PHYSICAL REVIEW B VOLUME 60, NUMBER 24 15 DECEMBER 1999-II

(Mis-)handling gauge invariance in the theory of the quantum Hall effect.
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The concepts of an instanton vacuum aRdnvariance are used to derive a complete effective theory of
massless edge excitations in the quantum Hall effect. Our theory includes the effects of disorder and Coulomb
interactions, as well as the coupling to electromagnetic fields and statistical gauge fields. The results are
obtained by studying the strong-coupling limit of a Finkelstein action, previously introduced for the purpose of
unifying both integral and fractional quantum Hall regimes. We establish the fundamental relation between the
instanton vacuunapproach and the completely equivalent theorgtifal edge bosondn this paper we limit
the analysis to the integral regime. We show that our complete theory of edge dynamics can be used as an
important tool to investigate long-standing problems such as long-range, smooth disorder, and Coulomb inter-
action effects. We introduce a two-dimensional network of chiral-edge states and tunneling (sadeis
pointy as a model for smooth disorder. This network is then used to derive a mean-field theory of the
conductances, and we work out the characteristic temperafyredale at which the transport crosses over
from mean-field behavior at high to the critical behavior plateau transitions at much loWwerThe results
explain the apparent lack of scaling which is usually seen in the transport data taken from arbitrary samples at
finite T. Second, we address the problem of electron tunneling into the quantum Hall edge. We show that the
tunneling density of states near the edge is affected by the combined effects of the Coulomb interactions and
the smooth disorder in the bulk. We express the problem in terms of an effective Luttinger liquid with
conductance parameteg)( equal to the filling fractionv) of the Landau band. Hence, even in the integral
regime, our results for tunneling are completely non-Fermi-liquid-like, in sharp contrast to the predictions of
single-edge theorie$§S0163-182609)13739-1

[. INTRODUCTION Luttinger-liquid theory of edge excitatiohsn the one hand,
and experimental results on edge tunneling on the Gther.

In problems of quantum transport, symmetries play an This paper is the third in a series in which we lay down
important role. Recent advances in the theory of the quanturthe foundation for a microscopic theory of disordered com-
Hall effect primarily make use of electrodynamic gauge in-pressible and incompressible states in ¢fnactiona) quan-
variance as the fundamental symmetry of the strongly corretum Hall regime. In previous papé&rs(hereafter called | and
lated electron gas? This symmetry permits one to proceed Il) we introduced an effective Finkelstein action for localiza-
with a minimum of microscopic input. Applications of tion and interaction effects. The Finkelstein action includes
Chern-Simons theory have been largely based upon phenorthe topological concept of an instanton vacuum as well as the
enological arguments. These applications have provided statistical(Chern-Simonsgauge fields. The inclusion of sta-
universal language for the fractional quantum Hall effect intistical gauge fields in the problem makes it possible to for-
which the various hierarchy schemes could be treated omulate a combined theory of composite fermions, localiza-
equal footing tion and interaction effects. The results wkak-coupling

Application of Chern-Simons theory has also led to theanalyseqboth perturbative and nonperturbative, i.e. instan-
idea that many of the basic properties of incompressibléons can then be used to obtain a global scaling diagram for
guantum Hall states can be understood in terms of Luttingethe conductances. The integral as well as fractional quantum
liquid behavior of the edge excitations. This non-Fermi-Hall regimes are incorporated in this scaling diagram. In this
liquid theory of edge excitations is how commonly used as avork, we are primarily interested in the strong-coupling limit
computational scheme for tunneling properties of differentof our action where the system has a gap in the density of
guantum Hall states as well as the thermodynamic propertiestates. This physical situation is the same as the one de-
of the fractionally charged quasiparticles. It is important toscribed by the Chern-Simons approach with one important
keep in mind, however, that unlike the conductance paramexception: besides the Coulomb interactions, we also deal
eters, physical quantities like the tunneling density of statefrom first principles with the effects of disorder.
do not necessarily follow the rules of incompressibility. The  One of the main objectives of this work is to derive mi-
lack of a microscopic theory of the fractional quantum Hall croscopically a Luttinger-liquid theory for edge excitations
effect has led to controversial issues regardingdégnition  in the presence of disorder and electron-electron interactions.
of the Hall conductanc¢notably for those states that have From our general, effective action point of view, we can say
edge channels of opposite chira)iff# Moreover, serious that the physics of edge excitations has a fundamental sig-
discrepancies have arisen between the predictions of thaficance since it provides unique and invaluable information
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on the topological concept of an “instanton vacuufhih  varying potentials are often preséfit? Till now these have
strong coupling. in general been difficult to handle. Our microscopic theory of

An additional important advancement is that we obtainthe edge enables us to treat long-range potentials as well as
for the first time, thecompleteLuttinger-liquid theory on the electron-electron interactions. In this paper we embark on
edge. We have the action for interacting chiral edge bosonsolving two long-standing problems where smooth disorder
coupled to external electromagnetic fields. This theory camnd Coulomb interactions give rise to unexpected results. By
now be used to define the Hall conductance in a generahddressing these problems we attack the core of the contro-
unambiguous manner by expressing the appearance of aersies that exist between the theory and experiments that
“edge anomaly™® in terms of Laughlin’s gauge argumetit. presently span this subject.

The details of the analysis of edge excitations are de- The first problem we address is that of the plateau transi-
scribed in Secs. Il and IV. This analysis is based, to a largeions. This we model as a percolating network of “edge
extent, on the various concepts which were introduced in ktates” (equipotential contoujs and widely separated
under the names * algebra” and “F invariance.” Recall “saddle points.” A large class of such systems is then
that in Il we also studied these concepts, but in the weakmapped’ onto the nonlineasr model representation for lo-
coupling regime. This paper therefore shows tfainvari-  calization, and the main problem is to identify the length and
ance retains its significance all the way down to the regimenergy scales of the “bare” parameters, or the mean-field
of strong coupling, where the massless excitations are corconductances which together determine the renormalization
fined to the edges of the sample. It is important to note thagtarting point, i.e., the point where scaling occurs first. This
this symmetry is being demonstrated in the weak- as well astarting point can involve, in principle, arbitrarily large dis-
the strong-coupling regime. tances and arbitrarily small energies, and this, obviously,

The results of Secs. Il and IV will serve as the startingcomplicates the observability of the critical behavior of the
point for a microscopic theory of edge excitations in theAnderson(plateau transitions. We argue that Coulomb in-
fractional quantum Hall effect. We shall limit ourselves hereteraction effects lead to a modified mean-field theory of
to the integer regime, since this already contains most of theransport which is now observed in the experiments per-
difficulties. Extensions of our theory to include the fractional formed at finite temperatures. The chiral boson theory shall
effect can be done by means of the statistical gauge fieldpe used to actually compute the inelastic relaxation rate of
These will be reported elsewhere. the conducting electrons in the saddle-point network. This,

We shall begin by reviewing and extending the topologi-then, might conceivably be the explanation for the empirical
cal instanton vacuum approach to the quantum Hall effectiits of the transport data taken recently from presently avail-
following the ordinary, free-electron replica formalism in able sample&®
Sec. II. In making the connection between topology and edge As the second typical example of long-ranged disorder
currents, we show that important aspects of the problem haveffects, we embark on the problem of electron tunneling into
previously been overlooked. In particular, we show that thethe quantum Hall edge. We show that the Coulomb interac-
masslessexcitations of the disordered edge states are obtions between the edge and the “localized” bulk orbits dra-
tained fromfluctuationsaboutinteger quantizedtopological ~ matically differ from the predictions of theories which are
charge(Sec. Il A3. This important observation will serve as based on isolated edges alone. Tunneling processes into the
a starting point for most of the analyses in the remainder ofuantum Hall edge have, in fact, nothing to do with the
this paper. quantization of the Hall conductance or the “incompressibil-

Masslessdge excitations appear in the instanton vacuunity” statement which describe the nonequilibrium properties
theory for arbitrary number of field componetitsplica3 N,  of the electron gas. We find that the tunneling density of
and not just in the replica limiN,=0. The present analysis states near the edge can be understood in terms of an effec-
revises our previously accumulated knowledge of the subjedive edge theory which describes the equilibrium properties
in at least two respects. First we recognize that a direct relesf the combined edge and bulk degrees of freedom. The
tionship exists between the numerical value of the instantolLuttinger-liquid parameteg is related to the filling fraction
parametem (or a‘;y, Ref. 11 and the phenomenon after-  of the bulk Landau level. This leads to a tunneling exponent
channel scatteringat the edge. Here the number of edgewhich varies like 1#, in agreement with recent experimental
channels equals the number of fully occupied Landau levelglata on the tunneling current, taken from samples in the frac-
and the phrase “interchannel scattering” refers to the effectional quantum Hall regim@.This situation is dramatically
of a random short-ranged potential. different from what is expected while assuming an isolated

Second, we review the earlier attempts to establish a geredge, or in the case of short-ranged disorder which gives rise
eral topological principlefor quantization of the Hall con- to scattering between different edge states.
ductance which includes the effect of localization of the bulk  In this paper and one that follow$,we carefully re-
states. The mere existence of massless edge excitations tugramine the consequences of interchannel edge scattering.
out to have basic consequences for do@ntization phenom- We reproduce the completely different
enonwhich now can be shown to be a robust and fundamenKane-Fisher-PolchinsRyscenario of tunneling exponents in
tal aspect of the instanton vacuum theory with arbitrary valthe integral and fractional regimes from our strong-coupling
ues ofN, . edge theory. However, we argue that both the assumptions

In all our work so far, we have substituted the phrase(an isolated edge and short-ranged disorder or interchannel
“electronic disorder” for a white noise random potential. scattering are clearly incorrect since the problem is two di-
This was always done for technical reasons alone. Howevemensional and dominated by long-ranged potential fluctua-
it is well known that in real quantum Hall devices slowly tions as well as interaction effects.
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FIG. 1. Sketch of the mean-
field conductances for a short-
range disorder potential. The inset
is the strong-field limit or quan-
tum Hall regime. The renormal-
ization group flow lines indicate
how the mean-field theory results
change after successive length
scale transformationgafter Refs.
8, 11, and 1k
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The organization of this paper is as follows. In Sec. Il we 1
introduce the problem in the language of the replica free-JQJ]=— gUSxJ d*x tr(VQ)?
electron theory. We briefly recall the instanton vacuum ap-
proach in Sec. Il A £ The connection between topology and 1, 5 )
interchannel scattering between the chiral edge modes is +§‘7ny d XtrsijQ‘?iQ‘?JQJ”TPO“’f d*xtrAQ.
made in Sec. IlA2. This leads to an exact solution of the
instanton vacuum at the edge which can now be shown to be 2.2

critical (Sec. I1A3. Here o stands for the mean field conductances in units of
In Sec. 1IB we introduce a two-dimensional network of g2/h (see Fig. 1 po is the (exac) density of states at the
chiral edge states as a model for the problem of long-rangegermi energy ana is the frequency. The second term in Eq.
potential fluctuations. This is then used for mean-field pur2.2), proportional to the mean-field Hall conductana%{),
poses and for demonstrating universality of the plateau trarhas remained one of the most difficult chapters in the theory
sitions in Sec. IIB1. In Sec. I1IB2 we extend the network of Anderson localization in low dimensions. Most of the in-
approach to include interaction effects. A semiclassicakight into the theory witiN, =0 number of field components
theory of transport is introduced in order to explain the lackhas come from weak coupling renormalization thetrgth
of scaling recently found in mangordinary quantum Hall perturbative and non-perturbative, i.e., instaniénisn par-
devices at finite temperatures. Section |l B 3 contains severdicular we mention the global scaling diagram of the conduc-
general remarks. In Sec. Il we present a detailed derivatiotances as well as the appearance of a critical fixed point in
of the complete chiral edge theory using the fermionic pattthe strong-coupling regimé. This fixed-point theory pre-
integral. In Section IV we make the fundamental connectiorflicts a masslesénetallic phase at the Landau band center
between theinstanton vacuunon the one hand, and the as well as the following scaling result for the conductarices:
Chern-Simons gauge theoand chiral edge bosonsn the
other. In Sec. V we apply the theory of chiral edge bosons to

several problems of long-range disorder and interaction INvhich cannot be obtained in any different way. Here the

the bulk of the sample. These include the density of states f%nction gi;(X) is a regular function of its argumert* is

t“!"”e".”g Into thg qu.antum Hall edge as well as the reIax;[he critical magnetic-field strength, amdstands for the criti-
ation times entering into the transport problem of Sec. 11B

