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Solution of the Langevin equation for rare event rates using a path-integral formalism
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We present an approach to the problem of evaluating the rates of rare activated events by solving the
Langevin equation through a path-integral formalism. At temperatures much lower than the activation barrier,
we find that the minimal path approximation to the path integral yields excellent accuracy, and greatly sim-
plifies numerical efforts in the solution of the Langevin equation. In addition, the extremal paths allow one to
locate the saddle points without presuming any particular physical mechanisms for getting from one configu-
ration to another. As a demonstration of this approach, we study the Brownian motion of a particle in a periodic
potential subject to stochastic forces. This model has many applications in varied fields besides physics, such
as chemistry and communication theory. We focus specifically in this paper on the application to the problem
of surface adatom diffusion. For one dimension, the results we obtain with this approach are in full agreement
with standard analytical and numerical methods. Furthermore, we have derived analytical formulas for the
probability distribution of jump length§S0163-18209)02248-]

[. INTRODUCTION odic potential subject to stochastic forces. For one dimen-
sion, analytical results for the escape rate from a metastable

A variety of phenomena in physics, chemistry, and othe[‘s‘_ﬁate and the dif_fu_sion _co_nstant fora periodiq potential in the
fields can be modeled as Brownian motion in a potential witfigh and low friction limits have been obtained through a

local minima(stable or metastable stateseparated by acti- diréct solution of the I%f\lrg)gevin equation or the equivalent
vation barriers:? Particles executing Brownian motion are Fokker-PIanck equation. * However, a cqmplete solution
. . for an arbitrary friction value poses a considerable challenge.

potential and stochastic forces coming from coupling to th((;W e show below that at low temperatures, the extremal path

; . ; approximation to the path integral yields a result for the dif-
environment(a heat bath The corresponding equation of sion constant valid for all values of the friction. It agrees

motion describing this Brownian motion is the Langevin it the known results in the high and low friction limits.
equation. At low temperatures, a typical trajectory of theanajytical and numerical results on the jumping distance dis-
system consists of a long period of localized motion about gipytion are obtained within this approximation. Moreover,
local minimum, followed by a jump over a barrier, and thenoyr approach can be easily applied to higher-dimensional
another Iong period of localized motion about another mini-cases' and for the inclusion of non-Markovian memory ef-
mum, and so on. Activated processes over barriers are gefects in the frictional damping.

erally rare events, as the thermal enekgyl is much less The rest of this paper is organized as follows. In Sec. I,
than the activation barrie¥,, under typical conditions of the path-integral formalism for the Langevin equation and
practical importance. This makes a direct numerical simulathe extremal path approximation is introduced. In Sec. Il
tion of the Langevin equation practically intractable, becausave describe the application of this formalism to the study of
most of the computation time would be “wasted” in the the surface adatom diffusion problem. General formulas for
time interval between activated events, when the system i€ diffusion constant, jump distance distribution, and acti-
“trapped” in small oscillations in potential wells. Various Vation rate are obtained within the extremal path approxima-
overcome this problerh.In this paper, we present an ap- are presented. Analytical results for these observables in the
proach to the activated rare event problem by casting thenderdamped and overdamped regimes are presented in Sec.
Langevin equation into a path-integral formalism. We show! V- Section V contains discussions on the saddle points and
that in the low-temperature regime, the contributions to thé#Xtremal paths, and Sec. VI a summary.

path integral are dominated by the extremal paths. These
paths can be obtained by integrating a set of deterministic
equations, and there is no “wasted time” in the potential
well in this approach. It works well exactly in the regime  The standard Langevin equation can be written in the fol-
where conventional numerical simulation methods are nolowing form:

feasible. As a demonstration of the approach, we apply the .

formalism to study the diffusion of adsorbed atoif@sla- oy Falt I\t

toms on solid surface8.In this case, the problem can be )= antodt S(E=X() = VVIX(D ]+ &),
described by a Langevin equation for the adatom in a peri- 1)

