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Resonant Raman scattering in self-assembled quantum dots
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A theoretical treatment for first-order resonant Raman scattering in self-assembled quantum dots~SAQD’s!
of different materials is presented. The dots are modeled as cylindrical disks with elliptical cross section, to
simulate shape and confinement anisotropies obtained from the SAQD growth conditions. Coulomb interaction
between electron and hole is considered in an envelope function Hamiltonian approach and the eigenvalues and
eigenfunctions are obtained by a matrix diagonalization technique. By including excitonic intermediate states
in the Raman process, the scattering efficiency and cross section are calculated for long-range Fro¨hlich exciton-
phonon interaction. The Fro¨hlich interaction in the SAQD is considered in an approach in which both the
mechanical and electrostatic matching boundary conditions are fulfilled at the SAQD interfaces. Exciton and
confined phonon selection rules are derived for Raman processes. Characteristic results for SAQD’s are
presented, including InAs dots in GaAs, as well as CdSe dots in ZnSe substrates. We analyze how Raman
spectroscopy would give information on carrier masses, confinement anisotropy effects, and SAQD geometry.
@S0163-1829~99!16847-4#
in
us
-
nt
e
e

t
ap
ld
e
a
ra
ch
th
ar

r

l
an

o
en
nd
m

op

-
n
to

to
eld
just
f its

ting
ure,

ting
ese

sible
nce
e

uide
lysis

ese
at a
he

the
D’s.
ri-
ci-
d in
le-

-
ese
on a
ive
th
on-
I. INTRODUCTION

Self-assembled quantum dots~SAQD’s!, produced by
clever flux interruption and control of growth conditions
molecular beam epitaxy chambers, have been vigoro
studied over the last few years.1 These semiconductor struc
tures are characterized by the strong quantum confineme
charge carriers they provide, given their nanometer dim
sions. Either by photoproduction, nearby doping, or tunn
ing into micron-size capacitance arrangements,2 electrons
and/or holes introduced into these structures experience
strong local potential provided by structural constraints,
plied gate voltages, as well as by long-ranged strain fie
The effective confinement potential includes the combin
effect of structural and electrostatic potentials, as well
lattice and strain anisotropies, and may have, in gene
quite a complicated symmetry. Since several growth te
niques and conditions are employed to fabricate SAQD’s,
resulting geometries and sample configurations yield a v
ety of different structures.1

It is experimentally clear that SAQD’s shapes vary ove
wide range, from well-facetted pyramids,3 to smoother flat
lenticular shapes,1 depending critically on growth and loca
environment conditions, as well as thermal treatment
regrowth of the substrate material. Photoluminescence~PL!
and photoluminescence excitation~PLE! experiments are
routinely used to provide information on the overall size
the resulting SAQD’s, since due to the carrier confinem
there is a direct correlation between decreasing sizes a
larger blueshift of the PL signal. Mapping of the quantu
dot shape is also accomplished by a variety of microsc
techniques, from transmission electron microscopy~TEM! to
atomic force microscopy~AFM! and scanning tunneling mi
croscopy~STM!, but quantitative and detailed informatio
on the effective potential in a given structure is difficult
PRB 600163-1829/99/60~24!/16747~11!/$15.00
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obtain. As in many other problems, it is always desirable
have alternative characterization techniques which yi
complementary information. Raman scattering provides
such alternatives, as we will describe here, because o
sensitivity to structural parameters of the system.

We should emphasize that a large number of interes
experimental results have already appeared in the literat
where the SAQD’s are characterized by PL and PLE.1 How-
ever, recent work by several groups has yielded interes
first results of Raman scattering in these systems. In th
works, light scattering has been used to characterize pos
intermixing of materials upon deposition or as a conseque
of thermal treatment,4 and to study the shifting of interfac
modes due to strain.5 Similarly, an exploration of optical and
acoustic phonons in quantum dots embedded in a waveg
was presented in Ref. 6. In these works, however, no ana
is made of the intervening electronic~or excitonic! states,
perhaps due to the lack of a specific model to compare th
experiments against. One should mention, however, th
preliminary analysis of the role of electronic states in t
inelastic light scattering was carried out by Hawrylaket al.,
with a successful qualitative comparison.7

In this paper, we present a theoretical treatment of
resonant Raman scattering by confined phonons in SAQ
By full incorporation of the elements entering these expe
ments, namely the effects of the effective potential on ex
tonic states, the LO-phonon dispersion for modes confine
the dot, and a detailed calculation of the various matrix e
ments involved in the Fro¨hlich coupling, we provide the ba
sis for quantitative analysis of Raman experiments in th
systems. For concreteness, we focus our attention here
model of asymmetric dot confinement, where the effect
potential is assumed to be that of a cylindrical pill box wi
elliptical cross section, and we study the effects of this n
circular geometry on theinelastic light scatteringand optical
16 747 ©1999 The American Physical Society
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response. We find that the elliptical symmetry has strong
clear signatures in the light scattering cross section, as
as in PL and PLE. Moreover, we show that detailed analy
of the Raman coupling could give one information on t
effective mass of the carriers, since they affect strongly
general features and overall peak distribution and amplitu
of the Raman intensity profiles.

Since the Raman scattering data is expected to be m
prevalent in the study of these systems in the near future,
because of its intrinsic interest, we present a detailed ana
of a model for a SAQD which captures the essential phys
of the problem. In fact, the cylindrical box model is likely t
be a good model of rather flattened nonfacetted dots, wh
the characteristic dimensions are 3 nm in height and 28
in diameter,4 for example. Similarly large diameter/heigh
aspect ratios are typical in these systems and our m
should provide a good description.