: . . ‘cal index for the localization length Following the experi-
We end this paper with a summary in Sec. V. mental tests of Eq2.3) by Wei et al.* extensive numerical

work on the free-electron gas has been performed, and the
quoted best value for the critical index is=2.3.1’
Il. EDGE EXCITATIONS To date, no exactconforma) scheme for the critical in-
A. Sigma model dices exists. All that one can say at this time is that the field
i i of exactly solvable models is not sufficiently developed to be
Let us recall the instanton vacuum thebtyfor the inte- 41 1 handle the specific subtleties of topology and replica
gral quantum Hall eff%ct which is expressed in terms of thee|q theory. These subtleties are all well understood within
local-field variable®Q /., wherea,3=1,... N, are the rep-  the elaborate framework of weak coupling expansion
lica indices andp,p’=*1 are the indices denoting ad- technique$,and the results were used to unfold and predict
vanced or retarded waves. They can be represented as  the entire singularity structure of the theory, notably Eq.
(2.3.
In previous work® we have shown that the theories of
Q=T AT with Agg,: 5“ﬁ5pp/ sgnp) (2.1) free and interacting electrons share the same basic features
such as asymptotic freedom, instantons, etc. The same scal-
ing diagram for the conductances was obtained, which means
and T a unitary matrix of size R, X2N,. The complete that Eq.(2.3) also remains valid when the Coulomb interac-
action is given by tions are taken into account. This important result was con-

oij(L,B)=g;j([L/E]""); ¢=|B-B*|"" (2.3
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jectured but otherwise not understood at the time of thehe dynamics ofmasslessedge excitations. In order to see
original experiments on criticality. this, we writeT as the product of a U\,) X U(N,) gaugeU,

and a small fluctuatiom:
1. Strong coupling

In this paper we address the subtleties of the instanton T=Ut 2.6
vacuum theory in an extremely important exactly solvableThe action now becomes
limit where po=02,=0 and where the Hall conductance is
integer quantized £,,=m). Physically this happens when S Q]=2mimgU]+ m 3€ ds - tr(AtVt—1)
the Fermi energy is located in a density of states gap between 2
adjacent Landau bands. In thesrong-couplinglimit mass-
less excitations do exist at the edges of the system. Since + T Peggdd % dxtrAQ, (2.7
several basic aspects of the problem have previously gone

unnoticed, we shall proceed first within the free-electron for-itp peagethe density of edge states. One way of identifying
malism of Eqs(2.1) and(2.2). We come back to the fermi- £q (2.7) as the effective theory of disordered chiral edge

onic path integral in Secs. Il and IV. . states is to redo the derivation, but now for the 1D system
Form completely filled Landau levels the action becomesyith Hamiltonian
simply
Hedge: —ivgdyt+V(X), (2.8

m m
SQ]= gf d®x tre;;Q0,Qd;Q= 5 4; dx- tr(ATVT™ 1),  wherevyis the drift velocity of the edge electrons a¥(x)
2.4) the random potential. It turns out that our initial gué2<)
' is correct only in the casm=1 in Eq.(2.7). This problem is
where the surface integral is taken over the sample’s edgeasily resolved once one realizes thateally stands for the

Recall that Eq(2.4) is quantized according to number of filled Landau levels, such that Eg.8) should be
replaced by a Hamiltonian for a total ofi edge channels.
S Q]=2#imq Q], (2.5 Hence, an obvious second guess would be
with g the integer topological charge, provided that the m _
matrix reduces to a U,) X U(N,) gauge at the edde. Hedge™ 21 He (2.9
J=

Under these circumstances the sample edge has been con-

tracted to a single poir(spherical boundary conditionand WhereHgggeis the same for al|, i.e., each of then eigen-
Eg. (2.9 is a realization of the formal homotopy theory re- states experiences the same white noise potevifig), just
sult m,(G/H) =Z which states that the mapping @ onto s it appears in the original problem in two spatial dimen-
the two dimensional2D) plane is described by a set of in- sjons. This, however, is not correct and the theory with gen-
tegersq. It is natural to take the theory one step further anderaim, [Eq. (2.7)], necessarily requires interchannel scatter-

propose the quantization of the chaf®] as the topologi- ing to take place. We have to start from a matrix
cal principle in replica field theory which forces the Hall Hamiltonian

conductancer() itself to be integer quantized. The idea has
Igd to a consistent quantum theory of gonductancgs that uni- Hgd’ge: —ivgdjj dy+ Vi (x), (2.10
fies a fundamental aspect of asymptotically free-field theory
(i.e., dynamic mass generatk)m/ith the gquantum Hall whereV is a Hermitian matrix. The matrix elemen\lsjj,
effect® More specifically, it says that the conductances inconnect the edge channglandj’ and are distributed with a
Eqg. (2.9 always scale towardr,,=0, o,,=m for L large weight
enough.
One can .shoé\} that_ the_ UN,;) X U(N,) gauge condition P[V]x exp{ _ 1 3g dxtrVZ]. (2.12)
at the edge is the replica field theory version of a static U(1) g
gauge acting on the physical edge states. Such a U(1) gauge,
implies that an integer number of edge levels has crossed tr@
Fermi level. This level crossing is necessarily induced by the
averaging procedure over random potentials. _ _
Nevertheless, it is somewhat disappointing to know that ZZJ D[lﬂlﬂ]j DIVIP[Vlexp > % dx !
the topological invariant in Eg2.2), as it was discovered p=*.ajj’
originally in a microscopic derivation, is truly defined with : i’ e
free boundary conditions and without any separation be- XL tipw)djjr ~Heggd " - (212
tween edge and bulk degrees of freedb8o far, the precise In Appendix C we show that Eq$2.12) and (2.7) are iden-
significance of boundary conditions has remained obscure.tical in the limit of large distances.

e can construct a generating function for the free particle
reen’s functions as usual, according to

2. Interchannel edge scattering 3. Criticality at the edge

In what follows, we show that the fluctuations about pre- We next point out that the results of the previous section
cisely quantized values for the topological charge represenfprovide an exact solution to our topological theory at the
in fact, essential physics of the problem, since they describedge[Egs.(2.4—(2.7)] for all values ofN, . The simple but
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important observation to be made is that the random poten- . I
tial Vj;.(x) in Eq. (2.12 can be “gauged away,” i.e. ab- 43 dxtrfAta,t™"]— jg dxtrf Attody(ty "t )]
sorbed in a redefinition of the fermion fields, and all that

remains is the trivial theory of “pure” chiral edge states, _
yorp 9 = 35 dxtr[Ata,t 1]

z=fz>[$¢f]exp > %dx@g'j —ivgdxt+ioplys).
p a,]

o 2.13
. . . Here, t, represents a fixed and slowly varying background
Equation (2.13 is just a formal way of saying that edge field. We obtain an effective action faog as follows:

electrons do not Anderson localize, because chirality ex-
cludes backscattering processes on random impurities. Fol- m

lowing up on the analysis of Appendix C we will use the Seril tol = > § dxtrlteduts Q)]
simplicity of Eq.(2.13 and derive explicit results for th@
field (2.7). Write

+ Eﬁdxtr[Qtoathl]. (2.19

m’ o
N =5 dxtrf Atgdytg 7] (2.20
G (x,x")=(X,J|(— HeaggeTTw) “Hx',j"), (2.14 _ _ _
Equation (2.20 defines an ‘“effective” parametem’
G (x. X)) = (X|(iVadrtiw) X' 21 =mtr A(Q)/2N, which can be identified as the “Hall con-
= 06x) = (M (ivadyeti) ) (2.19 ductance” and which provides information on the renormal-
to represent the single-particle propagator of the dirty edgézation of the theory at large distanc€sApparently we have

[Eq. (2.12] and clean edgfEq. (2.13)], respectively. Some M’ =m. The same conclusion can be drawn for éhparam-
useful identities are given by eter(i.e., o' = w tr A(Q)/2N, = w), and hence we are deal-

ing with a critical fixed point theory. The full significance of

1 N - this result will become clear in the forthcoming sections,

pedge:ﬁ; [GY(x,%) =Gl (x,x)] where we make contact with the theory of chiral edge
bosons.

m For the remainder of this section we will elaborate on

= ﬁ[G,(x,x)—G+(x,x)]. (2.16 several other identities and relations that will be used later

on. The most important pair correlation of tifields can

Here pegqe denotes the density of edge states at the Fermf© obtained as follows:
level which can be obtained explicitly from the right-hand

side, N(x,x") = 7%peaed QT2 () QE% (X))
Pedgd X) = Pagge= M2V . (2.17) =2 G (xx)E (X %)
i’
Equation(2.17) shows that the density of edge electrons is a —MG_(x,X")G (X' ,X). (2.21

constant, independent a&fand disorder, as it should be. An

important conclusion now follows for the theory Qf fields  Here @ and 8 are fixed but arbitrary replica channels, and
[Eq. (2.7)], namely,

i J« dk eik(x’fx)

(Q)=A (2.18 G_(x,x")G(x 'X):V_d 2m vkt 2o
[where the expectation is with respect to E8.7)], which 1
holds for arbitraryN, . This result may be obtained e.g., by = FB(X’ —X)
differentiating both theoriedEqg. (2.7 and Egs. (2.12), d
(2.13] with respect tow. Notice that Eq.(2.18 can be re- 20w
garded as the “order parametefinalogous to the magneti- Xex;{ - V—d(X'—X) . (222

zation in the language of the Heisenberg ferromagreatd
one would naively expect this quantity to vanish in one spaThe step functiord shows that a chiral electron, being cre-
tial dimension. The resufQ)=A indicates, however, that ated at positiorx and drifting in the positive direction, can
the continuous symmetry is permanently broken at the edgenly be destroyed at a “later” positior’ >x. Notice that
of the instanton vacuum for all numbers of field componentsye have the standard sum rule

N, . This apparent violation of the Mermin-Wagner-Coleman

theorem is clearly due to the lack of positive definite Boltz- , ,

mann weights in our problem that is described by an imagi- f dX'N(X,X") = Tpeqqe - (2.23
nary actiofEg. (2.7)]. Equation(2.18) also indicates that the ] ) ] o )

edge of the topological vacuum is critical. The simplest way! he other pair correlations of tH@-fields vanish identically.
of demonstrating this is by employing the background field!n particular, it is straightforward to show that

method. For example, the replaceménttt, in the second B v o

term of Eq.(2.7) can be written as (Qpp(¥)Qprpr (X)) eum=0 (2.24



PRB 60 (MIS-)HANDLING GAUGE INVARIANCE ... .1l ... 16 843

for all p,p’ == and all replica channels,,y, and 5. Next
we wish to clarify the significance of sever@Hield opera-
tors that have appeared in different contexts before. Firsts
there are the higher order corrections to the theory of Eq.
(2.7) of the type(see Appendix €

2
m
tr| = dy+ , . 2.2
2 %x Wwpedggx Q (2.29 (@ b) ©

Second, we mention the bilinear combinations of the form  FG. 2. Backbone cluster as a network of saddle points. Shaded

areas haver=1, white areazy=0. The arrows indicate the direc-
AL rAQIrAQ+A; tr[A,QJ[A,Q], (2.26 tion of the currents(a) Less than half-filling.(b) Exactly half-
which are known to describe the anomalous fluctuations ifilling. (c) A filling fraction larger than one-half.
the density at the quantum Hall transitions, as well as in the
localization problem in 2 & dimensions® We have already field B* may be slowly varying throughout the system due to
seen, however, that the density of chiral electrons does ndéahomogeneities in the electron density. This means that the
fluctuate as one moves along the edge and we therefore esecaling result is valid only up to a certain fixed value for
pect Eq.(2.26) to be irrelevant. A classification of these op- Beyond this value the remaining “extended” states in the
erators follows from the classical equations of motion of theproblem may be confined to the equipotential contours of the
topological action(2.7), which can be written as inhomogeneity potential, quite similar to the semiclassical
picture of percolation.

It is generally difficult to obtain detailed knowledge on
the various length and energy scales that are involved in the
crossover problem between percolation and localization. In
‘what follows, we present the simplest possible scenario for
. crossover that enables us to deal simultaneously with inter-
tity action effects and such basic concepts as “mean-field
theory” and “universality” of the plateau transition.

m

2 Iyt Twpedgd),Q|=0. (2.27)

This immediately implies that the higher-dimensional opera
tors[Eq. (2.295] are, in factredundant Next, from the iden-

m
7§X, + wwpedgeA,Q(X')}A: 0,

(2.28

it directly follows that the first term in Eq2.26 is redun-
dant as well. Finally, from Eq2.27) one also obtains

fxdx’ tr AQ(x/)tr

2. Quantum percolation

In order to fix the thought, we imagine the equipotential
contours near half filling to form a large clustéfig. 2).22
Since the disconnected, closed contours do not contribute to
m the transport, we focus our attention to an infinite backbone
?5” + Twpeggd ,[ A, Q(X")]|=0, cluster which we take as a regular 2D array of saddle points,

(2.29 and we disregard aI_I the quse hanging, finite pieldes.
' 2(b)]. The saddle pointgthe sites of the square latticare
and it is readily seen that the second operator in(E@6 is  connected to one another by the disordered 1D chiral edge

fxdx’ tr[A,Q(x")]

also redundant. channelglinks on the latticg This network can alternatively
be looked upon as a checkerboard with filling fractions alter-
B. Plateau transitions revisited nating between the values=0 andv=1. The kinetic part of
the action for this system may be written in the form of Eq.
1. Long-range potential fluctuations (2.4),

In this section we show how the notion of critical edge
states can be used in order to gain insight into the problem of 1
“long-ranged potential fluctuations.” This long-standing SQ]= gf d?x m(X)tr £;;Qd;Q3;Q, (2.30
problem, which is very difficult to handle within the formal
nonlinearo-model methodology, plays an extremely impor- , . m(%)=0,1[Fig. 2(b)]. Using the parametrization of Eq.
tant role experimentally. For instance, it has been stress 6 the action can also be written in the form of E8.7)

many times and at many places elgewhere that the pI"S‘te"i'z{rhich is now solely defined on the links of the square lattice:
transitions as observed in the detailed experiments of Wel

et al1® are very difficult to observe in general in arbitrary
samples, due to the presence of slowly varying potential S[Q]:zwiq[U]JrlE #dxtr(Ata =1
fluctuations. 29 Ji X
A slowly varying potential is the generic type of disorder
in the standard QaAs hetgrostrgcture, whi_ch hqs historically + WwpnnkZ f#dxtrAQ. (2.31)
led to semiclassical consideratiofygercolation picture of i [
delocalization near the Landau band ceftdt.is important
to recognize that also our critical systdiag. (2.3)] is very  Here the sum is over all the black squares, and the integrals
sensitive to the presence of smooth potentials“inhomo-  are over the contours of the black squares. Despite the fact
geneities’) in the sample. For example, the critical magneticthat this action does not contain any dissipativg,j terms,
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it is easy enough to show that in the long-wavelength limit, - s
Eqg. (2.30 reduces to the form of the sigma model action
(2.2), with

o=12, of,=1/2. (2.32
The reason for this is contained in the fact that the saddle
points act like scattering centers which render the system
dissipative at large distances. In order to demonstrate this, all
one needs to do is to follow up on E(.20, where the
background field, now represents the “slow modes” that
are kept. The field variables are the “fast modes” which
contain all the wavelengths smaller than the lattice constant,

each link according to 7 I

i.e., the average distance between the saddle points, and
which are integrated out. This leads to an effective action for

1 N . .
S“nk[to]zi f dxtr((Q)toaxtal) _ FIG. 3. Backbone cluster as in Fig(t®?, but with highly rami-
link fied contours between saddle poi@).
2
+ 1<[ dxtr(Qtoaxtol)} > (.2.24) in the limit @=0. Next, by taking thg sum over all
B\ Jink cum links one can absorb the factby into the definition of a 2D
L 0 integral,
o
== | dxtr(AtgdtsH— — |  dxtr(9,Qo)?,
2 Jiink (Atodto ™) 8 Jiink (%Qo) 1

— T A E Lof dXtr(&XQo)ZH - i d2X tr(VQo)z.

