”JOLdz

c Fourier transformation with respect to tlie-1 directions
+5®PUz=L)—hy-®(z=L) |, (2.1 exhibiting translational invariance parallel to the surfaces the

_ _ _ N mean-field propagator for the disordered phase (@) in the
with space dimensiod and position vectox=(x,z) of d  _7 representation is given £

—1 parallel and one perpendicular components. 7 lmee-

GD(p1211221LIT):f ddilXHeip-XM(I)(XH,Z]_)(I)(O,Zz)>

1 e P(21=2) 4 o= b(25-21) _ o= b(22+2)) _ gb(21+2)
:%(eb2122|—eb(21+zz)+ TR , b:‘/pz+ T
(2.2
|
The first exponential function corresponds to the bulk part, n+2u )
followed by the contribution from the surface &t 0. Both Zi=1+ —— _+0(u%). (2.5

exponentials together give the propagator for the ordinary
transition of the semi-infinite systenh. £). The remaining The renormalized correlation function reddee Eq.(2.4)]
ratio carries thd. dependence. The propagator satisfies the .

Dirichlet boundary conditionsGp(z=0)=0=Gp(z=L). G(p,z1,2,, L, t,U;u) =Z 5 Gpare(P,21,22,L,7,9),
Equation(2.2) represents the mean-field approximation for (2.9
the two-point correlation function in the film corresponding which is valid in all orders of perturbation theory. The solu-

to the critical behavior ird=4. The non-Gaussian fluctua- tion of the corresponding renormalization-group equation
tions ind=3 are taken into account approximately by the|eads to the following scaling property:

one-loop correction, which amounts to the first term in a

systematic expansion in terms ef4—d: G(p,z1,2,, L, t; ) =Gip 1" 79,(p€,2,1€,2,1 €,LIE).

2.7

Gpare(P.21.22.L.7.9) This holds at the fixed point* =3e/(n+8)+0(e2), and
gn+2 [ di"q (L involves the bulk correlation lengti= &;t~ 7, the exponents

=Gp(p.21.22,L.7)~ 5 TJ 2m® 1o 7=0(€?), andv=13+1[(n+2)/(n+8)]e+O(€?). With a

m suitable normalizatiofisee, cf., Eq(2.13] the scaling func-

XGp(p,z1,2,L,7)Gp(q,2,2,L,7) tion g, is universal. The amplitudg,, which is fixed by this
normalization, and the amplitudg carry the nonuniversal
XGp(p,z,25,L,7)+0(g?). (2.3 scaling factors. We fix; by definingé as the so-called true

As a regularization scheme we use a dimensional regulariz&orrelation length® so that &5 =xn '(1+3z[(n+2)/(n
tion by an analytic continuation in the space dimensibn +8)](1—Cg)e+O(€%)). This expression fog; allows one
=4—¢. As long asz, andz, are both off the surfaces, only to express the momentum scaleintroduced in Eq(2.4) in
bulk singularities occur. We absorb the corresponding poleterms of the experimentally accessible, nonuniversal ampli-
in e by minimal subtraction through the standatdactors tude & :

d=Z20%, g=p297?Z,u, =4zt (2.9 1n+2

p=(&) 1+~

1n7g(1-CoetO(e)]. (28

wherep is the momentum scale, and the bidlfactors aré
If subsequent formulas contain the momentum sgalex-
n+8 E+O(u2) plicitly it is to be replaced by Eq2.8); moreover we omij

Z4=1+0(7),  2,=1 3 € from the explicit list of variables o6.
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Depending on the problem under consideration it is ofterand the amplitude; of the true correlation length above
advantageous to use different but equivalent representatiorns. . In terms of these quantities one has

of the correlation function such as

G(p.21,25,L,t)=Gyzy "91(P2p,21/€,251€,25/L),

(2.9
G(p,z1,22,L,1) =Gy L' "9y (pz1,21 /L, 2, /L, LI E),
(2.10
G(p,Zl,Zz,L,t):g|\/517”gN(pL,le,pZz,f/L),
(2.11

and
G(p121122||—!t)

=Gvp 179 (PE,P(21—2,),p(21+2,) L1 ).
(2.12

The nonuniversal amplitude§, and the universal scaling

functionsg,, x=1, II, Ill, IV, and V, are fixed by the fol-
lowing normalizations:

lim lim limg/(a,B8,y=8,6)=1,

a—® B—oxn §—o

(2.13

lim lim lim g”(a,,B,'y=,3,5)=g”(0,0,0,0:l,
a—0 B—0 6—0

(2.19
lim Iim gy(a,B=12,y=8=1/2,5)=1, (2.195
a—0 6—0
lim lim gy(a,B=al2,y=B=al2,6)=1, (2.16
6—0 a—0
and
lim lim lim lim gy(a,B8,7,6)=:0y(*,00,0)=1.

B—0 a—®o y—o o

(2.17)

The universal scaling functiorgg, can be expressed in terms

of each other because, in EqR.7) and (2.9—-(2.12, the

Gy=B2(&§)4 21y, (2.19

wherel{ is a universal number, whose valife=1.58 is de-
rived in Appendix A based on Ed2.17). In the following
most of our analysis focuses on the scaling functigrused
in Eq. (2.9). For that case one findsee Appendix A the
universalratio

n+2

g“/g\/=2 1+En+8

+0(€?)].

(2.20
With these results we finally obtain
G(p,21.25,L,1)=B?(&;)* " R(z1 /&) 7

XOu(pz,2116,2,1€,2,10),
(2.21)

where R=2U(1+ e[ (n+2)/(n+8)]+0(e?))=4.21 is a
universal number. Thus in all our subsequent formulas for
film properties theiabsolutevalues are determined and fixed
by the two nonuniversabulk amplitudesB and &; .

The actual order parameté@P) for a particular second-
order phase transition is proportional to the fietdintro-
duced in Eq(2.2), i.e., OP(X)=b¢(x). The value ofb de-
pends on the particular systertbinary alloy, liquid,
ferromagnet etg. Moreover, any rescaling df by a dimen-
sionless number renders another OP which is equally valid
for describing the singular behavior of the phase transition.
We emphasize that EqR.9), (2.19, and(2.20 remain valid
if G is replaced b OP(x)OP(x")), {(#(x)) by (OP(x)),
andB by B’ =bB; these replacements have to be carried out
if the present field-theoretic results are used to interpret, e.g.,
the intensity of scattered x-rays or neutrdsee, c.f., Sec.
IV). The actual choice of the OP, as it enters into the expres-
sion for the scattering cross section, is borne out and tight to
the relation{ OP(x))=B'(—t)”.

lll. EXPLICIT PROPERTIES OF THE TWO-POINT
CORRELATION FUNCTION

left-hand side is the same quantity and the sets of scaling The discussion of the correlation function consists of
variables are complete, i.e., from each set one can form any, ee parts. First we set=z,, and analyze its nonanalytic

of the others by a suitable combination of variables.

Since the nonuniversal amplitud€g correspond to the

behavior in certain limits. Then we take into account the case
Z,# Z,, which helps to understand the correlations perpen-

same correlation functio®(p,z;,2,,L,t), and because the e iar to the surfaces. Moreover, the discussion of this latter

scaling functions fixed by the normalizations in EG&13—
(2.17), are universal, their ratio§, /G,, are universal num-

case turns out to be very useful for carrying out integrations
appearing in the scattering cross section to be analyzed in

bers. Thus a knowledge of one of them and of the corregec |v. The film excess susceptibility is discussed in the last
sponding universal scaling functions determines all thepart of Sec. Il

others.

Moreover, as discussed in Appendix A, all nonuniversal
amplitudesg, are determined by any pair of nonuniversal

scale factors which characterize the crititailk properties.

A. Lateral two-point correlation function for z;=2,

In order to investigate various asymptotic properties of

A transparent and experimentally directly accessible choicéhe lateral behavior of the two-point correlation function, we

for the latter is the nonuniversal amplitu@eof the leading
temperature singularity of the fields(x)) in the bulk below
Te,

(p(x))=B(—1)*, (2.19

resort to short distance expansiofDE’s),”® distant wall
corrections? and results of the perturbation theory sup-
ported by appropriate exponentiations of the explicit
e-expansion results. With, =z,=z, in the present context a
representation of the form
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G(p,z,L,t)=G,zt " "g(pz,z/&,2/L) (3.1

is useful. According to Eq.(2.9, one hasg(u,v,w)
=g;(u,v,v,w) with g(0,0,0)=1 [Eq. (2.14]. For semi-
infinite systems, i.e.L ==, the SDE in the cases=0, p
—0 andp=0, t—0"*"°leads to the asymptotic behaviors

G(p,z,L=2,t=0)=G,z" "g;(u=p2)

— Guz' 1+ A(p2) T+
—0
P 3.2
and

G(p=0,z,L=00,1)

=G 2t 9,(v=2/¢) — Gz M1+ By(2/ &) T+ -]
t—0

=Gzt M 1+By(Z &) M -], (3.3

respectively, with yy;=v(7—1), g,(u)=g(u,v=0w
=0), 91(0)=1, g»(v)=g(u=0,,w=0), andg,(0)=1. In
the case wherp=0 andt=0, one has

G(p=0zL,t=0)=G,z'" "g3(w=2/L), (3.9
with gz(w)=g(u=0,y=0w) so thatg;(0)=1. In order to
infer the first nontrivial dependence anfor L— e, accord-

»dG(p=0,zL",t=0
[ )0
L aL’

L—oo

:Ml(ﬂz)l”(E

with C=[1/(7—1)1fd?"tyy” @=3* 7Y’ (y). Thus we find
g3(Ww—0)=1+C,w 7, whereC,;=Cu~"/G, is a uni-
versal number, i.e.,

G(p=0zL—%o,t=0)=G,z} " [1+Cy(z/L) 1T+ ...].
(3.9

Finally we note that due to the normalizatig{0,0,0)=1
the scaling functiong(u,v,w) is given by the ratio
d(pzz/&,2/IL)=G(p,z,L,t)/G(p=0,z,L=2,t=0) from
which the prefactorg, zt~ 7 appearing in Eq(3.1) drop out.
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ing to Eq.(3.4) one can equally consider the linzit-0 for L

fixed. To this end we consider the SDE of the renormalized
film correlation function in real space:

(6(x),2)$(0.2)) o™ *(2)*% b (X)) 1 (0))
= u 3 (p2)*0 70 (ux)) T (g /(é)

Here ¢, denotes the normal derivate ¢ftaken at one of the
surfaces, andv(y) is a dimensionless scaling function for
the film which is universal up to a nonuniversal prefactor.
The scaling dimensions op and ¢, are x=3(d—2+ 7)
and xs=3(d—2+ 7)), respectively. The scaling function
Y(x,/L) describes the influence of the distant wallzatL

on the lateral correlations close to the near walkat0. In
order to obtain its leading asymptotic behavior for/L
—0, we use the identity

G(p=0,zL,t=0)=G(p=0,z,L=,t=0)

»39G(p=0,z,L",t=0
—f (p JaL
L JL’

(3.6

The first term on the right-hand side is equal ggz*~”
[compare Egs(3.2 and (3.3)]. The leading correction is
given by using the SDE in Ed3.5) for the second term:

* 1%
== j dd_lXH JL dL,E<¢(XH !Z)¢(0!Z)>

— —f dd71X||J'L dL'f,u,diz(,u,Z)z(Xsix)(,uXH)72XSY(XH/L’)

Z) -1+ 7]H~

(3.7)

2 [ a?
E—CE-i—Z(SZ-I—Il)—l

+0(€?)

Cg~0.5772 is Euler's constant, an8,=0.083 andl,
=(.287 are given by EqB9) in Appendix B1. Within thee
expansion the full forms of the scaling functiogg(u),
g»(v), andgs(w) can be found in Appendix Bisee Egs.
(B1) — (B3)].