The remainder of the paper is organized as follows. S
tion II will develop the theory for Raman resonant scatter
~RRS! applied to the case of quantum disks with a lar
aspect ratio, discussing the nature of the excitonic state
these structures, as well as the matrix elements involv
exciton-phonon interaction. Section III develops the expr
sions for the Raman polarizability and cross section, a
presents results for the InAs/GaAs system, as well as in
CdSe/ZnSe system. Finally, Sec. IV contains conclusi
and discussion of results. In the Appendix, we present so
technical details of the calculations.

II. THEORY OF RRS IN QUANTUM DISKS

A schematic picture of a short-cylindrical quantum di
with an oblate spheroidal profile is shown in Fig. 1. W
assume that the QD is grown along the@001# direction de-
noted byZ, while the@100# and @010# directions lie alongX
andY, respectively. In a backscattering configuration on
@001# surface of cubic semiconductors, the Raman tensor
be written as8

RJ5S aF aDP 0

aDP aF 0

0 0 aF

D , ~1!

FIG. 1. A schematic picture of the self-organized quantum
modeled as a quantum disk with an elliptical shape in theXY plane
and heightLz . The Raman backscattering configuration along
Zuu@001# direction is shown. Lateral confinement is harmoniclik
with Lx/y5A\/mvx/y.
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with aF andaDP being the Raman polarizability for allowe
and forbidden scattering, respectively, at the level of the
pole approximation. The allowed scattering by optical lon
tudinal phonons in bulk semiconductors is via the deform
tion potential, while the Fro¨hlich-like events are forbidden
In this case, the square Raman polarizability is given by9

uau25ues•RJ•el u25(
f

Uh lhs

2p

Vc

u0

1

\v l
Wf i~vs ,es ;v l ,el ! U2

,

~2!

where v l (vs) is the incident~scattered! light frequency
with polarizationel (es) and h l (hs) is the corresponding
refraction index of the sample, and the sum over final sta
refers to the different final phonon modes involved in t
transition, as we will specify later.Vc is the volume of the
primitive cell andu0 is the relative phonon displacement9

For a first-order process the probability amplitude is e
pressed as

Wf i5 (
m1 ,m2

^ f uHE2Rum2&^m2uHE2Pum1&^m1uHE2Ru i &
~\vs2Em2

1 iGm2
!~\v l2Em1

1 iGm1
!

.

~3!

Here, um j& ( j 51,2) refers to the excitonic intermediat
states in the QD with energyEm j

and lifetime broadening

Gm j
. The exciton-radiation interaction can be expressed a10

HE2R5 (
k,e,m

$Tcv
m Dm

† ak,e1Tcv
m* Dmak,e%1H.c., ~4!

where Dm
† (Dm) is the creation~annihilation! operator for

excitons with quantum numberm andak,e is the annihilation
photon operator with wave vectork and polarizatione. Tcv

m

is the exciton-photon coupling coefficient which for dire
allowed transitions betweenc andv bands and in the electric
dipole envelope function approximation takes the form11

Tcv
m 5

e

m0
A 2p\

Vvh2
e•pcvE Cm* ~re5r0 ,rh5r0!d3r0 .

~5!

Here,Cm(re ,rh) is the exciton wave function of the quan
tum disk andpcv5^cupuv& is the interband optical matrix
element of the momentum operator between conduction-
valence-band Bloch functions.

We assume thatLx ,Ly@Lz , as observed in typical SAQD
samples, which results in the optical phonons being confi
on theZ direction, leading to a quantization of the phono
wave vectorqz along the QD axis. In this case, the excito
phonon interaction can be taken as

HE2P5 (
m1 ,m2

Sm1

m2~q,n!Dm2

† Dm1
bq,n

† 1H.c., ~6!

where bq,n
† is the creation operator for a phonon with a

in-plane wave vectorq and frequencyvn(q). In zinc-blende
type semiconductors, and following Eq.~1!, the Fröhlich
mechanism can be observed in the backscattering config
tion Z(X,X)Z̄ for a @001# surface. Due to the long wave
length of the optical transitions involved, one can use
dipole approximation~the phonon wave vector is taken to b

t

e
,
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zero!, and then the Raman process is forbidden in the bu8

However, in semiconductor nanostructures such as quan
wells and QDs the confinement of the phonon makes
scattering process allowed, and the Fro¨hlich mechanism even
becomes the strongest.12 Considering only the diagonal com
ponent of the Raman tensor~1!, the expression for the
exciton-LO phonon coupling constant is13

Sm1

m2~q,n!5
CF~vL /vn!1/2

@q21~np/Lz!
2#1/2

3^m2uFF
(n)~ze!e

2 iq•re2FF
(n)~zh!e2 iq•rhum1&

~7!

with

FF
(n)~z!55

eqz@eqLz/22~21!ne2qLz/2#; z<2
Lz

2

2 cosFnp

Lz
S z1

Lz

2 D G ; 2
Lz

2
<z<

Lz

2

e2qz@~21!neqLz/22e2qLz/2#; z>
Lz

2
,

~8!

vn
2~q!5vL

22bL
2F S np

Lz
D 2

1q2G ; n51,2, . . . , ~9!

and

CF52 ieF2p\vL

V
~«`

212«0
21!G1/2

. ~10!

