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Solution of the Langevin equation for rare event rates using a path-integral formalism
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We present an approach to the problem of evaluating the rates of rare activated events by solving the
Langevin equation through a path-integral formalism. At temperatures much lower than the activation barrier,
we find that the minimal path approximation to the path integral yields excellent accuracy, and greatly sim-
plifies numerical efforts in the solution of the Langevin equation. In addition, the extremal paths allow one to
locate the saddle points without presuming any particular physical mechanisms for getting from one configu-
ration to another. As a demonstration of this approach, we study the Brownian motion of a particle in a periodic
potential subject to stochastic forces. This model has many applications in varied fields besides physics, such
as chemistry and communication theory. We focus specifically in this paper on the application to the problem
of surface adatom diffusion. For one dimension, the results we obtain with this approach are in full agreement
with standard analytical and numerical methods. Furthermore, we have derived analytical formulas for the
probability distribution of jump lengths.@S0163-1829~99!02248-1#
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I. INTRODUCTION

A variety of phenomena in physics, chemistry, and ot
fields can be modeled as Brownian motion in a potential w
local minima~stable or metastable states! separated by acti
vation barriers.1,2 Particles executing Brownian motion a
subject to both regular forces resulting from the adiaba
potential and stochastic forces coming from coupling to
environment~a heat bath!. The corresponding equation o
motion describing this Brownian motion is the Langev
equation. At low temperatures, a typical trajectory of t
system consists of a long period of localized motion abou
local minimum, followed by a jump over a barrier, and th
another long period of localized motion about another m
mum, and so on. Activated processes over barriers are
erally rare events, as the thermal energykBT is much less
than the activation barrierVb under typical conditions of
practical importance. This makes a direct numerical simu
tion of the Langevin equation practically intractable, beca
most of the computation time would be ‘‘wasted’’ in th
time interval between activated events, when the system
‘‘trapped’’ in small oscillations in potential wells. Variou
schemes have been invented to speed up the processe
overcome this problem.3 In this paper, we present an ap
proach to the activated rare event problem by casting
Langevin equation into a path-integral formalism. We sh
that in the low-temperature regime, the contributions to
path integral are dominated by the extremal paths. Th
paths can be obtained by integrating a set of determin
equations, and there is no ‘‘wasted time’’ in the potent
well in this approach. It works well exactly in the regim
where conventional numerical simulation methods are
feasible. As a demonstration of the approach, we apply
formalism to study the diffusion of adsorbed atoms~ada-
toms! on solid surfaces.4 In this case, the problem can b
described by a Langevin equation for the adatom in a p
PRB 600163-1829/99/60~24!/16965~7!/$15.00
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odic potential subject to stochastic forces. For one dim
sion, analytical results for the escape rate from a metast
state and the diffusion constant for a periodic potential in
high and low friction limits have been obtained through
direct solution of the Langevin equation or the equivale
Fokker-Planck equation.5–10 However, a complete solution
for an arbitrary friction value poses a considerable challen
We show below that at low temperatures, the extremal p
approximation to the path integral yields a result for the d
fusion constant valid for all values of the friction. It agre
with the known results in the high and low friction limits
Analytical and numerical results on the jumping distance d
tribution are obtained within this approximation. Moreove
our approach can be easily applied to higher-dimensio
cases, and for the inclusion of non-Markovian memory
fects in the frictional damping.

The rest of this paper is organized as follows. In Sec.
the path-integral formalism for the Langevin equation a
the extremal path approximation is introduced. In Sec.
we describe the application of this formalism to the study
the surface adatom diffusion problem. General formulas
the diffusion constant, jump distance distribution, and a
vation rate are obtained within the extremal path approxim
tion, and numerical results for a wide range of friction valu
are presented. Analytical results for these observables in
underdamped and overdamped regimes are presented in
IV. Section V contains discussions on the saddle points
extremal paths, and Sec. VI a summary.

II. PATH INTEGRAL FORMALISM FOR LANGEVIN
EQUATION

The standard Langevin equation can be written in the
lowing form:

mẍ~ t !522hE
t0

t

dt8s~ t2t8!ẋ~ t8!2¹V@x~ t !#1j~ t !.

