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„Mis-…handling gauge invariance in the theory of the quantum Hall effect.
III. The instanton vacuum and chiral-edge physics

A. M. M. Pruisken, B. Sˇkorić, and M. A. Baranov*
Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands

~Received 9 October 1998!

The concepts of an instanton vacuum andF invariance are used to derive a complete effective theory of
massless edge excitations in the quantum Hall effect. Our theory includes the effects of disorder and Coulomb
interactions, as well as the coupling to electromagnetic fields and statistical gauge fields. The results are
obtained by studying the strong-coupling limit of a Finkelstein action, previously introduced for the purpose of
unifying both integral and fractional quantum Hall regimes. We establish the fundamental relation between the
instanton vacuumapproach and the completely equivalent theory ofchiral edge bosons. In this paper we limit
the analysis to the integral regime. We show that our complete theory of edge dynamics can be used as an
important tool to investigate long-standing problems such as long-range, smooth disorder, and Coulomb inter-
action effects. We introduce a two-dimensional network of chiral-edge states and tunneling centers~saddle
points! as a model for smooth disorder. This network is then used to derive a mean-field theory of the
conductances, and we work out the characteristic temperature (T) scale at which the transport crosses over
from mean-field behavior at highT to the critical behavior plateau transitions at much lowerT. The results
explain the apparent lack of scaling which is usually seen in the transport data taken from arbitrary samples at
finite T. Second, we address the problem of electron tunneling into the quantum Hall edge. We show that the
tunneling density of states near the edge is affected by the combined effects of the Coulomb interactions and
the smooth disorder in the bulk. We express the problem in terms of an effective Luttinger liquid with
conductance parameter (g) equal to the filling fraction~n! of the Landau band. Hence, even in the integral
regime, our results for tunneling are completely non-Fermi-liquid-like, in sharp contrast to the predictions of
single-edge theories.@S0163-1829~99!13739-1#
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I. INTRODUCTION

In problems of quantum transport, symmetries play
important role. Recent advances in the theory of the quan
Hall effect primarily make use of electrodynamic gauge
variance as the fundamental symmetry of the strongly co
lated electron gas.1,2 This symmetry permits one to procee
with a minimum of microscopic input. Applications o
Chern-Simons theory have been largely based upon phen
enological arguments. These applications have provide
universal language for the fractional quantum Hall effect
which the various hierarchy schemes could be treated
equal footing.1

Application of Chern-Simons theory has also led to t
idea that many of the basic properties of incompress
quantum Hall states can be understood in terms of Luttin
liquid behavior of the edge excitations. This non-Ferm
liquid theory of edge excitations is now commonly used a
computational scheme for tunneling properties of differ
quantum Hall states as well as the thermodynamic prope
of the fractionally charged quasiparticles. It is important
keep in mind, however, that unlike the conductance par
eters, physical quantities like the tunneling density of sta
do not necessarily follow the rules of incompressibility. T
lack of a microscopic theory of the fractional quantum H
effect has led to controversial issues regarding thedefinition
of the Hall conductance~notably for those states that hav
edge channels of opposite chirality!.3,4 Moreover, serious
discrepancies have arisen between the predictions of
PRB 600163-1829/99/60~24!/16838~27!/$15.00
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Luttinger-liquid theory of edge excitations3 on the one hand,
and experimental results on edge tunneling on the other5

This paper is the third in a series in which we lay dow
the foundation for a microscopic theory of disordered co
pressible and incompressible states in the~fractional! quan-
tum Hall regime. In previous papers6,7 ~hereafter called I and
II ! we introduced an effective Finkelstein action for localiz
tion and interaction effects. The Finkelstein action includ
the topological concept of an instanton vacuum as well as
statistical~Chern-Simons! gauge fields. The inclusion of sta
tistical gauge fields in the problem makes it possible to f
mulate a combined theory of composite fermions, locali
tion and interaction effects. The results ofweak-coupling
analyses~both perturbative and nonperturbative, i.e. insta
tons! can then be used to obtain a global scaling diagram
the conductances. The integral as well as fractional quan
Hall regimes are incorporated in this scaling diagram. In t
work, we are primarily interested in the strong-coupling lim
of our action where the system has a gap in the density
states. This physical situation is the same as the one
scribed by the Chern-Simons approach with one import
exception: besides the Coulomb interactions, we also d
from first principles with the effects of disorder.

One of the main objectives of this work is to derive m
croscopically a Luttinger-liquid theory for edge excitatio
in the presence of disorder and electron-electron interacti
From our general, effective action point of view, we can s
that the physics of edge excitations has a fundamental
nificance since it provides unique and invaluable informat
16 838 ©1999 The American Physical Society
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on the topological concept of an ‘‘instanton vacuum’’8 in
strong coupling.

An additional important advancement is that we obta
for the first time, thecompleteLuttinger-liquid theory on the
edge. We have the action for interacting chiral edge bos
coupled to external electromagnetic fields. This theory
now be used to define the Hall conductance in a gene
unambiguous manner by expressing the appearance o
‘‘edge anomaly’’9 in terms of Laughlin’s gauge argument.10

The details of the analysis of edge excitations are
scribed in Secs. III and IV. This analysis is based, to a la
extent, on the various concepts which were introduced
under the names ‘‘F algebra’’ and ‘‘F invariance.’’ Recall
that in II we also studied these concepts, but in the we
coupling regime. This paper therefore shows thatF invari-
ance retains its significance all the way down to the reg
of strong coupling, where the massless excitations are c
fined to the edges of the sample. It is important to note t
this symmetry is being demonstrated in the weak- as wel
the strong-coupling regime.

The results of Secs. III and IV will serve as the starti
point for a microscopic theory of edge excitations in t
fractional quantum Hall effect. We shall limit ourselves he
to the integer regime, since this already contains most of
difficulties. Extensions of our theory to include the fraction
effect can be done by means of the statistical gauge fie
These will be reported elsewhere.

We shall begin by reviewing and extending the topolo
cal instanton vacuum approach to the quantum Hall eff
following the ordinary, free-electron replica formalism
Sec. II. In making the connection between topology and e
currents, we show that important aspects of the problem h
previously been overlooked. In particular, we show that
masslessexcitations of the disordered edge states are
tained fromfluctuationsaboutintegerquantizedtopological
charge~Sec. II A 3!. This important observation will serve a
a starting point for most of the analyses in the remainde
this paper.

Masslessedge excitations appear in the instanton vacu
theory for arbitrary number of field components~replicas! Nr
and not just in the replica limitNr50. The present analysi
revises our previously accumulated knowledge of the sub
in at least two respects. First we recognize that a direct r
tionship exists between the numerical value of the instan
parameteru ~or sxy

0 , Ref. 11! and the phenomenon ofinter-
channel scatteringat the edge. Here the number of ed
channels equals the number of fully occupied Landau lev
and the phrase ‘‘interchannel scattering’’ refers to the eff
of a random short-ranged potential.

Second, we review the earlier attempts to establish a g
eral topological principlefor quantization of the Hall con-
ductance which includes the effect of localization of the b
states. The mere existence of massless edge excitations
out to have basic consequences for thequantization phenom
enonwhich now can be shown to be a robust and fundam
tal aspect of the instanton vacuum theory with arbitrary v
ues ofNr .

In all our work so far, we have substituted the phra
‘‘electronic disorder’’ for a white noise random potentia
This was always done for technical reasons alone. Howe
it is well known that in real quantum Hall devices slow
,
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varying potentials are often present.10,12 Till now these have
in general been difficult to handle. Our microscopic theory
the edge enables us to treat long-range potentials as we
electron-electron interactions. In this paper we embark
solving two long-standing problems where smooth disor
and Coulomb interactions give rise to unexpected results.
addressing these problems we attack the core of the con
versies that exist between the theory and experiments
presently span this subject.

The first problem we address is that of the plateau tra
tions. This we model as a percolating network of ‘‘ed
states’’ ~equipotential contours! and widely separated
‘‘saddle points.’’ A large class of such systems is th
‘mapped’ onto the nonlinears model representation for lo
calization, and the main problem is to identify the length a
energy scales of the ‘‘bare’’ parameters, or the mean-fi
conductances which together determine the renormaliza
starting point, i.e., the point where scaling occurs first. T
starting point can involve, in principle, arbitrarily large di
tances and arbitrarily small energies, and this, obviou
complicates the observability of the critical behavior of t
Anderson~plateau! transitions. We argue that Coulomb in
teraction effects lead to a modified mean-field theory
transport which is now observed in the experiments p
formed at finite temperatures. The chiral boson theory s
be used to actually compute the inelastic relaxation rate
the conducting electrons in the saddle-point network. Th
then, might conceivably be the explanation for the empiri
fits of the transport data taken recently from presently av
able samples.13

As the second typical example of long-ranged disor
effects, we embark on the problem of electron tunneling i
the quantum Hall edge. We show that the Coulomb inter
tions between the edge and the ‘‘localized’’ bulk orbits dr
matically differ from the predictions of theories which a
based on isolated edges alone. Tunneling processes int
quantum Hall edge have, in fact, nothing to do with t
quantization of the Hall conductance or the ‘‘incompressib
ity’’ statement which describe the nonequilibrium properti
of the electron gas. We find that the tunneling density
states near the edge can be understood in terms of an e
tive edge theory which describes the equilibrium propert
of the combined edge and bulk degrees of freedom. T
Luttinger-liquid parameterg is related to the filling fractionn
of the bulk Landau level. This leads to a tunneling expon
which varies like 1/n, in agreement with recent experiment
data on the tunneling current, taken from samples in the fr
tional quantum Hall regime.5 This situation is dramatically
different from what is expected while assuming an isola
edge, or in the case of short-ranged disorder which gives
to scattering between different edge states.3

In this paper and one that follows,14 we carefully re-
examine the consequences of interchannel edge scatte
We reproduce the completely differen
Kane-Fisher-Polchinsky3 scenario of tunneling exponents i
the integral and fractional regimes from our strong-coupl
edge theory. However, we argue that both the assumpt
~an isolated edge and short-ranged disorder or intercha
scattering! are clearly incorrect since the problem is two d
mensional and dominated by long-ranged potential fluct
tions as well as interaction effects.
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FIG. 1. Sketch of the mean
field conductances for a short
range disorder potential. The inse
is the strong-field limit or quan-
tum Hall regime. The renormal-
ization group flow lines indicate
how the mean-field theory result
change after successive leng
scale transformations~after Refs.
8, 11, and 15!.
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The organization of this paper is as follows. In Sec. II w
introduce the problem in the language of the replica fr
electron theory. We briefly recall the instanton vacuum
proach in Sec. II A 1.8 The connection between topology an
interchannel scattering between the chiral edge mode
made in Sec. II A 2. This leads to an exact solution of
instanton vacuum at the edge which can now be shown t
critical ~Sec. II A 3!.

In Sec. II B we introduce a two-dimensional network
chiral edge states as a model for the problem of long-ran
potential fluctuations. This is then used for mean-field p
poses and for demonstrating universality of the plateau t
sitions in Sec. II B 1. In Sec. II B 2 we extend the netwo
approach to include interaction effects. A semiclassi
theory of transport is introduced in order to explain the la
of scaling recently found in many~ordinary! quantum Hall
devices at finite temperatures. Section II B 3 contains sev
general remarks. In Sec. III we present a detailed deriva
of the complete chiral edge theory using the fermionic p
integral. In Section IV we make the fundamental connect
between theinstanton vacuumon the one hand, and th
Chern-Simons gauge theoryand chiral edge bosonson the
other. In Sec. V we apply the theory of chiral edge boson
several problems of long-range disorder and interaction
the bulk of the sample. These include the density of states
tunneling into the quantum Hall edge as well as the rel
ation times entering into the transport problem of Sec. II
We end this paper with a summary in Sec. VI.

II. EDGE EXCITATIONS

A. Sigma model

Let us recall the instanton vacuum theory8,11 for the inte-
gral quantum Hall effect which is expressed in terms of
local-field variablesQpp8

ab , wherea,b51,...,Nr are the rep-
lica indices andp,p8561 are the indices denoting ad
vanced or retarded waves. They can be represented as

Q5T21LT with Lpp8
ab

5dabdpp8 sgn~p! ~2.1!

and T a unitary matrix of size 2Nr32Nr . The complete
action is given by
-
-
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S@Q#52
1

8
sxx

0 E d2x tr~¹Q!2

1
1

8
sxy

0 E d2x tr « i j Q] iQ] jQ1pr0vE d2x tr LQ.

~2.2!

Here s i j
0 stands for the mean field conductances in units

e2/h ~see Fig. 1!, r0 is the ~exact! density of states at the
Fermi energy andv is the frequency. The second term in E
~2.2!, proportional to the mean-field Hall conductance (sxy

0 ),
has remained one of the most difficult chapters in the the
of Anderson localization in low dimensions. Most of the i
sight into the theory withNr50 number of field component
has come from weak coupling renormalization theory~both
perturbative and non-perturbative, i.e., instantons!.8 In par-
ticular we mention the global scaling diagram of the cond
tances as well as the appearance of a critical fixed poin
the strong-coupling regime.11 This fixed-point theory pre-
dicts a massless~metallic! phase at the Landau band cent
as well as the following scaling result for the conductance15

s i j ~L,B!5gi j ~@L/j#1/n!; j5uB2B* u2n ~2.3!

which cannot be obtained in any different way. Here t
function gi j (X) is a regular function of its argument,B* is
the critical magnetic-field strength, andn stands for the criti-
cal index for the localization lengthj. Following the experi-
mental tests of Eq.~2.3! by Wei et al.,16 extensive numerica
work on the free-electron gas has been performed, and
quoted best value for the critical index isn52.3.17

To date, no exact~conformal! scheme for the critical in-
dices exists. All that one can say at this time is that the fi
of exactly solvable models is not sufficiently developed to
able to handle the specific subtleties of topology and rep
field theory. These subtleties are all well understood wit
the elaborate framework of weak coupling expans
techniques,8 and the results were used to unfold and pred
the entire singularity structure of the theory, notably E
~2.3!.

In previous work18 we have shown that the theories
free and interacting electrons share the same basic fea
such as asymptotic freedom, instantons, etc. The same
ing diagram for the conductances was obtained, which me
that Eq.~2.3! also remains valid when the Coulomb intera
tions are taken into account. This important result was c
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jectured but otherwise not understood at the time of
original experiments on criticality.

1. Strong coupling

In this paper we address the subtleties of the instan
vacuum theory in an extremely important exactly solva
limit where r05sxx

0 50 and where the Hall conductance
integer quantized (sxy5m). Physically this happens whe
the Fermi energy is located in a density of states gap betw
adjacent Landau bands. In thisstrong-couplinglimit mass-
less excitations do exist at the edges of the system. S
several basic aspects of the problem have previously g
unnoticed, we shall proceed first within the free-electron f
malism of Eqs.~2.1! and ~2.2!. We come back to the fermi
onic path integral in Secs. III and IV.