Il. PATH INTEGRAL FORMALISM FOR LANGEVIN
EQUATION

0163-1829/99/6(24)/169657)/$15.00 PRB 60 16 965 ©1999 The American Physical Society



16 966 L. Y. CHEN AND S. C. YING PRB 60

In the Langevin equation approach, there exists considerablEhe functional integrand in Eq3), though complicated, is
flexibility in separating the explicit dynamical degrees of positive-definite, and, thus, the numerical implementation of
freedom represented by the vector coordinate and the the path integral in Eq(3) is well defined. The physically
rest of the system representing the “heat bath” degrees oihteresting regime usually corresponds to the situation such
freedom, giving rise to the frictios and the random forcé. that the thermal energy is much less than the activation bar-
For example, in the simplest type of surface diffusionriers. Under this condition, there exist special paths whose
mechanism involving the hopping motion of an adatom oncontribution to the path integral in E(B) dominates over alll
the surface, the entire substrate degrees of freedom can Bee other paths. To illustrate this more clearly, we introduce
incorporated into the heat bath, and show up only implicitlythe typical length scalel, energy scalé/,, and time scale

in the friction » and the random forc&. For more exotic  7,=\md?/V,=1/w, for the system under consideration.
mechanisms such as exchange or concerted motion, a largéguation(3) can then be expressed in terms of dimension-
dimension of explicit dynamical variablg(t) is needed. less, scaled variables in the form

Even for the simple hopping motion, the inclusion of all 1

degrees of freedom explicitly ir(t) is desirable, since the _

migroscopic friction is t[?wen )(;yngr)nically generated through P vy ,ti|x,v,t)—f [Dx]exp{ By ] @

the interaction of the particles rather than assumed in the N :

Langevin equation as a parameter. When all the dynamicd¥ith the boundary conditions{x(t;)=x; ,x(t;)=v;} and
degrees of freedom are explicitly included, the role of the{x(t)=x,x(t)=v}, and an effective action

friction in Eq. (1) is then strictly just to provide a true heat t

bath..The numerical S|mul_at|on of E@l) then corresponds |:f dt{ii(t)+2y5((t)+VV[x(t)]}2, (5)

to doing molecular dynamics at a constant temperature for a t;

canonical ensemble rather than a strict solution of Newton’s

equations that corresponds to a microcanonical ensemble.
this point, we are not restricting our discussion to any par
ticular system, sx(t) stands for a multicomponent vector
with dimensionND, whereN is the number of particles and
D is the physical dimension of the syste¥(x) is a gener-
alized potential including both external potential and inter-
particle interactions. The random foré&) characterizes the
coupling to the heat bath. Its correlation can be written in th
form (&(t)&(t'))=2kgTns(t—t'). Here 7 is the friction

herex,t, andV are all in their dimensionless form. The
dimensionless friction parametety is defined as vy
= y/mw,, and the dimensionless paramekeappearing in
the exponential of the functional integrand ia
=4ykgT/V,. Clearly, in the low-temperature and/or under-
damped regime ¥<1), \<1, the extremal path of func-
tional I[x(t)] carries the dominant weight in the path inte-
Jration of Eq.(4). Since the action functionalis positive-
definite, deviations from the extremal path carry negligible
; . ; L _contribution to the path integral in EG). The extremal path
(damping coeflicient, and the functiog(t —t’) has a corre is determined from the condition that the functional deriva-

lation time 7. In general, the potential(x) has many local . )
minima separated by activation barriers. To illustrate the natve 5.”5)((0 vanishes. This leads to the standard Euler
quation for the extremal path

ture of the path-integral approach clearly, in this paper wé
()= y4(t)+¢-VIVIX(1)]=0. (6)

consider only the Markovian limit of the frictional damping.
This is the limit where the random force correlation time
<1/y, so thats(t—t') can be approximated by a delta func- Here, /(t) stands for the combinationx(t)+ yx(t)
tion, namely,s(t—t")=5(t—t"). Generalization to include 1 yv[x(t)]. All quantities in Eq.(6) are in dimensionless
memory effects is straightforward. form.