In Fig. 1 we display the three scaling functiogs i=1,
2, and JEqgs.(B1)-(B3)], corresponding to Eq$3.2), (3.3),

The e expansions of the amplitudes of the leading asymptoti@nd (3.4) as obtained within mean-field theofMFT), i.e.,

terms follow from Egs.(B6), (B7), and (B8) in Appendix
B 1:

A=—11 n+e 1-Cg—1In2 2

1= +en 8( —Cg—In2)+0(€) |,
B;=—|1+ nre 1—Cg)+O(€?
1 € 8( Cg)+0O(€9)], (3.9

for e=0, and from renormalization-group-guided perturba-
tion theory (PT) as well as their leading behaviag;(x;
—0)=0; (X)), X3=Uu,X;=V,xg=w. Within MFT the three
scaling functions have the same limiting form for small scal-
ing variables withA;=B;=C;=—1 and the critical expo-
nent» =2. Beyond MFT, in Fig. 1 we use)=1.48 as the
best available estimafé whereas the amplitudes are evalu-
ated in first order ine [Eq. (3.9 for (n,e)=(1,1)] so that
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9:(u), 9{v), ga(w)

0.1 0.2 0.3 0.4

u=pz,v=z/§w=z/L

0.5

FIG. 1. The three scaling functions describing the lateral corre-

lationsg(pz,z/£,z/L) in the film [Eq. (3.1)] for the limiting cases
p=0, £&=w, or L=: g,(u=p2)=g(pz,0,0) [T=T,,L=c, Eq.
(32)]1 gZ(V:Z/S)Eg(Ovz/é:!O) [p:OIL:ool Eq (33)]1 and gS(W
=2z/L)=g(0,0Z/L) [p=0,T=T., Eq. (3.4]. The two uppermost
curves correspond to the mean-field resultsgpri=1, 2, and 3,
and to theid eading behaviog;(x;—0)=g; ,(x;), respectively, with
X1=U, Xp=v, andxz=w; within MFT g;=0,, 91,=02,=03,,
andgz=gs, . The lower six curves corresponddg(x;) [Egs.(B1),
(B2), and(B3)] andg; ;(x;) as obtained byerturbationtheory for
d=3. The difference betweeg; and g, is revealed only in the
inset: gy (u)=1+Au" 7, g, (v)=1+B;v "7, and g5, (w)
=1+C,w 7. Within MFT one hasA;=B;,=C,;=-1 [Eq.
(3.9] and 7=2, whereas for 1f,d)=(1,3) PT yields A;
=—0.9099 B,=—1.1409,C,=—0.9035, andy=1.48. For van-
ishing scaling arguments all scaling functions attain 1.

A;=-0.9099, B;=-1.1409, andC;=-0.9035. Within
mean-field theoryg,=g, and the leading asymptotic behav-
ior g3, provides already the full scaling functiay. Beyond
MFT there is a small difference betwees andgs,. This
difference is much bigger for the scaling functiansandg,
describing the semi-infinite system.

The above discussion demonstrates that,zftixed, the
two-point correlation functiorG(p,z,L,t) has a finite value
G(p=0,z,L=2,t=0) which is attained via cusplike singu-
larities: ~p 1" 7(p—0,1L=0t=0), ~(1/L) " 7(1L
—0,p=0t=0), and ~(1/¢) " **7(t—0p=0,1L=0). In

terms of these variables the critical exponent is the same f

all three cases and only the amplitudes differ. These sing
larities remain if only one out of the above three variables i

zero and the remaining two both vanish. This behavior,lar;ty
which includes the smooth interpolation between the corret1
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h,(u,w)=g(u,v=0w), (3.1
and
G(p=0.zL,t)=G,z}" "h;(v,w),
ha(v,w)=g(u=0y,w), (3.12

with u=pz, v=2/¢, andw=2/L. All three scaling function
can be obtained from E@B17). Since the discussion of all
three scaling functions is analogous we demonstrate our
analysis only forh;(v,w). We introduce the polar coordi-
natesw and g,

o= \W2+wW2=z£2+L 2,

e=arctarfv/w)=arctarilL/¢), v=wsing, (3.13

W= w COS¢p,

which lead to

hs(v,w)=hs(w Sing,w cosep) = hé‘?m(w, Q).
(3.19

Since the limitw—0, i.e., 1£—0 and 1L—0, is equivalent
to the limitz— 0 for ¢ andL fixed the resulting singularity is
compatible with the SDE, so that

hg},ar(wao,(p) = HE)3)((,D) + H(ls)(cp)afl+ M-,
(3.19

The explicit form of the scaling functiohs(v,w), as ob-
tained from perturbation theory i@(e), is in accordance
with Eqg. (3.15, and renders explicit results for the coeffi-
cientsH®)(¢) andH{®(¢):

Ho(¢)=h{Dal@=0,0)=hs(v=0w=0)=1 (3.1§

is independent ob and equal to 1 due to the normalization
g(u=0yv=0w=0)=1. With this result thee expansion of
H{®(¢) follows by comparing the: expansion of the right-
hand side of Eq(3.15 with the limit w—0 of the e expan-
gion of h)a(®,@). As expected, one finds that{®(e)
nterpolates smoothly between the valti®(¢=0)=C,
see Eq.(3.9)] corresponding to the amplitude of the singu-
~(1L) 7 for u=0 and v=0 and the value
)(p=ml2)=B, [see Eq(3.9)] corresponding to the am-

sponding amplitudes, is described by the scaling function®litude of the singularity~ (1/¢)~** 7l for u=0 andw=0.

hy, h,, andh; of two variables instead of the scaling func-
tions with one variable ag;(u), g,(v), andgs(w):

G(p,z,L=0c,t)=G,z}" "h;(u,v),

h,(u,v)=g(u,v,w=0), (3.10

G(p,z,L,t=0)=G,z}" "hy(u,w),

In Fig. 2 all three amplitude functions{Y(¢), H{?(¢), and
H(lg)(go) [see Eqs(B10)—(B12)] are shown in MFT and in
first order in e (PT). Within MFT H{Y)(¢) of the semi-
infinite system is constant and{?)(¢)=H{*(¢) exhibit a
nontrivial dependence op. Beyond MFT all three functions
interpolate between the amplitudas, B;, andC; [see Eq.
(3.9] in a nontrivial way.

In Figs. 3, 4, and 5 we display the full scaling functions
hy(u,v), hy(u,w), and h;(v,w), respectively. In order to
obtain such a scaling function beyond the leading asymptotic
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H1( i )((P)

n/2

FIG. 2. G(p—0,z,L=»,t—0), G(p—0,z,L—0,t=0), and
G(p=0,z,L—0,t—0) attain their maximum valu&(p=0,z,L
=»,t=0)=G,z}"7 via cusplike singularities H{Y(¢)[z(p?
+EHWTLwith  p=arctarfi(pd) ], HP(e)[2(p?
+L7 )Y with  e=arctanpl), and H{P(e)[z(¢2
+L~)Y21=1* 7 with p=arctan(/&), respectively, interpolating
smoothly between the singularit&l(pz)’l*’iu for (t=0L =)
and By(z/&)"1* 7 for (p=0L=%), Cy(z/L) "7 for (p=0t
=0) andAl(pz)_1+7’\\ for (L=0,t=0), andCl(z/L)‘“’?H for (t
=0,p=0) and By(z/¢) " **" for (L=%,p=0), respectively. In
O(e) of PT, the amplitude functionsl{)(¢), i=1, 2, and 3, are
given by Egs.(B10), (B11), and (B12). In O(e) one hasH{?(0)
=H@(7/2)=A,=—0.9099, HO(7/2)=HE(7/2)=B,
=—1.1409, andH{?(0)=H{®(0)=C,=—0.9035. Within MFT
H)(¢=0)=H{(¢==/2)=—1 andH{Y(¢) is constant; more-
over H{?(¢)=H{®(¢) but not constant.
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05 1

h,{u,w)

FIG. 4. The exponentiated scaling functibp(u=pz,w=2z/L)
[Eqg. (3.1D] at bulk criticality t=0. We show the contour lines
ho(u,w) =hZ, [o=(u?+w?) Y2 p=arctan@ww)] for h,=0.8,
0.75, 0.7, 0.65, 0.6, 0.55, and 0.5 with their projections ontaitie
plane as well a,(u,w=0)=g;(u) [Eq. (3.2] and h,(u=0w)
=g3(w) [Eq. (3.9]. The dashed lines correspond to the leading
singularites  g;(u—0)=1+Au" 7 and gy(w—0)=1
+C,w 7, respectively. In the latter case the difference between
the leading behavior and the full scaling functigg(w) is hardly
visible. Thus the leading dependence »h for p=0, t=0 re-
mains valid nearly up to the middle of the film 2L =0.5.

p~ 17 cusplike singularity upon varying or L, the
(1/€) ~** 7 cusplike singularity upon varying or L, and the
(1/L) "7 cusplike singularity upon varyingor p, respec-
tively.

B. Perpendicular correlations

In a semi-infinite system the perpendicular correlations in

form we first subtract its leading contribution in its ré@l space define the exponent=(7+ 7)/2 through the

e-expanded form inO(e) from the full expression of the limit G(x,z;—%,z;,L=02,t)~2,

"2 with x; and

scaling function, and add the leading exponentiated contribuz, fixed. A Fourier transformation leads to the relation
tion afterwards. This exponentiation scheme is consistem;(p:O,ZI,ZZ,L:oo,t)~zi”ﬂ with z, fixed andz;—.

with the explicit expanded form up to and includi@ge). In

Figs. 6, 7, and 8, we show cross sections of the three-
dimensional plots in order to illustrate the emergence of the

h(u,v)

FIG. 3. The exponentiated scaling functibp(u=pzv=2/§)
[Eqg. (3.10] corresponding to the case=. We show the contour
lines hy(u,v) =h{Q, [ 0= (u?+v?)Y2 p=arctang/u)] for h;=0.8,

ha(v,w)

FIG. 5. The exponentiated scaling functiomg(v=2z/¢&w
=2/L) [Eq. (3.12] for lateral momentunp=0. We show the con-
tour lines ha(v,w)=h)_ [w=(v?+w?)2 p=arctang/w)] for
h;=0.8, 0.75, 0.7, 0.65, 0.6, 0.55, 0.5, and 0.45 with their projec-
tions onto thevw plane as well afi;(v,w=0)=g,(v) [Eq. (3.3)]
and hg(v=0w)=gs(w) [Eqg. (3.4]. The dashed lines correspond

0.75, 0.7, 0.65, 0.6, 0.55, 0.5, and 0.45, with their projections ontdo the leading singularitieg,(v—0)=1+B;v_1*7 and gg(w

the uv plane as well ah;(u,v=0)=g;(u) [Eq. (3.2] andh;(u

—0)=1+C,w "7, respectively. In the latter case the difference

=0,v)=0g,(v) [Eq. (3.3], which are discussed in Fig. 1. The between the leading behavior and the full scaling funcgefw) is

dashed lines correspond to the leading singularigigai—0)=1
+Au" 7 andgy(v—0)=1+B,v 17, respectively.