For m completely filled Landau levels the action becom
simply

S@Q#5
m

8 E d2x tr « i j Q] iQ] jQ5
m

2 R dxW • tr~LT¹T21!,

~2.4!

where the surface integral is taken over the sample’s e
Recall that Eq.~2.4! is quantized according to

S@Q#52p imq@Q#, ~2.5!

with q the integer topological charge, provided that theT
matrix reduces to a U(Nr)3U(Nr) gauge at the edge.11

Under these circumstances the sample edge has been
tracted to a single point~spherical boundary conditions! and
Eq. ~2.5! is a realization of the formal homotopy theory r
sult p2(G/H)5Z which states that the mapping ofQ onto
the two dimensional~2D! plane is described by a set of in
tegersq. It is natural to take the theory one step further a
propose the quantization of the chargeq@Q# as the topologi-
cal principle in replica field theory which forces the Ha
conductance (m) itself to be integer quantized. The idea h
led to a consistent quantum theory of conductances that
fies a fundamental aspect of asymptotically free-field the
~i.e., dynamic mass generation! with the quantum Hall
effect.8 More specifically, it says that the conductances
Eq. ~2.3! always scale towardsxx50, sxy5m for L large
enough.

One can show11 that the U(Nr)3U(Nr) gauge condition
at the edge is the replica field theory version of a static U
gauge acting on the physical edge states. Such a U(1) g
implies that an integer number of edge levels has crossed
Fermi level. This level crossing is necessarily induced by
averaging procedure over random potentials.

Nevertheless, it is somewhat disappointing to know t
the topological invariant in Eq.~2.2!, as it was discovered
originally in a microscopic derivation, is truly defined wit
free boundary conditions and without any separation
tween edge and bulk degrees of freedom.8 So far, the precise
significance of boundary conditions has remained obscu

2. Interchannel edge scattering

In what follows, we show that the fluctuations about p
cisely quantized values for the topological charge repres
in fact, essential physics of the problem, since they desc
e

n
e

en

ce
ne
-

s

e.

on-

d

i-
y

)
ge
he
e

t

-

.

-
t,
e

the dynamics of~massless! edge excitations. In order to se
this, we writeT as the product of a U(Nr)3U(Nr) gaugeU,
and a small fluctuationt:

T5Ut. ~2.6!

The action now becomes

S@Q#52p imq@U#1
m

2 R dxW • tr~Lt¹t21!

1predgev R dx tr LQ, ~2.7!

with redgethe density of edge states. One way of identifyi
Eq. ~2.7! as the effective theory of disordered chiral ed
states is to redo the derivation, but now for the 1D syst
with Hamiltonian

Hedge52 ivd]x1V~x!, ~2.8!

wherevd is the drift velocity of the edge electrons andV(x)
the random potential. It turns out that our initial guess~2.8!
is correct only in the casem51 in Eq.~2.7!. This problem is
easily resolved once one realizes thatm really stands for the
number of filled Landau levels, such that Eq.~2.8! should be
replaced by a Hamiltonian for a total ofm edge channels
Hence, an obvious second guess would be

Hedge5(
j 51

m

Hedge
( j ) , ~2.9!

whereHedge
( j ) is the same for allj , i.e., each of them eigen-

states experiences the same white noise potentialV(x), just
as it appears in the original problem in two spatial dime
sions. This, however, is not correct and the theory with g
eral m, @Eq. ~2.7!#, necessarily requires interchannel scatt
ing to take place. We have to start from a matr
Hamiltonian

Hedge
j j 8 52 ivdd j j 8]x1Vj j 8~x!, ~2.10!

where V is a Hermitian matrix. The matrix elementsVj j 8
connect the edge channelsj and j 8 and are distributed with a
weight

P@V#} expH 2
1

g R dx tr V2J . ~2.11!

One can construct a generating function for the free part
Green’s functions as usual, according to

Z5E D@c̄c#E D@V#P@V#exp (
p56,a, j j 8

R dx c̄p
a, j

3@~m1 ipv!d j j 82Hedge
j j 8 #cp

a, j 8. ~2.12!

In Appendix C we show that Eqs.~2.12! and ~2.7! are iden-
tical in the limit of large distances.

3. Criticality at the edge

We next point out that the results of the previous sect
provide an exact solution to our topological theory at t
edge@Eqs.~2.4!–~2.7!# for all values ofNr . The simple but
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important observation to be made is that the random po
tial Vj j 8(x) in Eq. ~2.12! can be ‘‘gauged away,’’ i.e. ab
sorbed in a redefinition of the fermion fields, and all th
remains is the trivial theory of ‘‘pure’’ chiral edge states,

Z5E D@c̄c#exp (
p56,a, j

R dx c̄p
a, j@2 ivd]x1 ivp#cp

a, j .

~2.13!

Equation ~2.13! is just a formal way of saying that edg
electrons do not Anderson localize, because chirality
cludes backscattering processes on random impurities.
lowing up on the analysis of Appendix C we will use th
simplicity of Eq. ~2.13! and derive explicit results for theQ
field ~2.7!. Write

G6
j j 8~x,x8!5^x, j u~2Hedge6 iv!21ux8, j 8&, ~2.14!

G6~x,x8!5^xu~ ivd]x6 iv!21ux8& ~2.15!

to represent the single-particle propagator of the dirty e
@Eq. ~2.12!# and clean edge@Eq. ~2.13!#, respectively. Some
useful identities are given by

redge5
1

2p i (j
@G2

j j ~x,x!2G1
j j ~x,x!#

5
m

2p i
@G2~x,x!2G1~x,x!#. ~2.16!

Here redge denotes the density of edge states at the Fe
level which can be obtained explicitly from the right-han
side,

redge~x!5redge5m/2pvd . ~2.17!

Equation~2.17! shows that the density of edge electrons i
constant, independent ofx and disorder, as it should be. A
important conclusion now follows for the theory ofQ fields
@Eq. ~2.7!#, namely,

^Q&5L ~2.18!

@where the expectation is with respect to Eq.~2.7!#, which
holds for arbitraryNr . This result may be obtained e.g., b
differentiating both theories@Eq. ~2.7! and Eqs. ~2.12!,
~2.13!# with respect tov. Notice that Eq.~2.18! can be re-
garded as the ‘‘order parameter’’~analogous to the magnet
zation in the language of the Heisenberg ferromagnet!, and
one would naively expect this quantity to vanish in one s
tial dimension. The result̂Q&5L indicates, however, tha
the continuous symmetry is permanently broken at the e
of the instanton vacuum for all numbers of field compone
Nr . This apparent violation of the Mermin-Wagner-Colem
theorem is clearly due to the lack of positive definite Bol
mann weights in our problem that is described by an ima
nary action@Eq. ~2.7!#. Equation~2.18! also indicates that the
edge of the topological vacuum is critical. The simplest w
of demonstrating this is by employing the background fi
method. For example, the replacementt→tt0 in the second
term of Eq.~2.7! can be written as
n-

t

-
ol-

e

i

a

-

e
s

-
i-

y

R dx tr@Lt]xt
21#→ R dx tr@Ltt0]x~ t0

21t21!#

5 R dx tr@Lt]xt
21#

1 R dx tr@Qt0]xt0
21#. ~2.19!

Here, t0 represents a fixed and slowly varying backgrou
field. We obtain an effective action fort0 as follows:

Seff@ t0#5
m

2 R dx tr@ t0]xt0
21^Q&#

5
m8

2 R dx tr@Lt0]xt0
21#. ~2.20!

Equation ~2.20! defines an ‘‘effective’’ parameterm8
5m tr L^Q&/2Nr which can be identified as the ‘‘Hall con
ductance’’ and which provides information on the renorm
ization of the theory at large distances.19 Apparently we have
m85m. The same conclusion can be drawn for thev param-
eter ~i.e., v85v tr L^Q&/2Nr5v), and hence we are dea
ing with a critical fixed point theory. The full significance o
this result will become clear in the forthcoming section
where we make contact with the theory of chiral ed
bosons.

For the remainder of this section we will elaborate
several other identities and relations that will be used la
on. The most important pair correlation of theQ fields can
be obtained as follows:

N~x,x8!5p2redge
2 ^Q12

ab ~x!Q21
ba ~x8!&

5(
j j 8

G2
j j 8~x,x8!G1

j 8 j~x8,x!

5mG2~x,x8!G1~x8,x!. ~2.21!

Herea andb are fixed but arbitrary replica channels, and

G2~x,x8!G1~x8,x!5
i

vd
E dk

2p

eik(x82x)

vdk12iv

5
1

vd
2 u~x82x!

3expF2
2v

vd
~x82x!G . ~2.22!

The step functionu shows that a chiral electron, being cr
ated at positionx and drifting in the positive direction, can
only be destroyed at a ‘‘later’’ positionx8.x. Notice that
we have the standard sum rule

E dx8N~x,x8!5predge/v. ~2.23!

The other pair correlations of theQ-fields vanish identically.
In particular, it is straightforward to show that

^Qpp
ab~x!Qp8p8

gd
~x8!&cum50 ~2.24!
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for all p,p856 and all replica channelsa,b,g, andd. Next
we wish to clarify the significance of severalQ-field opera-
tors that have appeared in different contexts before. F
there are the higher order corrections to the theory of
~2.7! of the type~see Appendix C!

trF m

2
]x1pvredgeL,QG2

. ~2.25!

Second, we mention the bilinear combinations of the form

A1 tr LQ tr LQ1A2 tr @L,Q#@L,Q#, ~2.26!

which are known to describe the anomalous fluctuations
the density at the quantum Hall transitions, as well as in
localization problem in 21« dimensions.20 We have already
seen, however, that the density of chiral electrons does
fluctuate as one moves along the edge and we therefore
pect Eq.~2.26! to be irrelevant. A classification of these o
erators follows from the classical equations of motion of
topological action~2.7!, which can be written as

F m

2
]x1pvredgeL,QG50. ~2.27!

This immediately implies that the higher-dimensional ope
tors @Eq. ~2.25!# are, in fact,redundant. Next, from the iden-
tity

Ex

dx8 tr LQ~x8!trF m

2
]x81pvredgeL,Q~x8!GL50,

~2.28!

it directly follows that the first term in Eq.~2.26! is redun-
dant as well. Finally, from Eq.~2.27! one also obtains

Ex

dx8 tr@L,Q~x8!#F m

2
]x81pvredgeL,@L,Q~x8!#G50,

~2.29!

and it is readily seen that the second operator in Eq.~2.26! is
also redundant.

B. Plateau transitions revisited

1. Long-range potential fluctuations

In this section we show how the notion of critical ed
states can be used in order to gain insight into the problem
‘‘long-ranged potential fluctuations.’’ This long-standin
problem, which is very difficult to handle within the forma
nonlinears-model methodology, plays an extremely impo
tant role experimentally. For instance, it has been stres
many times and at many places elsewhere that the pla
transitions as observed in the detailed experiments of
et al.16 are very difficult to observe in general in arbitra
samples, due to the presence of slowly varying poten
fluctuations.

A slowly varying potential is the generic type of disord
in the standard GaAs heterostructure, which has historic
led to semiclassical considerations~percolation picture! of
delocalization near the Landau band center.21 It is important
to recognize that also our critical system@Eq. ~2.3!# is very
sensitive to the presence of smooth potentials~or ‘‘inhomo-
geneities’’! in the sample. For example, the critical magne
t,
q.

in
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ot
ex-

e

-

of

ed
au
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ly

field B* may be slowly varying throughout the system due
inhomogeneities in the electron density. This means that
scaling result is valid only up to a certain fixed value forL.
Beyond this value the remaining ‘‘extended’’ states in t
problem may be confined to the equipotential contours of
inhomogeneity potential, quite similar to the semiclassi
picture of percolation.

It is generally difficult to obtain detailed knowledge o
the various length and energy scales that are involved in
crossover problem between percolation and localization
what follows, we present the simplest possible scenario
crossover that enables us to deal simultaneously with in
action effects and such basic concepts as ‘‘mean-fi
theory’’ and ‘‘universality’’ of the plateau transition.

2. Quantum percolation

In order to fix the thought, we imagine the equipotent
contours near half filling to form a large cluster~Fig. 2!.22

Since the disconnected, closed contours do not contribut
the transport, we focus our attention to an infinite backbo
cluster which we take as a regular 2D array of saddle poi
and we disregard all the loose hanging, finite pieces@Fig.
2~b!#. The saddle points~the sites of the square lattice! are
connected to one another by the disordered 1D chiral e
channels~links on the lattice!. This network can alternatively
be looked upon as a checkerboard with filling fractions alt
nating between the valuesn50 andn51. The kinetic part of
the action for this system may be written in the form of E
~2.4!,

S@Q#5
1

8 E d2x m~xW !tr « i j Q] iQ] jQ, ~2.30!

with m(xW )50,1 @Fig. 2~b!#. Using the parametrization of Eq
~2.6! the action can also be written in the form of Eq.~2.7!
which is now solely defined on the links of the square latti

S@Q#52p iq@U#1
1

2 (
i

R
i
dx tr~Lt]xt

21!

1pvr link(
i

R
i
dx tr LQ. ~2.31!

Here the sum is over all the black squares, and the integ
are over the contours of the black squares. Despite the
that this action does not contain any dissipative (sxx) terms,

FIG. 2. Backbone cluster as a network of saddle points. Sha
areas haven51, white areasn50. The arrows indicate the direc
tion of the currents.~a! Less than half-filling.~b! Exactly half-
filling. ~c! A filling fraction larger than one-half.
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it is easy enough to show that in the long-wavelength lim
Eq. ~2.30! reduces to the form of the sigma model acti
~2.2!, with

sxx
0 51/2, sxy

0 51/2. ~2.32!

The reason for this is contained in the fact that the sad
points act like scattering centers which render the sys
dissipative at large distances. In order to demonstrate this
one needs to do is to follow up on Eq.~2.20!, where the
background fieldt0 now represents the ‘‘slow modes’’ tha
are kept. Thet field variables are the ‘‘fast modes’’ whic
contain all the wavelengths smaller than the lattice const
i.e., the average distance between the saddle points,
which are integrated out. This leads to an effective action
each link according to

Slink@ t0#5
1

2 Elink
dx tr~^Q&t0]xt0

21!

1
1

8 K F E
link

dx tr~Qt0]xt0
21!G2L

cum

5
1

2 Elink
dx tr~Lt0]xt0

21!2
sxx

0

8 E
link

dx tr~]xQ0!2,

~2.33!

whereQ05t0
21Lt0 and the expectation is with respect to t

theory@Eq. ~2.7!# with m51. The subscript ‘‘cum’’ indicates
that only connected diagrams are taken. Thesxx

0 5L0/2 is the
1D conductivity of a single channel of lengthL0 , a well-
known result in the theory of pure metals. These results
obtained by making use of Eq.~2.18! as well as Eqs.~2.21!–
t

ed
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nt
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~2.24! in the limit v50. Next, by taking the sum over a
links one can absorb the factorL0 into the definition of a 2D
integral,

2
1

16(
links

L0E
link

dx tr~]xQ0!2→2
1

16E d2x tr~¹Q0!2.