Unlike the case of a deterministic equation, there exists a e note that Eq(6) always allows a solution
whole distribution of solutiongpaths to the Langevin equa-
tion for a given boundary condition, and physical observ- £=X(t)+ yx(t) + VV[x(t)]=0. (7
ables are obtained as averages over this distribution of paths. . L .
It has been shown that with regard to the solution of the! NiS corresponds to the minimal path approximatibtPA)
Langevin equatior{1), the joint probabilityP[x(t)] for the yielding the minimal value of the action=0. The MPA is

system to take a particular pattt) starting at &;,v; ,t;) and particularly useful for an.actual ev:_;lluation of the rate pro-
ending at &,v,t) is given by the following expressiot: cesses as demonstrated in the sections below. Equaios
a deterministic equation that yields a final configuration

1 1 t . } [x¢(Xi,Vvi),vi(X;,vi)] when integrated over time interval
PIX(D)]=77exp — Wﬂdt[mwr 7X (t; ,t;) for a given initial configuration X;,v;). Expanding
: the action functional up to second order in the deviation
{(X(t)=x,x(t) =V} paths, and taking the limit—0, the joint probability in the
+VV(x)]2] . (20 MPA reduces to the form
{X(t) =x;x(t) =V}

. . . ) P(Xi,Vi b %, v, tg) = 80 X=X (X ,vi)]
The total joint probability for the particle to be ix(,v;) at
t=t; and in (x,v) att=t is then given by the patkfunc- X O[v—vi(X;,vi)Jexp(—1/\), (8)

tional) integraf wherel =f;fdt§(t)2 is evaluated along the minimal path so-

B lution satisfying Eq(7). From this joint probability together
P(Xi.vi ’ti|X’V*t)—f [DXIP[x(D)]. (3 with the initial (equilibrium) distribution P(x; ,v;), physical



PRB 60 SOLUTION OF THE LANGEVIN EQUATION FOR RAFE . .. 16 967

observables can be evaluated conveniently. It should bes determined by solving Eq12) for an e(x) that satisfies
pointed out that this path-integral formalism and the MPAthe boundary conditions(x=Xx;)=¢€, and e(x=1—1/2+0)

are applicable to arbitrary interacting systems. =2.
The solution of these minimal paths corresponds nicely to
Il. APPLICATION TO SURFACE ADATOM DIFFUSION the physical picture that, at low temperatures, the actual mo-

) ) ) ) tion of the adatom can be characterized by a series of uncor-
In order to illustrate the formalism described in Sec. Il, re|ated jumps of variable lengths. We can define a jump
we consider a model system describing the diffusive motionength distributionp, as the probability for the particle being
of a single particle on a substrate surface. The regular part ¢ictivated from [-1/2,1/2 and deactivated into[(=*I
the interaction with the substrate is represented as a simple 1/2),(+1+1/2)] (jumping overl barriers withl=1). This
one-dimensional sinusoidal potential with perbdnd mag-  gistribution functionp, does not directly follow from the
nitude Vo. In the dimensionless form witd andVy as the  joint probability in Eq.(8), but can be deduced from the raw
length and energy scale, respectively, it can be expressed fanp probabilityP, which is defined as the joint probability
_ for a particle to be in the region—1/2,1/7] att; and to be
V(x)=[1-cog2mx)]. ©  geactivated i (=1 1/2),(x1+1/2)] att;. In this defini-
The minima of this potential are located at integer values ofion of P, jumps activated in (+k—1/2),(+k+1/2)] for
x=I, with 1=0,1,2, etc. The substrate vibratiorfahd elec- an arbitrary nonnegative integky passing through the cen-
tronic) degrees of freedom are incorporated in the frictiontral region [—1/2,1/2, and then deactivated if(*I
and random force termiin Eq. (1). We now consider the —1/2),(*1+1/2)] are all included. The raw jump probabil-
special solutiont=0 to Eq.(6) corresponding to the mini- ity Py can be directly evaluated within the minimal path ap-
mum of the action. This minimal path satisfies a simpleProximation for the joint probability in Ec(8) as
Newtonian equation with friction:

1
X(t)+ (1) + V' [X(D)]=0. (10 P'ZEJJdXidV‘J JdXd"P(X“V‘)
Integration of this minimal path equation produces a final X xo(Xi) X1 (X)P(X;V; ,ti|X,V,t;)
configuration &;,v;) from a given initial configuration 1
(X ,vi). Frqm Eq.(10), it follows easily that the scaled en- _ _f J' dx dviP(x; Vi) xoX) xil X (% ,vi) ], (15)
ergy e(x)=x%/2+V(x) decreases monotonously along the c

minimal path as wherex;(X;,v;) is the solution of the deterministic equation

de(x) (6) with £=0. The characteristic functiog,(x)=1 when
5 =—75<2=—27[e(x)—V(x)]. (11) (£1=21/2)<x<(*=1+1/2), andy,(x)=0 otherwise( is a
t normalization constant chosen such tBdt,P,;=1. Making
So, starting from the initial location a with initial energy ~ use of the symmetry of the potenti¥(x) and the minimal
e =Vv?/2+V(x;), the energye(x) at a new locatiorx follow- path solutions in Eqs13) and(14), we can simplify Eq(15)

ing the minimal path is to the form

X 2 1/2 €41
e(x)—ei:—yJX_dx(i)\/z[e(x)—V(x)] (12 Pi=57 71/2dxif de

€

ﬁVi

€

F{ Voei)
ex —kB—T , (16)

for e=e(x)=2 (i.e., when the actual enerdyis larger than ~Which is for =1 and in terms of the dimensionless
or equal to the diffusion barriev,=2V,). Here thex sign  X;,vi, and e;. Here the initial distribution P(x;,v;)
corresponds tox>0 or x<0. Starting fromx; with —1/2 = &XP(Ei/kgT)/Z is made use of explicitlyZ is the dimen-
<x;<1/2 (with v,>0), and following the minimal path sionless partition function given by the expression
X(t), a pointx, will be reached where(x,)=2. After this " .
point, the particle does not have enough energy to cross the _ : , _ V&

: . . . : z dx [ dvjex , (17)
next barrier. It will oscillate between two potential barriers ~1/2 o kgT
with decreasing energy, and eventually settles down to the o _ ) )
well bottom located ak=1=[x,+0.5]. Here[x,+0.5] de- and the normalization constafitis easily determined to be

notes the integral part of the real numbgr-0.5. Therefore, v
o€
ex;{ - kB—T) . (18)

we conclude that the final positior,=1=[x,+0.5] [i.e., Czl_zfllz dx-f81
|
Considering the translational invariance at equilibrium, we

(I=1/2)<x,<(l+1/2)] with the final velocityv;=0 (not- Z) -1 0
ing that we are interested ip=). Thus we have
xi=l,vi=0 for g(x)<e<e;1(X), (13 have the relatioP,=P,2;_,p,+«. Therefore, the true dis-
tribution p, which measures the relative probabilities of
jumps originating from particle at equilibrium in the central
region is given by

(9Vi

de' €

where the energy boundary

e=2+ yfl_l/2+0dx\/2[e(x)—V(X)] (14

Xi pi=(P,—P, . 1)/P; whenl|=12,.... (29
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FIG. 1. The jumping distance distributign vs | for various FIG. 2. The jumping distance distributiqn vs | for various
temperatures: ¥, /kgT=10-20 in steps of 2y=0.06. friction values: y=0.01, 0.02, 0.04, 0.06, and 0.08Vg/kgT
=10.