(2.33 16iinks  Jiink 16

whereQy=t, Aty and the expectation is with respect to the 239
theory[Eq. (2.7)] with m= 1. The subscript “cum” indicates Here we only used the fact that ti@, field variable varies
that only connected diagrams are taken. flg=L,/2 isthe  slowly over a distancé,. The first term in Eq(2.33 can be
1D conductivity of a single channel of length,, a well-  handled in a similar way. For instance, it can be rewritten in
known result in the theory of pure metals. These results arthe form of Eq.(2.30 with Q replaced byQ,, which is then
obtained by making use of E¢R.18 as well as Eqsi2.2)—  followed by taking the continuum limit according to

1 Lo,
5%:‘3 Iinkdxtr(Atoaxt0 )—>§J d2x m(R)e;; tr Qodi Qod; Qo

1
—>1—6J’ d2 Xejj tr QoaiQoé’on. (2.35

The result of Eqs(2.33—(2.35 is identical to the statement length scale4 . This holds for any value dfl, and not
made in Eq.(2.32. Notice that Eq.(2.32 is precisely the just for N,=0.

point where we expect the model action(2.2) in the limit

N,=0 to have a critical phase_ Hence, we have established a Without going into further detail we mention the fact that
direct connection between critical 1D edge states on the oné€ analysis can easily be generalized to more complicated
hand and the 2D delocalization transition of the band centefituations. For example, the links between the saddle points

on the other. It is important to stress that this connection ha8€€d not be straight lines. They can be taken as arbitrarily
the following ingredients. complex, non-intersecting paths reflecting the highly rami-

fied percolation contourgFig. 3). The same resulfEq.

(1) The infinite percolation cluster at the band center con{2.32] applies to all cases, indicating that the general result
tains a finite density of saddle points. This translates intas2,=1/2 actually stands for the quantized conductance in
a finite density of scattering centers which, in turn, isone dimension.
responsible for making the sample diffusiidissipative
at large distances.

(2) The parametersry, and o3, [Eq. (2.32] constitute a Next we wish to extend our mean-field analy$&q.
mean-field theory of the conductances which is valid for(2.32] to include also the energies away from the Landau

3. Mean-field theory
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~W, denote the energies where the saddle point breaks up

P ,oP Fig. 4(b). In this case, there is only a small difference be-
=W | | tweenW, andW due to the localized states in the Gaussian
\Q %\i\y:% tails of the Landau band. _
l _— ‘ ‘ " An estimate forL, can be obtained as follows. Lek u|

into disconnected equipotential contours of sizgXL,

—1/2
< O = /¢ [Figs. 2a) and Zc)]. According to the semiclassical picture
of percolation we can relate the typical cluster sfzeto the
—u

L N

u energyA u according to
g 1 Oyl 1 Ep~NAp/W) 4B, (2.39
/ where the critical index 4/3 is the exponent for semiclassical
0 J —u 0o 1 " localization. By identifying the poi_nt#A,u|=Wo and &,
() (b) =L, in EqQ. (2.38 we obtain the estimate
FIG. 4. Mean-field theory for the lowest Landau level, with Lo~lo(M1g) ™ (x=1o), (2.39

varying chemical potentigk. (a) Smooth long-range disorde(b) or, more generally,
Short-range disordgsee text
Wy MW, L~ 1 (V1) (] 2.4
band center. For this purpose we have to relate the range in NN e n(Mln) (A>1n). (240
energyW, within which the equipotential contours form an
infinite saddle-point cluster to the total bandwidth of the
Landau band. It is understood that the phrase “saddle point’
actually stands for those special points where two equipoten-
tial contours approach each other at a distance of the order of
the magnetic lengthy or smaller. By assuming a simple It is quite possible that.y [Eq. (2.39] is many times
quadratic form for the potential near saddle points, we obtaitarger than the micron regime which is the typical scale for
the estimate inelastic processes at low temperatures. This means that the
critical behavior[Eq. (2.3)] cannot be observed within the
_ 2 limitations of ordinary laboratory experiments. This, then, is
Wo=(lo/M)"W, (2.39 the easiest and crud)ést explanr;tionpfor the lack of scaling in
. - . many samples. As a first step toward a more quantitative
where is the characteristic correlation length of the randomunderstanding of transport at finile we come back to the

potential, which we ha_lve taken to be m_uch Iarger than distinction, made in the beginning, between the backbone
andW equals the ampllt_ude of the potent!al fluctuations. The,| ;ster and the disconnected, “loose hanging” pieces. Due
o-model theory or, equivalently, the scaling theory of local-y, the electron-electron interactions, motion of the conduct-

ization, only applies to thénarrow energy band\, about 4 electrons on the saddle-point network is affected by the
the band center. For energies just outsidgthe network of  |5cqized electrons. This may be expressed in terms of a

saddle points is broken up into disconnected islands of sizg,|axation timer;, which is a characteristic time for equili-
LoXLg [Figs. 28) and 2c)]. The absence of any quantum pyation petween the conducting and localized electrons.
tunneling means that no correlation exists between the i ater on in this papefSec. VD we shall address the prob-

lands(they are represented by independent actions as 10ng §$m of interaction effects and show that
one works within the free-electron approackn the lan-

guage of ther model, '_[he situation is represented by putting Urip= BT+ BoT2H4--- (2.4
ox=0 but o,y =m= integer. The latter follows from the ] o _
long-ranged correlations which still exist near the edge andt low temperatures. This expression is determined by the
which can generally be expressed in terms of an integer nuntollection of “nearly saddle points” where quantum tunnel-
berm of edge channels. In Fig( we illustrate the behav- ing is not possible but where the interactions between the
ior of the density of statep and the conductancegoj as a conducting and localized particles are strongest nevertheless.
function of energyu at zero temperature. The importance of “nearly saddlepoints” can be seen by
The o-model conductance parameteoé} can be ex. comparing the wave functions at different energies close to

pressed as a function of the dimensionless quantitfWo, the Landau band center. _What |§ a saddle-point cpnﬁgurauon
at one energy may turn into a “nearly saddle point” at an-

0 other, and vice versa. These abrupt changes in the configu-
o, = i (A /W), (2.37  ration of the conducting network at slightly different ener-
gies blur the distinction between saddlepoints and “nearly
whereA u is the energy relative to the Landau band centersaddle point” configurations as far as finite temperatures are
The f;;’s are nonuniversal and generally depend on the miconcerned. This means that the relaxation time [Eq.
croscopic details of the randomness. For comparison wé2.41)] determines an effective bandwidihy;=Wy+ 7,,* of
have plotted the results of the more familiar theory of short-states that contribute to the conduction at finite temperatures.
ranged scatterergself-consistent Born approximatiprin Equation(2.37) is replaced by the expression

The\ is an adjustable parameter in the theory, and it ranges
between microscopic distanceg+ 100 A) and infinity.

4. Interaction effects
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o (T)=fij (Al Weg) = fij (Al [Wo+ 7, ]). level separately. The'["’s are thenth Landau-level contri-
(2.42 butions to the mean-field conductances, which are now given

This result is a characteristic feature of long-ranged potentiatfy

fluctuations, and it does not occur in the problem of short- o
ranged scatterers. To conclude this section, we shall next o= > gi(j”), (2.48
estimate the range of validity of resyR.42). Write n=0

The o()’s are all the samgFig. 4(a)] except for an appro-
priate shift in energy. Sincefecrg;,)Sl for eachn, itis clear

L, is the mean free path for drifting along the links of the that Eq.(2.47) is the appropriate generalization of the theory
lattice. We mentioned earlier that the actual path betweefS€c- Il A) to include filling fractions larger than one. The
two saddle points is arbitrarily convoluted and very long. Lettheories of Egs(2.47) and (2.2) are identical as far as the
L, denote the actual path length between saddle points; thegfitical behavior of the plateau transitions is concerned.

VaTin=Lin, Vg=~2mJWIX. (2.43

the criterion for scaling is clearly given by Equation (2.47) cannot, however, be used in the limit of
small magnetic field, where the Landau levels partly or com-
Li>L,. (2.44)  pletely overlap. The details of crossover require a separate
analysis.
Next we use the ramification hypothe$isn order to relate
L, to the shortest distance between saddle poihtg.(We 6. Topological principle
obtain In Refs. 11 and 23 topological principlefor Hall quan-
- tization was introduced. The basic idea is to relate the con-
Lixlo, (2.49 cept of dynamic mass generation in asymptotically free field

heories to the quantization of the Hall conductance, which is
ow recognized as a universal quantum phenomenon at mac-

roscopic length scales. The formulation presented in Refs. 11
-1 8013 and 23 is actually incomplete because the subtleties of edge

7in” = (lo/M)™ Wo=<Wo. (248 cfrects were not Zufficien?ly understood at that time. In orde?

This result indicates that E2.42) is very likely to be ob- 0 see whether the instanton vacuum approach is, in fact, free

served in the(many samples that are characterized by aOf ambiguities, we shall follow up on the background field

smooth disorder potential. The results of this section are corMethod which is known to generate the Kubo formulas for

sistent with the recently reported empirical fittigpf the ~ the conductances. Write

transport data in the quantum Hall regime. Since we are nec-

essarily operating with an almost complete lack of knowl- eXpSeff[tO]ZJ DIQJexp( Sl ty *Qto] + mpow TrAQ),

edge on the microscopic details of sample disorder, it is con-

ceivable that other types of inhomogeneity, especially those (2.49

in low-mobility samples, explain the same thing. where

with o somewhere between 1 and 2. The criterion for scalin
[Eq. (2.44)] now implies

5. Modified o-model representation

__ 1, 2.1 o
The subjects of critical edge states as well as long-ranged Sl QI= g 7xx TvQ)™+ g 7y Tre;;Qd4Q7,Q.
disorder have left several conceptual questions that still need (2.50
to be answered. For example, we have seen that short-rang
disorder causes interchannel scattering between the chiréﬁI
edge states. Since we do not expect interchannel scattering ?
occur when the potential fluctuations are smo@giative to

uation(2.49 defines an effective actio8 for the fixed
d slowly varying matrix fieldy. One can show th& is
the same form a$§g, i.e.,

the magnetic lengdh it is necessary to reinvestigate the 1 1

meaning of instanton vacuum theoffeq. (2.2)] for v Seﬁ[to]=——oXXTr(VQO)2+—oXyTrsionaiQoano,
0 . ) : 8 8

>1 (o4,>1). Scattering between multiple edge states is (2.51)

avoided by writing, instead of Eq2.2),
with Qo=t, *At,. Equation(2.51) is actually the only pos-
1 (n ) ()2 sible action that respects the global W3 symmetry as
_gffxxj dxtr[VQ'™] well as the local UK,)xU(N,) gauge invariance of the
problem. The main problem next is to obtain explicit knowl-
1L o[ 2 (1 2 () 5. () edge of the “effective” parameters;; in (Eq. 2.53 which
t 8%y f dxtre; Q" a3,Q™9;Q now represent théexack Kubo expressions for the conduc-
tances. As long as one works with spherical boundary con-
ditions on the matrix field (which have been assumed from
' (2.47) the start, the quantization of the Hall conductance is readily
established. All that one needs in fact is that the theory de-
where the sum runs over all the Landau levelsThe QW velops a mass gap in the limit of large distances. The inser-
stands for an independent-field varialidefor each Landau tion of slowly varying background fieldavith Q= A at the

seﬁ[Q“)]:gO

+1Tp(n)wf d?x tr AQM
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edge should then leave the theory unchanged in the limitkinetic term in[Eq. (2.54)]. The solutions are known as-
o—0. This, then, directly leads to the statement that  stantons and just as has happened before in the trivial ex-
=0 andoy,= integer. ample with a density of states gap in the bulky is imma-

The renormalization-group flows, obtained from instantonterial as long aso,,=0 and o, =integer. Therefore, the
calculations, can next be used to show how the conditions afjuantum Hall effect can be understood in terms of a continu-
the quantum Hall effect appear as stable, infrared fixedbus symmetry which is dynamically restored in the limit of
points of the theory for arbitrary number of field componentslarge length scales.

N, . Although spherical boundary conditions are naturally In summary we can say that the “quantum Hall effect” is
imposed on the weak-coupling problem due to the finite aca robust and general feature of the instanton vacuum theory
tion requirement of topological excitations, they are, how-for all values ofN,. Our theory of topological quantum
ever, controversial in the strong-coupling regime. numbers is based on two general assumptions only, namely,

Armed with the insight gained from edge excitations inthe existence of a mass gap in the bulk as well as massless
the previous sections, we next apply the background fielgxcitations at the edge. Both are valid for thenodel in two
procedure to the theory, but now with free-boundary condi-dimensions for al(non-negativg values ofN, .
tions onQ, as it should be. For the special case where the The results of this section can be used to demonstrate that
Fermi energy lies in a density of states gap, Efj49 has  a phase transition must occur Wh&El), passes through half-
already been addressed in Sec. B5g; for arbitrary N, is  integer valueqor the instanton parameteérpasses through

given by ). The argumentt is based on the fact that the Hall conduc-
e tanceo,, must make an integer step whe[jy is approached
S.tal=2mim _ é dxtr(a 2 fr_om the integer sides. These phase transitions separate the
ei to] = 2mimd[ Qo] 327 wPedge (9:Qo) different instanton vacua which are now labeled by macro-

(252 scopic quantum numberg.e., o =integer) and they are
where q[ Qo] = 1/16mi Tr&;;QedQodQo, and the contour distinct from each other by the number of massless modes
integral is along the sample edge. Comparing E2&§2 and that exist near the edge of the system. Apart from the close
(2.51), we see that the quantum Hall conditions are satisfiegéontact with quantum Hall physics, the argument for a phase
but there are additional edge terms which are clearly th&eparation between the different instanton vacua proceeds
result of the chiral edge modes in the problem. Equatiorflong similar lines as 't Hooft's duality argumfazr?t.