~2.34!

Here we only used the fact that theQ0 field variable varies
slowly over a distanceL0 . The first term in Eq.~2.33! can be
handled in a similar way. For instance, it can be rewritten
the form of Eq.~2.30! with Q replaced byQ0 , which is then
followed by taking the continuum limit according to

FIG. 3. Backbone cluster as in Fig. 2~b!, but with highly rami-
fied contours between saddle points~d!.
1

2 (
links

E
link

dx tr~Lt0]xt0
21!→ 1

8 E d2x m~xW !« i j tr Q0] iQ0] jQ0

→ 1

16E d2 x« i j tr Q0] iQ0] jQ0. ~2.35!
at
ted
ints
rily
i-

ult
in

au
The result of Eqs.~2.33!–~2.35! is identical to the statemen
made in Eq.~2.32!. Notice that Eq.~2.32! is precisely the
point where we expect thes model action~2.2! in the limit
Nr50 to have a critical phase. Hence, we have establish
direct connection between critical 1D edge states on the
hand and the 2D delocalization transition of the band ce
on the other. It is important to stress that this connection
the following ingredients.

~1! The infinite percolation cluster at the band center c
tains a finite density of saddle points. This translates i
a finite density of scattering centers which, in turn,
responsible for making the sample diffusive~dissipative!
at large distances.

~2! The parameterssxx
0 and sxy

0 @Eq. ~2.32!# constitute a
mean-field theory of the conductances which is valid
a
ne
er
s

-
o

r

length scalesL0 . This holds for any value ofNr and not
just for Nr50.

Without going into further detail we mention the fact th
the analysis can easily be generalized to more complica
situations. For example, the links between the saddle po
need not be straight lines. They can be taken as arbitra
complex, non-intersecting paths reflecting the highly ram
fied percolation contours~Fig. 3!. The same result@Eq.
~2.32!# applies to all cases, indicating that the general res
sxx

0 51/2 actually stands for the quantized conductance
one dimension.

3. Mean-field theory

Next we wish to extend our mean-field analysis@Eq.
~2.32!# to include also the energies away from the Land
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band center. For this purpose we have to relate the rang
energyW0 within which the equipotential contours form a
infinite saddle-point cluster to the total bandwidthW of the
Landau band. It is understood that the phrase ‘‘saddle po
actually stands for those special points where two equipo
tial contours approach each other at a distance of the ord
the magnetic lengthl 0 or smaller. By assuming a simpl
quadratic form for the potential near saddle points, we ob
the estimate

W0'~ l 0 /l!2W, ~2.36!

wherel is the characteristic correlation length of the rando
potential, which we have taken to be much larger thanl 0 ,
andW equals the amplitude of the potential fluctuations. T
s-model theory or, equivalently, the scaling theory of loc
ization, only applies to the~narrow! energy bandW0 about
the band center. For energies just outsideW0 the network of
saddle points is broken up into disconnected islands of
L03L0 @Figs. 2~a! and 2~c!#. The absence of any quantu
tunneling means that no correlation exists between the
lands~they are represented by independent actions as lon
one works within the free-electron approach!. In the lan-
guage of thes model, the situation is represented by putti
sxx50 but sxy5m5 integer. The latter follows from the
long-ranged correlations which still exist near the edge
which can generally be expressed in terms of an integer n
ber m of edge channels. In Fig. 4~a! we illustrate the behav
ior of the density of statesr and the conductancess i j

0 as a
function of energym at zero temperature.

The s-model conductance parameterss i j
0 can be ex-

pressed as a function of the dimensionless quantityDm/W0 ,

s i j
0 5 f i j ~Dm/W0!, ~2.37!

whereDm is the energy relative to the Landau band cen
The f i j ’s are nonuniversal and generally depend on the
croscopic details of the randomness. For comparison
have plotted the results of the more familiar theory of sho
ranged scatterers~self-consistent Born approximation! in

FIG. 4. Mean-field theory for the lowest Landau level, wi
varying chemical potentialm. ~a! Smooth long-range disorder.~b!
Short-range disorder~see text!.
in
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Fig. 4~b!. In this case, there is only a small difference b
tweenW0 andW due to the localized states in the Gauss
tails of the Landau band.

An estimate forL0 can be obtained as follows. LetuDmu
'W0 denote the energies where the saddle point breaks
into disconnected equipotential contours of sizeL03L0
@Figs. 2~a! and 2~c!#. According to the semiclassical pictur
of percolation we can relate the typical cluster sizejp to the
energyDm according to

jp;l~Dm/W!24/3, ~2.38!

where the critical index 4/3 is the exponent for semiclass
localization. By identifying the pointsuDmu5W0 and jp
5L0 in Eq. ~2.38! we obtain the estimate

L0' l 0~l/ l 0!11/3 ~l@ l 0!, ~2.39!

or, more generally,

Wn'
l n

l
W, Ln' l n~l/ l n!11/3 ~l@ l n!. ~2.40!

The l is an adjustable parameter in the theory, and it ran
between microscopic distances (l 0'100 Å) and infinity.

4. Interaction effects

It is quite possible thatL0 @Eq. ~2.39!# is many times
larger than the micron regime which is the typical scale
inelastic processes at low temperatures. This means tha
critical behavior@Eq. ~2.3!# cannot be observed within th
limitations of ordinary laboratory experiments. This, then,
the easiest and crudest explanation for the lack of scalin
many samples. As a first step toward a more quantita
understanding of transport at finiteT, we come back to the
distinction, made in the beginning, between the backb
cluster and the disconnected, ‘‘loose hanging’’ pieces. D
to the electron-electron interactions, motion of the condu
ing electrons on the saddle-point network is affected by
localized electrons. This may be expressed in terms o
relaxation timet in which is a characteristic time for equili
bration between the conducting and localized electro
Later on in this paper~Sec. V D! we shall address the prob
lem of interaction effects and show that

1/t in5b1T1b2T21¯ ~2.41!

at low temperatures. This expression is determined by
collection of ‘‘nearly saddle points’’ where quantum tunne
ing is not possible but where the interactions between
conducting and localized particles are strongest neverthe
The importance of ‘‘nearly saddlepoints’’ can be seen
comparing the wave functions at different energies close
the Landau band center. What is a saddle-point configura
at one energy may turn into a ‘‘nearly saddle point’’ at a
other, and vice versa. These abrupt changes in the con
ration of the conducting network at slightly different ene
gies blur the distinction between saddlepoints and ‘‘nea
saddle point’’ configurations as far as finite temperatures
concerned. This means that the relaxation timet in @Eq.
~2.41!# determines an effective bandwidthWeff5W01tin

21 of
states that contribute to the conduction at finite temperatu
Equation~2.37! is replaced by the expression
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s i j
0 ~T!5 f i j ~Dm/Weff!5 f i j ~Dm/@W01t in

21# !.
~2.42!

This result is a characteristic feature of long-ranged poten
fluctuations, and it does not occur in the problem of sho
ranged scatterers. To conclude this section, we shall
estimate the range of validity of result~2.42!. Write

vdt in5L in , vd'2p l 0
2W/l. ~2.43!

L in is the mean free path for drifting along the links of th
lattice. We mentioned earlier that the actual path betw
two saddle points is arbitrarily convoluted and very long. L
Lt denote the actual path length between saddle points;
the criterion for scaling is clearly given by

L in.Lt . ~2.44!

Next we use the ramification hypothesis10 in order to relate
Lt to the shortest distance between saddle points (L0). We
obtain

Lt}L0
s , ~2.45!

with s somewhere between 1 and 2. The criterion for scal
@Eq. ~2.44!# now implies

t in
21,~ l 0 /l!8s/3W0!W0 . ~2.46!

This result indicates that Eq.~2.42! is very likely to be ob-
served in the~many! samples that are characterized by
smooth disorder potential. The results of this section are c
sistent with the recently reported empirical fitting13 of the
transport data in the quantum Hall regime. Since we are n
essarily operating with an almost complete lack of know
edge on the microscopic details of sample disorder, it is c
ceivable that other types of inhomogeneity, especially th
in low-mobility samples, explain the same thing.

5. Modified s-model representation

The subjects of critical edge states as well as long-ran
disorder have left several conceptual questions that still n
to be answered. For example, we have seen that short-ra
disorder causes interchannel scattering between the c
edge states. Since we do not expect interchannel scatteri
occur when the potential fluctuations are smooth~relative to
the magnetic length!, it is necessary to reinvestigate th
meaning of instanton vacuum theory@Eq. ~2.2!# for n
.1 (sxy

0 .1). Scattering between multiple edge states
avoided by writing, instead of Eq.~2.2!,

Seff@Q(n)#5 (
n50

` F2
1

8
sxx

(n)E d2x tr@¹Q(n)#2

1
1

8
sxy

(n)E d2x tr « i j Q
(n)] iQ

(n)] jQ
(n)

1pr (n)vE d2x tr LQ(n)G , ~2.47!

where the sum runs over all the Landau levelsn. The Q(n)

stands for an independent-field variableQ for each Landau
al
t-
xt

n
t
en

g

n-
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e
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ed
ed
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s

level separately. Thes i j
(n)’s are thenth Landau-level contri-

butions to the mean-field conductances, which are now gi
by

s i j 5 (
n50

`

s i j
(n) . ~2.48!

The s i j
(n)’s are all the same@Fig. 4~a!# except for an appro-

priate shift in energy. Since 0<sxy
(n)<1 for eachn, it is clear

that Eq.~2.47! is the appropriate generalization of the theo
~Sec. II A! to include filling fractions larger than one. Th
theories of Eqs.~2.47! and ~2.2! are identical as far as th
critical behavior of the plateau transitions is concern
Equation ~2.47! cannot, however, be used in the limit o
small magnetic field, where the Landau levels partly or co
pletely overlap. The details of crossover require a sepa
analysis.

6. Topological principle

In Refs. 11 and 23 atopological principlefor Hall quan-
tization was introduced. The basic idea is to relate the c
cept of dynamic mass generation in asymptotically free fi
theories to the quantization of the Hall conductance, whic
now recognized as a universal quantum phenomenon at m
roscopic length scales. The formulation presented in Refs
and 23 is actually incomplete because the subtleties of e
effects were not sufficiently understood at that time. In ord
to see whether the instanton vacuum approach is, in fact,
of ambiguities, we shall follow up on the background fie
method which is known to generate the Kubo formulas
the conductances. Write

expSeff@ t0#5E D@Q#exp~S0@ t0
21Qt0#1pr0v Tr LQ!,

~2.49!

where

S0@Q#52
1

8
sxx

0 Tr~¹Q!21
1

8
sxy

0 Tr « i j Q] iQ] jQ.

~2.50!

Equation~2.49! defines an effective actionSeff for the fixed
and slowly varying matrix fieldt0 . One can show thatSeff is
of the same form asS0 , i.e.,

Seff@ t0#52
1

8
sxx Tr~¹Q0!21

1

8
sxy Tr « i j Q0] iQ0] jQ0 ,

~2.51!

with Q05t0
21Lt0 . Equation~2.51! is actually the only pos-

sible action that respects the global U(2Nr) symmetry as
well as the local U(Nr)3U(Nr) gauge invariance of the
problem. The main problem next is to obtain explicit know
edge of the ‘‘effective’’ parameterss i j in ~Eq. 2.51! which
now represent the~exact! Kubo expressions for the conduc
tances. As long as one works with spherical boundary c
ditions on the matrix fieldQ ~which have been assumed fro
the start!, the quantization of the Hall conductance is read
established. All that one needs in fact is that the theory
velops a mass gap in the limit of large distances. The ins
tion of slowly varying background fields~with Q5L at the
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edge! should then leave the theory unchanged in the li
v→0. This, then, directly leads to the statement thatsxx
50 andsxy5 integer.

The renormalization-group flows, obtained from instant
calculations, can next be used to show how the condition
the quantum Hall effect appear as stable, infrared fix
points of the theory for arbitrary number of field compone
Nr . Although spherical boundary conditions are natura
imposed on the weak-coupling problem due to the finite
tion requirement of topological excitations, they are, ho
ever, controversial in the strong-coupling regime.

Armed with the insight gained from edge excitations
the previous sections, we next apply the background fi
procedure to the theory, but now with free-boundary con
tions onQ, as it should be. For the special case where
Fermi energy lies in a density of states gap, Eq.~2.49! has
already been addressed in Sec. B 2.Seff for arbitrary Nr is
given by

Seff@ t0#52p imq@Q0#2
m2

32pvredge
R dx tr~]xQ0!2,

~2.52!

where q@Q0#5 1/16p i Tr « i j Q0] iQ0] jQ0 , and the contour
integral is along the sample edge. Comparing Eqs.~2.52! and
~2.51!, we see that the quantum Hall conditions are satisfi
but there are additional edge terms which are clearly
result of the chiral edge modes in the problem. Equat
~2.52!, in the limit v→0, forces the background field to obe
the classical equations of motion~defined along the sampl
edge!

]xQ050. ~2.53!

The solutionQ05constant at the edge simply means th
spherical boundary conditions are automatically enforced
the chiral edge excitations. Notice that the effect ofSeff re-
duces to that of a phase factor which is immaterial provid
the Hall conductancem precisely equals an integer. Phys
cally, this phase factor arises from an integer number of e
electrons that have crossed the Fermi level as a result o
background field insertion.11

The same procedure can be repeated for the theory
sxx

0 Þ0, making use of the fact that a mass gap exists in
system of long-wavelength excitations, i.e. a finite localiz
tion lengthj. One expects Eq.~2.52! to be modified accord-
ing to

Seff@ t0#52
sxx

8
Tr~¹Q0!212p isxyq@Q0#

2gmLv R dx tr~]xQ0!2, ~2.54!

where thes i j represent the ‘‘conductances’’

sxx5 f xx~vj2!'O~vj2!, sxy5 f xy~vj2!'m1O~v2j4!.
~2.55!

Here,gm5m/2 is the quantized 1D conductance of the chi
edge states, andLv5m/16pvredgeis the frequency-induced
length scale. In the limitv→0 theQ0 entering Eq.~2.54! is
forced to obey not only the classical equations of motion
the edge@Eq. ~2.53!#, but also those arising from the bul
it
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kinetic term in@Eq. ~2.54!#. The solutions are known asin-
stantons, and just as has happened before in the trivial
ample with a density of states gap in the bulk,Seff is imma-
terial as long assxx50 and sxy5 integer. Therefore, the
quantum Hall effect can be understood in terms of a conti
ous symmetry which is dynamically restored in the limit
large length scales.