The jump length distributiop, defined in the above equation

is properly normalized such thati”,;p;=1, provided that Here the initial positionx;, velocity v;, and energye;
the raw jump probabilityP, decreases with. With the =224 v/(x,) are all in dimensionless form, whil carries
knowledge of the distribution functiop, for the various jig physical dimension. When the diffusion consténand
jump lengths, the diffusion constabtcan now be expressed ihe mean-square jump distand®(I2) have been evaluated
in the form independently through Eq&23) and(20), the activation rate
w v can then be simply obtained from the ratio of these two
_42/12 . 2\ 2 uantities.
D=vdX(I%)  with (I >_|2’1 i 0 1 We have solved the equation for the minimal paths nu-
merically for a full range of frictiony. The numerical results
Here v is the activation rate which is equal to the deactiva-for the jump length distribution, vs | at low temperatures
tion rate from the detailed balance condition. The latter isynq various values of the friction parameteare plotted in
equal to the product of th_e current fI_owing into region Figs. 1-3. The near-exponential behaviopplupon| stems
[—1/2,1/2, and the probability to deactivate there. As thefrom the fact that longer jumps require higher initial energy,
influx current comes from the nearest neighbors, the probang an initial configuration of higher energy is exponentially
ability to deactivate if —1/2,1/2 is simply P,. Therefore,  |ess probable (initial equilibrium distribution P(x; ,v;)
. =exd —Ve& /kgT)]. This interesting behavior becomes more
v=2J dv;P(x;=—1/2y;)v;P;. (21)  explicit in the an_alytigal result in the underdamped regime
0 (y<<1), as described in Sec. IV. It should be noted that for
the one-dimensional model system considered here, some of

The application of this formula requires a knowledge of thethe results presented here have been obtained by others, re-

transition state bpundanes Wh'Ch_'s trivial for the presentIying on numerical implementation of the matrix-continued-
case, corresponding to the two points —1/2 and 1/2.

In the minimal path approach, the diffusion constaént
can also be directly evaluated through the velocity autocor- *©°

L2

° =01 ©
relation function as . ? . vz 4
o ° ¥=06 x
y=08 &
0 0.01 . ° N
Dzzfo dt(v(0)v(t))dt oo o .
=2(v(0)[X(tr) =X(0) ], 0 : :
10° R b 0
ZZJ dVif dx; P(X; , Vi) ViX(Xi Vi )] 0. (22) 0 *
107 s
Applying the conclusion about the final configurationfor R . R
a givene; in Eq. (13), we can decompose the expression for " * N
D in Eq. (22) into contributions from minimal paths of vari-  ¢* .
ous jumping length as . *
10

0 5 10 15 20
2 e ” A
= ﬂ dx >, EHIdeI ex;{ - @) . (23 FIG. 3. The jumping distance distributign vs | for various
Z7g)—12” =1 Je kgT friction values:y=0.1, 0.2, 0.4, 0.6, and 0.8V3/kgT=10.
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fraction expansiofMCFE).”° However, for higher dimen-
sions and low friction regime, the MCFE is very difficult, if
not impossible, to implement numericaffy.On the other

hand, the numerical demand of the present minimal path ap-
proach is modest, and the solution for higher-dimensional

systems is quite feasible.

IV. ANALYTICAL RESULTS IN THE UNDERDAMPED
AND OVERDAMPED REGIMES

In the underdamped and overdamped regimes correspond-

ing to y<1 or y>1, analytical results can be obtained. First

we examine the underdamped regime. In this region, the en- FIG. 4. The rate prefactor(v/wo)exp(2/o/ksT)]
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ergy of the particle in transit differs only slightly from the tional factor (4/qy/mkgT).

threshold value oé=2 (i.e.,E=2V,). Thus, to lowest order
in v, we can replace the energy functiefx) in the inte-
grand of Eq.(14) by the constant value of 2, leading to the
expression

I-1/2
e=2+ yJ dxy2[1+cog2mX)]. (249
Xi
Forl=1,
4 2 )
e|=2+(l—l);y+y;(1—smwxi). (25

length distribution p; possesses the “Arrhenius” form,

which was recently observed experimentafly.