In these expressions,vL andbL describe the quadratic LO
phonon dispersion in the bulk semiconductor, while«0 and
«` are the static and optical dielectric constants, respectiv
The above equations include the confinement of the pho
wave function and resulting eigenfrequencies along thZ
axis. The phonon wave vector is then described by a perp
dicular componentq to the SAQD growth (Z axis! direction,
and a parallelqz component~quantized due to the confine
ment in the quantum disk!. For the backscattering configura
tion shown in Fig. 1, only LO vibrations withqz5np/Lz
~with n51,2, . . . ), andq50 are allowed to participate.12

We should notice that the Fro¨hlich potential~8! is only valid
in the limit q'0, where the coupling between the longitud
nal and transverse polarization modes, which appears
consequence of the matching boundary conditions, can
disregarded. The electron-phonon interaction~8! satisfies the
electrostatic boundary conditions~continuity of the electro-
static potential and theZ component of vector displaceme
field! as well as the mechanical boundary conditions (u' is
continuous anduz is exactly zero at the interfaces, whereu is
the phonon displacement!. A more detailed analysis of th
electron–optical-vibration interaction is given elsewhere.14

It is clear from Eq.~7! that in order to evaluate the Rama
polarizability, it is necessary to know the excitonic statesCm

and the matrix elementŝCm2
uFF

(n)(ze)e
2 iq•reuCm1

& in the
quantum disk. In the following we consider the exciton
.
m

is

y.
n

n-

a
be

effects in the framework of the Wannier model for th
electron-hole pairs confined to semiconductor SAQDs w
elliptical cross section.

A. Excitonic states

The excitonic wave functions are taken as a solution
the Hamiltonian

H5He1Hh2
e2

«A~xe2xh!21~ye2yh!21~ze2zh!2
,

~11!

where

Hi~r i !5pizS 1

2mz
i ~zi !

D piz1
1

2m'
i

pi'
2 1

1

2
m'

i ~vx
2xi

21vy
2yi

2!

1V~zi !. ~12!

Here, m'
i (pi') and mz

i (piz) ( i 5e,h) are the carrier ef-
fective masses~momentum operators! in the XY plane and
the Z axis, respectively,V(zi) is the carrier confinement po
tential, and« is the dielectric constant~notice we ignore
small image charge effects here, although they could be
troduced straightforwardly!. For flat quantum disks, wher
the conditionLx ,Ly@Lz is fulfilled, the anisotropic effect
along theZ axis can be disregarded. The effective ma
mz

i (zi) and carrier confinement potential are taken as step
functions. That is, the potentialV(zi) andmz

i (zi) have con-
stant values in and outside the QD. On the other hand,
shape and confinement anisotropies in theXY plane are
modeled by harmonic potentials with frequenciesvx and
vy , where Avy /vx5Lx /Ly .15 In this case, whereLx ,Ly
@Lz , the lateral confinement is weaker than along the p
pendicular direction. Therefore, the excitonic Bohr radiusaB
is much larger than the electron-hole pair mean value al
the Z direction, and the excitonic motion can be consider
decoupled from theZ component. Hence, Eq.~11! can be
cast as

H~re ,rh!5H0~re ,rh!1Hp~re ,rh!, ~13!

H0~re ,rh!5He~re!1Hh~rh!2
e2

«ure2rhu
, ~14!

andHp is a perturbation term given by

Hp~re,rh!52
e2

«
$@~re2rh!21~ze2zh!2#21/2

2ure2rhu21%, ~15!

wherer is the carrier coordinate in theXY plane. The solu-
tion of the HamiltonianH0 is readily written in separable
form by a product of the wave function in the plane and t
electron and hole subband wave functionsf i(zi). The exci-
ton in-plane motion is described using the center-of-m
coordinatesR5(mere1m'

h rh)/(me1m'
h )5Xx̂1Yŷ, andr

5re2rh5xx̂1yŷ. Correspondingly, the exciton envelop
function can be written as
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Cm~re ,rh!5fne
~ze!fnh

~zh!wNx ,Ny
~R!Qm~r!. ~16!

The functionsfne
(ze) @fnh

(zh)#, wNx ,Ny
(R), and Qm(r)

represent the confinement of the carrier by t
V(ze) @V(zh)# band profile in theneth @nhth# Z-level, the
two-dimensional~2D! center-of-mass motion of the excito
with quantum numberNx andNy , and the relative in-plane
exciton motion in themth state, respectively. The solution
for these functions as well as the contribution to the to
exciton energy given by the perturbation HamiltonianHp are
discussed in the Appendix. The purely 2D exciton probl
described byH0 in Eq. ~14! has been solved by direct matr
diagonalization in a basis of optimized harmonic oscillato
as described in Ref. 15. We refer the reader to that work
details of the resulting excitonic states in 2D. In the curr
work, moreover, we include the 3D character of the probl
via thef(z) functions and the correction provided byHp in
Eq. ~15!.

Figure 2 presents the numerical results for the thr
dimensional exciton correction̂CmuHpuCm&5DEm(ne ,nh)

FIG. 2. Three-dimensional Coulomb potential correcti
DEm(ne ,nh) in an InAs/GaAs SAQD with circular cross section,
a function of the quantum dot sizeLz . The first two electron and
hole subbandsne , nh51,2 are considered.~a! L5ALxLy520 nm,
and in-plane internal exciton quantum numberm50 ~solid lines!,
and degeneratem51 and 2~dashed!. ~b! DE0(ne ,nh) for L510
nm ~solid lines!, L520 nm ~dashed!, andL530 nm ~dotted!.
l

,
r
t

-

in InAs/GaAs quantum disks. We have used the values gi
in Table I for the calculations, withme50.023m0 , mz

h

50.34m0, andm'
h 50.036m0. The DEm contribution to the

exciton energy for circular cross section withLx5Ly520
nm is shown in Fig. 2~a! as a function of the quantum do
sizeLz ranging from 2 to 10 nm. Different internal quantu
numbersm50 ~solid lines! and m51 and 2~dashed lines!
are shown for the first two electron and hole subbandsne
5nh51 and 2. AsLz decreases, the exciton becomes mo
two dimensional and the 3D energy correction is expecte
decrease, as seen in general. At a certain value (Lz5Lz0),
however,DEm reaches a minimum and forLz,Lz0 it grows
rapidly. For smallerLz values the quantum confined carri
energy is close to the band offset energy and the carrier w
function penetrates into the surrounding medium. That is,
carrier becoming less confined. The minimum positionLz0
strongly depends on the electron and hole subbands, as
in Fig. 2~a!. We have limited the curves in Fig. 2 for value
of Lz satisfying the condition ^ne ,nhuze