In summary we can say that the ‘‘quantum Hall effect’’
a robust and general feature of the instanton vacuum the
for all values of Nr . Our theory of topological quantum
numbers is based on two general assumptions only, nam
the existence of a mass gap in the bulk as well as mass
excitations at the edge. Both are valid for thes model in two
dimensions for all~non-negative! values ofNr .

The results of this section can be used to demonstrate
a phase transition must occur whensxy

0 passes through half
integer values~or the instanton parameteru passes through
p!. The argument11 is based on the fact that the Hall condu
tancesxy must make an integer step whensxy

0 is approached
from the integer sides. These phase transitions separate
different instanton vacua which are now labeled by mac
scopic quantum numbers~i.e., sxy5 integer) and they are
distinct from each other by the number of massless mo
that exist near the edge of the system. Apart from the cl
contact with quantum Hall physics, the argument for a ph
separation between the different instanton vacua proce
along similar lines as ’t Hooft’s duality argument.23

Finally, we mention that the results of this paper ha
interesting consequences for the idea of having a first o
phase transition atu5p ~as found, e.g., in the largeN theory
of the CPN model24!. First-order instabilities provide an al
ternative physical scenario of Hall quantization, and will
discussed elsewhere.25

III. DERIVATION OF THE FULL EDGE THEORY

A. Preliminaries

From now on we turn to the fermionic path integral. Fo
lowing I, one can formulate a complete theory ofQ-matrix
fields that includes external potentials as well as interacti
by making use of such concepts as ‘‘smallness,’’F invari-
ance, andF algebra. We will proceed by summarizing th
main ingredients of the fermionic path integral approa
~Secs. III A and III B!. In Sec. III C we present the main step
of a derivation ofQ-field theory at the edge, assuming th
the Fermi energy lies in a Landau gap. The various mani
lations closely follow the effective action procedure for fr
electrons, and we refer to the original works of Refs. 8 a
11 for the missing details.

1. Notation

Let us start by writing down theQ-field theory for disor-
dered electrons in 211 dimensions in the presence of Co
lomb interactions and external potentials, derived in I:26

S@A,Q̃,l#52
1

2g
Tr Q̃21Tr ln@ iv1 iÂ01 i l̂1m2Ĥ1 iQ̃#

2
1

2
bE d2x d2 x8l†~x!U0

21~x2x8!l~x8!.

~3.1!
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The symbols appearing in this action have the followi
meaning:Q̃(xW ) is an infinite-dimensional matrix field with
two replica indices and two Matsubara frequency indices.~In
the derivation of the above action, it arises as a quadr
expression in the original electron fieldc ; The saddle point
is given by Q̃nm

ab}cn
ac̄m

b .) Upper Greek indices denote
replica channel, running from 1 toNr , while lower Latin
indices stand for Matsubara frequencies, running from2`

to `. The matrix fieldQ̃ can be split into ‘‘transverse’’ and
‘‘longitudinal’’ components:

Q̃5T21PT, P5P†, TPSU~2Ñ!. ~3.2!

Here P has only block-diagonal components in frequen
space~i.e., Pnm

abÞ0 only for vmvn.0), andT is a unitary

rotation. The size of theQ̃ matrix is given by 2Ñ, namely
the number of replicas times the size of Matsubara freque
space. The matrixv is unity in replica space, while in fre
quency space it is a diagonal containing the fermionic f
quencies,

vnm
ab5dabdnmvn , vn5

2p

b S n1
1

2 D , ~3.3!

with b the inverse temperature. Tr denotes a matrix trace
well as spatial integration. All spatial integrals are taken
the upper half-planey.0. The sample edge is given by th
line y50. TheU0

21(xW2xW8) is the matrix inverse of the Cou
lomb interactionU0(xW2xW8). Am is the external potential, an
l is the plasmon field. It is assumed that these fields do
have a static (n50) component. The ‘‘hat’’ notation appea
ing in Eq. ~3.1! is defined as

x̂5 (
a51

Nr

(
n52`

`

xn
a Ĩ n

a , ~3.4!

where Ĩ n
a is the unity matrix in theath replica channel,

shifted byn places in frequency space:

~ Ĩ n
a!kl

bg5dabdagdk2 l ,n . ~3.5!

H is the kinetic-energy~differential! operator,

H5
1

2me
~pQ 2AW !•~pW 2AW !, pW 5

1

i
¹2AW st,

pQ 52
1

i
¹Q 2AW st ~3.6!

whereAW st describes the static magnetic field according to¹

3AW st5Bst.

2. Flux-charge composites

In order to describe the fractional quantum Hall effe
one also needs to include astatistical or Chern-Simons
gauge fieldam in Eq. ~3.1! as follows:

S@A,Q̃,l#→S@A1a,Q̃,l#1
i

8pp E dt d2x «mnsam]nas ,

~3.7!
ic

cy

-

as

ot

,

with «mnk the antisymmetric tensor in 211 dimensions, and
2p an even integer denoting the number of elementary fl
quantah/e attached to every electron. Note that in this pr
cedure the zero-frequency components of all fields are to
treated at a mean-field level. This amounts to adding an e
contributionaW st to the static part of the external vector p
tential AW st, resulting in an effective magnetic fieldBeff5¹

3(AW st1aW st)5Bst12pneh/e, with ne the mean electron den
sity. Jain’s composite fermion mapping is then implemen
by integrating out the fieldam . In this paper, however, we
only consider the integer quantum Hall effect; we deal w
the fractional effect in a subsequent publication.

3. Landau gap

A theory for the edge is obtained by choosing the che
cal potentialm approximately halfway between Landau e
ergies, where the bulk density of states is virtually zero if t
disorder is not too strong. The saddle-point equation forQ̃ is
given by

Q̃sp}rT21LT ~3.8!

wherer is the density of states andL is the matrix appearing
in Eq. ~2.1!, but now with full frequency dependence:

Lkl
ab5dabF 1

0
0

21G
kl

. ~3.9!

Since we are interested in the limitr→0, we may replace the
full expression forQ̃ @Eq. ~3.2!# by a much simpler one:

Q̃→«T21LT, «!1. ~3.10!

From detailed earlier work11 we know that Eqs.~3.2! and
~3.10! give rise to identical results as long as the bulk dens
of statesr can be safely taken to zero. However, in order
deal with the complications of U~1! gauge invariance~Sec.
III B !, there is considerable advantage in working with t
simplified expression~3.10!, and we will refer to the details
of more elaborate analyses only when necessary.

B. Gauge invariance and truncation of frequency space

The electromagnetic U~1! gauge transformations in thi
theory are generated by theĨ matrices. Multiplication of
these matrices is very simple,

Ĩ n
a Ĩ m

b 5dab Ĩ n1m
a , ~3.11!

and they form an abelian algebra. Gauge transformations
given by

Am→Am1]mx, Q̃→ei x̂Q̃e2 i x̂ ~3.12!

with x0
a50. The gauge invariance of Eq.~3.1! is easily

checked by writing the transformed Tr ln in the for
Tr ln(e2ix̂@¯#eix̂), noting that

e2 i x̂vei x̂5v2]0x̂, ]0x̂52 i(
na

nnxn
a Ĩ n

a ~3.13!

and

e2 i x̂~pW 2AŴ 2¹x̂!ei x̂5pW 2AŴ . ~3.14!
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In order to facilitate the expansion of the Tr ln term in E
~3.1!, we make use of the freedom in choosingx ~3.12! as
follows. Introducing the notation

W̃5expS (
a

(
nÞ0

~A01l!n
a

nn
Ĩ n

aD , zWn
a5AW n

a2 i
¹~A01l!n

a

nn
,

~3.15!

with nn52pn/b, and the quantityR̃5W̃Q̃W̃21, then the Tr
ln can be written as

Tr lnF iv1m2
1

2me
~pQ 2zŴ !•~pW 2zŴ !1 iR̃G . ~3.16!

As was the case in I, we have to impose a cutoff on
size of Matsubara frequency space. Instead of being infin
all matrices are now of size 2Nmax8 32Nmax8 in frequency
space. The Matsubara indices are restricted to lie in the
terval(2Nmax8 , . . . ,Nmax8 21).

The truncated version of theĨ matrices is denoted byI n
a .

The hat notation is now defined with respect to the trunca
matricesI n

a . These no longer span an abelian algebra;
stead their commutators are given by

~ I n
aI m

b !kl
mn5~ Ĩ n

a Ĩ m
b !kl

mngl 1m ,

@ I n
a ,I m

b #kl
mn5dabmndk2 l ,m1n~gl 1m2gl 1n!, ~3.17!

where dabmn means that all replica indices have to be t
same, andgi is a step function equal to one ifi P
$2Nmax8 , . . . ,Nmax8 21%, and zero otherwise.

In order to handle the U~1! gauge invariance of the theor
a second cutoffNmax!Nmax8 is introduced for the matrix field
T. With the truncatedT we define the truncated equivalent
Q̃ ~see Fig. 5!,

Q5T21LT. ~3.18!

It was shown in Paper I that most of the problems cau
by the change from Eq.~3.11! to Eq. ~3.17! are avoided by
our introduction of the second cutoff. A remnant of the U~1!
symmetry is kept in this way: invariance of the action und
the truncated equivalent of Eq.~3.12!:

Am→Am1]mx, Q→ei x̂Qe2 i x̂. ~3.19!

We do not have a full symmetry of the theory, howev
since the integration measure of the truncated field varia
Q with finite Nmax is not invariant under Eq.~3.19!. Only in
the limit of Nmax→` is full symmetry obtained. It is always
understood implicitly that this limit is taken in the end.

FIG. 5. The truncated matricesT and Q; Also drawn is the
frequency band in which trI n

aQÞ0.
.

e
e,

n-

d
-

d

r

,
es

By introducing the second cutoffNmax we also restrict the
interval of the frequency indices onln

a and (Am)n
a to

nP@22Nmax11,2Nmax21# ~see Fig. 5!. This interval corre-
sponds to tr In

aQÞ0.
We now specify the truncated version of Eqs.~3.15! and

~3.16! as follows. Write

Am8 5Am1dm0l, W5expF(
na

I n
a~A08!n

a/nnG ,
R5WQW21, ~3.20!

then the action~3.1!, ~3.10! can be written as~up to a
constant!26

S@Q,l,A#52
1

2
bE d2x d2x8l†~xW !U0

21~xW2xW8!l~xW8!

1Tr lnF iv1m2
1

2me
~pQ 2zŴ !•~pW 2zŴ !1 i«RG ,

~3.21!

with zW defined according to

zWn
a5AW n

a2 i¹~A08!n
a/nn , ~3.22!

and withnn the bosonic frequency 2pn/b.

C. Expansion of the Tr ln

1. The quantity X

Let us look at the last term in Eq.~3.21!, X5Tr ln@iv
1m2Hz1 i«R#. Introducing the notation

Dv5TW21vWT21, DzW5TW21S 1

i
¹2zŴ DWT21,

~3.23!

~whereDzW is not a differential operator!, we can write

X5Tr lnF iD v1m1 i«L

2
1

2me
~pQ •pW 1pQ •DzW1DzW•pW 1DzW

2!G . ~3.24!

Expansion to first order inDv andDzW yields

X'Tr ln G0
211 i Tr G0Dv2

1

2me
Tr@G0pQ •DzW1G0DzW•pW #,

~3.25!

where G0 is the bare Green’s function@m2 (1/2me)pQ •pW
1 i«L#21. The Green’s function can be expressed in ter
of the eigenfunctionswn j of the bare HamiltonianH0
5(1/2me)pQ •pW ,

^xuG0ux&5(
n j

uwn j~x!u2

m2En j1 i«L
, ~3.26!
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K xU G0pQ 1pW G0

2me
UxL

5(
n j

wn j*
1

i
¹wn j2wn j

1

i
¹wn j* 22wn j* wn jAW

2me~m2En j1 i«L!
.

~3.27!

Using the general relationr(x)52 (1/p)Im G1(x,x) for the
density of states at the Fermi energym, we obtain

^xuG0ux&52 ipr~x!L1c~x!1,

K xU G0pQ 1pW G0

2me
UxL 52 ipW~x!L1cW~x!1, ~3.28!

where W(x) is the current density per energy at the Fer
energy.c andcW are real functions that disappear from the la
two traces in Eq.~3.25!. We can now writeX in the form

X'Tr ln G0
211pE d2x r~x!tr LDv

1 ipE d2x W~x!•tr LDzW

5Tr ln G0
211pE d2x r~x!tr vR

1 ipE d2x W~x!•trF 1

i
LW21T¹~T21W!2zŴRG .

~3.29!

Sincem lies in a gap, the density of states and the curr
density are nonzero only at the edge. This means that
surface integral becomes a line integral. Sincer and W are
constant on the edge, the resulting expression forX is

X'Tr ln G0
211predgeR dx trvR2 i

m

2 R dx tr ẑxR

1mStop@R#, ~3.30!

where we have used thatj edge5 m/2p with the plateau-
center filling fractionm5 (ne/B)(h/e) integer valued, and
Stop is the topological action

Stop@R#5
1

8
Tr « i j R] iR] jR. ~3.31!

2. The quantity X0

Equation~3.30!, however, is not yet the complete answe
This can be seen from a different expansion procedure w
can be followed in the special case whereT51 andW51. In
this case we have, instead of Eq.~3.24!,

X05Tr ln@ iv1m2Hz1 i«L#'Tr ln G21

2
1

2
TrF G~pQ •zŴ1zŴ•pW !

2me
G 2

2
1

2me
Tr zŴ2G, ~3.32!
i
t

t
he

.
h

Gnm5Gndnm5dnmF ivn1m2
1

2me
pQ •pW G21

.

This expression can be written as

X0'Tr ln G212
1

2 (
i j

(
na

E d2x d2x8~zi !n
a~x!~zj !2n

a ~x8!

3~P i j !n
a~x,x8!

2
1

2me
(

i
(
na

E d2x~zi !n
a~zi !2n

a tr G~x,x!. ~3.33!

The ‘‘polarization operator’’P i j is given by

~P i j !n
a~x,x8!5S 1

2me
D 2

tr@G~x,x8!~pQ i1pW i !

3I n
aG~x8,x!~pQ j1pW j !I 2n

a #

5S 1

2me
D 2

(
k

Gk1n~x,x8!~pQ i1pW i !

3Gk~x8,x!~pQ j1pW j !. ~3.34!

The frequency sum can be split in two parts:~i! k and k
1n have the same sign;~ii ! k andk1n have opposite signs
Case~ii ! has been done in great detail in the context of
self-consistant Born approximation. The conclusion is t
~ii ! does not contribute either tosxx or sxy when m is in a
density of states gap. Case~i! for iÞ j , using the relationpQ
1pW 52 i2me@G21,xW #, gives rise to the familiar ‘‘Streda’’
form for sxy . For i 5 j , the last two contributions in Eq
~3.33! sum up to zero. We arrive at the following expressio

X0'Tr ln G211
1

2
m(

na
E d2x nzWn

a3zW2n
a . ~3.35!