(2.52), in the limit w— 0, forces the background field to obey = Finally, we mention that the results of this paper have

the classical equations of motiddefined along the sample interesting consequences for the idea of having a first order
edge phase transition &t= = (as found, e.g., in the large theory

of the CPN modef4). First-order instabilities provide an al-
3,Qo=0. (2.53 ternative physical scenario of Hall quantization, and will be

The solutionQy=constant at the edge simply means thatdlscussed elsewhef?.

spherical boundary conditions are automatically enforced by ||| pERIVATION OF THE FULL EDGE THEORY
the chiral edge excitations. Notice that the effectSpf re- S
duces to that of a phase factor which is immaterial provided A. Preliminaries

the Hall conductancen precisely equals an integer. Physi-  From now on we turn to the fermionic path integral. Fol-
cally, this phase factor arises from an i_nteger number of edg@,wing I, one can formulate a complete theory@fmatrix
electrons that have crossed the Fermi level as a result of thge|ds that includes external potentials as well as interactions
background field insertiofr. by making use of such concepts as “smallness; Invari-
OThe same procedure can be repeated for the theory Withnce, andF algebra. We will proceed by summarizing the
o470, making use of the fact that a mass gap exists in thenain ingredients of the fermionic path integral approach
system of long-wavelength excitations, i.e. a finite localiza<(Secs. Ill A and Il1 B. In Sec. Il C we present the main steps
tion length£. One expects E2.52 to be modified accord-  of a derivation ofQ-field theory at the edge, assuming that
Ing to the Fermi energy lies in a Landau gap. The various manipu-
lations closely follow the effective action procedure for free
Sl to]= — %(TF(VQO)Z'FZWi 40 Qo] electrons, ar_ld we refer_ to the original works of Refs. 8 and
11 for the missing details.

1. Notation

~gnL, $ dXt(5,Q0)% (254
Let us start by writing down th&-field theory for disor-
where theo;; represent the “conductances” dered electrons in 21 dimensions in the presence of Cou-
lomb interactions and external potentials, derived % I:
Oxx= fxx(wfz)% O(w§2), Oxy= fxy(wfz) ~m+O( w2§4)-

(2.595

Here,g,,=mM/2 is the quantized 1D conductance of the chiral
edge states, and,,=m/16mwpeqqeis the frequency-induced 1
length scale. In the limitv—0 theQ, entering Eq(2.54) is - E/BJ A2 d?x' NT(x)Ug H(x—x" )N (X).
forced to obey not only the classical equations of motion on

the edgeEq. (2.53], but also those arising from the bulk (3.1

~ 1_ . .. Y
S[A,Q,)\]:—ETrQZJrTrIn[iw+iAo+i)\+,u—H+iQ]
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The symbols appearing in this action have the followingwith ¢#"* the antisymmetric tensor in21 dimensions, and
meaning:Q(X) is an infinite-dimensional matrix field with 2p an even integer denoting the number of elementary flux
two replica indices and two Matsubara frequency indi¢es. duantah/e attached to every electron. Note that in this pro-
the derivation of the above action, it arises as a quadratieedure the zero-frequency components of all fields are to be
expression in the original electron fieltt The saddle point treatgd qt a mean-field Ie\{el. This amounts to adding an extra
is given by Q% lﬁﬁaﬁ-) Upper Greek indices denote a contributiondy; to the static part of the external vector po-

replica channel, running from 1 t,, while lower Latin  tential Ay, resulting in an effective magnetic fieBles=V
indices stand for Matsubara frequencies, running frem X (Agt ag) = B+ 2pngh/e, with n, the mean electron den-

to . The matrix field® can be split into “transverse” and Sity. Jain’s composite fermion mapping is then implemented

“longitudinal” components: by integrating out the field,, . In this paper, however, we
only consider the integer quantum Hall effect; we deal with
O=T7'PT, P=P", TeSU2N). (3.2  the fractional effect in a subsequent publication.
Here P has only block-diagonal components in frequency 3. Landau gap
space(i.e., P70 only for oyw,>0), andT is a unitary A theory for the edge is obtained by choosing the chemi-

rotation. The size of th€ matrix is given by XN, namely  cal potentialy approximately halfway between Landau en-
the number of replicas times the size of Matsubara frequencygrgies, where the bulk density of states is virtually zero if the
space. The matrix is unity in replica space, while in fre- gisorder is not too strong. The saddle-point equatiorCfas
quency space it is a diagonal containing the fermionic fregjyen py

guencies,

’QspocpTilAT (3.8

wph= 8 8ymwn, “n=g N+l (3.3 wherep is the density of states anfis the matrix appearing
in Eq. (2.1), but now with full frequency dependence:

with B the inverse temperature. Tr denotes a matrix trace as
well as spatial integration. All spatial integrals are taken in AB= saB
the upper half-plang>0. The sample edge is given by the K
liney=0. Theugl(i—i’) is the matrix inverse of the Cou-
lomb interactiond (X—X"). A, is the external potential, and
\ is the plasmon field. It is assumed that these fields do n
have a staticrf=0) component. The “hat” notation appear-
ing in Eq. (3.1) is defined as

2

1 O

o 1 3.9

K
Since we are interested in the linpit- 0, we may replace the
0fyll expression forQ [Eq. (3.2)] by a much simpler one:
Q—eT AT, e<l. (3.10
From detailed earlier wotk we know that Eqgs(3.2) and

~ Moo a (3.10 give rise to identical results as long as the bulk density
X= Zl n;w Xnln, (34 of statesp can be safely taken to zero. However, in order to
“ deal with the complications of (@) gauge invariancéSec.
whereT¢ is the unity matrix in theath replica channel, !lIB), there is considerable advantage in working with the
shifted byn places in frequency space: simplified expressioti3.10, and we will refer to the details

of more elaborate analyses only when necessary.
(TNEr=8"P8" 81 0. (35

‘H is the kinetic-energydifferential operator,

B. Gauge invariance and truncation of frequency space

The electromagnetic (@) gauge transformations in this

. 1 . theory are generated by tfie matrices. Multiplication of
H=5(T=A)-(T=A), 7T=7V-Aqg, these matrices is very simple,
e
L TaAB=sPTe, | (3.12)
T=—7V-Aq (3.0 and they form an abelian algebra. Gauge transformations are
given by

where,&st describes the static magnetic field according/to A A 4y XAk 31
X Ag=By. p At O Qeie @12
with xg=0. The gauge invariance of E¢3.1 is easily

2. Flux-charge composites checked by writing the transformed Tr In in the form

In order to describe the fractional quantum Hall effect, TrIn(e™"[:--J¢%), noting that
one also needs to include statistical or Chern-Simons o 5
gauge fielda,, in Eq. (3.1 as follows: e YwelX=w—dgx, dox=—i2 vox°l1¢ (3.13
Na

JADN]—FA+a,0 x]+i—J drd?e“"a 9 a and
1y 1 8p'7T uvlo s B . - .
3.7 e X(F—A-Vy)eX=7—A. (3.14
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T Q By introducing the second cutoi,,,, we also restrict the
1 1 interval of the frequency indices ony and (A,); to
5 Nnel—2Npat1,2Nma—1] (see Fig. 5. This interval corre-
N sponds to trfQ#0.
J We now specify the truncated version of E¢R.15 and
1 (3.16 as follows. Write
FIG. 5. The truncated matriceb and Q; Also drawn is the ;L . 2 @ n s
frequency band in which tQ#0. A,U«_A/’-+ 5,u0)\’ W=ex < In(Ao)n/wnl,

In order to facilitate the expansion of the Tr In term in Eq.
(3.1), we make use of the freedom in choosigg3.12 as
follows. Introducing the notation

R=WQW 1, (3.20

then the action(3.1), (3.10 can be written ajup to a
N N constani®
(AO+)\)n~a) Ra_i V(Ag+N); d

W=expg X, > ————1%|, Z¢=A%—i

n n
a n#0 Vn 14

"315  SIQAAI=— 38 [ dxdXN UG- NK)

with v,=27n/B, and the quantitR=WQW !, then the Tr 1 ) .
In can be written as +Trinjio+u— ﬁ(%—z)(ﬁ—z)ﬂsR ,
e

Trin . (316 (3.2

with Z defined according to

As was the case in |, we have to impose a cutoff on the
size of Matsubara frequency space. Instead of being infinite, z’g:,&g—iv(A(’))g/ Vi, (3.22
all matrices are now of size N, <2N/ .. in frequency
space. The Matsubara indices are restricted to lie in the inand with v, the bosonic frequency2n/g.
terval(— N - - - Niax—1)-

The truncated version of thematrices is denoted bl . C. Expansion of the Tr In
The hat notation is now defined with respect to the truncated
matricesl;. These no longer span an abelian algebra; in-

stead their commutators are given by Let us .|00k at the |aSt term in Eq32]), X=Tr|n[iw
+u—H,+ieR]. Introducing the notation

1 > > ~
iw+M—H(ﬁ—Z)‘(ﬁ—Z)+iR
e

1. The quantity X

(et =TTE G m, 1
o 14 X4 14 _V_E WT_l,
[In,l'ﬁq 'LkL| =4 Pu 5k7|,m+n(gl+m_gl+n)y (Sln ! )

L (3.23
where 5*#*" means that all replica indices have to be the
same, andg; is a step function equal to one ife (whereD; is not a differential operatdrwe can write

D,=TW lWT !, D;=Tw?

{=Nfax - - - Njha— 1}, and zero otherwise.
In order to handle the (1) gauge invariance of the theory _ .
a second cutoffN <N/, is introduced for the matrix field X=Trin/iD,+u+icA
T. With the truncated we define the truncated equivalent of
Q (see Fig. 3, — 5 (7 @+# DDy #+DY)|.  (3.29
e
Q=T !AT. (3.18

Expansion to first order i, andD; yields
It was shown in Paper | that most of the problems caused

by the change from Eq3.11) to Eq.(3.17 are avoided by 1
our introduction of the second cutoff. A remnant of thel)y ~ X~TrinGgy*+i TrG¢D,,— RTF[GofT' D;+GoD;- 7],
symmetry is kept in this way: invariance of the action under © (3.25
the truncated equivalent of E¢3.12): '

. . where G, is the bare Green's functiopu— (1/2mg) 7 7

A,—A,+d,x, Q—eXQe X (319  +igA]" L The Green’s function can be expressed in terms

of the eigenfunctionse,; of the bare Hamiltonian,,

We do not have a full symmetry of the theory, however, (1/2my) - 7,

since the integration measure of the truncated field variables
Q with finite N5y IS notinvariant under Eq(3.19. Only in )
the limit of N,.— is full symmetry obtained. It is always <X|G0|X>:E |‘Pnj(x).| (3.26
understood implicitly that this limit is taken in the end. n m—EptisA’ ’
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Goir+ 7Gy . N
X om, X Grm=Gnoim=Onm lo,+ p— 2me77~7'r .
L1 1_ ., . . This expression can be written as
‘Pnji_V(Pnj_(Pnji_vﬁpnj_zﬁpnj@njA
= - . -1 1 2 2y, ! a a ’
< 2Mg(pt— By HieA) Xo=TrInG ‘5? 2 | dxdx (2)700(z)2h(x")
3.2 w o
(3.2 X (I E(x.X)
Using the general relatiop(x) = — (1/7)Im G* (x,x) for the 1
density of states at the Fermi energywe obtain 2 > d2x(z)%(z)* , tr G(X,X). (3.33

] - 2Mme T e
(X|Go|x)=—imp(x)A+c(x)1, o .
The “polarization operator'll;; is given by

Goﬁ"f' 7-7>'G0 . ) > A N 1 3 2 1 2
X —zme X —_|7TJ(X) +C(X) ) ( . & (Hij)ﬁ(xvx,): ﬁ) tr[G(X,X/)(’ﬁ'i‘f’ﬁ'i)
e
wheref(x) is the current density per energy at the Fermi X1EG(X' X) (7 7)1 ]

energy.c andc are real functions that disappear from the last
two traces in Eq(3.25. We can now writeX in the form

1 2
5 ) 2 Gpean(XX')(771+ )
e

-1
X~TrinG, +7TJ d?x p(x)trAD,, X G(X' X (7 + 7). (3.34
R The frequency sum can be split in two parts: k and k
+i wf d?x J(x)-tr AD; +n have the same sigfii) k andk+n have opposite signs.
Case(ii) has been done in great detail in the context of the
self-consistant Born approximation. The conclusion is that
(i) does not contribute either t@,, or o,, when u is in a
density of states gap. Ca&e for i #j, using the relationr
.—1AW‘1TV(T‘1W)—§R _ +7=—i2m G 1,X], gives rise to the familiar “Streda”
I form for o,,. Fori=j, the last two contributions in Eqg.
(3.29 (3.33 sum up to zero. We arrive at the following expression:

=TrinG, *+ wf d?x p(x)tr wR

+i7-rf d2x J(x) - tr

1

Since u lies in a gap, the density of states and the current Xo~Tr InG~ 1+ , mz dxnExz.. (3.39
Na

density are nonzero only at the edge. This means that the
surface integral becomes a line integral. Sipcand J are

constant on the edge, the resulting expressiorXfis 3. Matching X and X%,

m Now we have to find a match between the first-order result
X~Trln Gal+ Wpedgeﬂﬁ dxtroR—i— 35 dxtrz,R (3.30 for T#1, W+#1 and the second-order res(® 35 for
2 T=1andW=1. This match can be written in two equivalent
26
+mSedR], (3.30  Ways.
where we have used thgtgee= m/27 with the plateau- TrinGg-1+ édxtr R
center filling fractionm= (ny/B)(h/e) integer valued, and 0 T TPedge @

Sop is the topological action 1 i .
+m geij TrR[Di,R][Dj,R]—ETrRVXZ

1
SedR1= 5 Tre'RaR3R (3.30)

m
=TrIn Gal'i‘ W é dxtrR(w—ivyzy)
2. The quantity X d

Equation(3.30, however, is not yet the complete answer. +MSed R]— ims f d2x 7' % 9oz (3.36
This can be seen from a different expansion procedure which 0 4 ’
can be followed in the special case wheére 1l andW=1. In

this case we have, instead of HG.24), with v the electron drift velocity at the edge:

Xo=TrIn[io+u—H,+ieA]=TrinG 1! V=M (27peggd - (3.37)
1 G(# 503 - 2 1 Notice that the I.h.s. of Eq3.36) represents the lowest

_lpjetmztzmy 1 722G, (3.3  order terms in a formal series expansion of the Tifi.