~1!
16 965 ©1999 The American Physical Society
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In the Langevin equation approach, there exists consider
flexibility in separating the explicit dynamical degrees
freedom represented by the vector coordinatex(t) and the
rest of the system representing the ‘‘heat bath’’ degrees
freedom, giving rise to the frictionh and the random forcej.
For example, in the simplest type of surface diffusi
mechanism involving the hopping motion of an adatom
the surface, the entire substrate degrees of freedom ca
incorporated into the heat bath, and show up only implic
in the friction h and the random forcej. For more exotic
mechanisms such as exchange or concerted motion, a la
dimension of explicit dynamical variablex(t) is needed.
Even for the simple hopping motion, the inclusion of a
degrees of freedom explicitly inx(t) is desirable, since the
microscopic friction is then dynamically generated throu
the interaction of the particles rather than assumed in
Langevin equation as a parameter. When all the dynam
degrees of freedom are explicitly included, the role of t
friction in Eq. ~1! is then strictly just to provide a true hea
bath. The numerical simulation of Eq.~1! then corresponds
to doing molecular dynamics at a constant temperature f
canonical ensemble rather than a strict solution of Newto
equations that corresponds to a microcanonical ensemble
this point, we are not restricting our discussion to any p
ticular system, sox(t) stands for a multicomponent vecto
with dimensionND, whereN is the number of particles an
D is the physical dimension of the system.V(x) is a gener-
alized potential including both external potential and int
particle interactions. The random forcej(t) characterizes the
coupling to the heat bath. Its correlation can be written in
form ^j(t)j(t8)&52kBThs(t2t8). Here h is the friction
~damping! coefficient, and the functions(t2t8) has a corre-
lation timet. In general, the potentialV(x) has many local
minima separated by activation barriers. To illustrate the
ture of the path-integral approach clearly, in this paper
consider only the Markovian limit of the frictional damping
This is the limit where the random force correlation timet
!1/g, so thats(t2t8) can be approximated by a delta fun
tion, namely,s(t2t8).d(t2t8). Generalization to include
memory effects is straightforward.

Unlike the case of a deterministic equation, there exis
whole distribution of solutions~paths! to the Langevin equa
tion for a given boundary condition, and physical obse
ables are obtained as averages over this distribution of pa
It has been shown that with regard to the solution of
Langevin equation~1!, the joint probabilityP@x(t)# for the
system to take a particular pathx(t) starting at (xi ,v i ,t i) and
ending at (x,v,t) is given by the following expression:11

P@x~ t !#5
1

N expH 2
1

4hkBTEt i

t

dt@mẍ1h ẋ

1¹V~x!#2J U
$x(t i )5xi ẋ(t i )5v i %

$x(t)5x,ẋ(t)5v%

. ~2!

The total joint probability for the particle to be in (xi ,v i) at
t5t i and in (x,v) at t5t is then given by the path~func-
tional! integral12

P~xi ,v i ,t i ux,v,t !5E @Dx#P@x~ t !#. ~3!
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The functional integrand in Eq.~3!, though complicated, is
positive-definite, and, thus, the numerical implementation
the path integral in Eq.~3! is well defined. The physically
interesting regime usually corresponds to the situation s
that the thermal energy is much less than the activation
riers. Under this condition, there exist special paths wh
contribution to the path integral in Eq.~3! dominates over all
the other paths. To illustrate this more clearly, we introdu
the typical length scaled, energy scaleV0, and time scale
t0[Amd2/V0[1/v0 for the system under consideratio
Equation~3! can then be expressed in terms of dimensio
less, scaled variables in the form

P~xi ,v i ,t i ux,v,t !5E @Dx#expH 2
1

l
I J , ~4!

with the boundary conditions$x(t i)5xi ,ẋ(t i)5v i% and

$x(t)5x,ẋ(t)5v%, and an effective action

I 5E
t i

t

dt$ẍ~ t !12g ẋ~ t !1¹V@x~ t !#%2, ~5!

where x,t, and V are all in their dimensionless form. Th
dimensionless friction parameterg is defined as g
[h/mv0, and the dimensionless parameterl appearing in
the exponential of the functional integrand isl
54gkBT/V0. Clearly, in the low-temperature and/or unde
damped regime (g!1), l!1, the extremal path of func
tional I @x(t)# carries the dominant weight in the path int
gration of Eq.~4!. Since the action functionalI is positive-
definite, deviations from the extremal path carry negligib
contribution to the path integral in Eq.~4!. The extremal path
is determined from the condition that the functional deriv
tive dI /dx(t) vanishes. This leads to the standard Eu
equation for the extremal path

z̈~ t !2gż~ t !1z•¹¹V@x~ t !#50. ~6!