3. Matching X and X0

Now we have to find a match between the first-order res
~3.30! for TÞ1, WÞ1 and the second-order result~3.35! for
T51 andW51. This match can be written in two equivalen
ways.26

Tr ln G0
211predgeR dx tr vR

1mS 1

8
« i j Tr R@Di ,R#@D j ,R#2

i

2
Tr R¹3zŴ D

5Tr ln G0
211

m

2vd
R dx tr R~v2 ivdẑx!

1mStop@R#2
imb

4p E d2x zW†3]0zW, ~3.36!

with vd the electron drift velocity at the edge:

vd5m/~2predge!. ~3.37!

Notice that the l.h.s. of Eq.~3.36! represents the lowes
order terms in a formal series expansion of the Tr ln@Eq.
~3.21!# in powers ofv and the covariant derivativeD j5] j
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2iÃj. On the other hand, the r.h.s. clearly matches the res
denoted byX @Eq. ~3.30!# andX0 @Eq. ~3.35!#. It is important
to remark that the equality in Eq.~3.36! is a direct conse-
quence of the peculiar structure ofF algebra@Eq. ~3.37!#.

We next employF algebra in order to express the res
Eq. ~3.36! in terms of the matrix field variableQ rather than
R. The following relations can be derived26

tr vR5tr vQ1tr Â08Q2
b

2p
A08

†A08 ,

tr Rẑx5tr QÂx2tr Q]0
21~]xÂ08!2

b

p
Ax

†A08

1
b

p
A08

†]0
21~]xA08!,

~3.38!

Stop@R#5Stop@Q#2
i

2 R dx tr Q]0
21~]xÂ08!

1
ib

4p R dxA08
†]0

21~]xA08!,

bE d2x zW†3]0zW52bE d2x«mnk~Am8 !†~]nAk8 !

2b R dx@]0Ax2]xA08#†]0
21A08 .

Eqs. ~3.36!–~3.38! lead to the following final result for the
action @Eq. ~3.21!#.

S@Q,A,l#5Sc@l#1Sb@l,A#1SQ@Q,l,A#,

Sc52
1

2
bE d2x d2x8l†~x!U0

21~xW2xW8!l~x8!,

~3.39!

Sb5
imb

4p E d2x «mnk~Am8 !†~]nAk8 !2
mb

4pvd
R dx A08

†A28 ,

SQ5
m

2vd
R dx tr Q~v1Â28 !1mStop@Q#.

The first term is the Coulomb energy contribution from t
plasmon field;Sb is a ‘‘boson’’ action ~this adjective will
become clear later on!; the last expressionSQ contains the
action for theQ field and the coupling ofQ with l andA.
We have defined a ‘‘minus’’ direction as

A28 5A082 ivdAx , ~3.40!

reflecting the chirality inherent in the problem.

IV. CHIRAL EDGE BOSONS

In this section we take the theory one step further, a
derive the theory of chiral edge bosons, similar to the o
obtained by Wen1 in a phenomenological approach to ab
lian quantum Hall states. For noninteracting electrons suc
formulation is readily obtained~Sec. IV A!. For interacting
electrons, however, the procedure is more complicated,
we first derive an effective Finkelstein-type action of theQ
lts

d
e
-
a

nd

field at the edge, obtained by eliminating the plasmon fiell
~Sec. IV B 1!. In Sec. IV B 2 we show that the theory pro
vides complete information on the response of the system
external fields. We derive an edge anomaly for the intera
ing electron gas, and show the connection with Laughli
gauge argument. The complete theory for interactions as
as the 211-dimensional Chern-Simons theory are derived
Sec. IV B 3. In Sec. IV C we give some explicit results on t
single-particle Green’s function which enters the express
for electron tunneling into the quantum Hall edge. This, th
completes the theory of the integral quantum Hall edge.

A. Noninteracting case

In the case of free electrons, only the fieldsQ andA are
present in Eq.~3.39!. In order to obtain an effective actio
for Am we integrate outQ. We make use of Eq.~2.22! with
2v→vn , and write the two point function as follows:

^tr I n
aQ~2q!tr I 2n

a Q~q!&5
bvd

2pm

vn

vn1 ivdq
. ~4.1!

After elementary algebra we obtain the result

S5
imb

4p
F E d2x «mnkAm

† ]nAk1 R dx Ex
†]2

21A2G ,
~4.2!

with the following meaning of the symbols:

Ex5]0Ax2]xA0, ]25]02 ivd]x , ~4.3!

and the inverse]2
21 is given by

~]2
21F !~x,t!5

1

~2p!2 E dx8dt8F~x8,t8!E
2`

`

dkE
2`

`

dv

3
exp@ ik~x2x8!2 iv~t2t8!#

2 iv1vdk

5
1

2p E dx8dt8F~x8,t8!

3F u~t2t8!

vd~t2t8!2 i ~x2x8!1h

1
u~t82t!

vd~t2t8!2 i ~x2x8!2h G , ~4.4!

with F an arbitrary function,u the step function andh a
regulator. The operation]2

21 does not commute with]2 . It
is easily checked that]2(]2

21F)5F, but on the other hand
we have

]2
21~]2F !5F2F res, ~4.5!

with F res defined as that part ofF which satisfies]2F50.
Another property of this operation is

E dx dtF1~]2
21F2!52E dx dt~]2

21F1!F2 . ~4.6!

Eqs.~4.5! and ~4.6! can be used for the purpose of dem
onstrating theU(1) gauge invariance of the action~4.2!.
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Notice that the same result, Eq.~4.2!, can also be obtained
more directly from Eq.~3.39! if one makes use of the state
ment of gauge invariance in truncated frequency space,
~3.19!. More specifically, thex field can be chosen in such
way that theQ andAm fields in Eq.~3.39! decouple

]2x52A2 , x52]2IA21x res

Thex dependence now enters the theory through the exp
sion 2rdxEx

†x5rdxEx
†]21A2 , which precisely equals the

second term in Eq.~4.2!.

Action ~4.2! can also be written as a path integral overm
charge 1 bosons,

S@A,w i #5
ib

4p (
i 51

m F E d2x «mnkAm
† ]nAk

2 R dx~Dxw i
†D2w i2Ex

†w i !G , ~4.8!

where the covariant derivativeD is defined asDmw i5]mw i
2Am .

As a general remark, we can say that our introduction
m chiral boson fields is obviously not a unique procedure
long as one limits oneself to the charge sector of the the
alone. In oder to show that the theories of Eq.~ 3.39! and Eq.
~4.8! are completely equivalent representations of the qu
tum Hall edge dynamics, it is obviously necessary to exte
the analysis to include such quantities like the tunnel
denisty of states~Sec. IV C!, heat transport and the specifi
heat. The later will be reported elsewhere.25 In order to make
contact with Ref. 1 we mention that Eq.~4.8! is equivalent to
a Chern-Simons bulk theory withm gauge fieldsgi that rep-
resent potentials for the electron currents, coupled to the
ternal potentialsAm ,

S@A,gi #5
ib

4p (
i 51

m E d2x «mnk@2~gm
i !†]ngk

i 12~gm
i !†]nAk#,

~4.9!

where thegi have the gauge fixing constraintg2
i uedge50. In

Appendix B we explicitly show how integration over th
potentialsgi leads to Eq.~4.8!.

B. Coulomb case

1. Integration overl and Q

Now we look at the full action~3.39!. In this expression
the plasmon fieldl is contained in the following way:

Sb@A8#5Sb@A#1
imb

2p E d2x l†B

2
mb

4pvd
R dx~l†l12l†A0!,

~4.10!

SQ@A8#5SQ@A#1
m

2vd
R dx tr l̂Q.

Integrating out the plasmon fieldl, we obtain an effective
action forQ coupled toA, which we organize as follows:
q.

s-

f
s
ry

n-
d
g

x-

S5S0@Q#1Sint@Q,A#1Sb@A#1Sflux@A#. ~4.11!

The first term is given by

S0@Q#5mStop@Q#1SF@Q#

2
mp

4b (
na

E dkx

2p

1

veff~kx!
utr In

aQu2, ~4.12!

with

SF@Q#5
mp

4bvd
R dxF(

na
tr I n

aQ tr I 2n
a Q14 trhQG ,

~4.13!

the edge analog of theF-invariant Finkelstein action for the
bulk @I#, and

veff~kx!5vd1mU0~kx!, ~4.14!

the ‘‘effective velocity,’’ where U0(kx)
5(2p)21*dkyU0(kW ) is the Coulomb interaction on th
edge. The last term in Eq.~4.12! is the edge version of the
‘‘Coulomb’’ term from I. Note that the Finkelstein and Cou
lomb terms together can be written as

m

2vd
R dx tr vQ

1
mp

4bvd
(
na

E dkx

2p

redge

U0
21~kx!1redge

utr I n
aQu2, ~4.15!

where the expression in front of theutr IQu2 is just the 1D
screened Coulomb interaction. The other terms in Eq.~4.11!
are a coupling term

Sint@Q,A#5
m

2 E dkx

2p

1

veff~kx!
tr QÂc

eff , ~4.16!

a ‘‘boson’’ term

Sb@A#5
imb

4p E d2x«mnk~Am
eff!†]nAk

eff

2
mb

4p E dkx

2p

1

veff~kx!
~A0

eff!†Ac
eff , ~4.17!

and a flux-flux interaction term

Sflux@A#5
b

2 S m

2p D 2E d2x d2x8B†~xW !U0~xW2xW8!B~xW8!.

~4.18!

Here we have introduced an ‘‘effective’’ gauge field whic
contains a Coulomb correction to the scalar potential,

AW eff5AW , A0
eff~xW !5A0~xW !1

im

2p E d2x8U0~xW2xW8!B~xW8!,

~4.19!

and an effective ‘‘minus’’ direction denoted by the su
script c

]c5]02 iveff]x ; Ac5A02 iveffAx . ~4.20!
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Comparing result~4.11! with the free particle case@Eq.
~3.39! without l#, we see that the presence of the Coulom
interaction has the following effects:~i! the appearance o
the flux-flux interaction termSflux@A# and of the screened
Coulomb interaction inS0@Q#, ~ii ! the replacementsA0

→A0
eff and A2→Ac

eff , and ~iii ! the replacementvd

→veff(kx). For what follows, it is convenient to rewrite th
first three terms of Eq.~4.11! as

S01Sint1Sb5
imb

4p

3F E d2x «mnk~Am
eff!†]nAk

eff2 R dx Ax
†Ac

effG
1mStop@Q#1SF@Q#

2
mp

4b (
na

E dkx

2p

1

veff~kx!

3Utr I 2n
a Q2

b

p
~Ac

eff!n
aU2

, ~4.21!

where, as in the bulk~see paper I!, the gauge field couples t
Q only via the gauge non-invariant ‘‘Coulomb’’ term in Eq
~4.12!. However, compared to the bulk case where the c
pling results in the gauge-invariant combination@ tr IQ
2 (b/p) A0#, the situation is more subtle in the edge ca
The expression@ tr IQ2 (b/p) Ac

eff# appearing in Eq.~4.21!
is, in fact, gauge variant, but this gauge variance is exa
what one needs to compensate for the edge contribut
resulting from gauge transformations of the ‘‘boson’’ acti
Sb and the topological term. Therefore, the complete act
@Eq. ~4.1!1Sflux] is fully gauge invariant.

We now proceed as in Sec. IV A and integrate out theQ
field. This is done in the same way as for the noninteract
case: either by doing it directly or by choosing a guagex
such thatQ decouples fromAm , i.e.,

]cx52Ac
eff . ~4.22!

The only difference lies in the fact that we now work wi
effective quantities. We then obtain the effective action
the external fieldAm in the presence of Coulomb intera
tions:

S@A#5
imb

4p
F E d2x «mnk~Am

eff!†]nAk
eff

1 R dx~]c
21Ac

eff !†Ex
effG

1
b

2 S m

2p D 2E d2x d2x8B†~xW !U0~xW2xW8!B~xW8!.

~4.23!

Again, the difference from the free-particle case is the
pearance of a flux-flux term and various replacements
effective quantities.
b
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2. Edge currents and Laughlin’s gauge argument

Action ~4.23! contains complete information on the re
sponse of the system to external electromagnetic fields.
define the current asj m(xW )5dS/dAm(xW ). In this way we find

j 0~xW !5
im

2p
@B2d~y!]c

21Ex
eff#, ~4.24!

j 1~xW !52
im

2p
FEy2]yE d2x8U0~xW2xW8! j 0~xW8!G

2
mvd

2p
d~y!]c

21Ex
eff , ~4.25!

j 2~xW !5
im

2p
FEx2]xE d2x8U0~xW2xW8! j 0~xW8!G .

~4.26!

It is easily verified that]m j m50. The edge currents are ob
tained by taking only those terms that possess ad function.
On the edge we obtain

j edge
0 52

im

2p
]c

21Ex
eff , ~4.27!

j edge
1 52 ivd• j edge

0 . ~4.28!

For the edge anomaly, this yields

]m j edge
m ~x!52

im

2p
FEx2]xE d2x8U0~x,xW8! j 0~xW8!G .

~4.29!

By applying Laughlin’s gauge argument,10 one can now di-
rectly relate the conductances defined by the bulk and
edge. For example, let us do a linear response calculation
the case whereN flux quantah/e are created somewher
inside a hole in the sample. The chargeq flowing from one
edge into the other is found using Eq.~4.29!,

dq/dt52 i R ]m j edge
m 5

m

2p
dF/dt, ~4.30!

whereF is the total fluxNh/e enclosed by the contour inte
gral. This yieldsq5mN, as it should.

3. Interacting chiral bosons

As was the case in the free-electron situation, we c
write theory~4.23! as an edge boson coupled to the exter
field, exactly of the form of Eq.~4.8!, but now with effective
quantities and an extra flux-flux term:

S@A,w i #5
ib

4p (
i 51

m F E d2x «mnk~Am
eff!†]nAk

eff

2 R dx~Dxw i
†Dc

effw i2w i
†Ex

eff!G
1

b

2 S m

2p D 2E d2x d2x8B†~xW !U0~xW2xW8!B~xW8!.

~4.31!
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As in the noninteracting case, this result is equivalent t
Chern-Simons bulk theory of the form of Eq.~4.9!. In this
case the action for the electron currents is given by

S@A,gi #5
ib

4p (
i 51

m E d2x «mnk@2~gm
i !†]ngk

i 12~gm
i !†]nAk

eff#

1
b

2 S m

2p D 2E d2x d2x8B†~xW !U0~xW2xW8!B~xW8!,

~4.32!

with the gauge fixing conditions

Fg2
j ~kx!2 i

m

A2p
U0~kx! (

a51

m

gx
a~kx!G

edge

50. ~4.33!

It is very instructive also to write Eq.~4.31! in the following
way:

S52
b

2 S 1

2p D 2

(
i , j 51

m E d2x d2x8U0~xW2xW8!