hardly visible. Thus the leading dependencezéh for p=0 and
t=0 remains valid nearly up to the middle of the filmzit. =0.5.
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1 + t 1 +
— g — gs(w)
09 ¢ —= h,u,v=0.02),v=2/¢§ 1 09 ¢ —— hy(v=0.02,w),u=pz=0 |
—-- h,(uv=0.06), w=2z/L=0 == hy(v=0.06,w),v=2/§
08 f 08 F
o =3
07 07 F7TTTTIIRIIN
06 + . D 0.6 1 s N
= h,(uw=0.04),v=2/&=0 - = h,(u=0.04,w),u=pz *3
------- hy(u,w=0.08), w=2z/L = hy(u=0.08w), v=2/£=0
0.5 U + + 0.5 t t t
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
u=pz w=z/L
FIG. 6. The scaling functiorg;(u=pz) [Eq. (3.2] with the FIG. 8. The scaling functiogs(w=2/L) [Eqg. (3.4] with the

cusplike singularityg;(u—0)= 1+A,u"*7 evolves out of the cusplike singularitygs(w—0)= 1+C,w~ "7 evolves out of the
scaling functions,(u,v=2/£) [Eq.(3.10] andh,(u,w=2z/L) [Eq.  scaling functionss(v=2/¢,w) [Eq.(3.12] andh,(u=pzw) [Eq.
(3.11] in the limitsv—0 andw— 0, respectively, which are ana- (3.11] in the limitsv—0 andu—0, respectively, which are ana-
lytic functions ofu, with a maximum au=0, for v#0 or w#0. lytic functions ofw for u#0 or w#0. The various curves corre-
The various curves correspond to vertical cuts of the surface showspond to vertical cuts of the surface shown in Fig. 5Jerconst

in Fig. 3 forv=const withw=2z/L=0 and in Fig. 4 fow=const  With pz=0 and in Fig. 4 foru=const withz/§=0. We note that,
with v=2/¢=0, respectively. different from Figs. 6 and 7, the scaling functiomgv# 0,w) and

h,(u#0,w) are nonmonotonous functions and exhibit a maximum

Note that in real space G(x|,z;,z,,L=,t=0) atw=0 and a local minimum av=0.

increasesas function ofz, for z, and x| fixed, reaches a

maximum at a certain valugf =z,f(x|/z,) and finally van-  =,t=0) (see Ref. 76 The SDE leads up to a constant
ishes forz;—co. This increase for &z,<z] leads to the amplitude to the expression

divergence ~zf”i, 1-17,=0.25 of G(p=0,z,,2,,L

=,t=0)=[dx(¢(0,21) (X ,2;)). The coordinatesz,

andz, can be interchanged. Actually conformal invariance G(p=0z,,z,,L=,t=0)

fixes completely the functional form o&(p=0,z;,2,,L
z,\(m~1r2

- Z2
1 ~(212) 17" 0(2,-25) - +0(2,~21) -
1 2

Ge(V) L (.17
09 T —= h(u=0.02,v), u=pz
== h,(u=0.06,v), w=z/L=0
08 + [see Eq.(4.69 in Ref. 77]. The explicit calculation to first
' N order ine gives

07 1 RN

G(p=0,z,,2,,L=x,t=0)

0.6 + (m-1)12
=G,(212,) "2 O(z,—z )9+(~)(z -z )ﬁ H

hy(v,w=0.04), u=p z =0 Iz v "2z 2 Vg,

05 1
------- hy(v,w=0.08), w=2z/L

(3.18

0 0.05 0.1 0.15 0.2

v=z/¢ for arbitraryz, andz,. This perturbation theory guided result

FIG. 7. The scaling functiom,(v=2/£) [Eq. (3.3] with the for d=3 has a structure similar to the exact result from con-
cusplike singularityg,(v—0)=1+B;v~1* 7l evolves out of the formal theory ind=2 (see Refs. 76 and J.7Therefore, one
scaling functions, (u=pzVv) [Eq. (3.10] andhs(v,w=2z/L) [Eq. IS led to the conclusion that E(3.18) is a good approxima-
(3.12] in the limitsu—0 andw—0, respectively, which are ana- tion for the exact correlation function id=3. Guided by
lytic functions ofv, with a maximum awv=0, foru#0 orw=0. these considerations we find that in the case that the vari-
The various curves correspond to vertical cuts of the surface showablesp, t, and 1L are small but nonzero, the explicit results
in Fig. 3 for u=const withw=2z/L=0 and in Fig. 5 fow=const  for G obtained from thee expansion can be cast into the
with u=pz=0, respectively. following forms:
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G(pHO,Zl,Zz,LZOO,t=O)

1-7
Z N
1— 2

0(z,-21)71 77(_

=0 Z

X[1+A1(pz) Y7+ .]

1-n
1-n Zl

+0(z21-2,)z; 7| —

73

><[1+A1(p21)_1+’7l+-~]}, (3.19
G(p=0z;,2,,L=2,t—0)
1-7,
=g.|[®<22—zl>z%"(9)
73

—1+

1-q) A o
+0(z,-2,)2; >
2

Z_;)“Z...”,

G(p=0,Zl,ZZ,LHOO,t=0)

x|1+B;

X

1+B; (3.20

and

Z

1-7
:gn[ (”)(22_21)2%7’(_)
Z;

22)—1+7,+ }

X =
L

1+C,

z,\17m

+®(zl—zz)zé_”(z—2

%)“Z._.H.

These expressions are valid for arbitrafyandz, as long as
the scaling variablepz, ,, z, ,/£, andz; ,/L are small. The
explicit e expansion provides the amplitudas, B,, andC,
given by Eq.(3.9). For the special casg =z,, Eqs.(3.19—
(3.21) reduce to Egs(3.2), (3.3), and(3.8). In the limits p
=0,t=0, andL =<, E@gs.(3.19-(3.21) reduce to Eq(3.17
[recall , = () + 7)/2].

Finally we note that Eqs(3.19, (3.20, and (3.2, and
the full film correlation functionG(p,z;,z,,L,t) up to first
order ine [see Eq.B17) in Appendix B 2, satisfy the so-

x|1+C, (3.20)

called product rule derived by Parry and Swain for the cor-

relation function algebra of inhomogeneous flujdee Eq.
(2.20 in Ref. 78:

G(p,z1,2,,L,1)G(p,25,23,L,1)
:G(p122!ZZ’L!t)G(p121:Z3;L;t)
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volves the derivative of the order-parameter profile which
vanishes abové@ .. A nontrivial test of this relation would
require results for the ordered phase belbw

C. Susceptibility

As became apparent in Sec. Il B, the full dependence of
the correlation functiorG on all its variables, z;, 7z, L,
andt is rather complicated. Therefore, it increases the clarity
to consider a spatially averaged quantity which still displays
interesting specific properties of the critical behavior in a
film geometry. The singular part of the total susceptibility
per area defined as

L L
X(L,t):f dzlf dz,G(p=02;,2,,L,t) (3.23
0 0

provides such a reduced but still interesting quantity in that it
depends only on two variablésandt. In addition, this sus-
ceptibility is directly accessible in an experiment which
probes the response of a thin magnetic film on the applied
external field in the limit of vanishing field strength.

From the scaling properties f@ one obtains the follow-
ing scaling property foly [see Eqs(2.21) and (A11)]:

L)%
x(L,t)= BZ(&?)"”(E) Rf(y=L/&)=L3""G,f(y),
° (3.29
where

1 1
f(y)= fo dxlfo dxox1~ 79 (0X1Y,X2Y,X2)  (3.25

is a universal scaling function. Fgr—o, i.e., L—~ andt
fixed the scaling functiori(y) vanishes as follows:

fy—o)=Ay 2"7+By *"7+Cy *"7e Y+ 0O(e )

(3.26)
with
A=1-"€+0(€?),
_ -~ 1 1 2
B=—2{1+¢ E_ﬁ —1|{+0(€?), (3.27
C=4{1-¢ z(l—i +1|{+0(€?)
= € 5 \/5 (€),

so that, withy=v(2— %) and ys= y+ v,

L
x(L—oo,t)= BZ(ES)"“R[ §—+At‘7+ Bt~ s
0

X

1+ ge*’@r O(eZL’f)H . (3.28

3.22 The first term -t~ ?) corresponds to the bulk contribution
for all 0<z;<z,<z;<L. The second identity derived by of the total susceptibility(We recall thaty is the total sus-
Parry and Swairjsee Eq.2.2]) in Ref. 7§ is trivially ful- ceptibility per aread of one surface and that the total vol-
filled in the disordered phase considered here because it imime of the system i#L.) The universal amplitudel [Eq.
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(3.27)] is in accordance with the corresponding known uni- F A L\ (a2
versal amplitude ratio° The second term~t~s) corre- " TS'"SO =— Hd -l =
sponds to the sum of the excess susceptibilities of two semi- P o(®) (&) &0
infinite systems within the surface universality class of the —(a=2)Iv —(ag—2)Iv
: - . . X + + .
ordinary transition resembling the two bounding surfaces of {Any Ay Oy}
the film. The corresponding universal amplitud® [Eq. (3.31

(3.27] of the semi-infinite systems is in accordance with thea, s the area of the cross section of the film. In both Egs.
corresponding result in Ref. 81. Finally, the last terre "¢ (3,29 and (3.31) the first two terms correspond to the bulk
in Eq. (3.28 is the actual finite-size contribution induced by and surface contributions, respectively. In both cases the
the finite distancé. between the two surfaces confining the curly bracket represents a universal scaling function. For the
film. It is interesting to note that the structure of this finite- susceptibility the finite-size part vanishes as

size termCt™ Ysexp(—L/¢) differs from its counterparts for e _

the free energy and specific heat in two respésee Egs. gy—)=Cy *s""e” Y+ 0(e”?) (3.32

(4.8 and (6.14 in Ref. 34a)]: (i) For ordinary-ordinary whereas for the free energy one has

boundary conditions the finite size terms of the latter two

both vanish~exp(—2y) for largey=L/¢. (i) The prefactor O(y—oo)=Cy (" 2@e"2+0(e”¥). (3.33
Ct™7s is replaced byC’'t” *y**") with x=a,—2 (free en- At this point we note that the film susceptibility has also
ergy and k= as=a+ v (specific hegi respectively. From  peen discussed by Nemirovsky and Frésele Eqs(3.149

the explicit result inO(e) we infer that in the case of the and(3.169 in Ref. 68. Instead of the §,z,,2,) representa-
excess susceptibility this power law in front of the exponen+ion of the propagator emp]oyed here, they used a discrete
tial is either missing or has an exponent@fe?). In orderto  spectral p- «; ;) representation. In the discrete representation

make clearer the comparison between the finite-size scalinge propagator for Dirichlet boundary conditions is given by
of the free energy and specific heat on one hand, and the

susceptibility on the other hand, we rewrite the susceptibility

Gpi(p,7)=—F""3, =a(j+1)/L,
as D,](p 7) p2+7-+K]2 Kj (] )
yslv i
X(L,t) 2(§ )d+1R( ) {Ay—ylv+ By—ysly+g(y)} J:0,1,2 PR (334)
2 The (p,z1,2;) and (p-«;) representations are related by the
329  formula

where (2= n=vylv, 3—np=1ys/v) 5 =

g(y):f(y)_Ay72+n_By73+7]- (33@ GD(p,Zl,Zz,L,T):E 2 Sir(szl)Sir(KjZ2)GD’j(p,7').
The finite-size scaling for the singular patt;,q of the free (3.39
energy of a film has a similar forfid=(2—«)/v, d—1  The one-loop contribution to the total susceptibility is given
=(2—ag)/v] [see Eq(4.1]) in Ref. 30a)] by

gn+2

L
___f f f (27 )d lf dzGy(p=0.2;,z,L,7)Gp(q,2,2,L,7)Gp(p=02z,25,L,7)

B gn+2J f j d4—1q (2)3 i
- (2m)d-1 L) my =0

X Sir(Kmlzl)Sin(Kmlz)GD,ml(p: O:T)Sinz(szz)GD,mz(qa T)Sin(Km:sZ)Sin( KmSZZ)GD,m3(p: 0,7). (3.36

After performing the integrations, one has to evaluate theand one approaches the bulk critical temperafiy = ),
triple sum. In their calculation of the susceptibility Ne- where¢ diverges asty {[T— T (L=2)]/T(L==)}"". For
mirovsky and Freed omitted the termg # m; in the above  Dirichlet boundary conditions, as considered here, the criti-
sum, which leads to an erroneous expression for the scalingal temperature of the film occurs at a lower temperature
function f(y). If, however, all terms in the triple sum are T(L)<T.(L=«). Therefore, the film is not critical at
properly taken into account, one obtains, as expected, the (L=c), and thus the susceptibility is an analytic function
same correct result fdi(y) as via the p,z;,z,) representa- of taroundt=[T—T,(L=%)]/T(L=2%)=0. Therefore, the

tion. finite-size scaling functiog(y—0) has the form
The above discussion focused on the limit L/{— o,

i.e., on increasing the film thickness at a fixed temperature. g(y—0)=—Ay ""— By~ %s/"+ D+ &y + O(y?"),
In the opposite limity— 0 the film thickness is kept fixed (3.37
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with
D—11~7T212)1 O(€? 3.3
—1—2 —€ %'F 2+ + (E) ( . 8)

and
£= 17 aa,- X 4 10, 106, 1) |+ O(e2
=~ 10| 1 T €| 482~ 557 T 102,100~ 1 ||+ O(e%),
(3.39

so that

f(y—0)=D+ &Y +0(y?"). (3.40

The numbers,, b,, andb, are given in Eq(B26) in Ap-

pendix B 3. For f,d) =(1,3) the values of the amplitudes to

first order ine are D=0.08142 and¢=—0.01375; forA
andB, see Eq(3.27). The explicit form of the scaling func-

tion and its limiting behaviors are given in Appendix B 3.