2 2me 2me (3.21] in powers ofw and the covariant derivativ®; = 9
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|A On the other hand, the r.h.s. clearly matches the resulféeld at the edge, obtained by eliminating the plasmon field
denoted byX [Eq. (3.30] andX, [Eq. (3.35]. Itis important ~ (Sec. IVB 1. In Sec. IVB2 we show that the theory pro-
to remark that the equality in Eq3.36 is a direct conse- Vides complete information on the response of the system to
guence of the peculiar structure &falgebra[Eq. (3.37)]. external fields. We derive an edge anomaly for the interact-

We next employF algebra in order to express the resulting electron gas, and show the connection with Laughlin’s
Eq. (3.36) in terms of the matrix field variabl® rather than ~gauge argument. The complete theory for interactions as well
R. The following relations can be derivé&d as the 2+ 1-dimensional Chern-Simons theory are derived in
Sec. IVB 3. In Sec. IV C we give some explicit results on the
single-particle Green’s function which enters the expression
for electron tunneling into the quantum Hall edge. This, then,
completes the theory of the integral quantum Hall edge.

troR=tr 0Q+trAjQ— BA(’)TAO,

~ A — A ﬁ AN
trR%=tr QA,—tr Qdg (3xAg) — AR A. Noninteracting case
B In the case of free electrons, only the fiel[@sand A are
+ —A(’,Tagl(ﬁxA(’,), present in Eq(3.39. In order to obtain an effective action
™ for A, we integrate ouQ. We make use of Eq2.22 with
(3389 2w—w,, and write the two point function as follows:

SodRI=SadQ1- 5 $ dxtrQa (A%

Wn

5 (tr1nQ( Q)tf|—nQ(Q)>_ 277m w+—|vq (4.1)
rto—1 !
Y an j; dxAg'do (IxAo), After elementary algebra we obtain the result
Imﬁ 2 v p T T -1
B aixzxaoz=—p [ aixerrsa)) i m) SZEU xer ALOA § axEl A
(4.2
-B 4; dX[ doA— dxAL] 95 1A . with the following meaning of the symbols:
Egs. (3.36—(3.39 lead to the following final result for the Ex=0d0Ax— dxPo, 9 =do—1Vdy, 4.3
action[Eq. (3.2} and the invers@_" is given by

S Q.AN]=S[N]+S[NA]+Sg[Q.NA] 3 1 » »
(7= 5 [ darFees) [ ok da
5—_1 fdz a2 N (x)UgHx—= %N (X)) (2m) o o
T 2P XA TN, exdik(x—x")—iw(r—17')]
(339 x o tvak

dx e#**(A,)(d,A, )—— fﬁdxAJA’_,

|m,8

477 1 ! ! li !
—EJdX dr'F(x',7")

o(r—7")
V(7= 7")—i(x—=x")+ 7

SQ:zivd 3@ dxtrQ(w+A”)+mS, Q.

The first term is the Coulomb energy contribution from the

plasmon field;S, is a “boson” action (this adjective will o(7'— 1)
begome clear Ia'Fer onthe last expressioSQ .contains the + Va(r—7)—i(x—=x")— 7’ (4.4)
action for theQ field and the coupling 0@ with A andA. ) ) ) _
We have defined a “minus” direction as with F an arbitrary function,f the step function and; a

regulator. The operation ! does not commute with_ . It

AL=Al—iv4A,, (3.40 s easily checked that_(d~'F)=F, but on the other hand
reflecting the chirality inherent in the problem. we have
9_19_F)=F—F"s (4.5

IV. CHIRAL EDGE BOSONS _ _ _ o
_ _ with F'* defined as that part df which satisfiess_F=0.
In this section we take the theory one step further, andhnother property of this operation is

derive the theory of chiral edge bosons, similar to the one

obtained by Wehin a phenomenological approach to abe- 1 1

lian quantum Hall states. For noninteracting electrons such a f dx drFy(d_"F2)= _f dxdr(d_"F1)F;. (4.6
formulation is readily obtainedSec. IV A). For interacting

electrons, however, the procedure is more complicated, and Egs.(4.5 and(4.6) can be used for the purpose of dem-
we first derive an effective Finkelstein-type action of Qe  onstrating theU(1) gauge invariance of the actio@.2).
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Notice that the same result, E@.2), can also be obtained S=S)[Q]+ S Q.Al+ S[A]+SiulAl.  (4.10)
more directly from Eq(3.39 if one makes use of the state- ] o

ment of gauge invariance in truncated frequency space, EJ.ne first term is given by

(3.19. More specifically, they field can be chosen in such a B

way that theQ andA,, fields in Eq.(3.39 decouple Sol Q1=mSd Q1+ SH Q]

m dk, 1
772 Jﬁm“”ﬁqzy (4.12

I_x=—A_, x=—d"'A_+x" _mm
4B

The x dependence now enters the theory through the expres-
sion — $dxEl y=¢dxEls"*A_, which precisely equals the With
second term in Eq4.2).

mar
Action (4.2) can also be written as a path integral ower SHQI= 4BV, 4; dx % QUi Q+4tr ”Q}’

charge 1 bosons, (4.13

iB m ) R the edge analog of thé-invariant Finkelstein action for the
= mvK
SA, ¢il 47“21 f dx e"" A, d,A bulk [1], and
. , vefi(k,) =vg+ mUqg(ky), (4.14
- dx(Dyei D_¢@,—E, )|, 4.8 . .

é (DxeiD-¢i=Exe) “8 the “effective velocity,” where  Ug(ky)
where the covariant derivativ@ is defined aD ,¢;=d,¢; =(2m) *fdkUo(k) is the Coulomb interaction on the
~A,. edge. The last term in E¢4.12) is the edge version of the

As a general remark, we can say that our introduction Of“Coqumb” term from I. Note that the Finkelstein and Cou-

m chiral boson fields is obviously not a unique procedure asomb terms together can be written as
long as one limits oneself to the charge sector of the theory

alone. In oder to show that the theories of E§.39 and Eq. m 3§ dxtr wQ

(4.8) are completely equivalent representations of the quan- 2vy

tum Hall edge dynamics, it is obviously necessary to extend
the analysis to include such quantities like the tunneling
denisty of state¢Sec. IV O, heat transport and the specific 4BVq a
heat. The later will be reported elsewhétén order to make
contact with Ref. 1 we mention that E@t.8) is equivalent to

a Chern-Simons bulk theory witim gauge fieldg' that rep-
resent potentials for the electron currents, coupled to the e

mar f dky Pedge

— —5————|tr12Q|? (4.15
2w Uo 1(kx)+Pedge| nQ|

where the expression in front of th& 1Q|? is just the 1D
screened Coulomb interaction. The other terms in(Bd.1)
are a coupling term

ternal potential&\ , , o mf dk, 1 o »
|ﬁ m Sint[Q’ ]_E Eveﬁ(kx)trQ c ( . 6)
i1— 2y MUKl _ (T i iyt
ing] 471_':21 J d XS [ (g,u) anK+2(g,u,) ﬂVAK]1 a ubosonn term
(4.9 _
i Hs i — ImB 2 vicy peffyt eff
where theg' have the gauge fixing constraigt |¢gqe=0. In S[A]= A dxe*" (A" d,AL
Appendix B we explicitly show how integration over the
potentialsg' leads to Eq(4.8). mgB ( dk, 1 off
- % T peff
i | 24 ka)(AO YA, (417
B. Coulomb case
and a flux-flux interaction term
1. Integration over\ and Q
2
Now we look at the full action(3.39. In this expression _ E m f 20 Pornt e s o =
the plasmon field\ is contained in the following way: Sl Al 212 A dX B Ug(X=X)B(X").
. (4.18
im
S[A']1=S,[A]+ Z—'BJ d’x\'B Here we have introduced an “effective” gauge field which
a

contains a Coulomb correction to the scalar potential,

mg .
— T + T N N m
47TVd is dX()\ N+2N AO): ( 0) Aeff:A, Agﬁ()_())IAo()_())-F %f dZX,UO()_()—)_()’)B()_(”),
4.1
/ m X (4.19
Sol A'1=Sql Al+ 50- fﬁdXt”‘Q' and an effective “minus” direction denoted by the sub-
scriptc

Integrating out the plasmon field, we obtain an effective
action forQ coupled toA, which we organize as follows: de=0do—iva,; A=Ag—iveTA,. (4.20
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Comparing result(4.11) with the free particle cas¢Eg. 2. Edge currents and Laughlin’s gauge argument
(3.39 without A], we see that the presence of the Coulomb  a¢tion (4.23 contains complete information on the re-
interaction has the following effects) the appearance of gy5nse of the system to external electromagnetic fields. We

the flux-flux interaction termS;,,[A] and of the screened ofine the current a4¢(X) = 53/ 5A ,(X). In this way we find
Coulomb interaction inSy[Q], (ii) the replacement®\, "

—AZ" and A_—AS" and (iii) the replacementvy oo M et

—ve®fi(k). For what follows, it is convenient to rewrite the (%)= 5-[B=8(y)de "EX], (4.24

first three terms of Eq4.11) as

1l im 2y c_3'\i0/ g/
I == 5| Ey=dy | d*)"Ug(Xx=X")j(X")

impB
Sot St S=7 - N
d _
) ) ) — 5 (y)d, et (4.29
X deXS“VK(AZ)T&VAi - fﬁdx ALA
20 im 241 G w/\iO(g!
+mMSd Q1+ SHQ] 17X) = 5| Ex= dx | dX Uo(X=X")J7(X") |.
_MTs f a1 (426
A v ) 27 v®i(ky) It is easily verified tha,,j“=0. The edge currents are ob-
3 5 tained by taking only those terms that possessfanction.
x|tr1®, 0 ;(Agﬁ)g , (4.21) On the edge we obtain
0 ﬂ —1eff
where, as in the bulksee paper)| the gauge field couples to J edge™ 2wﬁ° Ex’ (429
Q only via the gauge non-invariant “Coulomb” term in Eq.
(4.12. However, compared to the bulk case where the cou- Jodge —1Va' ] uge (4.29

pling results in the gauge-invariant combinatidtr IQ

— (Bl ) Ag], the situation is more subtle in the edge case.
The expressioftr1Q — (B/ ) Aﬁ“] appearing in Eq(4.21) im
is, in fact, gauge variant, but this gauge variance is exactly 9] gdgéx)z _ Z_[EX_[?XJ dzx’Uo(x,i’)jO(i’) _
what one needs to compensate for the edge contributions 77

For the edge anomaly, this yields

resulting from gauge transformations of the “boson” action (4.29
S, and the topollogical term. T.herefore, the complete actiorBy applying Laughlin’s gauge argumefftpne can now di-
[EQ. (4.1)+Sq, is fully gauge invariant. rectly relate the conductances defined by the bulk and the

We now proceed as in Sec. IV A and integrate out@he edge. For example, let us do a linear response calculation for
field. This is done in the same way as for the noninteractinghe case wheré flux quantah/e are created somewhere
case: either by doing it directly or by choosing a guage inside a hole in the sample. The chagdlowing from one
such thatQ decouples fromA ,, i.e., edge into the other is found using E¢.29,

m
dex=—A (4.22 dg/dr=—i é 9] g‘dge:ﬁd@/dr, (4.30

The only difference lies in the fact that we now work with where® is the total fluxNh/e enclosed by the contour inte-
effective quantities. We then obtain the effective action forgral. This yieldsg=mN, as it should.

the external fieldA, in the presence of Coulomb interac-

tions: 3. Interacting chiral bosons

As was the case in the free-electron situation, we can
img ) vy neffvt o neff write theory(4.23 as an edge boson coupled to the external
SAl= 7 J dx e’ (A,) ' ,A; field, exactly of the form of Eq(4.8), but now with effective
quantities and an extra flux-flux term:

+ ffdx(aglAﬁﬁ)*Egﬁ ig
A= 3 | [ dxeres (Ao Al
B/ m\2 4wz
+§(Z> fd2xd2x'BT(i)uo(i—z')B(i').
.23 - #5 dxX(Dye! DE"; — ol Ex)
: , , , Bl MV 2 2rmtoyU (% 27 \B( %
Again, the difference from the free-particle case is the ap- + A= J dx dx'B'(X)Uy(X—X")B(X").