21zh
2une ,nh&

50.25r s
2(m), which corresponds toLz;5 nm for the exciton

branchne5nh52. As the perturbationDEm has been calcu-
lated under the approximation^ne ,nhuze

21zh
2une ,nh&

,r s
2(m) ~see Appendix!, it is no longer valid for smaller

values of Lz . In the regime whereLz is very small, the
exciton returns to a 3D character, although with a ‘‘pinne

TABLE I. Parameters used in calculations. If heavy- and lig
hole @~hh! and~lh!# masses do not appear explicitly in the referen
cited, they were calculated from the bulk Luttinger parametersg1

andg2, as described in text.

Parameters InAs GaAs CdSe ZnS

Eg ~eV! 0.45a 1.51a 1.84a 2.82a

«0 14.6a 9.3e

vL (cm21) 259.7b 292a 209a 250a

bL 1.38931026 c 1.57631026 d

me/m0 0.023a 0.067a 0.112e 0.16a

0.08f

mz
h/m0 0.34 ~hh!a 0.38 ~hh!a

0.027~lh!a 0.09 ~lh!a 1.2f 0.38a

0.08e

m'
h /m0 0.036~hh!a

0.088~lh!a 0.45e

0.08e

DEc ~%! 40% 40%

DEv ~%! 60% 60%

Gp (cm21) 2 2

aReference 23.
bReference 5.
cReference 20.
dReference 24.
eReference 25.
fReference 26.
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center of mass. In fact, the confinement is so strong that
electron is found with large probability outside the Q
while being bound to the hole~which is trapped inside the
disk due to its heavier massmz

h@me) by the Coulomb inter-
action.

Figure 2~b! is devoted to the variation ofDE0 for values
of L5Lx5Ly ranging from 10 to 30 nm. As the disk radiu
gets larger, in-plane internal motion is less confined a
DEm(ne ,nh) tends to a fixed value nearly independent oL
and subband quantum numbersne ,nh . In the case of Fig.
2~b!, that takes place forL*30 nm. Similar results to thos
presented in Fig. 2 were obtained for a SAQD with elliptic
cross section~not shown!. Using this correction for the gen
eral case, the total exciton energy is equal to
io
o

lt

fe
e

d

l

E~m,Nx ,Ny ,ne ,nh!5Eg1~Nx11/2!\vx1~Ny11/2!\vy

1Ene
1Enh

1Em1DEm~ne ,nh!,

~17!

whereEg is the gap energy. As we have seen, for all ca
studied under the conditionsLz!Lx ,Ly , the contribution of
DEm to the exciton binding energy is very small and, in fir
approximation, it could be disregarded. We include it in o
numerical results for completeness.

B. Matrix elements

Following the results of the Appendix for the excito
wave function, the corresponding coefficientTcv

m can be writ-
ten as
ation

y

nt case
Tcv
m 52

e

m0
e•pcvS 2p\

Vvh2

m

M

Nx!Ny!

2Nx1NyF S Nx

2 D ! S Nx

2 D ! G2D 1/2

(
nx ,ny

A~nx!A~ny!a2nx,2ny
~m!E

2`

`

wne
~z!wnh

~z!dz, ~18!

with A(n)5(21)n(2n21)!!/A(2n)!. The direct allowed optical transitions are those that produce excitons in themth
excitonic state forne2nh equal to an even number~for a symmetric well!, while the center-of-mass quantum numbersNx ,Ny
in theXY plane must also be even. Therefore, we only need to evaluate thea2nx,2ny

coefficients for each exciton statem @with

anx ,ny
defined as per Eq.~A9!#.

For the exciton-phonon matrix interaction proportional to^Cm8uFF
(n)(z)e2 iq•ruCm&, and involved in Eq.~7!, we find that

~for m: $ne ,nh ,Nx ,Ny ,m%),

^m8,Nx8 ,Ny8 ;ne8 ,nh8uFF
(n)~ze!e

2 iq•reune ,nh ;Ny ,Nx ,m&5^m8ue2 iq•rmh /Mum&^ne8uFF
(n)~ze!une&dn

h8 ,nh
^Nx8ue

2 iqxXuNx&

3^Ny8ue
2 iqyYuNy&, ~19!

where the separability of the wave functionsCm has been used, and

^N8ue2 iqxXuN&5expS 2
qx

2

4aM
2 D minFAN8!

N!
,AN!

N8!
G 2S 2

iqx

A2aM
D uN82Nu

Lmax(N,N8)
uN82Nu F S qx

A2aM
D 2G , ~20!

with aM
2 5Mvx /\, M is the total exciton mass, andLa

b(j) are the associated Laguerre polynomials. From the above equ
it is clear that for largerLx in comparison with the lattice constanta0, the main contribution to Eq.~20! comes fromqx50.
In this case, it is possible to show that Eq.~20! reduces todN8,N . Thus, the exciton-phonon matrix elements are given b

^Cm8uFF
(n)~ze!e

2 iq•reuCm&5dN
x8,Nx

dN
y8 ,Ny

dm8,mdn
h8 ,nh

^ne8uFF
(n)~ze!une&. ~21!