Figure 9a) showsf(y) within mean-field theory and within

perturbation theory in first order as well as its correspond-

ing asymptotic behaviors for large and small valuey; dfig.
9(b) displaysg(y) for large values of,.

Our investigations are restricted to temperaturesT,. .
Recently Leite, Sardelich, and Coutinho-FilicSC)®? ana-
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FIG. 9. Universal scaling function§(y) (a) [Eq. (3.24] and
g(y) (b) [Egs.(3.29 and(3.30] of the film susceptibility for Di-
richlet boundary conditions at both surfaces. The dashed lines are
the MFT results, whereas the full lines include non-Gaussian fluc-

lyzed amplitude ratios of the specific heat and the susceptiz,-vions obtained by PT in first order [Egs. (B22), (B23), and

bility above (T>T.) and below T<T.) the bulk critical

(3.30]. The dotted lines indicate the asymptotic behaviord (of

temperature in the parallel plate geometry for various bound;o) f(y—o), g(y—0), and g(y—=) given by Egs.(3.40
ary conditions. These amplitude ratios are functions of thq:g_za), (3.37), and(3.32, respectively. The dotted lines correspond

scaling variableL/&.. [where £- is the correlation length
above (+) and below ) the bulk critical temperatuteand

to the e expansion of these asymptotic behaviors upOte) in
order to be compatible with the full scaling functiofi¢y) and

describe the surface excess and finite-size contributions @f(y), whosee expansions up t®(e) are shown here as full lines.
the system. Their result for the amplitude function of theThe dash-dotted curves show the exponentiated forms of the

susceptibility aboveT, [see the expression faC, in Eq.

asymptotic behaviors given by Eq$3.40, (3.2, (3.37, and

(22) in Ref. 87 can be expressed in terms of the scaling(3.32 using thee-expansion results for the amplitudes but the best

function f(y) as introduced in Eq3.24). Within this frame-
work the results of LSC to first order ia for Dirichlet

available numbers;=0.031 andv=0.630 for the critical expo-
nents.f(y) has a turning point@®) aty=1.851 in MFT and ay

boundary conditions are equivalent to the following version=1.376 inO(e); f(0)=D [Eq. (3.38].

of the scaling functiorf(y):

1
fLsc(Y):y_z[l— §+§f0 del/Z( Js %) - 2—7; +0(€?),
(3.4)
with
oc(u2_a2)—1/2du
fad @)= f “exp2au)—1 (342

For small values of the scaling variabjethis scaling func-
tion f| sc(y) deviates even within mean-field theayyalita-
tively from the actual correct forri(y) given in Eqs.(B23)
and(3.40. Moreover, fory=<10 the difference betweeh s¢
andf becomes larger than 10% @(e) and larger than 25%

IV. SCATTERING CROSS SECTION

A. Scattering theory

As pointed out in Sec. | the diffuse scattering of x rays
and neutrons under grazing incidence allows one to probe the
local structure factor near interfaces and in thin films. In this
section we discuss how the singularities of the two-point
correlation function near criticality in a film, as calculated
above, translate into singularities of the diffuse scattering
intensity under the aforementioned experimental conditions.

We consider a film (&z=<L) composed of a material 2
sandwiched in between two half-spaces filled with materials
1(z<0) and 3 ¢>L), respectivelysee Fig. 10 Anincom-
ing plane wave of x rays or neutrons with momentith
=(k;,q;) impinges on the 1-2 interface at an angle of
incidence ¢; so that g;=K'sinae and Kk

within mean-field theory. These discrepancies are due to the K'cose;(cose;,sing;,0). \=2#/K' is the wavelength of
fact that even within mean-field theory the results of LSC dothe x rays or neutrons. We assume that media 1 and 3 are

not reproduce the correct surface excess contribitiars
finite-size contributio Eq. (B23)].

homogeneous, and that the 1-2 and 2-3 interfaces are later-
ally flat so that their contributions to diffuse scattering can be
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tions. Typically § and 8 are of the order 10°. For Ren

<1, total external reflection occurs fet<ea.. For L=

one hasag,=(28,)Y2 whereas forL=0 ag3=(283)"2
Since the angle of total reflection depends only on the dif-
ference n(z— —x)—n(z— +«)>0, for any finite O<L

< the incoming wave is totally reflected far<a,,3, in-
dependent of the index of refraction within the film. None-
theless the types of waves propagating in the film depend on
whethera= a.,, (see below. For the present setup the wave
field has the form¥ (r,K')=e*i "Iy (z,«) with

2 9241 (@)e (@7 z<0
L . )
W(z,a)=14 Si(a)e92D2ts (@) 9202 o<z<L
5 t, (a)el93(®)2, z>L,
4.2
) (4.2
where
FIG. 10. A film (0<z<L) filled with material 2 is sandwiched
in between a half-space<0 filled with material 1 (typically r(a)=[(0,—092)(g>+Qqs)
vacuum and a half-space>L filled with material 3 acting as a 2ig,L
supporting substrate for the film. A plane wave with wave vector +e7925(q,+02)(d2—g3) [/ A(e),
K'=(k;,qg;) =K'(coszcoseg, ,cosg;sing; ,sine;) impinges on the
1-2 interface az=0. The reflected beam has the wave ved€or S, (a)=20:(02+d3)/A(a),
=(ki,—q;); the transmitted beam is not shown. Fluctuations in the piaL
film give rise to an off specular elastic diffuse scattering with s_(a)=201(g,—qg)e”2"/A(a), 4.3

=(k;,0¢) =K' (cosa;coses,cosassin s, —sinay), KI=Ki=K. _
tL(a)=4q,0,e' (%2 WA (a),

ignored. Within the plane of incidence there is a specularly DL

reflected wave wittK"=(k;,—q;). The mean value of the A(a)=(0:1+092)(d2+0q3) +€792"(q;—92)(d2—q3).

electron density in the case of x rays and of the scatteringince the scattering cross section is independent of the inten-
length in the case of neutrons determine the intensity of th‘%ity of the incoming beam without loss of generality, we
reflected beam whereas fluctuations around the mean valye, e set the amplitude of (r,K') equal to 1. The vertic':al

give rise to scattered intensity in off-specular directions

K'=(k;,q;<0) with q K fsin and K components of the momentum are given by
= Ke, Gy = Qs ¢

=K cosas(coseyr,singy,0). We consider only elastic scatter- g1(a)=K sina,
ing, i.e., K'=Kf=K"=K. (For the more complex case of (4.4)
neutron scattering under grazing incidence from magnetic q]-(a):K\/njz—co§azK\/sirFa—25]+2i,Bj
systems, see Ref. §3.

In order to proceed, we assume that the mean values of =K\/Sin2a—sin2aclj+2i,8]-, j=2,3.

the electron density or of the scattering length density i - ' . e
each medium is constant and varies steplike across the t\Dg tt)hfr Ilmltilnch_aie trr:aththe film turns into a semi-infinite
interfaces 1-2 and 2-3. This gives rise to the following ingi- SUPStrate, 1.el. =, one has

i~ /50 . .
ces of refractior” i@z (@) 1017 7<Q

Yoo Z,0) = { )eld2(@)z, z=0, 49

4D with

z<0:n=n,=1, 0<z<L:n=n,=1-38,+ip8,, ooyl

z>L:n=n3=1-53+ipB;.

In Egs.(4.1) we consider the case that medium 1 is vacuum (@) =(d1=02)/(d1+dz2), tep(@)=20:/(q1+ q24)f.6
and the generic case for hard x rays thatrRel in con- 4.6
densed matter. Although for neutrons one can also havéhe vertical momentum componend§(«) have a positive
Ren>1, in order to limit the number of possible relative imaginary part which is due to the extinction coefficiga)t
values of the indices of refraction for the materials 1, 2, andor a> a.;; and which is present fox<a.,; even in the

3 we do not analyze this latter case in more detail. For x rayabsence of absorption. This gives rise to an exponentially
5=\?%(rJ/2m)ZiN;Z; and the extinction coefficientd3  damped evanescent wave with a penetration delpth
=(NMAT)ZiN{o, i =Nuapddm, where ro=e’/4memc®  =[Im g;(a)] " which increases steeply fax,”a.;; and
=2.814x 10 ° A is the classical electron radius, aNgthe ~ would diverge if3;=0. Within the film there is a superpo-
number density of atoms of speciesvith Z; electrons and sition of two fieldss, («)e'92(*)? and s_(a)e 927 [Eq.
absorption cross sectiono,;. For neutrons § (4.2)]; in the three casea<a., and B,=0, a>a¢, and
=(\?/27)=;N;b; and B=(NAm)ZN;oy; whereb; is the  B,#0, anda<a.,andB,#0, g,(a) has a nonzero imagi-
nuclear scattering length of specie# ; is the cross section nary part leading to an exponentially increasing and decreas-
taking into account incoherent scattering and nuclear readng contribution for increasing. The decreasing part corre-
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sponds to the damping of the incident wave, whereas theherer, is the classical electron radius//K are the direc-
increasing part corresponds to the damping of the reflectetions of observatione is the polarization vector of the in-
wave generated by the interface 2-3. o coming electromagnetic wave, art=(F,—Fg)/2, where
Equation(4.2) describes the wave field (r,K') in the Fae)(K)=Jv_ d°rpae)(r)ec " is the atomic form factor
absence of any fluctuations. This wave field is scattered af; . atomAc(eIg) e W) is the Debye-Waller factor, and
the fluctuating inhomogeneities within the film giving rise to Ny is the numbér of lattice sites in the sample V\/ith the

diffuse scattering intensities in off-specular directions. independent knowledge of all prefactors in Hé.8) the

The computation of this intensity requires one to specify : Bragg :
the nature of fluctuations. In the present context this amounfsymptmIC temperature dependence af(d(2), " yields