Here, z(t) stands for the combinationẍ(t)1g ẋ(t)
1¹V@x(t)#. All quantities in Eq.~6! are in dimensionless
form.

We note that Eq.~6! always allows a solution

z5 ẍ~ t !1g ẋ~ t !1¹V@x~ t !#50. ~7!

This corresponds to the minimal path approximation~MPA!
yielding the minimal value of the actionI 50. The MPA is
particularly useful for an actual evaluation of the rate p
cesses as demonstrated in the sections below. Equation~7! is
a deterministic equation that yields a final configurati
@xf(xi ,v i),v f(xi ,v i)# when integrated over time interva
(t i ,t f) for a given initial configuration (xi ,v i). Expanding
the action functionalI up to second order in the deviatio
paths, and taking the limitl→0, the joint probability in the
MPA reduces to the form

P~xi ,v i ,t i ux,v,t f !5d@x2xf~xi ,v i !#

3d@v2v f~xi ,v i !#exp~2I /l!, ~8!

whereI 5* t i

t fdtz(t)2 is evaluated along the minimal path s

lution satisfying Eq.~7!. From this joint probability together
with the initial ~equilibrium! distributionP(xi ,v i), physical
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PRB 60 16 967SOLUTION OF THE LANGEVIN EQUATION FOR RARE . . .
observables can be evaluated conveniently. It should
pointed out that this path-integral formalism and the MP
are applicable to arbitrary interacting systems.

III. APPLICATION TO SURFACE ADATOM DIFFUSION

In order to illustrate the formalism described in Sec.
we consider a model system describing the diffusive mot
of a single particle on a substrate surface. The regular pa
the interaction with the substrate is represented as a sim
one-dimensional sinusoidal potential with periodd and mag-
nitude V0. In the dimensionless form withd and V0 as the
length and energy scale, respectively, it can be expresse

V~x!5@12cos~2px!#. ~9!

The minima of this potential are located at integer values
x5 l , with l 50,1,2, etc. The substrate vibrational~and elec-
tronic! degrees of freedom are incorporated in the fricti
and random force terms13 in Eq. ~1!. We now consider the
special solutionz50 to Eq. ~6! corresponding to the mini
mum of the action. This minimal path satisfies a simp
Newtonian equation with friction:

ẍ~ t !1g ẋ~ t !1V8@x~ t !#50. ~10!

Integration of this minimal path equation produces a fi
configuration (xf ,v f) from a given initial configuration
(xi ,v i). From Eq.~10!, it follows easily that the scaled en
ergy e(x)5 ẋ2/21V(x) decreases monotonously along t
minimal path as

de~x!

dt
52g ẋ2522g@e~x!2V~x!#. ~11!

So, starting from the initial location atxi with initial energy
ei5v i

2/21V(xi), the energye(x) at a new locationx follow-
ing the minimal path is

e~x!2ei52gE
xi

x

dx~6 !A2@e~x!2V~x!# ~12!

for ei>e(x)>2 ~i.e., when the actual energyE is larger than
or equal to the diffusion barrierVb52V0). Here the6 sign
corresponds toẋ.0 or ẋ,0. Starting fromxi with 21/2
,xi,1/2 ~with v i.0), and following the minimal path
x(t), a pointxp will be reached wheree(xp)52. After this
point, the particle does not have enough energy to cross
next barrier. It will oscillate between two potential barrie
with decreasing energy, and eventually settles down to
well bottom located atx5 l 5@xp10.5#. Here@xp10.5# de-
notes the integral part of the real numberxp10.5. Therefore,
we conclude that the final positionxf5 l 5@xp10.5# @i.e.,
( l 21/2),xp,( l 11/2)# with the final velocityv f50 ~not-
ing that we are interested int f5`). Thus we have

xf5 l ,v f50 for el~xi !,ei,el 11~xi !, ~13!

where the energy boundary

el521gE
xi

l 21/210

dxA2@e~x!2V~x!# ~14!
e

,
n
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is determined by solving Eq.~12! for an e(x) that satisfies
the boundary conditionse(x5xi)5el and e(x5 l 21/210)
52.