With the knowledge of the relative probability of jump
lengths ofl lattice constantg,, we can obtain the second
expression foD from Eq. (20) as

o

D=vd[expAE/kgT)—1]>, 1Zexp(—IAE/KgT)
=1

=vd? coth AE/2kg T)[1—exp(—AE/kgT)] L. (28)

The activation rate can be found through E@S6) and(28):

The diffusion constant can be evaluated through the sub- vl wo=4 exp — 2V, /kgT) o AE/2kgT)/COSHAE/2KgT).

stitution of the result fog, in Eq. (25) into the expression for
D in Eq. (23), yielding the following result valid fory<1:

4d%kgT fllz g i p( V0e|) p( Voe|+1)
= X; exp ———=|—exg —— =
ZrgVo J-12 =1 kgT kgT
= Zoovo O T ioT) ol mkt) /SN Tt (29

Considering thaVy>kgT ande;=2, the combination of
Egs. (25 and (16) yields the expressions fd?, to the first
order ofy for1=1,2,... as

P = AE 1 IAE =12 ;
O] O T T2

(27)

hereAE=4V,y/ . Interestingly, in this limit the true jump
length distributionp, follows from Eq. (19) identically to
P,. This analytical formula for the jump length distribution
clearly shows that there seems to be an energy “barrieg’

(29

This result can also be derived through EBl). Figure 4
shows the well known “turnover” behavior of the jump rate
v as a function of the frictiony. As y rises from 0, so does
the ratev in proportion withy. The ratev rises to a maxi-
mum aty~KkgT/V, before it decreases upon further increase
of y. We also note that in the “low friction” limit when we
have y<kgT/Vy, Eq. (26) simplifies to

o

which coincides with the result derived by other me&ns.
Note that in the low-temperature regimé;>kgT, the con-
dition for the low friction limit required for the validity of
Eqg. (30) is much more stringent than the mere requirement of
underdamping, i.ey<<1.

In the high friction regime, wher>1, the minimal path
approximation again recovers the known analytical results.
For y>1, energy dissipates rapidly along the minimal path
at a rate~ vy [see Eq(11)]. Itis clear thate;=e; + O(y) for

WkBT
- Mywg

2V,
kgT

, (30

separating jumps over different distances. In the lowd=2,3,...,and, therefore, activated jumps are dominantly

temperature regime wher€,/kgT>1, underdamping ¥
<1) does not necessarily imply the smallnessA&/kgT.

over one single barrier. Furthermore, considering a minimal
path starting from—1/2<x;<<1/2 with v;>0, e;(X;) even

Therefore, interesting behaviors of the jump distance distrimore strongly depends on initial positiet and, in fact, the
bution upon jump length and temperature can be observminimal path can reach the next well regien>1/2 only
ed?'4-19n fact, in the appropriate temperature range, awvhenx; is very close to the barriet=1/2. So we approxi-

jump overl + 1 barriers has an additional barri®E to over-
come than a jump ovdrbarriers. The dependence of jump

mate the potential arounk=1/2 as V(x)=2+2m%(x
—1/2)?; the minimal path solution of Eq6) gives
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1 be very complicated, and are usually not knowrpriori.
e =2+ Eyz(xi—l/Z)z. (3)  Powerful methods have been introduced recently to locate
the saddle points in such multidimensional systéfifs.
However, they still require a knowledge of starting and end-
ing configurations which is equivalent to assuming a particu-
lar physical mechanism for the transition between the two
configurations. In this regard, the extremal paths discussed in
Eqg. (6) can be used as a powerful tool for locating the rel-
D= (kgT/2Mywo)exp —2Vy /KgT); (32)  evant saddle points near the starting configuration without
preassuming the mechanism. To illustrate this, we have

through other mear. Carrying out the integrations in EqQ. two-dimensional potential,

(16), the raw jump probabilitie®, are given as

where the energg(x) (in the minimal path solutionsatis-
fies the boundary conditionge(x=x;)=e; and e(x=1/2
+0)=2. In this, integrating Eq(23), the diffusion constant
is found:

V(x,y)=1—exd —4x*—(y—2)*]—exd — (x—2)?— 4y?],

P,=0 ex;{ _yﬁ> for 1=23,... . (34) which possesses two po_tential _vvells located at (0,2) gnd
kgT (2,0) respectively. There is a unique extremal path solution

to Eq. (6), that starts from one well bottomx(,y;) =(0,2)
with which Eq.(19) delivers the jump length distribution as and v;=(0,0), ascends to the saddle point located at
(0.4,0.4), and descends into the other well bottom,ys)
p;=1, p~0 for =23, .... (35) =(2,0) andv;=(0,0). In terms of initial conditions, this
corresponds to a definite choice for the initial values for
This leads to the mean-square average jumping distancnd ¢. The nature of this extremal path switches from acti-

V({12)=1. The activation rate can then be obtained: vation to deactivation exactly at the saddle point when the
value of { is precisely zero there. The deactivation part of
v=(KgT/27d?)exp( — 2V, /kgT): (36) this path actually obeys the minimal path equatigt)=0.

In practice, the precise values of this particular pair of initial

this is again identical to the result derived through othervalues{ and{ are unknown. However, we find that there is
means It should be noted that the validity of the over- @ range of choice of initial conditions such that the extremal
damped limit analytical results are rather limited because Path would still go through the saddle point, albeit with a
= 4ykgT/V, has to be<1 for the minimal path approxima- nonvanishing value of there. Thus numerical integration of

tion to be applicable, while the underdamped limit resultsEd- (6) enables one to selectively simulate the activation-
have a wider range of applicability. deactivation processes without “wasting” computing time

on the long but fruitless oscillation part between two rare
activated events. It is interesting to note that the extremal
path searches for and locates the desired saddle points with-
out requiring a knowledge of the final configuration. More-
In the last two sections, we demonstrated how the mini-over, it produces the true activation dynamics. Applications
mal path approximation in the path-integral formalism yieldsof this method to multidimensional systems will be pub-
results for the diffusion constant and the jump rates for dished elsewhere.
model diffusion problem without the usual “rare events”
trouble in the conventional approach of a direct simulation of
the Langevin equation. As shown in E¢p), the minimal
path is just a special case of the extremal path. In the MPA
approach, the rare activation problem at low temperatures is In summary, we have presented an alternative to the direct
avoided by starting at or above the threshold energy at theimulation of the Langevin equation by casting it into a path-
saddle point, and sampling the neighborhood of these starintegral formalism. The formalism can be applied to multi-
ing points. Thus the MPA approach is similar to the dimensional systems where all the degrees of freedom of
transition-state theoryTST), including all the dynamical interacting particle are explicitly included. In this case, the
corrections?? The effects of “recrossing” or long jumps are Langevin dynamics simply corresponds to a particular form
automatically included in the minimal paths. These minimalof constant-temperature molecular dynamics. In the low-
paths also are similar to the “transition paths” discussed bytemperature regime where conventional simulation methods
Jacobsen and co-worké?$tin a different approach. are not practical, the path-integral approach is particularly
For the simple one-dimensional model studied in the lassimple because contributions to the path integral in this re-
two sections, the threshold just corresponds to the top of thgime are dominated by extremal paths. Among the extremal
potential, and the application of the MPA is straightforward. paths, the minimal path is particularly important since it di-
For multidimensional systems where all the interacting par+ectly yields results for the activation rate, diffusion constant,
ticles are explicitly included instead of being allocated to thejumping distance distribution, etc., as demonstrated by the
heat bath degrees of freedom, the saddle-point structures camplicit calculation for a simple model. Since the tempera-

V. SADDLE POINTS AND EXTREMAL PATHS

VI. SUMMARY
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ture is not an explicit factor in the minimal pat&g. (6)], ticularly useful for systems with complicated energy land-
this study does not require greater CPU time in lower temscapes.

peratures. The results for activation rate and diffusion con-
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