Iy - - : OP,)=B'(—t)”. As discussed in Sec. Il, this experimental
to specifying the kind of system undergoing the continuou ! , . )
phase transition in the film, and choosing the appropriaté’alue for 5" enters into Eq(2.21) and there replaceB if

order parameter. As described in Sec. |, the most promisin (p.21,2,,L,1) corrfesponds to the pa_ir correlati(_)n functiqn
candidates for these kinds of phenomena are binary alloys® PIOPi+) as considered below. Similarly the singular dif-

undergoing a continuous order-disorder phase transition cofUS€ scattering around a superlattice Bragg pegis given
cerning the occupation of fixed lattice sitfR,}. (Magnetic y
films are equally well suited. However, the magnetic scatter-

ing of neutron&’ or of x rays is more complicated, and re- do|diffuse  (kf 2

quires separate analyses. Although the details will differ E) =le| <€ [Fe ™ RZ;, ((OP,OPy/)
from the analysis given below, the key features of the singu- bulk H

larities are expected to be borne out similariy these sys- —(OP}{(O Pl,))eiq'(leRl')

tems a given configuration is characterized by spin-type vari- ‘ )

ables {§==*1} such that§=+1 (—1) states that the 2 K—><e |"|Ee_W|2&G (a.0)
lattice siteR, is occupied by & (A) atom. Accordingly the el K Vg ~puit @),

number density of electrons for such a configuration is 4.9

with g=K'—K'— . In the second part of Eq4.9) we
have performed the continuum limit, replacing the lattice
sums by integral§see Eqg.(A3) and the last paragraph in
+S[ps(r—R)—pa(r—=R)1}, (4.7)  sec. Il], because fog— the lattice structure becomes ir-
relevant. From studying the temperature dependence of Eq.
wherepg)(r) is the electron number density in a single unit (4.9) for T>T,, one can infer the correlation lenggrand its
cell Ve occupied by am\(B) atom.[In the case of neutron  amplitude&, introduced in Sec. Il. We note that forsmall
scattering,o(r) stands for the scattering length density andcompared with the inverse lattice spaciagEgs.(A3) and
pa@)(r) =Dbaw)d(r), where bag) is the mean scattering (A5) can be applied to Ed4.9) providedB is replaced by3’
length of the nuclei of specie&(B).] The ordered state of gs determined from Ed4.9).
this system corresponds to a configuration in which the sign Equipped with this knowledge about the critical bulk scat-
of S alternates from one lattice site to any of the neighboringering (i.e., above the angle of total reflection and for a bulk
ones. In this ground state the staggered “magnetization’sample, we can now turn to the critical diffuse scattering
OP,=Se'™ R is spatially constant if the reciprocal lattice from the film. Within the so-called distorted wave Born ap-
vector 7, of the sublattice structure is chosen such thatproximation and for the model of the film as described above
e'm (Ri=RiN= —1 for nearest-neighbor sitd® andR;,. In  one finds the following expressions for the singular part of
reciprocal space the positions of the reciprocal sublatticeéhe coherent scattering cross section:
vectorsm, are halfway in between the reciprocal-lattice vec-
tors G,,,, with e®m R characterizing the underlying lattice

1
p(=5 2 {pa(r=R)+pa(r=Ry)

structure of the solid.For the sake of simplicity, as far as the do - r2¢|’|§efW| 23,

scattering theory is concerned, here we do not explicitly con- dQ *(vl, )2 ’

sider the case of systems like ;P¢ whose description re- (4.10
quires the introduction of several sublattigetlpon ap- L L

proaching the critical temperature of the continuous order- EZJ dzlf dzothe(20) i (20) 0 (20) W5 (25)
disorder transition, the thermal averag®P,) vanishes, 0 0

qualifying OP, as an appropriate order parameter.
In the critical contribution to théulk scattering cross sec-

tion a nonzero value ofOP,) leads to superlattice Bra . . .
peaks?® ofOPy) P 99 whereAHZNHVle,, is the illuminated surface area, whexe

is the number of lattice sites at the surface a&g” is the
two-dimensional unit cell of the surfacajs the lattice spac-
(2m)3 ing of the cubic latticey; ((z)=¢(z,a=a; 1) [See Eq(4.2)
Veel and Fig. 10, andp=k’—k'— 7, assuming that the film sur-
faces are cut such thay, is parallel to themG is the lateral
XE ||~:e—W|z5(Ki_Kf_ ), (4.8 Fourier tr_ansform of the two-point order parameter correla-
m tion function

XG(p,21,25,L,1),

Kf 2 NV
— X
K e

2 (OP)?

e

P =r
dQ bulk

( da’) Bragg
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Vlell ) dence on all these variables. Instead we discuss some general
G(p,z1,2,L,t)= N > o) aspects and analyze a few specific cases in more detail in
I ™ ,rﬁ"” order to highlight the key features of the diffuse scattering
) intensity. The following cases have to be distinguiskied
X[(OP(r{™ ,z)OP(r{™) z,)) T=T,).
, (la) I; y<L and total reflection at 2-3 interfacdo/d() is
—(OP(r{™,z))(OP(r{™) ,2,))] proportional to the scattering volumaymin( ly). (1) &

<I; ¢<L: bulk behavior convoluted with evanescent waves.
_J d2r||e“p""G(rH Z1,25,L,t) (4.1) (2 &~1; ¢<L: crossover bulke/2 surface behavior convo-
luted with evanescent wave@) |; ;<é<L: /2 surface be-
on the lattice and in the continuum limit, respectively. Thushavior convoluted with evanescent wave$) |; j<é&~L:
after replacing the nonuniversal amplituién Eq.(2.21) by /2 surface behavior plus distant wall correction convoluted
B' as obtained from Eq4.8) for (OP)), we can study the With evanescent waves) |; <L<¢: film behavior near
scattering cross section in E@t.10 by using all the infor- one wall convoluted with evanescent waves.
mation aboutG(p,z;,z,,L,t) obtained in Sec. Ill, provided (Ib) Ij r<L, and no total reflection at 2-3 interface: the
all lengths and ¥ are sufficiently large compared with the difference from caséa) is exponentially small, i.e5-e~"*.
lattice spacinga so that the continuum description is appli- (The volume contribution talo/d() from material 3 is in-
cable. significant because it does not exhibit critical fluctuatipns.
In view of the properties of the wave functions (only (la) 1; s~L, and total reflection at 2-3 interface: cross-
their functional forms for &z<L enter intoY [see Eq. over betweerdo/dQ)~Amin(; ;) to do/dQ~AL. (1) &
(4.2)] and of the scaling form fo65(p,z;,2,,L,t) [see Eq. <lj~L: =/2 surface behavior convoluted with film wave

(2.21]), one has, fow; ¢, a@c12c13<1 andB, =0, functions.(2) é~1; s~L: crossover bulke/2 surface behav-
' ' ior convoluted with film wave functiong3) |; ;~L < &—ce:
a1 L 8= L1l o ac film behavior convoluted with film wave functions.
3=B'(&)" Rl — o pf,g,—,t,a—, o) (1b) 1; s~L, and no total reflection at 2-3 interface: cross-
0 c12 °1(34_12) overda/dQ~Ajmin(; l{)—AL. (Again, the volume contri-

bution from material 3 is regarded to be insignificant and is
where the dimensionless functianis given by[Eq. (2.21)]  not taken into account.
(Ia) l;>L, and total reflection at 2-3 interface:

[t ! _ _ do/dQ~AlL. (1) é<L<l;¢: bulk behavior convoluted
o= fo dxlfo dXathi(Zy=x1L) (21 =X3L) with film vae functions(2) é~L <, ;: crossover between
bulk and film behaviofincluding two surface contributions

X (Za=XoL) ¢ (Za=XoL)X7 7 and distant wall correctiopnsconvoluted with film wave
functions.(3) L<é<I; ¢ : film behavior convoluted with film

X g pLXZvEXLEX21X2)- (4.13 wfave_functions.(4) I__<§~Ii,f: film beha\./io.r convolu.ted

& ¢ with film wave functions.(5) L<I; < &—ce: film behavior

The two variablepé andL/¢ of o stem from the scaling Cor(ll\ll?bll;t?q \>'>V'It_h f;rr? dwr?get;ltjeglldrlgfrl];:t'on at 2-3 interface:
function, of the pair correlation function whereas the depen-d /dQ~AI(fL (1"h | trib t'l f tl ial 3 i :
dences ofo on |, /L, I{/L, aj/ag,, andagqo/ agq3 are due 7 = € volume contribution from material s 15

. regarded to be insignificant.
he wave functions. Fas; ;< . . . .
to the wave functions. Foft; 1< a1z, (IVa) I; ¢ imaginary, and total reflection at 2-3 interface:

|2) do/dQ~AL. (1) é<L: three-dimensional bulk behavior
| fzo— (4.14) probed by undistorted plane wavég) L<¢: film behavior
' @ 1 2 probed by undistorted plane waves.
~\5 (IVb) I; ; imaginary, and no total reflection at 2-3 inter-
cl2

face: do/dQ2~A|L (in addition to an insignificant volume
correspond to theenetration depths dhe incoming(i) and  contribution from material 3

outgoing (f) evanescent wave, respectivelyithin the film

material 2 |?)= (K a¢1,) ~* is the minimal penetration depth C. Susceptibility from the scattering cross section

li {(; t=0) in the film material. Typically, is of the order
of 30 A% For a;>ag;, and a;>a.y, the corresponding
guantitiesl; andl¢, respectively, are purely imaginary.

For large penetration depths;>L, the product of wave
fields in Eq.(4.13 is approximately constant. In this case for
p=0 the universal scaling functios of Eq. (4.13 reduces
up to a prefactor to the scaling functibf the total suscep-

B. Interplay of length scales tibility [see Eqgs(3.24 and(3.25], i.e.,

The scattering cross section reflects the rich interplay of L Ll | o o L
five length scales: P/ ¢, I, |, andL. Scaling reduces that & _) :U( pf:O,_1_|:oo’_f:m, ! <17L12>~f<_)_
to four independent scaling variables; moreover, there is a 3 &L L Ge12  Xc13 &
parametric dependence @an/ ., and on the material con- (4.19

stanta.1,/ ac13- It is beyond the scope of the present analy-In this limit the dependences am /a2 and onagio/ acis
sis to provide an exhaustive discussion of the full dependrop out fora;<a.i3; for a;> a¢q3 there is an insignificant
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FIG. 11. Scaling function of the scattering cross sectiofiEq. y=L/E
(4.13)] for large penetration depths¢>L and vanishing lateral
momentump=0 as a function of the scaling variable=L/¢ FIG. 12. Ratio of the normalized scaling functions of the total

within MFT (dashed ling and perturbation theorgfull line). The  susceptibility[Eq. (3.24] and of the scattering cross sectifffq.
dotted and dashed-dotted lines correspond to the asymptotic beha@.13] within MFT (a) and PT (b). We use the normalization
iors f9(y) of the normalized scaling functiofy(y) = f(y)/f(0) oo(y)=0a(y)/o(0) andfy(y)=f(y)/f(0). Thevarious lines in(a)
of the total susceptibilitf (y) [Egs.(3.26 and(3.40] in MFT and  and(b) correspond to different penetration depths: (1a) I; <L,
PT to first order ine using in addition the best available exponents, (lla) I; ;~L, (llla) I; (>L, and(IVa) |; ; imaginary(no total reflec-
respectively. tion at the interface 192as marked in(b). The curves correspond to

li=1s. In case(lVa), the indicated value df/l; ; corresponds to its
bulk contribution from material 3. The five different casesimaginary part.