pearance of a flux-flux term and various replacements by
effective quantities. (4.3)
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As in the noninteracting case, this result is equivalent to a
Chern-Simons bulk theory of the form of E@.9). In this
case the action for the electron currents is given by

w
. m
18 ) . . .
= vkl _ (T i it eff
SAGI=7,2 | dxe (90,0, +2(0,)0,AT] Judyy
B m2J2 2,1ty Y s ST
+§ o dox d°x'B"(X)Uo(X—X")B(X"),
(4.32 V)
with the gauge fixing conditions FIG. 6. Spatially separated edge channels.
m m other than Eq(4.37). However, the above form is the only
i (K)—i Un(k ack -0. (43 one that yields the fermionic exponent for the expectation
g1 (ki 5= Ul 0 2 O X>Ldge @33 ()
\I/':I;sy.very instructive also to write Eq4.31) in the following <exp{ _if ZdT(?T(Pfl(TXo)] > w(rym 7S, S=1
: -
Bl 12 (4.38
S=-35 ( E) > | d% d%'Uy(x—X") (See Appendix A for the explicit calculatioriNotice that we
ij=1

would have had a serious problem at this point if we had not
g excluded the zero-momentum componentsedf when we
S 2o ' introduced these auxiliary fields. A redefinition of the inte-
VX Dei(R)]'V/ X[ 0(y')Dei(X')]+ —— ntro y .
[0y)Dei(X)] [0y )De;(x")] 4o ;1 gration measure, [Do— [D[e+f], with a,f(x,7)=0,
would yield a result depending on the arbitrary function
d? e AT 9 A, — 3gdx D,oiD_¢;—Elgp)]|.
U # (DxeiD-ei~Exe V. LONG-RANGE DISORDER
(4.34 In Sec. 11B we introduced the idea of percolating edge
Notice that there are no effective quantities in this expresstates as a model for smooth, slowly varying randomness.
sion: the Coulomb interaction is completely contained in theApplication of Q-field theory then provides an effective and
first term. The charge density is given byn@w)[B  elegant way of describing the transport properties of the net-
+ 8(y)m 1=;D,¢;]. Notice also that we have written a two- work model near the percolation threshold. In this section we
dimensional integral containing;, even though the boson extend the network theory of percolating edge states in sev-
fields only exist on the edge. This is not a problem, since th&ral ways. We show that the Coulomb interactions can dra-

o; only are evaluated at the edge. matically alter the behavior of the electron gas, depending on
the physical process that one is interested in. The concept of
C. Tunneling density of states a “tunneling density of states,” that describes the tunneling

of electrons into the quantum Hall edge, is particularly sen-

In 1 we expressed the one-particle Green’s function whichstive to the presence of long-range electron-electron interac-
enters the tunneling density of states in terms of the m&riX tions. In Sections V A—V C we derive an “effective” theory

variable as follows: of chiral edge bosons that includes the effect of Coulomb

® interactions between the edge and bulk electrons. This leads
aa( s %))= el (2= ™) (0%, to a tunneling exponer® that varies continuously with the
(Q™ (72,71, %)) n=2—oo (Qun (%)) filling fraction » like 1/v. This result is in dramatic contrast

(4.39  to the Fermi liquid predictions of Sec. IV C which apply to

The gauge transformation, that in E@.21) decouplesQ isolated edges alone. We start ¢8ec. V A with the chiral

from A, introduces an extra factor into the path integral ove|boson _formulatlon of the _network ”?Ode" and employ the
Eq. (4.23: Laughlin gauge argument in order to illustrate the fundamen-

tal differences between transport and edge tunnelBer.
exp{_i[[aglAgﬁ]a( 7_2,)—(0)_[a;lAgﬁ]a(Tl,)—(o)]}. V B). Section V(; describes one of the most importapt as-
(4.36 pects of this section. It deals with the detailed mechanism by
_ ) ) which the “neutral” modes are eliminated from the effective
When decoupling the quadratic edge termAIiEq. (4.23]  theory for edge tunneling. We end this section with a com-
with the use of boson fields, this factor translates to putation of the inelastic relaxation rat®ec. V D that enters
. into the transport problem at finite temperatu(®sc. 11 B 4.
exp[ —i J dw?,.cpja( T,)?O)] , j=1,...m (4.37
1 A. Separation of edge channels
in Eq. (4.31). The decoupling is not a unique procedure, Long-range disorder can cause the edge states of different
since combinations of the boson fieldgs can be chosen Landau levels to become spatially separated. A potential
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-QrD,e (Dyp +iv Dyg )
G|/ e G FIG. 7. (a) Plot of equipotential contours cor-
@\ CD Dy (Dyp iv: D) responding to filling fraction=2—¢. (b) Effec-
S G tive edge theory for the filling fractionv=2
G Dot (Drco i —e&. The dashed line represents ttantichiral
of S a i D) C contribution from the bulk orbitals.

(@ (b)

fluctuation at the edge can lift all states in such a way thaity we take the drift velocity4 the same for all edges. Inte-
new “edge” states are creatddee Fig. 6. If the chemical grating out the boson field yields the generalization of Eq.
potential lies between the shifted and unshifted energy of §.23:
Landau level, the edge states of this Landau level will be
situated inside the sample, not on the outermost edge. If
there are several potential jumps of this kind, all the edge
channels can become separated. They can also start wander-
ing into the interior of the sample.

We propose that “edge channel separation” is the domi-
nant effect of smooth potential fluctuations as opposed to
“interchannel scattering,” which only occurs when the po- ﬁ<

_ Iﬁ 2 V2 VK ffy T ff
S[A]—E[f d?x n(X)e*" (A7) 9,A7
T2 s P Ao (AT ~Ad'AT

tential changes abruptly. In this section we wish to embark + =

2
> i) szxdzx’n(i)BT(i)

on the problem of smooth potential fluctuations in the pres- 2m
ence of the Coulomb interactions.

In order to fix the thought we imagine a quantum Hall
sample with filling fractionv=2—e. Figure 1a) illustrates  The notations,, (at contourC,) now has the sigs, in front
the equipotential contours. We may distinguish between thef the velocity and contains Coulomb interactions wath
localized(closed orbitals in the bulk of the sample and the contours instead of jusE, itself. The definition of the “ef-

extendedchiral) edge states. - _ fective” potential AS" has also slightly changed:
This picture leads us to the idea of describing the chiral

bosons byone field ¢(X) that lives on all the “edges” in-
stead of independent fields for every edge. Actii31) then

XUp(X=X")n(X")B(X"). (5.3

Agﬁ(i)on(i)+2l—7Tf d'Ug(X—X)n(X")B(X").

becomes
(5.9
S= f f d2x n(x) <At A, For completeness, in Appendix D we also present the gener-
4m . alization of the actior§ Q,A] [Eq. (4.11)] for the case of

separated edge channels. Note that we are addressing the
situation where the chemical potential is away from the nar-
row ‘“percolation” regime indicated by, in Fig. 4. We

will next exploit the simplicity of our model and demonstrate
that the Hall conductance and the tunneling density of edge
states are fundamentally different quantities that correspond
to completely different physical processes.

M
— > S ¢ dx(Dye[Dog—isveDxe]—Efe)
a=1 Ca

, .
B (2/3_7/7)2 f d°x ' Ug(X—X") VX [n(X)Dg(X)]'

V' X[n(X")De(X")]. (5.1)

Then is a function of position labeling the “local” filling B. Hall conductance

fraction: outside the sample(X) is zero; going inward, it First it is straightforward to generalize the results of Sec.
increases by one every time you cross an edge, until itV B2 to include the separated edge channels and the bulk
reaches its bulk valuen. At the bulk orbitals,n(X) jumps states into Laughlin’s flux argument. Differentiating action
again.[In the casev=2—¢, depicted in Fig. #@), n(X)=1 (5.3 with respect toA ,, we obtain the generalized form of
inside the closed orbitalk. the currentg(4.24—(4.26)],

Each edge is described by a contour labelzd with a
=1,...m for the edge states and=m+1,... M for the
closed bulk orbitals. The coordinate appearing in the edge
terms, is defined on the contour and is taken in the positive
(anticlockwise direction. The symbos,,

i
i0/g) —

M
n(X)B— >, s,8(X on Ca)aclE)‘fﬁ},
a=1
(5.5

X X)

—— . nx) .
s = (+17"'7+1)—17""_1) (52) JI(X):_IESII

E— a,-f d?x'Ug(X—X")j%X")

incorporates the fact that the contours wiksm and a

5.6
>m carry opposite current and charge densities. For simplic- ©6

M
Vd - - <
— 52 (X on Cy)ag ‘ES(&D),
Ta=1
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where the vecto€ is tangent to the contol®, and pointsin G a complicated two-dimensional problem. Some procedure
the positive direction. Again it is easy to check thigfj* needs to be found which extracts the lowest energy excita-
=0, i.e., that current conservation is respected. The edgéons from Eq.(5.11), We follow the strategy of taking the
currents are given by boson fields as a two-dimensional field variable, and we then
collect the terms with smallest momenta. This procedure is
done in position space and we proceed by giving the details

[
-0 _ —1eff X .
Jedgd Ca) = zwsaac B (5.7) of a step by step analysis. The results for the tunneling ex-
ponents are given at the end of Sec. V C4, which also con-
jédga(ca): —isVgj 8dge(Ca)- (5.8 tains a brief summary in the end.
The edge anomaly applies to each bulk orbital and edge state 1. Gradient expansion

separately: . . . .
P y The interaction term in Eq5.11), can be written as a sum

over area integrals,

i I 7\i vii
a,ujgdgéca):_ﬁsa Ex_axf d2X,U0(X1X )JO(X ):|

M
1
(5.9 —WJ’ dr >, dzxj d?X’s;S; dag(X)
As expected, the sigs, determines whether charge is trans- ji'=1 7€ Cjr
ported into an edge or from an edge into the bulk. By repeat- XU gp(X—R") dpp(X'), (5.13

ing Laughlin’s flux argument it is now demonstrated explic-
itly that the localized bulk orbitals do not affect the transportwith
of charge from one sample edge to the other, independent of
the electron-electron interactions; taking E§.9) and per- .o, .o
forming the contour integral oveE,, we obtain the charge Uap(X—X ):Sacsbda_xc (9_Xc,jU0(X_X ). (514
transported per unit of time from theth channel,
Since we are only interested in tlkewith the smallest mo-

1
40, /dr=—i 3§ AX 0, o Saﬂdq’a/dﬂ menta, we can make the replacement
Ca

(5.10 %

where ®, is the magnetic flux enclosed y,. Fora>m j=m+1
:jhclsngltj)ér:ii?ctl)glﬁhu; Ir)]/ olzee :g,tﬁlenggr;g?elo'?ﬁilgiﬂ eauuéh%r\,t\),lstilhsa% stands for the fraction of the total area that is enclosed by

. . . all the bulk orbitals together. The contoGy, is not sharply
g}esHall conductance is quantizéequal tom) independent defined, and is located somewhere close to the gsierFig.

7(b)]. It encloses the region within which the bulk orbitals

are contained. The joint Coulomb effects of the bulk orbitals

will effectively be comprised on this contour. For the terms
Laughlin’s flux argument for the Hall conductance ex-in Eq. (5.11) containingdy¢doe, We can write

presses the quantum Hall state as an exact “excited” state of

the system. Tunneling processes into the edge, on the other 2

hand, are expressed in terms of eigenstates near the Fermi

energy, i.e., the tunneling density of states, and due to the

Coulomb interactions this quantity is sensitive to the pres-

ence of bulk orbitals. We start from acti@®.1), omitting the

replica indices for notational simplicity and putting,=O:

d2x—>9ff d?x. (5.15

C. Tunneling density of states

39dxaxsoaoqo=2 f d?XV X (V ¢ doe)
Cj J>m Cj

j>m

—>Qf dZXVX(V(Pao(P)
Cb

i M :Qf éc dX(?XQDaogD. (516)
S=— EJ dfz S é dX dxe(doep—iSjVdxep) b
=1 G :
. ! The expression E,->mgﬁcjdx(ax<p)2 averages out to
1 f g EM: é g x[c,d*X(V ¢)* with « some positive constant related to the
gm2 ) 7 SISy’ ¢ X total length of all the bulk contours. If there are substantial
stretches where a bulk orbital runs along the edge, interac-
i i ari ; 2
v fﬁ X’ U o(X,X' ) dyr 0. (5.11) tion terms WI!| arls_e, leading to a tergﬁbpdx(ax<p) .
cj Note that in doing replacemei®.15 in Eqg. (5.13), one
also needs to introduce correction terms that compensate for
the errors made when the separatign-X'| is “small” (of
the order of the average size of the orbitals or)lesslU 4,
G(1y— 1) =(exp—i[ @(72,X0) — @(T1,%0)]), (5.12 ?SEE(QZI)ZVEW slowly. These corrections are of the form
wherex, denotes a point on the edge cont@y. The pres- Then there are also extra correction terms that will arise if
ence of the Coulomb interactions makes the computation ahere are regions where a bulk orbital runs along the edge.

=1

Following Sec. IVC, Eq.(4.37), the one-particle Green's
function can be written as
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This correction takes the form of a short-ranged interactiorFor notational simplicity we have omitted the time depen-

betweenC,, and all the other contourgncluding C).
Having done replacemeifb.15 and writing the interac-
tion terms again as contour integrals, we have the action
- m
i
S=—— | dr E 3€ dXdy@d_@—& 35 dX dy@dge
am =1 Jg Ch

1 m
_Wf o Ji’2=1

dx fﬁ dx’' dyeUdy ¢

+g? é dx dX dye(U+Vy)dy ¢
Cp

m
—2e>, fﬁ dxfﬁ dX' de(U+V))dy ¢
=1 Jg Cy

—gJ dTJdezx(ch)z, (5.17

whereg is a positive constant. We have identifi@d with ¢,

since the fraction of the area occupied by bulk states is ex

actly the deviation from integer filling. We have written

Vp(x,x") for the short-ranged interaction between two points

dence and the subscrift, under all the integrals. We first
wish to integrate Eq(5.18 over ®(X), keepingk, andk;
fixed. For this purpose we splib, which has free boundary
values, into a bulk and an edge part by writing

CDI(I)L-i-(i), aL(DL|edge:‘9Lq)|edge c9L(i)|edge:0
(5.19

where®, satisfies Laplace’s equation
V2d (X)=0. (5.20

@ (X) is completely determined by, &, on the edge,
which we now take as an independent edge degree of free-
dom denoted b¥,(x). Introducing the 2D Green'’s function

G,

1
G(X,X")= Eln|>?—>'<”|, V2G(X,X")=8(X—X"),
(5.21)

and using Green'’s theorem, we solve Laplace’s equation and
obtain for®(X),

on Cp; Vj(x,x") denotes the short-ranged interaction be- ® (X)=— fﬁdx’ G(X,x")E(x")

tween a pointx on C; and a pointx’ on C,. The precise

expression folV is unknown due to the fact that it has its G

origin in the twilight zone near the edge, where it is unclear —® (X)) =—(x,y;x",0)|. (5.22
whether a term contributes to the bulk or edge action. Com- ay

paring this result5.17) with Eq. (5.11), we see that the pres-

ence of the interacting bulk states effectively leads to th
appearance of an addition@ntichiral boson on the contour

Cp, an extra short-ranged interaction with this contour, and
lower-dimensional leftover bulk terffi(V ¢)?.