A similar expression is obtained for the contribution from holes. The matrix elements of the Fro¨hlich potentialFF
(n)(z)

betweenni8 andni electronic states are straightforward calculations and will not be presented here. The most importa
ni5ni8 can be cast as

^ni uFF
(n)~z!uni&5~21!n11H 1

kB
1

1

kA

mAkB

mBkA
1

Lz

2 F11S mAkB

mBkA
D 2G J 21H 1

kA

mAkB

mBkA

1

12~2kALz /np!2
1

Lz

2 F11S mAkB

mBkA
D 2G J .

~22!
as
ue
es,
the

ave
It is important to emphasize that in the dipole approximat
(q50) the Fröhlich mechanism for Raman scattering is n
allowed in bulk semiconductors.16 This rule is broken due to
the different confinement of electron and hole, which resu
in a noncancellation effect of the matrix element~for q
50), whenever a nanostructure is considered. This dif
n
t

s

r-

ence between electrons and holes is known
‘‘decompensation.’’8 In nanostructures, this effect arises d
to the finite potential barrier and their different mass
and/or due to electron-hole correlation. The values of
Raman scattering cross section in theZ(X,X)Z̄ configuration
depend on the differences between electron and hole w
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functions through the Fro¨hlich Hamiltonian. In our approach
if an infinite barrier along the growth direction is assume
the Fröhlich contribution to the Raman scattering vanish
since in that case, the mass asymmetry does not play a ro
determining the wave functions.

For theZ-confinement model assumed, symmetric alo
that axis, Eq.~21! restricts the phonon modes to only ev
values,n52,4, . . . , and no oddnumbers contribute to the
cross section. Hence, the following selection rules are
tained for the quantum numbers involved in Eqs.~7! and
~18!:

une2nhu50,2, . . . ; Nx ,Ny50,2,4, . . . , with

DNx,y50; m50,1, . . . ; n52,4, . . . . ~23!

That these selection rules are obeyed will allow us to clea
identify the various contributions to the Raman scatter
cross section and intensity, as we will see in the next sect

III. RAMAN POLARIZABILITY

The diagonal component of the Raman tensoraF for the
nth phonon can be obtained by introducing the calcula
matrix elements into Eq.~2!, so that

aF
(n)52 ia0F (

Nx ,Ny

Nx!Ny!

2Nx1NyF S Nx

2 D ! S Ny

2 D ! G2

3(
m

Qm
2 ~0! (

ne ,nh ,ne8 ,nh8
E

2`

`

fn
e8

* fn
h8

* dz

3
1

@\v l2E~m,Nx ,Ny ;ne ,nh!1 iG1#
E

2`

`

fne
fnh

dz

3
1

n F dn
h8 ,nh

^ne8uFF
(n)une&

@\vs2E~m,Nx ,Ny ;ne8 ,nh!1 iG2#

2
dn

e8 ,ne
^nh8uFF

(n)unh&

@\vs2E~m,Nx ,Ny ;ne ,nh8!1 iG2#
G , ~24!

where

a0F54
e3

m0
2
Apa0

3M*

v lvs

m2

M

Avxvy

\v l
A~vL

22vT
2!

«`

f P2

p
,

~25!

M* is the reduced mass of theatomsinvolved in the optical
mode,P5 z^xupxus& z, f is equal to 1 or 1/3 for the heavy- o
light-hole contribution, respectively, and the approximati
vL'vn has been used to obtain Eq.~25!.

The Raman polarizability, the Raman scattering efficien
per unit length and unit solid angle for a given final confin
phonon,]S(n)/]V ~also known as Raman intensity!, and the
differential Raman cross section]2s/]V]vs per unit of
solid angle are given by the equations

]S(n)

]V
5V

hs

h l

vs
3v l

c4 S u0

Vc
D 2

uaF
(n)u2 ~26!
,
,
in

g

-

ly
g
n.

d

y

and

]2s

]V]vs
5V2

hs

h l

vs
3v l

c4 S u0

Vc
D 2

(
n

uaF
(n)u2d~vs2v l2vn!.

~27!

The Bose-Einstein phonon factors in Eqs.~26! and ~27! are
neglected because we consider Raman processes at low
perature, so that the number of thermal phonons is ne
gible. The two denominators in Eq.~24! can produce reso
nances at different photon energies. The first one~incoming
resonance! at \v l5E(m,Nx ,Ny ;ne ,nh), and the second
one ~outgoing resonance! at \vs5E(m,Nx ,Ny ;ne ,nh8) or
\vs5E(m,Nx ,Ny ;ne8 ,nh) which correspond to phonon
emission by electrons or holes, respectively. As in photo
minescence excitation measurements, the Raman scatt
efficiency profile~for a given pairne ,nh of electron and hole
subbands! describes excitonic states with even center-
mass quantum numbers and oscillator strength equa
Qm

2 (0).15 Quantum disks with circular cross section presen
degeneracy of orderN11, whereN5Nx1Ny , due to their
XY symmetry. Therefore, the excitonic states satisfying
condition Nx1Ny5N, with Nx ,Ny being even numbers
contribute to the same peak in the Raman profile. On
other hand, for elliptical cross section (LxÞLy), the center-
of-mass and relative motion degeneracies are broken,
due to the reduction in the density of states, the obser
Raman peaks will be smaller than those observed in the
cular cross-section case. The relative energy position of
peaks in the Raman scattering efficiency profiles and th
amplitudes give a direct measurement of the ratioLx /Ly and
the quantum disk geometry.

In the following, we analyze the Raman processes for
case of InAs/GaAs and CdSe/ZnSe SAQD’s. The incom
~outgoing! resonances are denoted by the symbol I~O! in the
figures, and the main excitonic state contributions by the
of quantum numbers (m,Nx ,Ny). For simplicity, and to il-
lustrate the effectiveness of this technique, we have o
considered an incoming frequency range belonging to
excitonic branchne5nh51, with the material parameter
listed on Table I. Considering incoming resonance with ot
excitonic branches would give rise to contrasting informat
related to differences in excitonic wave functions and ma
elements. A full analysis of the Raman response in e
system should provide vast supplementary information
PLE and PL spectra to characterize completely the SAQ
involved, and the confinement potentials that give rise
these exciton states.