¹3@u~y!DW w i~xW !#†¹83@u~y8!DW w j~xW8!#1
ib

4p (
i 51

m

F E d2x «mnkAm
† ]nAk2 R dx~Dxw i

†D2w i2Ex
†w i !G .
~4.34!

Notice that there are no effective quantities in this expr
sion: the Coulomb interaction is completely contained in
first term. The charge density is given by (m/2p) @B
1d(y)m21( iDxw i #. Notice also that we have written a two
dimensional integral containingw i , even though the boso
fields only exist on the edge. This is not a problem, since
w i only are evaluated at the edge.

C. Tunneling density of states

In I we expressed the one-particle Green’s function wh
enters the tunneling density of states in terms of the matriQ
variable as follows:

^Qaa~t2 ,t1 ,xW0!&5 (
n52`

`

einn(t22t1)^Qnn
aa~xW0!&.

~4.35!

The gauge transformation, that in Eq.~4.21! decouplesQ
from A, introduces an extra factor into the path integral ov
Eq. ~4.23!:

exp$2 i †@]c
21Ac

eff#a~t2 ,xW0!2@]c
21Ac

eff#a~t1 ,xW0!‡%.
~4.36!

When decoupling the quadratic edge term inA @Eq. ~4.23!#
with the use of boson fields, this factor translates to

expH 2 i E
t1

t2
dt]tw j

a~t,xW0!J , j 51,...,m ~4.37!

in Eq. ~4.31!. The decoupling is not a unique procedu
since combinations of the boson fieldsw i can be chosen
a

-
e

e

h

r

,

other than Eq.~4.37!. However, the above form is the onl
one that yields the fermionic exponent for the expectat
value ^Q&:

K expH 2 i E
t1

t2
dt ]tw i

a~t,xW0!J L }~t22t1!2S, S51.

~4.38!

~See Appendix A for the explicit calculation.! Notice that we
would have had a serious problem at this point if we had
excluded the zero-momentum components ofw i

a when we
introduced these auxiliary fields. A redefinition of the int
gration measure,*Dw→*D@w1 f #, with ]xf (x,t)50,
would yield a result depending on the arbitrary functionf .

V. LONG-RANGE DISORDER

In Sec. II B we introduced the idea of percolating ed
states as a model for smooth, slowly varying randomne
Application of Q-field theory then provides an effective an
elegant way of describing the transport properties of the n
work model near the percolation threshold. In this section
extend the network theory of percolating edge states in s
eral ways. We show that the Coulomb interactions can d
matically alter the behavior of the electron gas, depending
the physical process that one is interested in. The concep
a ‘‘tunneling density of states,’’ that describes the tunneli
of electrons into the quantum Hall edge, is particularly se
sitive to the presence of long-range electron-electron inte
tions. In Sections V A–V C we derive an ‘‘effective’’ theor
of chiral edge bosons that includes the effect of Coulo
interactions between the edge and bulk electrons. This le
to a tunneling exponentS that varies continuously with the
filling fraction n like 1/n. This result is in dramatic contras
to the Fermi liquid predictions of Sec. IV C which apply t
isolated edges alone. We start out~Sec. V A! with the chiral
boson formulation of the network model, and employ t
Laughlin gauge argument in order to illustrate the fundam
tal differences between transport and edge tunneling~Sec.
V B!. Section V C describes one of the most important
pects of this section. It deals with the detailed mechanism
which the ‘‘neutral’’ modes are eliminated from the effectiv
theory for edge tunneling. We end this section with a co
putation of the inelastic relaxation rate~Sec. V D! that enters
into the transport problem at finite temperatures~Sec. II B 4!.

A. Separation of edge channels

Long-range disorder can cause the edge states of diffe
Landau levels to become spatially separated. A poten

FIG. 6. Spatially separated edge channels.
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FIG. 7. ~a! Plot of equipotential contours cor
responding to filling fractionn522«. ~b! Effec-
tive edge theory for the filling fractionn52
2«. The dashed line represents the~anti!chiral
contribution from the bulk orbitals.
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fluctuation at the edge can lift all states in such a way t
new ‘‘edge’’ states are created~see Fig. 6!. If the chemical
potential lies between the shifted and unshifted energy o
Landau level, the edge states of this Landau level will
situated inside the sample, not on the outermost edge
there are several potential jumps of this kind, all the ed
channels can become separated. They can also start wa
ing into the interior of the sample.

We propose that ‘‘edge channel separation’’ is the do
nant effect of smooth potential fluctuations as opposed
‘‘interchannel scattering,’’ which only occurs when the p
tential changes abruptly. In this section we wish to emb
on the problem of smooth potential fluctuations in the pr
ence of the Coulomb interactions.

In order to fix the thought we imagine a quantum H
sample with filling fractionn522«. Figure 7~a! illustrates
the equipotential contours. We may distinguish between
localized~closed! orbitals in the bulk of the sample and th
extended~chiral! edge states.

This picture leads us to the idea of describing the ch
bosons byone field w(xW ) that lives on all the ‘‘edges’’ in-
stead of independent fields for every edge. Action~4.31! then
becomes

S5
ib

4p F E d2x n~xW !«mnkAm
† ]nAk

2 (
a51

M

sa R
Ca

dx~Dxw
†@D0w2 isavdDxw#2Ex

†w!G
2

b/2

~2p!2 E d2x d2x8U0~xW2xW8!¹3@n~xW !DW w~xW !#†

¹83@n~xW8!DW w~xW8!#. ~5.1!

The n is a function of position labeling the ‘‘local’’ filling
fraction: outside the samplen(xW ) is zero; going inward, it
increases by one every time you cross an edge, unt
reaches its bulk valuem. At the bulk orbitals,n(xW ) jumps
again.@In the casen522«, depicted in Fig. 7~a!, n(xW )51
inside the closed orbitals.#

Each edge is described by a contour labeledCa , with a
51,...,m for the edge states anda5m11,...,M for the
closed bulk orbitals. The coordinatex, appearing in the edge
terms, is defined on the contour and is taken in the posi
~anticlockwise! direction. The symbolsa ,

~5.2!

incorporates the fact that the contours witha<m and a
.m carry opposite current and charge densities. For simp
t

a
e
If
e
er-

i-
to

k
-

l

e

l

it

e

c-

ity we take the drift velocityvd the same for all edges. Inte
grating out the boson field yields the generalization of E
~4.23!:

S@A#5
ib

4p F E d2x n~xW !«mnk~Am
eff!†]nAk

eff

1(
a

sa R
Ca

dx@]c
21~]xAc

eff!2Ax#
†Ac

effG
1

b

2 S 1

2p D 2E d2x d2x8n~xW !B†~xW !

3U0~xW2xW8!n~xW8!B~xW8!. ~5.3!

The notation]c ~at contourCa) now has the signsa in front
of the velocity and contains Coulomb interactions withall
contours instead of justCa itself. The definition of the ‘‘ef-
fective’’ potentialA0

eff has also slightly changed:

A0
eff~xW !5A0~xW !1

i

2p E d2x8U0~xW2xW8!n~xW8!B~xW8!.

~5.4!

For completeness, in Appendix D we also present the ge
alization of the actionS@Q,A# @Eq. ~4.11!# for the case of
separated edge channels. Note that we are addressin
situation where the chemical potential is away from the n
row ‘‘percolation’’ regime indicated byW0 in Fig. 4. We
will next exploit the simplicity of our model and demonstra
that the Hall conductance and the tunneling density of e
states are fundamentally different quantities that corresp
to completely different physical processes.

B. Hall conductance

First it is straightforward to generalize the results of S
IV B 2 to include the separated edge channels and the b
states into Laughlin’s flux argument. Differentiating actio
~5.3! with respect toAm , we obtain the generalized form o
the currents@~4.24!–~4.26!#,

j 0~xW !5
i

2p Fn~xW !B2 (
a51

M

sad~xW on Ca!]c
21Ex

effG ,

~5.5!

j i~xW !52 i
n~xW !

2p
« i j FEj2] jE d2x8U0~xW2xW8! j 0~xW8!G

2
vd

2p (
a51

M

d~xW on Ca!]c
21Ex

eff~eW i
a! i , ~5.6!
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where the vectoreW i
a is tangent to the contourCa and points in

the positive direction. Again it is easy to check that]m j m

50, i.e., that current conservation is respected. The e
currents are given by

j edge
0 ~Ca!52

i

2p
sa]c

21Ex
eff , ~5.7!

j edge
x ~Ca!52 isavdj edge

0 ~Ca!. ~5.8!

The edge anomaly applies to each bulk orbital and edge s
separately:

]m j edge
m ~Ca!52

i

2p
saFEx2]xE d2x8U0~x,xW8! j 0~xW8!G .

~5.9!

As expected, the signsa determines whether charge is tran
ported into an edge or from an edge into the bulk. By repe
ing Laughlin’s flux argument it is now demonstrated expl
itly that the localized bulk orbitals do not affect the transp
of charge from one sample edge to the other, independe
the electron-electron interactions; taking Eq.~5.9! and per-
forming the contour integral overCa , we obtain the charge
transported per unit of time from theath channel,

dQa /dt52 i R
Ca

dx ]m j edge
m 5sa

1

2p
dFa /dt,

~5.10!

whereFa is the magnetic flux enclosed byCa . For a.m
this flux is obviously zero, since the localized bulk orbita
do not encircle the hole in the sample. This, then, shows
the Hall conductance is quantized~equal tom) independent
of «.

C. Tunneling density of states

Laughlin’s flux argument for the Hall conductance e
presses the quantum Hall state as an exact ‘‘excited’’ stat
the system. Tunneling processes into the edge, on the o
hand, are expressed in terms of eigenstates near the F
energy, i.e., the tunneling density of states, and due to
Coulomb interactions this quantity is sensitive to the pr
ence of bulk orbitals. We start from action~5.1!, omitting the
replica indices for notational simplicity and puttingAm50:

S52
i

4p E dt(
j 51

M

sj R
Cj

dx ]xw~]0w2 isjvd]xw!

2
1

8p2 E dt (
j , j 851

M

sjsj 8 R
Cj

dx

3 R
Cj 8

dx8]xwU0~x,x8!]x8w. ~5.11!

Following Sec. IV C, Eq.~4.37!, the one-particle Green’s
function can be written as

G~t22t1!5^exp2 i @w~t2 ,x0!2w~t1 ,x0!#&, ~5.12!

wherex0 denotes a point on the edge contourC1 . The pres-
ence of the Coulomb interactions makes the computatio
ge

te

t-

t
of

at

of
er

rmi
e
-

of

G a complicated two-dimensional problem. Some proced
needs to be found which extracts the lowest energy exc
tions from Eq.~5.11!, We follow the strategy of taking the
boson fields as a two-dimensional field variable, and we t
collect the terms with smallest momenta. This procedure
done in position space and we proceed by giving the det
of a step by step analysis. The results for the tunneling
ponents are given at the end of Sec. V C 4, which also c
tains a brief summary in the end.

1. Gradient expansion

The interaction term in Eq.~5.11!, can be written as a sum
over area integrals,

2
1

8p2 E dt (
j , j 851

M E
Cj

d2xE
Cj 8

d2x8sjsj 8]aw~xW !

3Uab~xW2xW8!]bw~xW8!, ~5.13!

with

Uab~xW2xW8!5«ac«bd

]

]xc

]

]xd8
U0~xW2xW8!. ~5.14!

Since we are only interested in thew with the smallest mo-
menta, we can make the replacement

(
j 5m11

M E
Cj

d2x→V fE
Cb

d2x. ~5.15!

V f stands for the fraction of the total area that is enclosed
all the bulk orbitals together. The contourCb is not sharply
defined, and is located somewhere close to the edge@see Fig.
7~b!#. It encloses the region within which the bulk orbita
are contained. The joint Coulomb effects of the bulk orbit
will effectively be comprised on this contour. For the term
in Eq. ~5.11! containing]xw]0w, we can write

(
j .m

R
Cj

dx ]xw]0w5 (
j .m

E
Cj

d2x¹3~¹w]0w!

→V fE
Cb

d2x ¹3~¹w]0w!

5V f R
Cb

dx ]xw]0w. ~5.16!

The expression ( j .mrCj
dx(]xw)2 averages out to

k*Cb
d2x(¹w)2 with k some positive constant related to th

total length of all the bulk contours. If there are substan
stretches where a bulk orbital runs along the edge, inte
tion terms will arise, leading to a termrCb

dx(]xw)2.
Note that in doing replacement~5.15! in Eq. ~5.13!, one

also needs to introduce correction terms that compensate
the errors made when the separationuxW2xW8u is ‘‘small’’ ~of
the order of the average size of the orbitals or less! andUab
does not vary slowly. These corrections are of the fo
*d2x(¹w)2.

Then there are also extra correction terms that will aris
there are regions where a bulk orbital runs along the ed
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This correction takes the form of a short-ranged interact
betweenCb and all the other contours~including Cb).

Having done replacement~5.15! and writing the interac-
tion terms again as contour integrals, we have the action

S52
i

4p E dtF (
j 51

m R
Cj

dx ]xw]2w2« R
Cb

dx ]xw]0wG
2

1

8p2 E dtF (
j j 851

m R
Cj

dx R
Cj 8

dx8]xwU]x8w

1«2 R
Cb

dx dx8]xw~U1Vb!]x8w

22«(
j 51

m R
Cj

dx R
Cb

dx8]xw~U1Vj !]x8wG
2gE dtE

Cb

d2x~¹w!2, ~5.17!

whereg is a positive constant. We have identifiedV f with «,
since the fraction of the area occupied by bulk states is
actly the deviation from integer filling. We have writte
Vb(x,x8) for the short-ranged interaction between two poi
on Cb ; Vj (x,x8) denotes the short-ranged interaction b
tween a pointx on Cj and a pointx8 on Cb . The precise
expression forV is unknown due to the fact that it has i
origin in the twilight zone near the edge, where it is uncle
whether a term contributes to the bulk or edge action. Co
paring this result~5.17! with Eq. ~5.11!, we see that the pres
ence of the interacting bulk states effectively leads to
appearance of an additional~anti!chiral boson on the contou
Cb , an extra short-ranged interaction with this contour, an
lower-dimensional leftover bulk term*(¹w)2.

2. Effect of the bulk term

In order to be able to calculate the tunneling density
states@Eq. ~5.12!#, we need an effective theory for the edg
degrees of freedom, and therefore we have to unders
how they are affected by the left over bulk term. To this e
we are going to split bulk and edge degrees of freedom.
write the bulk term as*Cb

d2x(¹F)2, whereF represents the
bulk degrees of freedom and is treated as an integration v
able independent ofw. To reflect the fact that it is actually a
extension ofw into the bulk, we impose some boundary co
dition on F, for instanceFuedge5w or ]'Fuedge5]'w. (]'

is the derivative perpendicular to the contour.! The effect of
the bulk term on the edge theory is obtained by integrat
out F, which leads to an effective action for the bounda
conditions. Let us consider a general scenario and impose
boundary conditionsFuedge5c0 and ]'Fuedge5c1 , using
constraint multipliersk0 andk1 , respectively:

eSeff[c0(x),c1(x)]5E D@F~xW !#D@k0~x!#D@k1~x!#

3expH i R dx k0~F2c0!