2. Effect of the bulk term

In order to be able to calculate the tunneling density o
stated Eq. (5.12)], we need an effective theory for the edge

This expression tells us that we need to knbyon the edge

8n order to evaluat@® | in the bulk. Luckily, we do not need

the full 2D X dependence, since due to the splittiriEg.

?5.19)], @, will be evaluated at the edge only. Using a spe-

cial property of the Green’s functiofEq. (5.21)], namely,
[y G](x,0;x",0)=0, we can explicitly writeb on the edge

@sa function ofg; :

degrees of freedom, and therefore we have to understand O (X)=— ff; dx' G(x,x")E4(X'). (5.23
how they are affected by the left over bulk term. To this end,

we are going to split bulk and edge degrees of freedom. W
write the bulk term ag ¢ d’x(V®)?, whered represents the

bulk degrees of freedom and is treated as an integration vari-

able independent af. To reflect the fact that it is actually an
extension ofp into the bulk, we impose some boundary con-
dition on @, for instance®|qgqe= ¢ OF 9, P|egge=d, @. (9,

is the derivative perpendicular to the contgurhe effect of

q‘he action, written in terms ob and E,, is now given by
S=—9f d*>x(Vd)2—g f 51; E,GE;+2g 51; dx E;d

—i 3@ fﬁekﬁi jgdxko(ﬁb—zpo)

the bulk term on the edge theory is obtained by integrating

out @, which leads to an effective action for the boundary

conditions. Let us consider a general scenario and impose the

boundary conditionsb|edge= o and ﬁl(D|edge= Yy, using
constraint multiplierk, andk,, respectively:

eSefl #0410 — f D[D (%) ]D[Ko(X)1D[ky(X)]
><exp{i 3E dX Ky(P — thg)

+i ﬂgdx kl(&lq)—wl)—gf dzx(V(b)Z].
(5.18

+i § dx ky(E1—¢4), (5.29

where we have used the shorthand notafig\ G B for the
expressionfdx$dx’ A(X)G(x,x")B(x’). Integrating outd
is now simply done by replacing by its saddle-point value.
Varying the action with respect 1, keepingE; fixed, we
obtain the saddle-point equation

V20 + 8(y)

[

Using the Green’s function’s properfy,,G](x,0;x",0)=0
again, we find the following solution on the edge:
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d(x)=— 3gdx'e(x,x') E,+ 2'—g|<0 (x"). (5.26

In substituting this solution into Eq5.24), we do not need
the full 2D X dependence ofb(X), since we can write

fd2x(Vd)2=— [d?>x PV2D and V2D is an expression re-

stricted to the edge. Substitution of E§.26) into Eq.(5.24
yields

S:_zgjﬁ %EﬁEﬁ%fﬁ jgkono—i dx kothio

—2i fﬁ 3§GEl+i 3§dx Ku(E1— 7). (5.27

Integrating outk, is straightforward, and gives
S=g § fﬁ (oG~ "ho+ 2E,GEy)

In the end we integrate oWl;, yielding the constraing;
=i,. The final result forSe] ,¥1 | becomes

Serl 0, ¥11=9 é § (oG b+ 211G )

+49 % dX ¢

—g % 3€ (lﬂov'ﬂl)(Gzl 22(3)(£:)

(5.29

We are going to puiyy=0 in order to avoid double counting

of (d4¢)? terms at the edge, angl;=3, ¢. Action (5.29
becomes

S, ¢]=29 jg ff)ﬂmGo’ucp- (5.30

A. M. M. PRUISKEN, B. VS(ORI(,Z, AND M. A. BARANOV
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3. Demise of the neutral modes; exampie=1—¢

In the long-wavelength limit, the contouf3,,...,C, are
lying so close together that we can effectively return to the
picture where all the edge channels are sitting on top of each
other. We label the channels,(x),...,¢m(X),¢p(X). Let us
for simplicity’s sake first consider the case=1—¢, where
we just have the two field®, and ¢,. In terms of these
fields, action(5.17), without the bulk term and the bulk ef-
fect (5.30), takes the form{again using abbreviated notatjon

1
Sol @1, ¢p]=— yp % dX[ dxp1d0¢1— € dxPrdo®p]
1 2
~ 872 U[dxp1—€dxpp]

1
-= > %dx Vidxekdxer . (5.31)
81k, T1p

We have put all the short-range contributions into the22
velocity matrixV. We next define a “charged modd” and

a “neutral mode” v in such a way that only the charged
mode “feels” the long-range part of the interaction;

1
F=;(¢1—8%), Y=@1— ¢@p

(5.32
1

&
=—— =["——.
¢1 v% Pp v?’

In the basis [, y) action(5.31) becomes

1 e
Sol I yl=— e f]g dx vaI'dpl’— ;&7307}

—% 3€ 3€U(axr)2

1 “
— W % dx{ o a,ylV

a,T
Gy (633

whereV is the velocity matrix in this basis. The expression
d, ¢ in the theory for spatially separated channels is in the
single-edge picture evidently equivalent to the neutral mode

This edge term, derived from the interaction with the bulk yocp,—@,. The leftover bulk contribution[Eq. (5.30]

orbitals, is seriously going to affect the tunneling exponenttherefore translates into an extra term involving the neutral
A quick way to see this is as follows: on the contoursmode:

Ci,...,Cp, the field ¢(X) can be written asp(x,y on C,)

plus perpendicular derivatives. For the tunneling exponent,
only (plcl is needed, so we can integrate out the perpendicu-

lar derivatives in[Eq. (5.17), minus bulk term plus Eq.
(5.30] to obtain an effective action fap on C,. The domi-
nant part of the 1D propagator for ¢ is given byG (k)

oclk
integration ovew, ¢ are irrelevant. Higher powers @f are
even less relevant. Replacing all thén Eq. (5.17 by ¢|c,,

we obtain a termv$dx dy@dpe, leading to a tunneling ex-

ponentS=1/v instead of the free-particle residt= 1. In Sec.

, from which it follows that all terms introduced by the

Sbu,k[y]=const§ f# vGy. (5.39

The tunneling density of states is now expressed as

T2
1

(eXrH%l:?“f D[F]D[y]ex;{—i<r—%7)

+ Sl y]+ Soud 11 (5.39

V C 3 we are going to derive this result more formally, basedf we perform the integration ovey first, we see that the
on a consideration of the neutral modes in the theory wherbulk part of the action yields the following contribution to

the edge channels are not spatially separated.

the inverse propagatoG(k)=1/k|, which is dominant at
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low momenta. The integration ovey yields I'-I" terms of

orderk®V(k). These are clearly irrelevant. For the tunneling G
density of states we can write
(exp-igal 2y [ PIPlexp(—iT|2+ ST &
‘ y
iv V2 il 1 X
Se I']=— pp. % dx " dpl" — 872 % é a'Ua,r ) 4 @
1 N A .
R |
For small momenta th¥ essentially reduces to a constant

and we can use the results of appendix A, obtaining

(exp—i@q| o (1,— 1) 7S, S=1/v. (5.3 FIG. 8. (a) Pointlike interaction between conducting electrons
n and the localized electrons at “nearly saddle pointé) The co-
ordinates 0x, andy are the points of interaction along the localized

4. General casev=m—g contour.
The results forv=1—¢ are easily generalized. From the
bulk channelg, and the edge channels,,...,¢, we con- ot
struct a charged modg, andm neutral modesy,, ...,y as Syl== 7 % dx vdxyodoyot 2 1%xYa%7Ya
follows:
& 1/2 2
1{ & —m;&ﬂ’mf?o)'m 8.2 § %U(ﬁxyo)
0| & e
1
T 82 o j;dxvacax')’a IxYe (5.4

, a=1,... m (538

a
E P~ aPa+1
k=1

1
G i
whereV is the velocity matrix in the basis ofs. The argu-
where we definegn,; as ¢,. The neutral modes mentof Eqs5.34—(5.37) can be applied again, in a slightly
Y1,.-.,¥m_1 are the usual ones for a theory with edges. modified form: the neutral modes are equivalentt@ and
They are mutually perpendicular and normal to the charge#ligher derivatives(A basisy can be found for the neutral
mode. The additionaly,, is normal to the other neutral modes in whichy, corresponds to the 1D lattice discretiza-
modes but not to the charged mode. T are expressed in  tion of 47 ¢.) On dimensional grounds the propagator for the
terms of they's as follows: nth normal derivative ofp has to be proportional tk?"~1,

leading to irrelevant contributions. A more concrete way of
m making this statement would be to generalize the analysis
Po= Yo" " ¥m: presented in Eq95.189—(5.29, including boundary condi-
tions for the higher normal derivatives. However, that would

e 1 m-1 also require us to take into account highr—;r ordef terms in the

Ck= Yo~ _7m_<1_ _) Vi1t D ——=va, k=m. ¢ theory[Eq. (5.17)]. The resulting effective action for the
v k a=k atl charged modey, is of the form of Eq.(5.36), with v=m
(539 .

We can summarize the results of Sec. V as follows: We
have seen that the Fermi liquid res@t1 is obtained for
the tunneling density of statds) when the Coulomb inter-
actions are omitted, dii) when interactions are included but

= only short length scales are considered. An interacting theory
m 2 for the lowest-lying excitations, which are slowly varying
_ i jg 3[; U{ 2 i — 8y field configurations, yields completely different results. The
8 = ) x¥b presence of bulk orbitals, interacting mutually and with the
. edge states, is effectively described by an extra edge channel
1 with prefactor—e plus a remnant of the interactions in the
T8 E: jg dXVi9x@kx i - (540 pyik of the form[(V¢)?. The leftover bulk term serves to
make all the neutral edge modes irrelevant, yielding an ef-
Again, all the short-range contributions have been put into dective edge action for the one remaining, charged, mode.
velocity matrix V, which now has dimensionn{+1)Xx(m Due to the presence of the extra ‘bulk’ channel, the prefactor
+1). Writing Eq.(5.40 in terms of they basis, we obtain  of this effective actiorS[I'] becomean—e= v, which is a

Equation(5.31) is generalized to

m

1
Jel=—— X 21 Ix@jdop;— €IxPpdoPp
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continuous parameter in sharp contrast to the integer quan- q

i i D —_——. A4

tized m. For the tunneling exponent we obte®  1/v. olw,q)— o= (var3)q (5.49
D. Computation of =, To lowest order in the interaction potential we may write

We next return to the problem of the plateau transitions. —( dg 7
Following Sec. Il B we expect that the transport at high tem- S(w)= —izszf 2—D,—(w,q)= —2U]-2|w|. (5.47
peratures is dominated by interactions between the conduct- ™ 2vg
ing electrons on the backbone saddlepoint network and thosgere the bar stands for the average over the random positions
on the disconnected pieces or clusters. _ & alongC, andz is the linear density of saddlepoints. Result
The fundamental quantity to compute is the characterlst!(%5.47) can be used to obtain an expression fat,1/i.e., the

brate with the rest of the network. In order to set up a theorysreen’s functiong(w,q) as follows:

for relaxation, we consider the “nearly saddle points” in the

network, where tunneling is not possible but where the Cou- dwdq

lomb forces nevertheless produce “sudden changes” in the VUrip= f (ZT)zz(w)Q(s—w,Q)- (5.48
motion of the conducting electrons. Figure 8 illustrates the

interaction of the saddle-point network with disconnected or-The 7,, determines the rate at which the electrons on the
bitals. The “nearly saddle points” where the Coulomb backbone cluster equilibrate with the rest of the electronic
forces are most effective are indicated by the shaded areagebitals. We findri;lxgz or T? at finite temperatures. This
We can model the situation by introducing a delta-functionadmittedly crude approach toward electron relaxation can be
potential which acts in the small areas of the “nearly Sadd|Qmproved in several ways. For examp|e, as the most impor-

points” only. The action can be written as tant correction to the self-energ.47) we find the self-
interacting orbitals as depicted in Fig(b3 These correc-
Seﬁ[‘P]:S[QDOJ"_Ei Hoi] tions replace the momentum integral in E§.47) in the

following way (in space-time notation
-2 de&x‘PO(éi)Uiax@i(éi)a (5.42 J g—qu(w,q)
i ko

whereS[ ¢4] is the action for the chiral boson field on a link (e ) )
of the saddle-point network that we denote as the contour ZJ dre """ 7D;(0,0;7—7")
Co,

: D(0,0;7—7")—D;(0,0;7—7")
Steal=5=| 07 §_dxieor ¢o. (543 Lo
Co +fdrof dxf dy
0 X

This contour is taken to be very large or infinite. Similarly,
we define chiral boson fields; on the disconnected but large XD;(0x;7— TO)U]. Dj(y,L;mo—7'), (5.49

contoursC; ;
I where x,y are the positions of the “nearly saddle point”

[ where the self-interaction takes place. The integrals stand for
S[fPi]:Ef dr jgc_dxax¢i5+¢i : (5.44  the averaging over positions and all dimensional factors are

absorbed inthJj . The length of the orbital is given Hy and
The sum in the interaction term in E¢5.42 is over the boundary conditionx=x+L andy=y+L are understood.
discrete set of nearly saddle poirdisalong the contou€,  Equation(5.49 can be rewritten as a shift in the chemical
where the fieldspg and ¢; interact with an appropriate, ran- potential:
dom strengthJ; . This problem is in many ways quite simi-
lar to the problem of interacting edge channels with a ran- —iq ~
domly varying separation between them. We proceed along f dq Di(“"q)_’f dqiw_ Su+vyq’ op=U;.
the same lines as in Ref. 27, and introduce a self-en&rgy (5.50
for the density-density correlation of the fiefg,. If we de- ) . )
note the Fourier transforms of the propagatorsTh'S leads to a modified self-energy according to
(x@o(X, 7) dxpo(X',7")) and (dxei(X, 7) dxpi(X’,7")) (with 7
x andx’ parametrizing the positions on the contoGxs and S(w)— =5 U(w+idu)sgr ). (5.51)
C;, respectively as 2vyg