A. InAs/GaAs

Figure 3 displays the Raman intensity profiles for then
52 LO confined mode of InAs dots embedded in a Ga
matrix, in the vicinity of the fundamental absorption edg
for the cases of~a! circular geometry,~b! elliptical cross
section~with Ly52Lx). Vertical lines~terminated by a filled
circle for I resonances and by a dark square for O re
nances! represent the strength of the main contribution
each resonant peak. It should be noticed that for clos
spaced peaks the interference between different resonan
els is strong and the total intensity is not simply the result
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single contributions. This effect is strongest in the case
circular geometry, shown in Fig. 3~a!. The Raman profile
displays a series of center-of-mass peaks for each exc
internal statem, closely resembling the excitonic oscillato
strength. For the case of circular geometry, the states
Nx1Ny5N are all degenerate and the Raman features
pear then as relatively large resonant peaks for laser en
equal to the incoming or outgoing energy transitions. No
in fact, that there are many doubly annotated features in
3~a!, such as~0,0,2! and ~0,2,0!, indicating degeneracies. I
contrast, Fig. 3~b! clearly shows that we are dealing wit
elliptical cross-section dots, since the circular symmetry
generacy is lifted, and a diverse set of incoming and out
ing resonances appear in the Raman scattering efficie
The relatively small peaks, rare interference, and overall
quency splitting between peaks are a direct indication of
QD anisotropy. Note, in particular, that the transitions
volving the ground state~0,0,0! are substantially stronger

FIG. 3. Raman intensity as per Eq.~26! as a function of laser
energy for InAs dots in GaAs. Figures correspond to then52 LO
confined mode of InAs withme50.023m0 , mz

h50.34m0, andm'
h

50.036m0. ~a! Circularly symmetric case withLz52 nm, andLx

5Ly520 nm. ~b! Asymmetric QD with Lz52 nm, L5ALxLy

520 nm, and 2Lx5Ly . The incoming~I! and outgoing~O! reso-
nances are labeled by their quantum numbers (m,Nx ,Ny), with ne

5nh51 in all cases. The strength of the main contribution to
incoming~outgoing! resonance is indicated by a vertical line with
filled circle ~square!.
f

on

th
p-
gy
,
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-
-
y.
-
e
-

both in the I and O channels. Similarly, the large g
(;30 meV! between the first two peaks in Fig. 3~a! is now
much smaller (;15 meV! in Fig. 3~b!, due to the lower
symmetry of this dot.

Let us now look at the overall Raman cross section in t
system. Figure 4 shows this quantity for the SAQDs of l
eral dimensionL54 nm and three different values of thick
nessLz52, 3, and 4 nm, at\v l in the incoming resonance
with the lowest excitonic state (m5Nx5Ny50, ne5nh
51). The InAs bulk phonon frequency of 259.7 cm21 used
to evaluate the InAs/GaAs SAQD phonon dispersion ta
into account the lattice mismatch stress and the gro
conditions.5 Thed function in Eq.~27! has been replaced b
a Lorentzian with phonon linewidthGp52 cm21. The pho-
non frequency depends onLz due to the phonon confinemen
as given by Eq.~9!. The calculated Raman spectra sho
similar behavior in the case of circular geometry (Lx5Ly) or
elliptical cross section~with Ly52Lx). It can be seen in Fig
4 that then54 phonon peak increases asLz decreases~apart
from a shift in energy!. This can be explained through th
denominator@12(2kALz /np)2# in Eq. ~22!. This factor has
a minimum forn52 askALz<p ~the equality is achieved in
the limit of an infinitely deep well or largeLz values!. This
fact explains why the relative intensityI n52 /I n54 decreases
asLz decreases. It can be noted that forLz<5 nm we have
only one exciton branch (ne5nh51) contributing to the
cross section.

Role of carrier masses

Let us comment on the important effects of the vario
components of the carrier effective masses on the Ra
profile. First, we observe that the confinement induced ren
malization of the fundamental edge is a sensitive function
the carrier masses along the growth direction and the b
offsets. Second, the shape of the Raman profiles is de
mined to a great extent by the in-plane motion, and con
quently, by the carrier in-plane masses. Thirdly, the abso
values of the Raman intensity strongly depend on
electron-hole decompensation effect in the growth directio8

FIG. 4. Raman cross section of InAs/GaAs SAQDs with circu
symmetry,L5ALxLy520 nm, andLz varying from 2 to 4 nm, at
\v l in incomingresonance with the lowest exciton level. Contrib
tion of different phonon modesn as indicated.



es

u
o
d

he
l

in
c

ly

ice,

ls
ven

so
ults
his

ide
the
ing
ffi-

m-
ffi-

n a
is-

lar-
he

o

ri-
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which, as discussed above, depends on theZ masses and
band offsets. Figure 5 shows the Raman intensities~for the
n52 LO phonon! calculated using different sets of mass
~see Table I!: ~a! bulk mz heavy hole (m' exhibits a light-
hole character!, ~b! bulk mz light hole (m' is now the
heavier one!, and~c! isotropic massesme5mh50.08m0. The
light-hole contribution to the scattering efficiency is abo
900 times weaker than that corresponding to the heavy h
due to the factorf 51/3 in Eq.~25! and that the electron an
light-hole masses in the bulk are very close (me50.023m0,
and mz

h50.027m0). The effective hole masses used in t
calculation of Figs. 5~a! and 5~b! arise from the diagona
components of the 434 k•p Hamiltonian.17 The masses are
derived from the bulk Luttinger parametersg1 andg2, where
mz

h5m0 /(g172g2) and m'
h 5m0 /(g16g2). The case of

Fig. 5~c! is intermediate between~a! and~b!, and is presented
only to illustrate how different masses affect the Raman
tensity profiles. In this last case, decompensation differen
between the hole and electron wave functions are due on