(1)—(5) in case(llla) are characterized by the various contri-

butions of asymptotic behaviors to the scaling functiefy  lines). The difference in the amplitudes is decreased;if

=L/¢)~f(y) [see Egs.(3.26 and (3.40], i.e., bulk >ga,, ie., for imaginaryl; ; [see casdIVa), and dash-
Ay~2*7, surfaceBy 3" 7, distant wallCy 3*7e™Y, and film  dotted lines. '
behaviorD+ &y In Fig. 11 we show the normalized scal-

ing function of the scattering cross section(y)

=o(y)/o(0) [Eq. (4.13] within mean-field and first-order

perturbation theory, as well as the asymptotic behaviors of In order to reveal the (1) ~**7I cusp singularity in the
the normalized scaling functiofy(y)=f(y)/f(0) of the to- ~ scattering cross section, we consider the qas¢=0 and

tal susceptibility f(y—0) [Eq. (3.40] and f(y—=) [Eq. introduce the corresponding scattering function

(3.26] using mean-field exponents and amplitudes and best

D. Dependence on the film thickness

values for the exponents and amplitudes to first orde#,in [t L % *
respectively. Casefllla) or (lllb) with lateral momentum EL_L dz 0 d2oh1(20) ¥i(20) 7 (22) 5 (22)

p=0 are the appropriate scattering setups in order to mea-

sure the various asymptotic behaviors of the total suscepti- XG(p=0z1,23,L,t=0), (4.19

bility by varying the temperature. i ) .
Figure 12 shows the ratio of the normalized scaling func-Where the wave fields are given in Eg.2). For the corre-
tions fo(y)/oo(y)=[f(y)/a(y)[o(0)/F(0)] for all four lation functionG we use the_ asymptotic expansion given _by
cases(la) — (IVa) within MFT and PT, respectively. For Eq. (3.21). l_:yrt_hgrmore we introduce the scattering function

large penetration depths;>L [see caséllla)] the deviation of the semi-infinite system

of the scaling functioroy(y) of the scattering cross section . .

from the scaling functiorfy(y) of the total susceptibility is _ (f) (i) (i)* (f)*

small [see the solid lines in Figs. & and 12b)]. If the e J'o dzljo A2 yn(2) Ver(21) Yaiz (22) iz (22)
penetration depths are of the order of the film thickness,

l; t~L [see casélla)], the wave fields in Eqi4.13 contrib- XG(p=02;,2;,L=»,t=0), (4.17
ute, and the deviation from the total susceptibility becomes

visible at large values of the scaling varialléory—0 and with the wave fields and th_e correlation _function given in
y— o the dotted lines attain constant values, so that there a £as. (4.5 and (3.18), respectively. The ratio of Eq¢4.16

I ' . ;
the same critical exponents but different amplitudes for thegnd (4.17 defines the scattering function

leading asymptotic behaviors ef, andf. If the penetration s
depths are smaller than the film thickneks.<L [see case S(LK; aj,af,ac12,ac13,82,03) = = (4.189
(la)], this deviation is much more pronouncéskte dashed DI
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for p=t=0, where the film thicknesk and the momentum 1 '
K of the scattered wave form the scaling variable, the angles 08 + O <Ol <Oy <Oy |
a={a;j ¢,ac12013f Characterize the scattering geometry, and
the extinction coefficients8={B,,8s} take into account 06 1
photo absorption. From Eq&C3)—(C8) in Appendix C, one 04t 0 TSm=mn 1
obtains the asymptotic expansion =

S(LK—;a,B8)=so(LK;a,B)

1\t
+sl(LK;a,,8)Cl(R> +.-
(4.19
with 08 + O < Olgyp < Ogyg < Oy |
1 LK (2) 06 D e
so(LK—;a, B)~1+s(LK; @, B)e K0 (@h), wl N\
(4.20 '
s1(LK—;a,B)~s(LK=;a, B) 0.2 ; :
0 10° 0.002 0.003
+sP(LK;a, B)e K@), 1/LK
andC, given by Eq.(3.9). The functionss, ands, carry the FIG. 13. Scattering functio8(LK;«,) [Eq. (4.18), full lines]

L dependence of the wave functiofsee Appendix  The  and its asymptotic forn$(LK—=;a,B) [Eq. (4.22, dashed lines

L dependence due to the correlation function is given by théor three different scattering geometries;<a;<aci,<acis @

cusp singularityC;(1/LK) ~1* 7. The range of the values of <@c1z<acz<as, and &<acp<a@cz<as. FOr &j1<acizc13

the scaling variabIeI(K)’l is limited by the validity of the the scatterlng function decreaseg mqnotonously. If one of the a_ngles
continuum theory applied here, i.eL,=30 A and the @ Oraris larger thana,, oscillations emerge. This effect is
distorted-wave Born approximation, i..&=1 A~1, leading Shanced ifacis>acp. In the asymptotic form of Eq(4.22

to (LK)_1<A For small angles, i.e., for grazing incidence (dashed lines there are no oscillations. In all three cases
) T80 T =0.3x107° and (a;, e, , =0.06°,0.11°,0.26°,0.36;
scattering experiments E¢4.4) reduces Bz (@, a1, acrz aoas b

(0.06°,0.40°,0.36°,0.26° and (0.06°, 0.40°,0.26°,0.36° respec-
- . tively.
Oi(a)=Ka, qj(a):K\/az—aglj-l—Zlﬁj, j=2,3. y

(.23 =1.5x103. This corresponds to a film thicknesk
Photoabsorption, 8,0, or evanescent scatteringy; ¢ ~600 A, ie., 200 ML(with K=1 A% and 1 ML is ap-
<ac1z, tUMQ, into an imaginary quantity, which leads to a proximatey 3 A thick); 90% of the maximum value o8 is
real part ofs§”) ands{?) in Eq. (4.20. If at least one angle;  reached fol K~5x 10~ ° which corresponds to a film thick-
or oy is larger than the critical angle.;, the functionss{”  nessL=20000 A or 6700 ML. This demonstrates the slow
ands{®) have real and imaginary parts. In the latter case oneonvergence to the semi-infinite limit. The spatial resolution
expects that the scattering functi&in Eq. (4.19 exhibits  is determined by the uncertainty of the film thickness. With
an oscillatory behavior. In Fig. 13 we show the exponenti-AL=3 A (1 ML) this givesK AL =3 leading to a resolution
ated scattering function and its asymptotic form for variousof A(LK)~*~3/(LK)?, which is not visible on the scale of
scattering geometries. The exponentiated form is obtained bigig. 13. Based on these considerations, we conclude that the
subtracting the leading behavior of the one-laspxpanded oscillations are experimentally accessible.
result [defined by Eq.(4.18], and by adding the leading
behavior[see EQ.(C2)] calculated with the best available
critical exponents ¢=0.031, », =0.75, andzp=1.48). The _ _ N
dashed line in Fig. 13 corresponds to the leading asymptotic In the following we analyze how the cusp singularities

behavior, if thel. dependence of the wave fields is neglected:emerge in the limit of vanishing scaling variables. To this
end we chose, as an example, a scattering function of the two

1)t scaling variablep/K andLK. Analogous to Eq(4.16), we
LK define the quantity

T (4.22

Thus the full lines in Fig. 13 take into account the whable
dependence stemming from both the scattering theory and
the correlation function, whereas the dashed lines take into
account only the leading asymptotic dependence of the
correlation function. The oscillatory behavior appearing for
;S aq15S af stems from the scattering theotsee Fig. 1R s

For the casey; ;<acjpc13 IN Fig. 13, half of the maxi- S(p/K,LK;a,B)= p.L (4.24)
mum value of the scattering functiod is reached folLK Sr2

E. Emergence of cusp singularities

S(LK_>oc;a,ﬁ)=1+s(10)(LK=°O;a,,3)Cl(

L L
SpL= fo dzljo dzo46(21) ¥i(20) ¥ (22) Y (22)

XG(p,z1,2,,L,t=0). (4.23

Together with Eq(4.17), this leads to the scattering function
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where a={a; ,ac10130 denotes the set of angles, apd
={B,.3 the extinction coefficients. As in Sec. Ill A and Eq.
(3.13, we introduce polar coordinates

>3
0=+ (p/K)?>+ (LK) 2, ¢p=arctaripl), E 05
(4.25 &

(LK) '=wcosp, p/K=wsing.

This leads to the relation

S(p/K,LK;a,B)=F wsine,(w COS(p)_l;a,,B]

—_

:Spolar(wi‘P;auB)a (4.20 g é
so that the leading asymptotic behavior is given by v, 8
- I
x X
Sp0|ar(a)—>o,(P;a,B)=So(cp;a’ﬂ)-f—Sl((P;a,B)wi:L*»nH é . g
@ o5 @
T (4.27 0 5x10°  10°
with So(¢;@,8)=1. The amplitudeS; of the leading p/K

; i — 1
aSYmg’lto“C be.h"?“’"?f" ! fdepﬁnds not 0”'3&.0” the p:"‘?r FIG. 14. Scattering functioB(p/K,LK; e ¢, @c1oc13.829 [EQ.
variablee, as Itis the case for the corresponding corre atlor‘(4.24)] for t=0. (a) shows the exponentiated scaling functions
function (see Sec. Il A, but also on the parametesisand 8 S(p/K,LK=2:a,B8) [Eq. (C13] and S(p/K=0LK:e,B) [Eq.
characterllzmg the scattering process. Wlphln mean-fieldc14)] and their corresponding leading asymptotic behaviigs.
theory this amplitude is defined in Appendix C 2 by Eq.(c15 and (C17), respectively (dashed lines For the leading
(C19. In Fig. 14a) we show the exponentiated scattering asymptotic behavior we use the best available expongrtl.48
function S(p/K,LK;a,B) [Eq. (4.24], where we have sub- and an amplitude function which is consistent with the mean-field
tracted the leading asymptotic behavior from the mean-fieléxpression[see Eq. (C19]. The corrections to the leading
expression of the scattering function and added the exponeasymptotic behavior are calculated within mean-field theory. For
tiated form,[see Eqs(C11) and(C19 in Appendix C 4;the  the scaling functionS(p/K,LK;«,8) we plot contour lines $
scattering functiorS [Eq. (4.24)] is a sum[see Eq.(D1) in = =0.8, 0.75, 0.7, 0.65, 0.65, and D#nd their projections onto the
Appendix D] of functions of the typeS as discussed in Eq. [p/K,1/(LK)] plane(full lines) which clearly deviate from circular
(C11) in Appendix C 2. Figure 1) illustrates the emer- Shapisy lines f?f(P/K,LK:1-5><.1074, 3x107%, 4.5x 1074l46
gence of the |o/K) ~** 7l cusp for increasing film thickness, *10 %, 7.5<10 _2401.B) (QQttEd I|ne$;4and S(p/K=1.5x10"%,
i.e., (LK) 1—0. Figure 14c) shows the emergence of the 3X10°" 4.5x10°% 6x10"%, 7.5x10""% LK;a,p) (dash-dotted
[1/(LK)]71+ 7 cusp for vanishing lateral momentupiK Ilnes). In (brz and (c) we sh]?w the af(irlemﬁntlone_d vertical cross
—0. In the latter case the vertical cross sections of the manﬁeCt"_)?hs' T et.e”:ergence Ot' W(L?-E,-t cusp 'f’ ff;naoq%to'
fold are not monotonous; they exhibit a maximur@)( at nous, the vertica' cross sectjons exnibl maxire) (a - the

. ! scattering parameters are chosen thet a;<a.;p<agz With
1/L+0. Figure 14 corresponds to scattering angtes _ ° o o o _

Lo , , (ai,a;, a1, @019 =(0.06°,0.11°,0.26°,0.36°) ang,=B;=0.3

<ac12013 Which yields a monotonous behavior of the scat-y 15
tering function. Analogous considerations describe the emer- '

gence of the cusp singularities in tlgeL and é-p depen-  functions of two scaling variablegsee Eqgs.(3.10—(3.12

dencegsee Appendix CR and Figs. 2—-8
(2) The film correlation function calculated up to first-
V. SUMMARY order perturbation theory ie=4—d satisfies the so-called

product rule derived by Parry and Swain for the correlation

By using field-theoretic renormalization-group theory, wefunction algebra of inhomogeneous fluids in Ref.[g8e Eq.
have studied the singular part of the two-point correlation(3.22)].
function in a film of thicknes& near the critical poinT, of (3) By settingp=0 and integrating over the perpendicular
the corresponding bulk system. F@=T. and Dirichlet  coordinatesz; and z,, we obtain the total susceptibility of
boundary conditions, we have obtained the following mainthe film[Eq. (3.23]. Its dependence ob and¢ is described
results. by a universal scaling functiofi(y=L/¢) [see EQ.(3.29