2 —q 2 —q The shift Su can be translated into a shift in the expression
= , == = for 7,,* followin
DO(waQ) ﬁ Iw_vdq! Dj(qu) B Iw+vdqa T|n g

(5.495

-1 —
then the introduction of a self-energy takes the form Tin (8,0p) =

1+i5ﬂ%)fm1(e). (5.52
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After the analytic continuation to real energies{¢) has In momentum and frequency space this correlator is given by
been performed, we obtain the final resul{'«e or ;>  (we omit the label since it is of no consequence

«T at finite temperatures. More generally, we expect the i ,

equilibration rate to be given by a regular series expansion in (0a(K)@_p(—Kk'))= @ 5ab5(_k_k ) . (A2)
powers of T which is dominated by the lowest ordef,* a B Klwat+ikv®(k)]

«T asT approaches absolute zero. We write the Coulomb interaction and the effective velocity

v in the form
VI. SUMMARY AND CONCLUSIONS

— . 2 eff - _ 2
We have shown that massless edge excitations are an in-UO(k) cv2min(k/A)%, - vk mcIn(k/AD()A3)

tegral part of the instanton vacuum theory with free bound-
ary conditions. Massless edge excitations have fundament#/herec is a positive constant indicating the strength of the
consequences for the “Stab“ity” of topo|0gica| guantum Coulomb interaction,A is an ultraviolet cutoff, andD
numbers and for the quantization of the Hall conductances ifF €xp{/¢2mc). We will only consider low momentak|
particular. We have used the formalism Bfalgebra, intro- <AA, with A<1, so that we are well away from the point
duced in our previous work, and derived a complete theoryvhere the Hamiltonian becomes negative.

of the edge. We have established the fundamental connection We take the Fourier transform of EGA2) and change the
between the instanton vacuum and Chern-Simons gaudéequency sum to an integral, writing,— (5/27) [dw,
theory. Both theories have previously been studied indepen-

i i H : . i A % eiwrdw
dently and with different physical objectives. We have 9.G(7.0)= : J'A dkvek f
shown that our approach to edge physics enables one to ad-  ~ (n0=2x —XA W] orikee (k)

dress several long-standing problems of smooth disorder and A

mteractlon effgcts. We have pollnted out that fundamental __ j dkvefi(k) 9(_kveﬁ)ekv9ﬁ(k)7. (A4)
differences exist between tunneling at the edge and electron —\A

transport. Transport experiments inject electrons directly int
edge states; these electrons do not have enough time
equilibrate with the rest of the sample, and are therefor
effectively decoupled from the bulk. A tunneling measure-
ment, however, probes eigenstates of the whole system, A | 2meniA
which involve not only edge electrons, but also localized 9.G(7,0)=— —{1—(—)

bulk orbitals. Since tunneling processes do not probe the T D
incompressibility of the electron gas, they are generally \/D
treated incorrectly by the theory of isolated edges. By taking —2chDf duexd2mcrADulnu].
into account the effect of Coulomb interactions between the 0

edge and the localized bulk states, we have derived an effec- (A5)

tive edge theory that predicts a tunneling exponent 1/ The function ulnu is negative on the whole interval

For the plateau transitions we have constructed a percolg- .
tion model of interacting edges. We have shown how inelas?o’)‘/D)’ sinceA/D<1. If we now send the cutofh to

tic scattering at the “nearly saddle points” sets the temperalnf'mty’ the term with the;gﬂ??{a' n Ec(AS) wil go to zero
ture scale at which the transport coefficients cross over fro S 1/InA.. The term /D) also vanishes, yielding the
mean-field behavior to critical scaling. This crossover Canree-partlcle result

involve arbitrarily low temperatures and it explains the lack G(7,00=—In 7+ const. (AB)
of scaling in the transport data taken from samples with
long-range disorder at finite temperatures. Our mean field
expression for the conductances agrees with recent empirical APPENDIX B: CHERN-SIMONS ACTION

fits to transport data at plateau transitions. The results of this FOR BULK CURRENTS

paper serve as the basic starting point for a subsequerifone, |n this appendix we show that E@.8) is equivalent to
where we extend the theory to include the statistical gaugehe bulk action

fields and the fractional quantum Hall regime.

cilgle step functiord(— kv®™) constrains the integration inter-
al to k<<0. We can split the last expression in E44) into
wo parts, using Ik dk=d(kIn k—Kk), and obtain

- m
i lﬁ 2 VK iyt i iyt
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96-0580. with the condition g =0 on the edge. Theg's are
2+ 1-dimensional potentials from which the electron current
APPENDIX A: ONE-DIMENSIONAL PROPAGATOR densityj for every Landau level can be found:

WITH COULOMB INTERACTION .
. _ _ _ jfrocet™a,g) - (B2)
In this appendix we calculate the correlation function ) )
G(7,0) for the charged boson fields [Eq. (4.31)]: Notice three important subtleties.
(i) The coupling ofg with the electromagnetic gauge field

G(7,X)={¢i(7,X)¢;i(0,0)), 7>0. (A1) is of the form e*"*g,d,A, instead of the expected
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g“”"A’uangochA'“, These expressions differ by an edge APPENDIX C: INTERCHANNEL SCATTERING
term. The second form isotinvariant under the gauge trans- AT THE EDGE
formationsA ,— A, +d,x; the expressiog”"*d,A,, on the
other hand, is manifestly gauge invariant.

(ii) Putting an arbitrary space-time componentgozero

In this appendix we describe the various steps of the stan-
dard Q-field approach to(edge disorder. For the general
on the edae ensures that the action is invariant umder C2S€ ofm chiral edge channels, one can differentiate between
g,ta, 9 2 gauge transformation that does not aﬁlﬁt the different types of disorder, depending on whether one allows

9 «, agaug Snterchannel scattering or not. Although the different scatter-
_current den5|ty Without such a condition, gauge mvanancemg potentials do not give rise to fundamentally different
IS t()iz?)k%neggsr;i %Cfig;.e invariance und +ok, a phyS|caI results, it is nevertheless important to define the

8L—0, < “effective” edge Hamiltonian[Eq. (2.10] which gives rise
gauge fixing condition has to be specified for the path mte,[0 the same resuftEq. (2.7)] that was previously obtained
gration overg, for m_star_lc_e the Coulomb gaugeg 0. for 2D electrons. Below we shall show that the following

Let us now for simplicity drop the replica indicesand

the Landau level indek (effectively settingm=1). Having channel model satisfies our requirements

taken the conditiorg_|e4e=0, the componeng_ in Eq. KK
(B1) multiplies the following constraint: Hedge™ ~1Vadia xFViae (X), (CD
whereV is a Hermitian random matrix and the elemevitg/
X (§—A)=0. (83)  are distributed with a Gaussian weight
After integration overg_ , what remains of the action is p[V]:eXp{ 1 é dxtrvz]. (C2
g

i d A2%(—GXd G+ 26X [VA —a A The indicesk,k’ =1,... m label the edge channels. The form
A T X(—gxd-G+2gX[VA_—d_A]), (C1) implies that single potential scattering, as described by
(B4) the 2D Hamiltonian

subject to constrainB3). The general solution of EGB3) is

1
2
given by Hap=51 (p A2+ V(X), (C3

. does not naively translate into single potential scattering for
g=A-Ve, (B5  the edge states as obtained by solving &) in the pres-
ence of an edgénfinite potential wall. Rather than that, one
with ¢(x) a real scalar field which is now the only integra- should allow for interchannel scattering of the “pure” eigen-
tion variable that is left. Substitution into E(B4) yields an  states as in EqC1) in order to reproduce the effect of dirt in

action whereyp features only on the edge: the general 2D problemC3). We start from the following
generating function for the averaged free-particle propaga-
i tors:
S e, A]— jdr f d2X8‘“’KA A

z= f Dl ] f DIVIP[V]

Xexp[ﬂ > édxw’”

- fﬁ dX(quDDso—soEx)} (B6)

This is exactly the form of Eq4.8). p==,a,jj’

One may worry that the path integration overis ill
defined, because of the bulk degrees of freedor, athich X[(Mﬂpww“/_?{gd’gg l/fg’j’] _ (C4)
do not appear in EqB6). However, ¢ inherits something
from the gauge fixing condition off. This is most easily ) ) ) )
seen in the case of the Coulomb gauge; hetes to satisfy Integratlon over randomness and introduction of the matrix
V2¢=0. This means that the bulk degrees of freedom ardield Q (x) by performing the Hubbard-Stratonovich trick
completely determined by(x) at the edgdthe well-known |eads to
case of Laplace’s equation with Dirichlet boundary condi-
tions) and therefore are not independent integration vari- ~ 1_ -,
ables. Z=f D[Q]ex —aTI‘Q

One final remark on the boundary conditign=0: The
Hamiltonian(density corresponding to EqB6) is given by
vg(Dy)?. Itis not allowed to choose a velocity <0, since
this would lead to energies that are unbounded from below.
In general, the boundary condition has to be taken in such blotice that the edge channel label is not present in the field
way that the velocity of the chiral bosons has the same sigmariableQ, but it is simply contained in an overall facton.
as the prefactor multiplying/4s in Eq. (B1), otherwise the Notice also that the type of randomness as considered here
integration ovem is ill-defined on the edge. has previously been introduced in a different context by the

+mTr In[w+ivgde+iQ+iwAl}. (C5)
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name ofN-orbital scattering, wherl (herem) is commonly 1

used for saddle-point and large-expansion purposes. ZPZJ D[P]l[P]EXD{ - an Pz]. (C9
We will next make use of the simple analytic properties of

our 1D Hamiltonian and show that the saddle-point tech-

nigue yields, in fact, exact results for afl and that therefore ZTzf D[T]exp{ mTr In

there is no need to rely om to be “large.” The stationary

point equation forQ, where allT dependence is contained in the quantyac-

cording to

i
+i +-—A+IiB
/.L VdaX 27_

.= CYB _ a,B _ p;

i ,= 0P8, [eg+ (—1)Pi/27], C6
[Qsrlpp ppr €0 (—1)Fi/2r] (€ B=vyToT 1+ wTAT 1=v,TD, T  (C10
Equation(C9) can be evaluated further, and to lowest few
2 _ = dq _ orders in an expansion iB we obtain an effective action
a(eoi|/27)= —mf Z[,u—vqureoil(l/ZTwL w)]™? which can be written as

can be written as

=xim/2vy, (C7) Z:= J D[ T]1expSe T]
with the simple solutioneg=0, 7=2v4/(mg). One may
- . . m mr
Cgégkr)?e;)é?ce the originaD field by the following change of Sl T]= Z_VdTrAB(X)_ S—VdTI’[B(X),A]Z-i—”'
(C1y
~ 1 1
Q—T PT— Z—TT—lATz 5-Q (C8 m m
=5 fﬁ dxtr ATo, T 1+ v fﬁ dxtrAQ
HereT e SU(2N)/JU(N) X U(N)] are unitary rotations and d
the block-diagonal Hermitiangg,:épp,PgB represent the mrvy )
longitudinal components. Replacing by its saddle-point ) %dxtr[Do,Q] : (C12

value, as written in Eq(C8), turns out to be an exact state- o o
ment, valid for allm. The reason is contained in the fact that The coefficients appearing in EGC12) all have a clear

the fluctuations irP are weighted by propagators with poles physical significa.nce in the context of disordered edge states
in either the positive or negative imaginary momentum(S€€ also the main textin particular,m stands for the quan-
plane. All the momentum integrals therefore sum up to zerotized Hall conductance ; m/2mv4 equals the total density
giving rise to a zero weight to all orders in tRefluctuations. ~ Of edge statépeqge. The quantitymrvy that appears in the
The replacement of EqCS) is exact when inserted in the higher-dimensional operators is the 1D conductivity, of

Tr In. Equation(C5) factorizes into m channel edge states. Here\Z, is the linear dimension
which sets the smallest wavelength for @Qdield variables,
Z=7pZ7, andm/2 is the(quantizedl conductanced,) of the wire.

APPENDIX D: ACTION FOR Q AND A ON MULTIPLE EDGES

The generalization of Eq4.11) is given by

/2
JQ,Al= (fT)Zf d2x dx'n(R)BT(X)Ug(X—%")n(X")B(X')

iB M 2
+ 1o f d> n(R)e (AT o, A+ a; S, Caolx( ATAST— 7tr AXQ)

M M M 2

(@) ™ @ra1_ dke 1 a B effa
-3, sl g 3 S0 5 3 3 [ 5% o e - Sk 0
1 ’ amy_ é effy a

+ ng SaSh écadx édeX % {tran ’7T(AO )7n (X)
X Up(x,x") tr|i’nQ—§(Agﬁ)g (x"), (D2)
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where Uy(x,x") denotes the full 2D Coulomb interaction. All terms except those quadrati@ iarise by the obvious
replacementsn—n(x) and m95—>2asagﬁca in Eqg. (4.11). The terms quadratic i) can be understood as follows. In the

generalized form of Eq(3.39, the quadratic term in the plasmon field is given by

m

—gfd2xd2x'>\(x)Tu51(x—x')>\(x')+ > 3[; dx AT\, (D3)
a Ca

27TVd
indicating that the propagator far between two points on the same edge will be very different from the propagator between
different edges. In the former case the propagator is proportiorﬁ&]ngr (mi27vy) ]~ 2, which is exactly the form obtained

by combining the Finkelstein term with E¢D1). In the latter case, the propagator is simply proportiondl go Finally, the

signs can be understood by noticing that the coupling of the plasmon fi€disgproportional toEasagﬁCadxtrXQ.
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