The solution of these minimal paths corresponds nicely
the physical picture that, at low temperatures, the actual
tion of the adatom can be characterized by a series of un
related jumps of variable lengths. We can define a ju
length distributionpl as the probability for the particle bein
activated from @21/2,1/2# and deactivated into@(6 l
21/2),(6 l 11/2)# ~jumping overl barriers withl>1). This
distribution functionpl does not directly follow from the
joint probability in Eq.~8!, but can be deduced from the ra
jump probabilityPl which is defined as the joint probabilit
for a particle to be in the region@21/2,1/2# at t i and to be
deactivated in@(6 l 21/2),(6 l 11/2)# at t f . In this defini-
tion of Pl , jumps activated in@(7k21/2),(7k11/2)# for
an arbitrary nonnegative integerk, passing through the cen
tral region @21/2,1/2#, and then deactivated in@(6 l
21/2),(6 l 11/2)# are all included. The raw jump probabi
ity Pl can be directly evaluated within the minimal path a
proximation for the joint probability in Eq.~8! as

Pl5
1

CE E dxidv iE E dxdvP~xi ,v i !

3x0~xi !x l~x!P~xiv i ,t i ux,v,t f !

5
1

CE E dxidv i P~xi ,v i !x0~xi !x l@xf~xi ,v i !#, ~15!

wherexf(xi ,v i) is the solution of the deterministic equatio
~6! with z50. The characteristic functionx l(x)51 when
(6 l 21/2),x,(6 l 11/2), andx l(x)50 otherwise.C is a
normalization constant chosen such that( l 51

` Pl51. Making
use of the symmetry of the potentialV(x) and the minimal
path solutions in Eqs.~13! and~14!, we can simplify Eq.~15!
to the form

Pl5
2

CZE21/2

1/2

dxiE
el

el 11
deiU]v i

]ei
UexpS 2

V0ei

kBT D , ~16!

which is for l>1 and in terms of the dimensionles
xi ,v i , and ei . Here the initial distribution P(xi ,v i)
5exp(2Ei /kBT)/Z is made use of explicitly.Z is the dimen-
sionless partition function given by the expression

Z5E
21/2

1/2

dxiE
2`

`

dv i expS 2
V0ei

kBT D , ~17!

and the normalization constantC is easily determined to be

C512
2

ZE21/2

1/2

dxiE
0

e1
deiU]v i

]ei
UexpS 2

V0ei

kBT D . ~18!

Considering the translational invariance at equilibrium,
have the relationPl5P1(k50

` pl 1k . Therefore, the true dis
tribution pl which measures the relative probabilities
jumps originating from particle at equilibrium in the centr
region is given by

pl5~Pl2Pl 11!/P1 when l 51,2, . . . . ~19!
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The jump length distributionpl defined in the above equatio
is properly normalized such that( l 51

` pl51, provided that
the raw jump probabilityPl decreases withl. With the
knowledge of the distribution functionpl for the various
jump lengths, the diffusion constantD can now be expresse
in the form

D5nd2^ l 2& with ^ l 2&5(
l 51

`

l 2pl . ~20!

Heren is the activation rate which is equal to the deactiv
tion rate from the detailed balance condition. The latter
equal to the product of the current flowing into regio
@21/2,1/2#, and the probability to deactivate there. As t
influx current comes from the nearest neighbors, the pr
ability to deactivate in@21/2,1/2# is simply P1. Therefore,

n52E
0

`

dv i P~xi521/2,v i !v i P1 . ~21!

The application of this formula requires a knowledge of t
transition state boundaries which is trivial for the pres
case, corresponding to the two pointsx521/2 and 1/2.