FIG. 5. Raman intensity profiles calculated for different sets
hole mass values, for InAs quantum disks in GaAs, withLz52 nm
and Lx5Ly520 nm. Masses as indicated in each panel:~a! me

50.023m0 , mz
h50.34m0 , m'

h 50.036m0, as in Fig. 3~a!; ~b! me

50.023m0 , mz
h50.027m0 , m'

h 50.088m0; ~c! me50.08m0 , mz
h

50.08m0 , m'
h 50.08m0. Incoming~I! and outgoing~O! resonances

indicated as in Fig. 3.
t
le,

-
es
to

the different conduction- and valence-band offsets. Not
by comparing all three panels, that the more symmetricm'

and me are, the more periodic the various excitonic leve
appear in the Raman profiles. As mentioned before, gi
that the carrier masses affect the Raman response
strongly, one could, in principle, use the experimental res
in a given system to extract information on the masses. T
would be a very specific and powerful technique to prov
carrier masses in the relatively complex environment of
SAQDs, where strains, facetting, and even hole mix
makes their theoretical prediction and estimation quite di
cult.

B. CdSe/ZnSe

To illustrate the role of the specific materials that co
pose the SAQD, Fig. 6 shows the Raman scattering e
ciency as a function of the laser energy for CdSe dots i
ZnSe substrate. Typically, the CdSe/ZnSe quantum disk
lands are obtained by atomic layer epitaxy or by molecu
beam epitaxy.18,19 Here, as before, we show the case of t

f FIG. 6. Raman scattering efficiency as a function of\v l for
CdSe/ZnSe SAQDs for then52 andn54 LO confined modes of
CdSe.~a! Circular cross section, whereLx5Ly54 nm andLz52
nm. ~b! Elliptical cross section withL5ALxLy54 nm, Ly52Lx ,
and Lz52 nm. Notation as in Fig. 3. Notice much weaker cont
bution fromn54 modes.
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PRB 60 16 755RESONANT RAMAN SCATTERING IN SELF-ASSEMBLED . . .
n52 LO confined phonon for a quantum disk with circul
cross section in~a!, and for a nonsymmetric one in~b!. In
Fig. 6~a! Lx5Ly54 nm andLz52 nm, while in Fig. 6~b!
L5ALxLy54 nm, butLy52Lx andLz52 nm. As in Fig. 3,
the vertical lines represent the relative strength of the m
excitonic transitions in the total Raman intensity, all of the
corresponding to the exciton branch withne5nh51. The set
of parameters used is given in Table I. To obtain the pho
dispersion we used the bulk frequency ofvL5209 cm21

and vL5250 cm21 for CdSe and ZnSe, respectively, fo
lowing the confined phonon model described in Sec.
Here, the lattice mismatch stress and the growth conditi
have not been taken into account, mainly due to the lack
knowledge concerning the phonon frequencies on this t
of SAQD’s. An estimation using pseudomorphic strai
would shift the CdSe frequency tovL'239 cm21,20 for
which there is recent experimental evidence,21 although fur-
ther verification is needed.

The principal features of the resonance profile presen
Fig. 6 are as follows: First, the outgoing resonances
slightly higher than the incoming ones. Second, additio
peaks appear in between I(0,Nx ,Ny) and I(1,Nx ,Ny) when
the circular symmetry is broken, just as in the InAs ca
with the number of visible peaks increasing with the qua
tum disk lateral dimensions. Here, we also show the co
sponding contribution from then54 phonon mode. As be
fore, this results in a much weaker peak, although the sm
energy shift is clearly visible and likely measurable in cro
section plots. In comparison with Fig. 3, note how success
I or O peaks appear much farther here, as the lateral siz
smaller in this case, producing stronger quantization des
a largerm'

h mass. In fact, as the exciton size~or effective
Bohr radius! is quite small in this material,L*10 nm would
yield very weak quantum confinement and a more continu
density of states.

IV. CONCLUSIONS

We have presented a theoretical formulation for the o
phonon resonant Raman profile and cross section in SAQ
with flat cylindrical symmetry. We find that the pattern of th
scattered light intensity is characterized by the hole in-pl
mass and lateral confinement anisotropies, while effec
masses and disk thickness along the growth direction de
mine to a great extent the Raman spectra and their abs
values. The Raman selection rules obtained for the in-pl
center-of-mass quantum numbersDNx5DNy50, allow a
qualitative evaluation of the anisotropy geometry of the
land. The difference in frequency between any two incom
~or outgoing! resonance peaks in the Raman scattering e
ciency profile is proportional to the square lateral confin
ment@(Nx2Nx8)Lx

221(Ny2Ny8)Ly
22#. We also find that the

Raman spectra are nearly independent of the ratioLx /Ly ,
even when the intensity depends strongly on that ratio.

We have also shown how the relative values of the v
ous carrier masses change the Raman response in a qu
tive fashion. This sensitivity to the masses can, in turn,
used to characterize the system not only as far as pho
dispersions~which control to a great extent theposition of
the Raman features!, but also the effective masses of hol
and electrons participating in the scattering~which change
in
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substantially the relative intensities and various peak sp
tings!.