(1) The two-point correlation function as a function of the gnd Fig. 9, and exhibits a typical film behaviof(y) is
lateral momentunp corresponding to thel—1 translation-  analytic fory—0 andf(y—) contains the bulk, surface,
ally invariant directions of the film geometry, the coordinatesgnd finite-size contributiongsee Eqs(3.40 and (3.26), re-
z; and z, perpendicular to the parallel surfaces, the filmgspectively. These properties are similar to those of the spe-
thicknessL, and temperature=(T—T.)/T, (or equivalently  cific heat of a critical filnt® Our results correct previous
the bulk correlation lengtf=£5t~") exhibits three cusp findings in the literatuf®®? [see the discussions of Egs.
singularities:p~1*7 for t=0 andL=c, (1/&) "7 for p (3.3 and(3.4D)].
=0 and L=, and (1L) "7 for p=t=0 [see Egs. (4) In view of proposed experimental tests with x rays and
(3.19-(3.21 and Fig. 1. The emergence of these three cuspneutrons under grazing incidentsee Fig. 10 as discussed
singularities is revealed by studying appropriate scalingn detail in Sec. I, we have calculated the critical diffuse
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scattering from the film within the so-called distorted-wave szz(gg)d—u R, (A5)
Born approximation. The scattering intensity is a function of
the lateral momentum transfer film thicknessL, bulk cor-  with R= RCQ3/(R§)". For (n,d)=(1,3) one hasR.
relation length¢, penetration depthk ; of the incoming(i)  ~0.066,Q3=0.922, andR; =0.27/%%°leading toR=3.09.
and OUté?]OinQ(f) VéaVﬁSy the critical anf?Ies of totaldreﬂec:ion A Fourier transformation in the direction of the bulk
ac12 and a¢q3 and the extinction coefficient8, and B3 0 ; ; —PA-27 with A2— 121 k2 i
the film (2) and the underlying substra(8) (see Fig. 10 I(iaoar(rj?rllztl?onirggfglfggr?élér?t)atilojnq with g°=p=+ k" is
(5) For various ratios ok, &, andl; ¢, the scattering func-
tion shows the crossover between analytic, bulk, surface, and
finite-size behaviorgsee Figs. 11 and 12By varying the Gbulk(pvzl_ZZ)ZJ b
temperature, a scattering experiment for0 andl; (>L —02T (p?+ k22
gives access to the aforementioned scaling functigr) of . _
the total susceptibilitfEq. (4.15)]. D ,H,]fx glrP(z=22)
(6) For p=t=0 the leading singular behavior of the scat- B Zp e K(1+K2)(2—77)/2'
tering function is given by the cusp singularity (X) ~1* 7,
where K is the momentum of the incoming waJeq. (A6)
(4.19]. The maximal scattering intensity foL—o is For p(z,—2,)—0, this leads to
reached only very slowly. For certain scattering geometries
the L dependence exhibits an oscillatory behavigee Fig.
13). A
(7) The film thickness and momentum cusp singularities Gpu(p)=p 177 D_T(1/2=7/2) )
of the correlation function are borne out in the scattering 2Jm T(1=9/2)
cross section, and are analyzed in Fig. 14.

o dk,\ eik(zl_ZZ)

(A7)

In the limits L—o0, z;+2z,—0, é—o, andp(z;—2z,)—0,
the two-point correlation function in the film reduces to its
We thank E. Eisenriegler, A. Hanke, and M. Krech for bulk form. According to Egs(2.12) and(2.17), this implies

helpful discussions. This work was supported by the German
Science Foundation through Sonderforschungsbereich 237 .
Unordnung und groRRe Fluktuationen. D TI'(1/2—5/2)

VT oy T(1=7i2)
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APPENDIX A: AMPLITUDES

The amplitudes of the singular behavior of bulk correla- =B2(£5)87 2" R_T(1/2=7/2)
tion functions are nonuniversal. There are two independent 27 T'(1-7/2)
ones in the sense that any two of them allow one to express
any other in terms of these two and universal amplitude
ratios’®%As one of these nonuniversal amplitudes in Sec. Il
we havg introduced and fixed the amplltugﬁa. of the bU|k. For the three-dimensional Ising model, the universal number
correlation lengtfsee Eq(2.8)]. Other nonuniversal ampli- U has the valué/=1.58
tudes are given by the temperature dependence of the mean The knowledge. (')f the perturbative result for

value of the fieldg(x) below T, G(p,z1,2,,L,t) (see Appendix B Renables one to express
—B(—1)5, Al the nonuniversal an_"nphtud@,. x=I—IIV, in terms of Gy .
(¢00)=B(~1) A1) For example the universal ratig, /G, is determined by the
by the decay of the two-point correlation function in real normalizations of the scaling functions, i.g;,(0,0,0,0=1
space aff for large distance$x—x'|, [Eq.(2.14] andgy(,020,%2)=1[Eq. (2.17)]. The e expan-
sion of this ratio is given by

=B(&) " . (A8)

($(X)p(x"))=D[x—x'| (@727, (A2)
and in momentum space for small N2
Gi1Gy=2 1+En+8+0(62) : (A9)
f dxeT T (G(x) (X)) = Gpui(a,t=0)=Dg 2"7,

(A3) The amplitudesj,, x=1-1V, can have bulk, half-space, or
where film character, depending on the normalization limits of the

scaling functionsg,. G, and G, are half-space and bulk
B/D — X = 22— 7732 I'(1-7/2) (Ad) amplitudes, respectively. Bulk amplitudes are independent of

the boundary conditions, half-space amplitudes depend on
R the boundary condition of the surface, and film amplitudes
D can be expressed in termsBf &5 , and a universal num- depend on the boundary conditions of both surfaces. Com-
ber R, 7980 bining Egs.(A9), (A8), and(A5), we arrive at

T[di2—(1—7/2)]
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n+2 loop order[Egs. (2.3)—(2.6)] is given explicitly as(see also
Gi=B%(&)7?" 7 1+ e—— +0(&?) Ref. 84
n+8
<R 1 T'(1/2—5/2) (AL0) G(p,z,L=»>,t=0)
Ja T(1=nl2) - =Gyz'~ g (u=p2)
With R=3.09[Eq. (A5)] and »=0.031 one has, for the three l—e~2u 7%
dimensional Ising model, =u 1z sy Tagl 2Ei(—2u)

Gui=RB%(&5)% 2" 7=4.21B%(£5)% 72" 7. (A1D)
+e? Ei(—2u)+e 2YEi(2u)]+0(€?) |. (B1)

APPENDIX B: ONE-LOOP RESULTS
Ei(x) is the exponential integral function. In accordance
_ 5 with the normalizatiorg,(0)=1 this yieldsG,=u " "[1+€

With the abbreviatione= €[ (n+2)/(n+8)], so thate +0(€?)].
=1 2 and 3 for the Ising, XY, Heisenberg model i The temperature dependence is described by the scaling
=3, the renormalized two-point correlation function in one-function g,(v), with g,(0)=1:

1. Correlation functions for z;=2z,

G(p=0,z,L=0,t)=G,z} "g,(v=2/£)

1
2k+1
(k1)?(2k+1)

+_ —2v __ + —2v 2k+1
5 5| (e 1)Kq(2v)+2e kgov

:M_nzl_ﬂ

+0(€?) |.

(B2)

¥ (x) andK,(x) denote the psi and Bessel functions, respectiVelee also Ref. 86
Finally, the dependence of the critical structure factor on the film thickness is governed by a third scaling fgg(etion
03(0)=1, Osw=1:

G(p=0,zL,t=0)=G,z' " "gz(w=2z/L)

~ 2 3o (W) + 1, (W
=W 1WA — —w(1-w)2— (1—2w)| 1+ Ce+1In w 222 (W)
18 w
+(1—w)[2+cE+|nw—s;1(w)—|1+(w)]]+0(52) (B3)
|
with the abbreviations g1(u—0)=1+Au " 7+0(u?)
Z Bp(—w)=By(w 14— 2
sEw=3 n( | )£ By( )' A;=—[1+€(1—Cg—In 2)+O(€?)], (B6)
' n=k n'(n—1)
go(v—0)=1+Bv 7+ 0O(v¥?)
. © dx e WxeW -
I (w) = L o1 o (B4) B;=—[1+¢€(1-Cg)+0(€d)], (B7)
and
B,(w) are Bernoulli polynomial€® For the critical structure
factor in the semi-infinite system, one has gs(W—0)=1+C,w L 7+ 0(w?)
G(p=0z,L=0,t=0)=G,z* "=u" "z} [1+e+0O(€)]. | 2
(B5) Ci=- 1+6(E_CE+2(SZ+|1)_1 +0(€?) |,
(B8)

From the explicit forms fog;, i=1, 2, and 3, in Eq4B1) —
(B3), together With77H=2—E+ O(€?), one infers the limit-  whereCg~0.5772 is Euler's constang, is given by a sum
ing behaviors over Bernoulli numbers anb, by integrals
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1+ eZ tane

Slrl(so)1

E ~8.2877x 102 3 @)=sin( )1+ e
nl(n nl(n—1) = ’ ¢ ¢ e

2 tane
(B9)

_ e2 tang

X[1—-Ce—In(sing)+Z; (¢)+7Z1 (¢)]

= 101
|1:f dx ~~0.2868. .
1 eX—1X sine

(1_ eZ tango)(l_ e—2 tan<p)

For the exponentiation of the scaling functiohg(u,v),

h,(u,w), and hz(v,w), we have calculated the amplitude
functions H{V(¢), HP(¢), and H®(¢) [see Eqs(3.14 X (27m+8I3(p)tang) | +O(€?),
and(3.195]. Their € expansions are
(B12)
. 1 e=arctariL/¢),
~[ sing cose 1+cose ) .
W(p)y=—|1="¢| In . with a;=0.2704 and the integrals
Hi () 1 e(lr‘ 5 + 5 Pl—cos<p+al 1 g
7 j dt 1 1 B13
+0(e?)|, ol @)= 1\ t+2tang t—2tan<p . (BL3
N (810 dt t t
=arcta ],
¢ i(pe) ] Tile)= f (t—ztancp t+2tang)/’ (B14)
eZ tane 1+62 tane \/—
(2) —qj _
Hi ((P)_Slr(go)l—e“a”"’ € Sm((P) e“a”"’(l Ce ((p)_ teZttan<P 1 (B13
1 and
—In(2 sing) — Io(go)+Il((p)COt<p+ Otch
T = t B16
cose o 1(e)= em‘w izI (B16)
_3(1_e2tan¢)(1_e72tancp) + (6 )’ . .
(B11) 2. Correlation function for z;#z,
p=arctaripL), This is the most general case from which all results given
above can be derived. We preséntp,z;,z,,L,t) in terms
and of the scaling functiorg, [Eqg. (2.7)]:
|
G(pvzllZZ!L!t):glpil+7]gl(xzpg!u221/§:V222/§1y:L/§)
X e—a(u—v)+e—a(v—u)_e—a(u+v)_ea(u+v)
— ,—nn—1t+n| ] a—aju—v|_ q—a(utv)
omo’p Za{e e + a1
+ e Jo(X,U,V,Y) + TR(%,Uv,Y) + Ty (X,U,v,y)]+0( ) |, (B17)
with
X (= s2—1
jo(x,u,v,y)z——sf ds— e du=Vi(1+alu—v|)—e 2 V[1+a(u+v)]
a’Ji  eVs-1
1 2ya 2ya
+— e U™V 1+a(u—v)+ yﬁz +e alvmy) 1+a(v—u)++
e?va—1 1-e »2 1-e »2
2ya 2ya
—g auty) 1+a(u+v)+L —e?U)[ 1—a(u+v)+ Y : (B19)
1—e va 1—e 2
T X 1
jﬂ(X,U,V,y)Z __—{(1+e—2ya)(e—a(u+v)+ea(u+v—2y))_Ze—Zya(e—a(v—u)+e—a(u—v))}, (Blg)

2 (1 e72ya)2

and
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J(u,v)

j(x u.v y):_ Ei efa(l-H’V)—
1 y U,V 4 2 1_e_2ya

ea(V“)(®(v—u)+
e

2ya__

with a= 1+ xZ and
S —_

1- e*2yS

sta s

J(X1,X5)= ds

STRUCTURE FACTOR OF THIN FILMS NER . ..