In the minimal path approach, the diffusion constantD
can also be directly evaluated through the velocity autoc
relation function as

D52E
0

`

dt^v~0!v~ t !&dt

52^v~0!@x~ t f !2x~0!#&u t f→0

52E dv iE dxi P~xi ,v i !v ix~xi ,v i ,t f !u t f→0 . ~22!

Applying the conclusion about the final configurationxf for
a givenei in Eq. ~13!, we can decompose the expression
D in Eq. ~22! into contributions from minimal paths of vari
ous jumping lengthl as

D5
4d2

Zt0
E

21/2

1/2

dxi(
l 51

` E
el

el 11
dei expS 2

V0ei

kBT D l . ~23!

FIG. 1. The jumping distance distributionpl vs l for various
temperatures: 2V0 /kBT510–20 in steps of 2.g50.06.
-
s

b-

t

r-

r

Here the initial positionxi , velocity v i , and energyei

5v i
2/21V(xi) are all in dimensionless form, whileD carries

its physical dimension. When the diffusion constantD and
the mean-square jump distanced2^ l 2& have been evaluate
independently through Eqs.~23! and~20!, the activation rate
n can then be simply obtained from the ratio of these t
quantities.

We have solved the equation for the minimal paths n
merically for a full range of frictiong. The numerical results
for the jump length distributionpl vs l at low temperatures
and various values of the friction parameterg are plotted in
Figs. 1–3. The near-exponential behavior ofpl upon l stems
from the fact that longer jumps require higher initial energ
and an initial configuration of higher energy is exponentia
less probable ~initial equilibrium distribution P(xi ,v i)
5exp@2V0ei /kBT)#. This interesting behavior becomes mo
explicit in the analytical result in the underdamped regim
(g!1), as described in Sec. IV. It should be noted that
the one-dimensional model system considered here, som
the results presented here have been obtained by other
lying on numerical implementation of the matrix-continue

FIG. 2. The jumping distance distributionpl vs l for various
friction values: g50.01, 0.02, 0.04, 0.06, and 0.08. 2V0 /kBT
510.

FIG. 3. The jumping distance distributionpl vs l for various
friction values:g50.1, 0.2, 0.4, 0.6, and 0.8. 2V0 /kBT510.
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fraction expansion~MCFE!.7,9 However, for higher dimen-
sions and low friction regime, the MCFE is very difficult,
not impossible, to implement numerically.15 On the other
hand, the numerical demand of the present minimal path
proach is modest, and the solution for higher-dimensio
systems is quite feasible.

IV. ANALYTICAL RESULTS IN THE UNDERDAMPED
AND OVERDAMPED REGIMES

In the underdamped and overdamped regimes corresp
ing to g!1 or g@1, analytical results can be obtained. Fi
we examine the underdamped regime. In this region, the
ergy of the particle in transit differs only slightly from th
threshold value ofe52 ~i.e.,E52V0). Thus, to lowest order
in g, we can replace the energy functione(x) in the inte-
grand of Eq.~14! by the constant value of 2, leading to th
expression

el521gE
xi

l 21/2

dxA2@11cos~2px!#. ~24!

For l>1,

el521~ l 21!
4

p
g1g

2

p
~12sinpxi !. ~25!

The diffusion constant can be evaluated through the s
stitution of the result forel in Eq. ~25! into the expression for
D in Eq. ~23!, yielding the following result valid forg!1:

D5
4d2kBT

Zt0V0
E

21/2

1/2

dxi(
l 51

` FexpS 2
V0el

kBT D2expS 2
V0el 11

kBT D G l
5

2d2kBT

Zt0V0
expS 2

2V0

kBTD I 0S 2V0g

pkBTD Y sinhS 2V0g

pkBTD . ~26!