1 i R dx k1~]'F2c1!2gE d2x~¹F!2J .

~5.18!
n
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For notational simplicity we have omitted the time depe
dence and the subscriptCb under all the integrals. We firs
wish to integrate Eq.~5.18! over F(xW ), keepingk0 and k1
fixed. For this purpose we splitF, which has free boundary
values, into a bulk and an edge part by writing

F5FL1F̂, ]'FLuedge5]'Fuedge ]'F̂uedge50
~5.19!

whereFL satisfies Laplace’s equation

¹2FL~xW !50. ~5.20!

FL(xW ) is completely determined by]'FL on the edge,
which we now take as an independent edge degree of f
dom denoted byE1(x). Introducing the 2D Green’s function
G,

G~xW ,xW8!5
1

2p
lnuxW2xW8u, ¹2G~xW ,xW8!5d~xW2xW8!,

~5.21!

and using Green’s theorem, we solve Laplace’s equation
obtain forFL(xW ),

FL~xW !52 R dx8FG~xW ,x8!E1~x8!

2FL~x8!
]G

]y8
~x,y;x8,0!G . ~5.22!

This expression tells us that we need to knowFL on the edge
in order to evaluateFL in the bulk. Luckily, we do not need
the full 2D xW dependence, since due to the splitting@Eq.
~5.19!#, FL will be evaluated at the edge only. Using a sp
cial property of the Green’s function@Eq. ~5.21!#, namely,
@]y8G#(x,0;x8,0)50, we can explicitly writeFL on the edge
as a function ofE1 :

FL~x!52 R dx8G~x,x8!E1~x8!. ~5.23!

The action, written in terms ofF̂ andE1 , is now given by

S52gE d2x~¹F̂!22g R R E1GE112g R dx E1F̂

2 i R R Gk01 i R dx k0~F̂2c0!

1 i R dx k1~E12c1!, ~5.24!

where we have used the shorthand notationrrAGB for the
expressionrdxrdx8A(x)G(x,x8)B(x8). Integrating outF̂
is now simply done by replacingF̂ by its saddle-point value
Varying the action with respect toF̂, keepingE1 fixed, we
obtain the saddle-point equation

¹2F̂1d~y!FE11
i

2g
k0G50. ~5.25!

Using the Green’s function’s property@]y8G#(x,0;x8,0)50
again, we find the following solution on the edge:
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F̂~x!52 R dx8G~x,x8!FE11
i

2g
k0G~x8!. ~5.26!

In substituting this solution into Eq.~5.24!, we do not need
the full 2D xW dependence ofF̂(xW ), since we can write
*d2x(¹F̂)252*d2x F̂¹2F̂ and ¹2F̂ is an expression re
stricted to the edge. Substitution of Eq.~5.26! into Eq.~5.24!
yields

S522g R R E1GE11
1

4g R R k0Gk02 i R dx k0c0

22i R R GE11 i R dx k1~E12c1!. ~5.27!

Integrating outk0 is straightforward, and gives

S5g R R ~c0G21c012E1GE1!

14g R dx c0E11 i R dx k1~E12c1!. ~5.28!

In the end we integrate outk1 , yielding the constraintE1
5c1 . The final result forSeff@c0,c1# becomes

Seff@c0 ,c1#5g R R ~c0G21c012c1Gc1!

14g R dx c0c1

5g R R ~c0 ,c1!S G21 2

2 2GD S c0

c1
D .

~5.29!

We are going to putc050 in order to avoid double countin
of (]xw)2 terms at the edge, andc15]'w. Action ~5.29!
becomes

S@]'w#52g R R ]'wG]'w. ~5.30!

This edge term, derived from the interaction with the bu
orbitals, is seriously going to affect the tunneling expone
A quick way to see this is as follows: on the contou
C1 ,...,Cb , the field w(xW ) can be written asw(x,y on C1)
plus perpendicular derivatives. For the tunneling expon
only wuC1

is needed, so we can integrate out the perpend
lar derivatives in@Eq. ~5.17!, minus bulk term plus Eq
~5.30!# to obtain an effective action forw on C1 . The domi-
nant part of the 1D propagator for]'w is given byG21(k)
}uku, from which it follows that all terms introduced by th
integration over]'w are irrelevant. Higher powers of]' are
even less relevant. Replacing all thew in Eq. ~5.17! by wuC1

,

we obtain a termnrdx ]xw]0w, leading to a tunneling ex
ponentS51/n instead of the free-particle resultS51. In Sec.
V C 3 we are going to derive this result more formally, bas
on a consideration of the neutral modes in the theory wh
the edge channels are not spatially separated.
t.

t,
u-

d
re

3. Demise of the neutral modes; examplen512«

In the long-wavelength limit, the contoursC1 ,...,Cb are
lying so close together that we can effectively return to
picture where all the edge channels are sitting on top of e
other. We label the channelsw1(x),...,wm(x),wb(x). Let us
for simplicity’s sake first consider the casen512«, where
we just have the two fieldsw1 and wb . In terms of these
fields, action~5.17!, without the bulk term and the bulk ef
fect ~5.30!, takes the form~again using abbreviated notation!

S0@w1 ,wb#52
1

4p R dx@]xw1]0w12«]xwb]0wb#

2
1

8p2 R R U@]xw12«]xwb#2

2
1

8p2 (
k,l 51,b

R dx Vkl]xwk]xw l . ~5.31!

We have put all the short-range contributions into the 232
velocity matrixV. We next define a ‘‘charged mode’’G and
a ‘‘neutral mode’’ g in such a way that only the charge
mode ‘‘feels’’ the long-range part of the interaction;

G5
1

n
~w12«wb!, g5w12wb

~5.32!

w15G2
«

n
g, wb5G2

1

n
g.

In the basis (G,g) action ~5.31! becomes

S0@G,g#52
1

4p R dxFn]xG]0G2
«

n
]xg]0gG

2
n2

8p2 R R U~]xG!2

2
1

8p2 R dx@]xG]xg#V̂F]xG
]xg

G , ~5.33!

whereV̂ is the velocity matrix in this basis. The expressio
]'w in the theory for spatially separated channels is in
single-edge picture evidently equivalent to the neutral mo
g}wb2w1 . The leftover bulk contribution@Eq. ~5.30!#
therefore translates into an extra term involving the neu
mode;

Sbulk@g#5const R R gGg. ~5.34!

The tunneling density of states is now expressed as

^exp2 iw1ut1

t2&}E D@G#D@g#expF2 i S G2
«

n
g D Ut1

t2

1S0@G,g#1Sbulk@g#G . ~5.35!

If we perform the integration overg first, we see that the
bulk part of the action yields the following contribution t
the inverse propagator:G(k)}1/uku, which is dominant at
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low momenta. The integration overg yields G-G terms of
orderk5V̂(k). These are clearly irrelevant. For the tunneli
density of states we can write

^exp2 iw1ut1

t2&}E D@G#exp~2 iGut1

t21Seff@G#!

Seff@G#52
in

4p R dx ]xG]0G2
n2

8p2 R R ]xGU]xG

2
1

8p2 R dx ]xGV̂GG]xG. ~5.36!

For small momenta theV̂ essentially reduces to a consta
and we can use the results of appendix A, obtaining

^exp2 iw1ut1

t2&}~t22t1!2S, S51/n. ~5.37!

4. General casen5m2«

The results forn512« are easily generalized. From th
bulk channelwb and the edge channelsw1 ,...,wm we con-
struct a charged modeg0 andm neutral modesg1 ,...,gm as
follows:

g05
1

n S (
k51

m

wk2«wbD ,

ga5
1

a S (
k51

a

wk2awa11D , a51, . . . ,m ~5.38!

where we define wm11 as wb . The neutral modes
g1 ,...,gm21 are the usual ones for a theory withm edges.
They are mutually perpendicular and normal to the char
mode. The additionalgm is normal to the other neutra
modes but not to the charged mode. Thew’s are expressed in
terms of theg’s as follows:

wb5g02
m

n
gm ,

wk5g02
«

n
gm2S 12

1

k Dgk211 (
a5k

m21
1

a11
ga , k<m.

~5.39!

Equation~5.31! is generalized to

S@w#52
1

4p R dxF (
j 51

m

]xw j]0w j2«]xwb]0wbG
2

1

8p2 R R UF (
j 51

m

]xw j2«]xwbG2

2
1

8p2 (
k,l 51

m11 R dxVkl]xwk]xw l . ~5.40!

Again, all the short-range contributions have been put int
velocity matrix V, which now has dimension (m11)3(m
11). Writing Eq. ~5.40! in terms of theg basis, we obtain
d

a

S@g#52
1

4p R dxFn]xg0]0g01 (
a51

m21
a

a11
]xga]oga

2m
«

n
]xgm]0gmG2

n2

8p2 R R U~]xg0!2

2
1

8p2 (
a,c50

m R dx V̂ac]xga]xgc , ~5.41!

whereV̂ is the velocity matrix in the basis ofg’s. The argu-
ment of Eqs.~5.34!–~5.37! can be applied again, in a slightl
modified form: the neutral modes are equivalent to]'w and
higher derivatives.~A basis ĝ can be found for the neutra
modes in whichĝn corresponds to the 1D lattice discretiz
tion of ]'

n w.) On dimensional grounds the propagator for t
nth normal derivative ofw has to be proportional tok2n21,
leading to irrelevant contributions. A more concrete way
making this statement would be to generalize the anal
presented in Eqs.~5.18!–~5.29!, including boundary condi-
tions for the higher normal derivatives. However, that wou
also require us to take into account higher order terms in
w theory @Eq. ~5.17!#. The resulting effective action for the
charged modeg0 is of the form of Eq.~5.36!, with n5m
2«.

We can summarize the results of Sec. V as follows: W
have seen that the Fermi liquid resultS51 is obtained for
the tunneling density of states~i! when the Coulomb inter-
actions are omitted, or~ii ! when interactions are included bu
only short length scales are considered. An interacting the
for the lowest-lying excitations, which are slowly varyin
field configurations, yields completely different results. T
presence of bulk orbitals, interacting mutually and with t
edge states, is effectively described by an extra edge cha
with prefactor2« plus a remnant of the interactions in th
bulk of the form*(¹w)2. The leftover bulk term serves to
make all the neutral edge modes irrelevant, yielding an
fective edge action for the one remaining, charged, mo
Due to the presence of the extra ‘bulk’ channel, the prefac
of this effective actionS@G# becomesm2«5n, which is a

FIG. 8. ~a! Pointlike interaction between conducting electro
and the localized electrons at ‘‘nearly saddle points.’’~b! The co-
ordinates 0,x, andy are the points of interaction along the localize
contour.



ua

ns
m
u
o

st
il

or
e

ou
th
th
or
b
e

ion
dl

k
to

ly,
e

-
i-
an
on
y

r

tions
lt

tron

the
nic

be
or-

’’
for

are

al

on

16 860 PRB 60A. M. M. PRUISKEN, B. ŠKORIĆ, AND M. A. BARANOV
continuous parameter in sharp contrast to the integer q
tized m. For the tunneling exponent we obtainS51/n.

D. Computation of t in

We next return to the problem of the plateau transitio
Following Sec. II B we expect that the transport at high te
peratures is dominated by interactions between the cond
ing electrons on the backbone saddlepoint network and th
on the disconnected pieces or clusters.

The fundamental quantity to compute is the characteri
time t in that is needed for the backbone electrons to equ
brate with the rest of the network. In order to set up a the
for relaxation, we consider the ‘‘nearly saddle points’’ in th
network, where tunneling is not possible but where the C
lomb forces nevertheless produce ‘‘sudden changes’’ in
motion of the conducting electrons. Figure 8 illustrates
interaction of the saddle-point network with disconnected
bitals. The ‘‘nearly saddle points’’ where the Coulom
forces are most effective are indicated by the shaded ar
We can model the situation by introducing a delta-funct
potential which acts in the small areas of the ‘‘nearly sad
points’’ only. The action can be written as

Seff@w#5S@w0#1(
i

S@w i #

2(
i
E dt ]xw0~aW i !Ui]xw i~aW i !, ~5.42!

whereS@w0# is the action for the chiral boson field on a lin
of the saddle-point network that we denote as the con
C0 ,

S@w0#5
i

4pE dt R
C0

dx ]xw0]2w0 . ~5.43!

This contour is taken to be very large or infinite. Similar
we define chiral boson fieldsw i on the disconnected but larg
contoursCi ;

S@w i #5
i

4pE dt R
Ci

dx ]xw i]1w i . ~5.44!

The sum in the interaction term in Eq.~5.42! is over the
discrete set of nearly saddle pointsaW i along the contourC0
where the fieldsw0 andw i interact with an appropriate, ran
dom strengthUi . This problem is in many ways quite sim
lar to the problem of interacting edge channels with a r
domly varying separation between them. We proceed al
the same lines as in Ref. 27, and introduce a self-energS
for the density-density correlation of the fieldw0 . If we de-
note the Fourier transforms of the propagato
^]xw0(x,t)]xw0(x8,t8)& and ^]xw i(x,t)]xw i(x8,t8)& ~with
x andx8 parametrizing the positions on the contoursC0 and
Cj , respectively! as

D0~v,q!5
2p

b

2q

iv2vdq
, D j~v,q!5

2p

b

2q

iv1vdq
,

~5.45!

then the introduction of a self-energy takes the form
n-

.
-
ct-
se

ic
i-
y

-
e
e
-

as.

e

ur

-
g

s

D0~v,q!→2
q

iv2~vd1S!q
. ~5.46!

To lowest order in the interaction potential we may write

S~v!52 izU j
2E dq

2p
D j~v,q!5

z

2vd
2 U j

2uvu. ~5.47!

Here the bar stands for the average over the random posi
aW i alongC0 andz is the linear density of saddlepoints. Resu
~5.47! can be used to obtain an expression for 1/t in , i.e., the
imaginary part of the self-energy as it appears in the elec
Green’s functionG(v,q) as follows:

1/t in5E dv dq

~2p!2 S~v!G~«2v,q!. ~5.48!

The t in determines the rate at which the electrons on
backbone cluster equilibrate with the rest of the electro
orbitals. We findt in

21}«2 or T2 at finite temperatures. This
admittedly crude approach toward electron relaxation can
improved in several ways. For example, as the most imp
tant correction to the self-energy~5.47! we find the self-
interacting orbitals as depicted in Fig. 8~b!. These correc-
tions replace the momentum integral in Eq.~5.47! in the
following way ~in space-time notation!:

E dq

2p
D j~v,q!

5E dt e2 iv(t2t8)D j~0,0;t2t8!