! Jy—u,v)—e U @(u—-v)+ !
1 ' e2va_

(e— 2%18 e~ 2x25)

16 997

+ ga(utv=-2y) ‘](y_ u,y—v)

1-e &2

1)J(y—v,u)], (B20)

(B21)

1 (e—z(y xl)s+e—2(y XZ)S)}
S—a

3. Susceptibility
The one-loop result of the total susceptibilfgqg. (3.23)] for Dirichlet boundary conditions is given byy{= y+ v)

vslv
X(L,t)=BZ(§5)d“R(§—+) fly=L/%), (B22)
0
with
ty)=y-2| 172 2 w ., +4 1 (4 1 +2 eV L 1+eY
= —€—— € - — €\ — - T -
=y y 2 f yel+l |Ye'+l Y (1+e)? V3
e 121-e7Y N 2 l1-e \/s -
+|4+8 f ds
(1+e*y)2 Y 1t+ey e’sy—1 y 1+e V)1 e?v—1
1 1 2 2 o B23
Moo st sz sa) [ TOE) 823
In the Iimityz—m, the two integrals entering intq E@B23 5 1/~ B, © dx 1
vanish,~e~ <Y, and therefore they do not contribute to the =373 > n—1 +f | =0.440165,
terms considered in E43.26). However, in the limity—0 isent(n=1) *Jy g*—1 X (826)

these two integrals contribute to the terms considered in Eq.

(3.40:

ar
—ﬂy‘z y l+a,— —Iny+0O(y) (B24)
and
) \/S— 1 N 2 3 2
da(y)= o?y_1\s—1 s+1 s+12 s—1/2

3 V3 V3
_ _ 21 2_ 3
—77( V3 2>y 2\/_4— 127-ry+b2y 72077y

+by*+0(yd), (B25)

with

- B, foc dx 1
b,=6 + —
2 (nZO n(n=3)  J1e~1 x3>

=~-0.13145¢10 2,

- B, = dx 1
b,=18 +f —|=5.9879< 10" 3.
4 (nzo nt(n=5)  J1e—1 x5>

APPENDIX C: CROSS SECTION

1. Integration of the asymptotic limits

Equation(4.10 involves integrals of the following kind:

L L
f dze f dze *%G(p,z1,25,L.1),  (CD)
0 0

where «je{=i[dx(as) =dx(a)], =i[a3 (@) =05 (a;)]},
j=1 and 2[see Eq.4.2), as well as Eqs(D1) and(D2) in
Appendix D] and «j(a) =Kf;(a;,at,ac2) (see above The
asymptotic behavior of Eq$3.19), (3.20, and(3.21) can be
summarized by the formula
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AR The expressionl(z,,z,) corresponds to the leading contri-
Gas(P,21,25,L,1)=Gy O(z,—21)z; 7 n bution C=0. C is an abbreviation for the three quantities

Ap 17 for t=0 andL =, B,(1/&) 1" 7l for p=0 and
L=o0, andC,(1/L) ** 7l for p=t=0 in Egs.(3.19, (3.20,
and(3.21). For the quasi-Laplace transform of the contribu-
tion d(z,,2,),

1-y Zl 177&
+0(2,-2,)2; 7
2

+C

@(zz—zﬂzi‘”(é) g

z _ L L

! D(Kl,Kz,L):j leef"lzlf d2287K222d(21,22)
b\ ey, 0 0

+0(z1—2))75 7 % z, 7 (C3)

=G{d(z1,25) +a(p,z1,2,,L,0)}.  (C2)  one finds, withf;=«; /K, j=1 and 2,

B(Kl,KZ,L)EE(fl,fZ,LK)=K3“7[

e fILK g foLK

£+ 24 f,f,+ 13

+ e (f1rfLK Ll 2
fafo  £2§2(f,+1,)

fufa(fitfa) f2),  f2f,
‘€ -2 242 1

bl T ek L 2 T e 4 1)+ Ei(L(fy+ ) LK) —Ei(1f,LK
Z[flfz(f1+f2) 282(f,+ 1) fffz[ (f1/fo+ 1) +Ei(L(f1+f5)LK)=Ei(1,f,LK)]

—f1LK

1
+ ——[In(f,/f1+ 1) +Ei(L(f1+ F) LK)~ Ei(LHLK) ]+ —
£2f, £2f,

[1-Ce—Inf,—INLK—Ei(1,f,LK)]

e faLK
= [1-Ce—Infy—INLK—Ei(1,f,LK)]
1'2

+

+0(€?)|. (C9

In the limiting case of a semi-infinite filmL(—«), Eq. (C4) reduces to

D(fq,fr,LK=00)=K 37

+0(€?)|. (C5)

[ fytf, f+f,
1+e|1— IN(1+ f1/fy) — ———2In(1+f,/fy)
2f, 21,

1
fifo(fi+15)

The corresponding expression for the leading correction term

L

Z(fl,fz,LK)=f

L
dzle"‘lzlf dz,e *?*2a(p,z;,2,,L,t) (Ce)
0 0

_ 1
A(fl,fz,LK):K—3+’7K1—vc{@{1—e—fﬂ"(1+ fiLK)—e MK+ f,LK)

+e (LK1 4 (F 4 f,) LK + f4fo(LK)2]}

e 1

2 fif3
+e K — 14+ (1+f,LK)[Ce—1+Inf,—INLK+Ei(1,f,LK)]}

+e K — 14 (14 f,LK)[Ce—1+Inf;—INLK+Ei(1,f,LK)]}

+e (TR K(f,+f,)(1+2InLK)+2(1+InLK)+2f,f,(LK)2In LK])+ O(€?) |, (C7)

with the semi-infinite limitL — o:

~ 1
1+e€ CE_1+ Eln f1f2

202 +0(€?) |, (C9

_ 1
A(fl,fz,LK=oo)=K3+vKlvc'[—
1'2




PRB 60 STRUCTURE FACTOR OF THIN FILMS NER . .. 16 999

whereC’ is an abbreviation for the two quantitidsp "7, for t=0 andL =9, andB(1/¢) "7, for p=0 andL=.
Distant wall corrections to the semi-infinite system vanish exponentially. In order to obtain the analytic expressions in Eqs.
(C4) and (C7), we have expanded(z,,z,) anda(p,z;,2,,L,t) in terms of e using for thee expansion of the exponents

n=2—¢e+0(€?), n,=1-"e/2+0(€%), and n=0(e?). The functionEi(1,z2) is the exponential integral defined by

Ei(l,z)=J':0et

—zt

dt=—FEi(—2). (C9

This function is numerically more suitable than the exponential integrét),

3 eft
Ei(z)=— | —dt, (C10

it
appearing in the formulas for the correlation function.

2. Integration of the mean-field correlation function

Equation(C1) for the full mean-field correlation function yields

S[b=(p/K)*+(€K) 2 LK, fy,f,]

L L
zf dzle*"lzlJ' dz,e “222G(p,z;,2,,L,1)
0 0

:g“K*3+77

1 1_e—(fl+b)LK 1_e—(fl+f2)LK 1_e—(f1+f2)LK
— —~ +
2b | (fy+Db)(f—b) (fi+fo)(f—b)  (fi+fy)(f+b)

e (2 DLK_g=(f1+f)LK (1 = (f1+D)LK) (] _ g~ (T2+DLK)

(f1—=b)(f,+b) (f1+b)(f2+Db)
. 1 (1_e*(f1+b)LK)(1_e*(fsz)LK) . (1_e*(flfb)LK)(l_e*(f2+b)LK)
e?Ptk_1 (f1+b)(f2—b) (f1—=b)(f,+b)
(1—e (DK (1 g~ (T#D)LK) (1 g=(1=B)LK) (1 _ o= (f2-b)LK)
- (f,+D)(f,+b) - (F,-b)(f,—b) ) ’ (c1
T
using the notation of Appendix C 1. The above formula ex- S(b=0LK,f;,f,)
hibits the following limiting expressions:
1 1 1
:g”K—3+7l -
(Fi+f)fsfy £2¢2 LK
— — _ -3+
S(b—O,LK—OO,fl,fz)—g”K ﬂ(fl+f2)f1f2' e—flLK+e—f2LK 1
(€12 Tz LK
! B fl)ff * 212&%“1”2“]'
— — -3+7 + fof
SO =G (b (T, By D
(C13 (C19

Equations(C12—(C14) lead to the following three cusp sin-
and gularities:
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S(p—0t=0LK=of;,f;)  [fi+f; “p\ "7 Jeading to the scaling functionS(w,e,fq.f,)=S(p/K
S(p=0t=0LK=o,f,f,) fif, K =wsing, LK=(wcose) 1, f,.f,) and to its asymptotic ex-
5 pansion
+0(p9), (C15
— — -1+ ~ o~
S(piO,tTO,LK:w,fl,fz): B S(w—0,p,T1,F5)
S(p=0t=0LK=00,f,f,) f.f, S(@=0f,.f,)
1\t
X —) +O(&Y), fifa(fit+fa) 1+e 2ane
i Tty O ez
(016) 1t2\l1 2 )
fofp(fotfy)] ~ 7
and x{% w Y+ (C19
S(p=0t=0LK—T,T)) ve
S(P=01=0LK=.f,.f,) Because in this section we consider only mean-field scaling
P=21=0, 2 functions, a simple substitution of the scaling variapl&
fofo(fi4fy) [fofa(fi4fy)] ~ 7 by 1/£K in Eq. (C18) leads to the same result for thel
A Rae—me =73 dependences. The semi-infinite system is described by the
fifa(fi+1) fif3 coordinates
-1+ 7 —
X & +0(eb). (€17 ©=\(p/K)*+(£K) %,
We note that the last two arguments of the nominator and qp:arctani,
denominator on the left-hand side of H{17) are in gen- 3
eral, as indicated, different from each other. Egr« the
variables f; are given by —i[gx(af)+da(a;) /K or izwsin(p, BZwCOS(p, (C20)

i[5 (a;) + 95 (ar)J/K, whereas forL<e the variablesf, &K K

are given by —i[kgy(as)+10x(e)]/K or i[mg3(e)  leading to the asymptotic behavior of the scaling function
+nq; (a) /K with any combination ok,|,m,n==1 [see

the exponentials in the last lines of EqR1) and (D2) in Slw—0fy,fa)  |f1tfs B/ Sy
Appendix D]. S(w=0,,,f,) fif, @ '
For the exponentiation of the-L, ¢-L, andp-¢ depen- (C2)
dences, we introduce polar coordinafsse Eq.(3.13] which is independent op.
w=(p/K)2+ (LK) 2, ¢=arctariplL), APPENDIX D: PRODUCTS OF WAVE FUNCTIONS
(C18 In order to illustrate the type of transformations appearing
1 p in Egs.(4.10 and (C1), we present the explicit expression

— = @ COSQ, RZwSin(p

LK for the product of wave functions in E¢4.2):

Ui(2) (2D ¥ (2) 9 (2) =[ 54 (@) €920+ s (ap)e™ 92 0n][s, ()€ 92 W2 +s_ (o)™ 92()%]

X[S* (aj)e 192 (%4 g% (o) @92 (@)Z2][ s* (a;)e 192 (@224 5% (o) @itz (41)%2]

= > sdans(a)sh(a)st (ap)ellkaelenlazazg-imag (@) g («lz2 (DY)

J,mn==

wheres and g are defined in Eqs(4.3) and (4.4). Thus the scattering cross section is proportional to a sum of 16 terms
involving integrations over, andz,.
For the limiting case of a semi-infinite half-space one has

. . . . . o * a i * a
WL o(20) W (20) W0 (20) W05 (22) =i arp) €920 Pt () @920 ALY () @192 ()%t () @192 (D)2
:|tsi(af)|2|tsi(ai)|2ei[qz(af>+qz(ai>1zlefi[q§(ai)+q§(af)1zZ_ (D2)

In this limit the above sum reduces to a single term.
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