Considering thatV0@kBT ande1.2, the combination of
Eqs. ~25! and ~16! yields the expressions forPl to the first
order ofg for l 51,2, . . . as

Pl5S expS DE

kBTD21DexpS 2 l
DE

kBTD , l 51,2, . . . ;

~27!

hereDE54V0g/p. Interestingly, in this limit the true jump
length distributionpl follows from Eq. ~19! identically to
Pl . This analytical formula for the jump length distributio
clearly shows that there seems to be an energy ‘‘barrier’’DE
separating jumps over different distances. In the lo
temperature regime whereV0 /kBT@1, underdamping (g
!1) does not necessarily imply the smallness ofDE/kBT.
Therefore, interesting behaviors of the jump distance dis
bution upon jump length and temperature can be obs
ed.9,14–19 In fact, in the appropriate temperature range
jump overl 11 barriers has an additional barrierDE to over-
come than a jump overl barriers. The dependence of jum
p-
al

d-
t
n-

b-

-

i-
v-
a

length distribution pl possesses the ‘‘Arrhenius’’ form
which was recently observed experimentally.17

With the knowledge of the relative probability of jum
lengths of l lattice constantspl , we can obtain the secon
expression forD from Eq. ~20! as

D5nd2@exp~DE/kBT!21#(
l 51

`

l 2 exp~2 lDE/kBT!

5nd2 coth~DE/2kBT!@12exp~2DE/kBT!#21. ~28!

The activation rate can be found through Eqs.~26! and~28!:

n/v054 exp~22V0 /kBT!I 0~DE/2kBT!/cosh~DE/2kBT!.

~29!

This result can also be derived through Eq.~21!. Figure 4
shows the well known ‘‘turnover’’ behavior of the jump rat
n as a function of the frictiong. As g rises from 0, so does
the raten in proportion withg. The raten rises to a maxi-
mum atg;kBT/V0 before it decreases upon further increa
of g. We also note that in the ‘‘low friction’’ limit when we
haveg!kBT/V0, Eq. ~26! simplifies to

D5
pkBT

mgv0
expS 2

2V0

kBTD , ~30!

which coincides with the result derived by other mean6

Note that in the low-temperature regime,V0@kBT, the con-
dition for the low friction limit required for the validity of
Eq. ~30! is much more stringent than the mere requiremen
underdamping, i.e.,g!1.

In the high friction regime, wheng@1, the minimal path
approximation again recovers the known analytical resu
For g@1, energy dissipates rapidly along the minimal pa
at a rate;g @see Eq.~11!#. It is clear thatel>e11O(g) for
l 52,3, . . . , and, therefore, activated jumps are dominan
over one single barrier. Furthermore, considering a minim
path starting from21/2,xi,1/2 with v i.0, e1(xi) even
more strongly depends on initial positionxi and, in fact, the
minimal path can reach the next well regionx.1/2 only
whenxi is very close to the barrierx51/2. So we approxi-
mate the potential aroundx51/2 as V(x)5212p2(x
21/2)2; the minimal path solution of Eq.~6! gives

FIG. 4. The rate prefactor@(n/v0)exp(2V0 /kBT)# vs the fric-
tional factor (4V0g/pkBT).
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e1521
1

2
g2~xi21/2!2, ~31!

where the energye(x) ~in the minimal path solution! satis-
fies the boundary conditionse(x5xi)5e1 and e(x51/2
10)52. In this, integrating Eq.~23!, the diffusion constant
is found:

D5~kBT/2mgv0!exp~22V0 /kBT!; ~32!

this is in exact agreement with the known result deriv
through other means.10 Carrying out the integrations in Eq
~16!, the raw jump probabilitiesPl are given as

P151, ~33!

Pl5OFexpS 2g
V0

kBTD G for l 52,3, . . . , ~34!

with which Eq.~19! delivers the jump length distribution a

p151, pl'0 for l 52,3, . . . . ~35!

This leads to the mean-square average jumping dista
A^ l 2&51. The activation rate can then be obtained:

n5~kBT/2hd2!exp~22V0 /kBT!; ~36!

this is again identical to the result derived through oth
means.10 It should be noted that the validity of the ove
damped limit analytical results are rather limited becausl
54gkBT/V0 has to be!1 for the minimal path approxima
tion to be applicable, while the underdamped limit resu
have a wider range of applicability.