D j~0,0;t2t8!→D j~0,0;t2t8!

1E dt0E
0

L

dxE
x

L

dy

3D j~0,x;t2t0!Ũ jD j~y,L;t02t8!, ~5.49!

where x,y are the positions of the ‘‘nearly saddle point
where the self-interaction takes place. The integrals stand
the averaging over positions and all dimensional factors
absorbed intoŨ j . The length of the orbital is given byL and
boundary conditionsx[x1L and y[y1L are understood.
Equation~5.49! can be rewritten as a shift in the chemic
potential:

E dq Dj~v,q!→E dq
2 iq

iv2dm1vdq
, dm5Ũ j .

~5.50!

This leads to a modified self-energy according to

S~v!→ z

2vd
2 Ui

2~v1 idm!sgn~v!. ~5.51!

The shiftdm can be translated into a shift in the expressi
for t in

21 following

t in
21~«,dm!5S 11 idm

]

]« D t in
21~«!. ~5.52!
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After the analytic continuation to real energies (i«→«) has
been performed, we obtain the final resultt in

21}« or t in
21

}T at finite temperatures. More generally, we expect
equilibration rate to be given by a regular series expansio
powers ofT which is dominated by the lowest ordert in

21

}T asT approaches absolute zero.

VI. SUMMARY AND CONCLUSIONS

We have shown that massless edge excitations are a
tegral part of the instanton vacuum theory with free bou
ary conditions. Massless edge excitations have fundame
consequences for the ‘‘stability’’ of topological quantu
numbers and for the quantization of the Hall conductance
particular. We have used the formalism ofF algebra, intro-
duced in our previous work, and derived a complete the
of the edge. We have established the fundamental conne
between the instanton vacuum and Chern-Simons ga
theory. Both theories have previously been studied indep
dently and with different physical objectives. We ha
shown that our approach to edge physics enables one to
dress several long-standing problems of smooth disorder
interaction effects. We have pointed out that fundamen
differences exist between tunneling at the edge and elec
transport. Transport experiments inject electrons directly i
edge states; these electrons do not have enough tim
equilibrate with the rest of the sample, and are theref
effectively decoupled from the bulk. A tunneling measu
ment, however, probes eigenstates of the whole sys
which involve not only edge electrons, but also localiz
bulk orbitals. Since tunneling processes do not probe
incompressibility of the electron gas, they are genera
treated incorrectly by the theory of isolated edges. By tak
into account the effect of Coulomb interactions between
edge and the localized bulk states, we have derived an e
tive edge theory that predicts a tunneling exponent 1/n.

For the plateau transitions we have constructed a perc
tion model of interacting edges. We have shown how ine
tic scattering at the ‘‘nearly saddle points’’ sets the tempe
ture scale at which the transport coefficients cross over f
mean-field behavior to critical scaling. This crossover c
involve arbitrarily low temperatures and it explains the la
of scaling in the transport data taken from samples w
long-range disorder at finite temperatures. Our mean fi
expression for the conductances agrees with recent emp
fits to transport data at plateau transitions. The results of
paper serve as the basic starting point for a subsequent o14

where we extend the theory to include the statistical ga
fields and the fractional quantum Hall regime.
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APPENDIX A: ONE-DIMENSIONAL PROPAGATOR
WITH COULOMB INTERACTION

In this appendix we calculate the correlation functi
G(t,0) for the charged boson fieldsw i @Eq. ~4.31!#:

G~t,x!5^w i~t,x!w i~0,0!&, t.0. ~A1!
e
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In momentum and frequency space this correlator is given
~we omit the labeli since it is of no consequence!

^wa~k!w2b~2k8!&5
2p i

b

dabd~k2k8!

k@va1 ikveff~k!#
. ~A2!

We write the Coulomb interaction and the effective veloc
veff in the form

U0~k!52cA2p ln~k/L!2, veff~k!52mc ln~k/LD !2

~A3!

wherec is a positive constant indicating the strength of t
Coulomb interaction,L is an ultraviolet cutoff, andD
5exp(vd/2mc). We will only consider low momentauku
,lL, with l,1, so that we are well away from the poin
where the Hamiltonian becomes negative.

We take the Fourier transform of Eq.~A2! and change the
frequency sum to an integral, writing(n→ (b/2p) *dv,

]tG~t,0!5
i

2p E
2lL

lL

dk veff~k!E
2`

` eivtdv

v1 ikveff~k!

52E
2lL

lL

dk veff~k!u~2kveff!ekveff(k)t. ~A4!

The step functionu(2kveff) constrains the integration inter
val to k,0. We can split the last expression in Eq.~A4! into
two parts, using lnk dk5d(k ln k2k), and obtain

]tG~t,0!52
1

t F12S l

D D 2mctlLG
22mcLDE

0

l/D

du exp@2mctLDu ln u#.

~A5!

The function u ln u is negative on the whole interva
(0,l/D), since l/D,1. If we now send the cutoffL to
infinity, the term with the integral in Eq.~A5! will go to zero
as 1/lnL. The term (l/D)2mctlL also vanishes, yielding the
free-particle result

G~t,0!52 ln t1const. ~A6!

APPENDIX B: CHERN-SIMONS ACTION
FOR BULK CURRENTS

In this appendix we show that Eq.~4.8! is equivalent to
the bulk action

S@A,gi #5
ib

4p (
i 51

m E d2x «mnk@2~gm
i !†]ngk

i 12~gm
i !†]nAk#,

~B1!

with the condition g2
i 50 on the edge. Thegi ’s are

211-dimensional potentials from which the electron curre
density j for every Landau level can be found:

j i
m}«mnl]ngl

i . ~B2!

Notice three important subtleties.
~i! The coupling ofg with the electromagnetic gauge fiel

is of the form «mnkgm]nAk instead of the expected
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«mnkAm]ngk} j mAm. These expressions differ by an ed
term. The second form isnot invariant under the gauge tran
formationsAm→Am1]mx; the expression«mnk]nAk , on the
other hand, is manifestly gauge invariant.

~ii ! Putting an arbitrary space-time component ofg zero
on the edge ensures that the action is invariant undergm
→gm1]mk, a gauge transformation that does not affect
current density. Without such a condition, gauge invaria
is broken at the edge.

~iii ! Because of the invariance undergm→gm1]mk, a
gauge fixing condition has to be specified for the path in
gration overg, for instance the Coulomb gauge¹•gW 50.

Let us now for simplicity drop the replica indicesa and
the Landau level indexi ~effectively settingm51). Having
taken the conditiong2uedge50, the componentg2 in Eq.
~B1! multiplies the following constraint:

¹3~gW 2AW !50. ~B3!

After integration overg2 , what remains of the action is

i

4p E dtE d2x~2gW 3]2gW 12gW 3@¹A22]2AW # !,

~B4!

subject to constraint~B3!. The general solution of Eq.~B3! is
given by

gW 5AW 2¹w, ~B5!

with w(xW ) a real scalar field which is now the only integr
tion variable that is left. Substitution into Eq.~B4! yields an
action wherew features only on the edge:

S@w,A#5
i

4p E dtF E d2x «mnkAm]nAk

2 R dx~DxwD2w2wEx!G . ~B6!

This is exactly the form of Eq.~4.8!.
One may worry that the path integration overw is ill

defined, because of the bulk degrees of freedom ofw, which
do not appear in Eq.~B6!. However,w inherits something
from the gauge fixing condition ofg. This is most easily
seen in the case of the Coulomb gauge; herew has to satisfy
¹2w50. This means that the bulk degrees of freedom
completely determined byw(x) at the edge~the well-known
case of Laplace’s equation with Dirichlet boundary con
tions! and therefore are not independent integration v
ables.

One final remark on the boundary conditiong250: The
Hamiltonian~density! corresponding to Eq.~B6! is given by
vd(Dxw)2. It is not allowed to choose a velocityvd,0, since
this would lead to energies that are unbounded from bel
In general, the boundary condition has to be taken in suc
way that the velocity of the chiral bosons has the same s
as the prefactor multiplyingi /4p in Eq. ~B1!, otherwise the
integration overg is ill-defined on the edge.
e
e

-

e

-
i-

.
a
n

APPENDIX C: INTERCHANNEL SCATTERING
AT THE EDGE

In this appendix we describe the various steps of the s
dard Q-field approach to~edge! disorder. For the genera
case ofm chiral edge channels, one can differentiate betwe
different types of disorder, depending on whether one allo
interchannel scattering or not. Although the different scatt
ing potentials do not give rise to fundamentally differe
physical results, it is nevertheless important to define
‘‘effective’’ edge Hamiltonian@Eq. ~2.10!# which gives rise
to the same result@Eq. ~2.7!# that was previously obtained
for 2D electrons. Below we shall show that the followingm
channel model satisfies our requirements

Hedge
kk8 52 ivddkk8]x1Vkk8~x!, ~C1!

whereV is a Hermitian random matrix and the elementsVkk8
are distributed with a Gaussian weight

P@V#5expH 2
1

g R dx tr V2J . ~C2!

The indicesk,k851,...,m label the edge channels. The for
~C1! implies that single potential scattering, as described
the 2D Hamiltonian

H2D5
1

2me
~pW 2AW !21V~xW !, ~C3!

does not naively translate into single potential scattering
the edge states as obtained by solving Eq.~C3! in the pres-
ence of an edge~infinite potential wall!. Rather than that, one
should allow for interchannel scattering of the ‘‘pure’’ eige
states as in Eq.~C1! in order to reproduce the effect of dirt i
the general 2D problem~C3!. We start from the following
generating function for the averaged free-particle propa
tors:

Z5E D@c̄c#E D@V#P@V#

3expH b (
p56,a, j j 8

R dx c̄p
a, j

3@~m1 ipv!d j j 82Hedge
j j 8 #cp

a, j 8J . ~C4!

Integration over randomness and introduction of the ma
field Q̃pp8

ab (x) by performing the Hubbard-Stratonovich tric
leads to

Z5E D@Q̃#expH 2
1

g
Tr Q̃2

1mTr ln@m1 ivd]x1 iQ̃1 ivL#J . ~C5!

Notice that the edge channel label is not present in the fi
variableQ̃, but it is simply contained in an overall factorm.
Notice also that the type of randomness as considered
has previously been introduced in a different context by
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name ofN-orbital scattering, whereN ~herem) is commonly
used for saddle-point and large-N expansion purposes.

We will next make use of the simple analytic properties
our 1D Hamiltonian and show that the saddle-point te
nique yields, in fact, exact results for allm and that therefore
there is no need to rely onm to be ‘‘large.’’ The stationary
point equation forQ̃,

i @Q̃sp#pp8
ab

5dabdpp8@e01~21!pi /2t#, ~C6!

can be written as

2

g
~e06 i /2t!52mE

2`

` dq

2p
@m2vdq1e06 i ~1/2t1v!#21

56 im/2vd , ~C7!

with the simple solutione050, t52vd /(mg). One may
next replace the originalQ̃ field by the following change of
variables:

Q̃→T21PT→ 1

2t
T21LT5

1

2t
Q. ~C8!

HereTP SU(2N)/S@U(N)3U(N)] are unitary rotations and
the block-diagonal HermitianPpp8

ab
5dpp8Pp

ab represent the
longitudinal components. ReplacingP by its saddle-point
value, as written in Eq.~C8!, turns out to be an exact state
ment, valid for allm. The reason is contained in the fact th
the fluctuations inP are weighted by propagators with pole
in either the positive or negative imaginary momentu
plane. All the momentum integrals therefore sum up to ze
giving rise to a zero weight to all orders in theP fluctuations.
The replacement of Eq.~C8! is exact when inserted in th
Tr ln. Equation~C5! factorizes into

Z5ZPZT ,
f
-

t

,

ZP5E D@P#I @P#expH 2
1

g
Tr P2J , ~C9!

ZT5E D@T#expH m Tr lnFm1 ivd]x1
i

2t
L1 iBG J

where allT dependence is contained in the quantityB ac-
cording to

B5vdT]xT
211vTLT215vdTD0T21. ~C10!

Equation~C9! can be evaluated further, and to lowest fe
orders in an expansion inB we obtain an effective action
which can be written as

ZT5E D@T#expSeff@T#

Seff@T#5
m

2vd
Tr LB~x!2

mt

8vd
Tr@B~x!,L#21¯

~C11!

5
m

2 R dx tr LT]xT
211

m

2vd
v R dx tr LQ

2
mtvd

8 R dx tr@D0 ,Q#2. ~C12!

The coefficients appearing in Eq.~C12! all have a clear
physical significance in the context of disordered edge st
~see also the main text!. In particular,m stands for the quan
tized Hall conductancesxy ; m/2pvd equals the total density
of edge statesredge. The quantitymtvd that appears in the
higher-dimensional operators is the 1D conductivitysxx of
m channel edge states. Here 2tvd is the linear dimension
which sets the smallest wavelength for theQ field variables,
andm/2 is the~quantized! conductance (gm) of the wire.
APPENDIX D: ACTION FOR Q AND A ON MULTIPLE EDGES

The generalization of Eq.~4.11! is given by

S@Q,A#5
b/2

~2p!2 E d2x d2x8n~xW !B†~xW !U0~xW2xW8!n~xW8!B~xW8!

1
ib

4p F E d2x n~xW !«mnk~Am
eff!†]nAk

eff1 (
a51

M

sa R
Ca

dxS Ax
†A0

eff2
2p

b
tr ÂxQD G

1 (
a51

M

saStop
(a)@Q#1

p

4bvd
(
a51

M

SF
(a)@Q#2

p

4b (
na

(
a51

M E
Ca

dkx

2p

1

veff~kx!
Utr I n

aQ~kx!2
b

p
~A0

eff!2n
a ~kx!U2

~D1!

1
1

8bvd
2 (

aÞb
sasb R

Ca

dx R
Cb

dx8(
na

F tr I n
aQ2

b

p
~A0

eff!2n
a G~x!

3U0~x,x8!F tr I 2n
a Q2

b

p
~A0

eff!n
aG~x8!, ~D2!
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where U0(x,x8) denotes the full 2D Coulomb interaction. All terms except those quadratic inQ arise by the obvious
replacementsm→n(xW ) and mr→(asarCa

in Eq. ~4.11!. The terms quadratic inQ can be understood as follows. In th
generalized form of Eq.~3.39!, the quadratic term in the plasmon field is given by

2
b

2 E d2x d2x8l~x!†U0
21~x2x8!l~x8!1

m

2pvd
(

a
R

Ca

dx l†l, ~D3!

indicating that the propagator forl between two points on the same edge will be very different from the propagator bet
different edges. In the former case the propagator is proportional to@U0

211 (m/2pvd)#21, which is exactly the form obtained
by combining the Finkelstein term with Eq.~D1!. In the latter case, the propagator is simply proportional toU0 . Finally, the
signs can be understood by noticing that the coupling of the plasmon field toQ is proportional to(asarCa

dx tr l̂Q.
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