One should comment, moreover, that perhaps the m
natural and unambiguous comparison of our calculati
with experiments would occur for results of micro-Ram
probes. Current probes sample typically the entire dot
semble in the system and yield naturally a convolution of
single dot response with the distribution. Sample or str
field inhomogeneities would make the analysis more
volved and likely not as precise. The local probe, on
other hand, is a fascinating technique capable of not o
studying the frequency dependence of the Raman yield~ex-
ploring both incoming and outgoing resonances!, but it also
gives information on thespatial dependence of the cros
sections.21
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APPENDIX

1. The Z motion of the carrier

In the effective-mass approximation theZ motion of the
carriers is described by the Schro¨dinger equation

FpzS 1

2m~z!
pzD1V~z!Gfn~z!5Enfn~z!, ~A1!

and

V~z!5H 0; uzu<
Lz

2

V0 ; uzu>
Lz

2

; m~z!5H mA ; uzu<
Lz

2

mB ; uzu>
Lz

2
.

~A2!

The bound states are therefore given by

fn~z!5F 1

kB
1

1

kA

mA

mB

kB

kA
1

Lz

2 S mA

mB

kB

kA
D 2

1
Lz

2 G21/2

35
ekB(z2Lz/2); z<2

Lz

2

cos@kAz1~n21!p/2#

cos@kALz/21~n21!p/2#
; uzu<

Lz

2

~21!n11e2kB(z2Lz/2); z>2
Lz

2
,

~A3!

with n51,3, . . . foreven parity states andn52,4, . . . for
odd parity states, kA5A2mAEn /\2, kB

5A2mB(V02En)/\2, andmA (mB) is the effective mass in
the well ~barrier!. The bound state conditions result in th
following transcendental equations:



ion
cil

is

D

r-

il-

a
il-
ts
re

n-
ot

-

e
pa-
-
p-
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kB

mB
5

kA

mAH tanS kALz

2 D ; n51,3, . . .

2cotS kALz

2 D ; n52,4, . . . .

~A4!

2. Two-dimensional exciton center-of-mass motion

The wave function of the exciton center-of-mass mot
wNx ,Ny

(R) corresponds to a two-dimensional harmonic os

lator in theXY plane with quantum numbersNx ,Ny given
by15

wNx ,Ny
~R!5wNx

~x!wNy
~y!, ~A5!

where

wN~x!5S aM

Ap2NN!
D 1/2

exp~2aM
2 x2/2! HN~x!, ~A6!

aM5AMvx /\, M5mxy
e 1mxy

h , the functionHN(x) is the
Hermite polynomial,22 and the center-of-mass energy
given by

Ecm5S Nx1
1

2D\vx1S Ny1
1

2D\vy . ~A7!

3. Exciton relative motion

The Hamiltonian describing the relative motion of the 2
exciton is given by15

Hrel5
p2

2m
1

1

2
mvx

2x21
1

2
mvy

2y22
e2

«Ax21y2
, ~A8!

wherem is the exciton reduced mass in theXY plane. The
2D exciton is confined along theX and Y axes by the har-
-

monic potential (1/2)mvx
2x2 and (1/2)mvy

2y2, respectively.
The frequencyvx yields then an effective dot sizeLx

5A\/mvx, and similarly forLy . The solution of the prob-
lem ~A8! is given by an expansion in terms of the noninte
acting system basis,

Qm~r!5 (
nx ,ny

anx ,ny
wnx

~x!wny
~y!, ~A9!

wn(x) being the solution of the harmonic oscillator Ham
tonian similar to Eq.~A6!. The eigenfunctionsQm and rela-
tive exciton energiesEm are obtained as in Ref. 15 by
numerical diagonalization technique of the resulting Ham
tonian matrix~A8!. Hence, geometrical confinement effec
on excitons in quantum disk with elliptical cross section a
studied following this matrix diagonalization approach, i
cluding the utilization of an optimized basis for larger d
diameters.15

4. Three-dimensional Coulomb correction

If the 3D exciton Bohr radiusaB is considerably larger
than the QD heightLz (aB@Lz), the Z-axis confinement is
stronger than theXY direction. Hence, the 3D Coulomb in
teraction effect on the exciton relative energyEm can be
treated by perturbation theory by

Hp52
e2

«
$@ ure2rhu21~ze2zh!2#21/22ure2rhu21%,

as in Eq.~13!. ForaB@Lz , the electron-hole pair mean valu
along theZ axis is smaller than the mean electron-hole se
ration r s5@^mzure2rhu2zm&#1/2. Correspondingly, the exci
tonic correction energy up to first order can be written a
proximately as
n

DEm~ne ,nh!>2
e2

«A^mu~re2rh!2um&
K ne ,nhUS 11

~ze2zh!2

^mu~re2rh!2um&
D 21/2

21Unh ,neL , ~A10!

>2
e2

« r s~m! K ne ,nhUS 12
~ze2zh!2

2 r s
2

1••• D 21Unh ,neL . ~A11!

In Eq. ~A10! theXY exciton coordinate has been substituted by its motion projection onto the well plane. The correctioDEm
for a given excitonic stateum& depends on electron and hole subbandsne andnh and Eq.~A11! is cast into

DEm~ne ,nh!>
e2

2«r s
3~m!

@^neuze
2une&1^nhuzh

2unh&1•••#, ~A12!

where

^nuz2un&5Lz
2X1

2
S k̄B

231 k̄B
221

k̄B
21

2
D 1

1

4 H 1

6 F11S mAk̄B

mBk̄A
D 2G2

1

k̄A
2 F S mAk̄B

mBk̄A
D 2

21G1
2

k̄A
3 S k̄A

2
21DmAk̄B

mBk̄A
J C

3F 1

k̄B

1
1

k̄A

mAk̄B

mBk̄A

1
1

2 S mAk̄B

mBk̄A
D 2

1
1

2G21/2

~A13!

with k̄5kLz . These expressions are illustrated in Fig. 2 in the text.
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