V. SADDLE POINTS AND EXTREMAL PATHS

In the last two sections, we demonstrated how the m
mal path approximation in the path-integral formalism yie
results for the diffusion constant and the jump rates fo
model diffusion problem without the usual ‘‘rare events
trouble in the conventional approach of a direct simulation
the Langevin equation. As shown in Eq.~6!, the minimal
path is just a special case of the extremal path. In the M
approach, the rare activation problem at low temperature
avoided by starting at or above the threshold energy at
saddle point, and sampling the neighborhood of these s
ing points. Thus the MPA approach is similar to th
transition-state theory~TST!, including all the dynamical
corrections.20 The effects of ‘‘recrossing’’ or long jumps ar
automatically included in the minimal paths. These minim
paths also are similar to the ‘‘transition paths’’ discussed
Jacobsen and co-workers18,21 in a different approach.

For the simple one-dimensional model studied in the
two sections, the threshold just corresponds to the top of
potential, and the application of the MPA is straightforwa
For multidimensional systems where all the interacting p
ticles are explicitly included instead of being allocated to
heat bath degrees of freedom, the saddle-point structures
d
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be very complicated, and are usually not knowna priori.
Powerful methods have been introduced recently to loc
the saddle points in such multidimensional systems.22,23

However, they still require a knowledge of starting and en
ing configurations which is equivalent to assuming a parti
lar physical mechanism for the transition between the t
configurations. In this regard, the extremal paths discusse
Eq. ~6! can be used as a powerful tool for locating the r
evant saddle points near the starting configuration with
preassuming the mechanism. To illustrate this, we h
solved Eq.~6! for the Langevin dynamics of a particle in
two-dimensional potential,

V~x,y!512exp@24x22~y22!2#2exp@2~x22!224y2#,

~37!

which possesses two potential wells located at (0,2)
(2,0) respectively. There is a unique extremal path solut
to Eq. ~6!, that starts from one well bottom, (xi ,yi)5(0,2)
and vi5(0,0), ascends to the saddle point located
(0.4,0.4), and descends into the other well bottom (xf ,yf)
5(2,0) andvf5(0,0). In terms of initial conditions, this
corresponds to a definite choice for the initial values forz

and ż. The nature of this extremal path switches from ac
vation to deactivation exactly at the saddle point when
value of z is precisely zero there. The deactivation part
this path actually obeys the minimal path equationz(t)50.
In practice, the precise values of this particular pair of init
valuesz and ż are unknown. However, we find that there
a range of choice of initial conditions such that the extrem
path would still go through the saddle point, albeit with
nonvanishing value ofz there. Thus numerical integration o
Eq. ~6! enables one to selectively simulate the activatio
deactivation processes without ‘‘wasting’’ computing tim
on the long but fruitless oscillation part between two ra
activated events. It is interesting to note that the extrem
path searches for and locates the desired saddle points
out requiring a knowledge of the final configuration. Mor
over, it produces the true activation dynamics. Applicatio
of this method to multidimensional systems will be pu
lished elsewhere.

VI. SUMMARY

In summary, we have presented an alternative to the di
simulation of the Langevin equation by casting it into a pa
integral formalism. The formalism can be applied to mul
dimensional systems where all the degrees of freedom
interacting particle are explicitly included. In this case, t
Langevin dynamics simply corresponds to a particular fo
of constant-temperature molecular dynamics. In the lo
temperature regime where conventional simulation meth
are not practical, the path-integral approach is particula
simple because contributions to the path integral in this
gime are dominated by extremal paths. Among the extre
paths, the minimal path is particularly important since it d
rectly yields results for the activation rate, diffusion consta
jumping distance distribution, etc., as demonstrated by
explicit calculation for a simple model. Since the tempe
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ture is not an explicit factor in the minimal path@Eq. ~6!#,
this study does not require greater CPU time in lower te
peratures. The results for activation rate and diffusion c
stant are in full agreement with the known results throu
other means. Furthermore, analytical and numerical res
on the jumping distance distribution have been obtained.
nally, we demonstrate that besides the minimal path, o
extremal paths are useful for finding threshold~saddle point!
barriers without any presumption of the physical activat
mechanism or intensive numerical efforts. This could be p
h

D

-
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h
lts
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er
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ticularly useful for systems with complicated energy lan
scapes.
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