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We report a detailed theoretical investigation on electrochemical capacitance of a nanoscale capacitor where
there is a dc coupling between the two conductors. For this “leaky” quantum capacitor, we have derived
general analytic expressions of the linear and second-order nonlinear electrochemical capacitance within a
first-principles quantum theory in the discrete potential approximation. Linear and nonlinear capacitance co-
efficients are also derived in a self-consistent manner without the latter approximation and the self-consistent
analysis is suitable for numerical calculations. At linear order, the full quantum formula improves the semi-
classical analysis in the tunneling regime. At nonlinear order that has not been studied before for leaky
capacitors, the nonlinear capacitance and nonlinear nonequilibrium charge show interesting behavior. Our
theory allows the investigation of crossover of capacitance from a full quantum to classical regimes as the
distance between the two conductors is chan§®d163-182@09)03548-]

[. INTRODUCTION namelyC is the linear coefficient of the charge pile up on a
capacitor plate as a function of the external bias voltage.
The most significant development in electronic devicesRecently some attentiBrhas been paid to the nonlinear re-
has been the progressive miniaturization of them: it is nowgime: due to the nonlinear bias dependence of local DOS
common to fabricate electron device structures with dimenthere is also a nonlinear bias dependence of the nonequilib-
sions at mesoscopic scale and even at nanoscale. One of them charge. The nonlinear capacitance coefficients is one of
important directions in nanoelectronics research is to undetthe topics that will be further investigated below.
stand device properties that relate to the existence of small Mesoscopic electrochemical capacitance has been found
dimensions. In this work, we investigate the notion of elec-to obey, within a magnetic field, weaker Onsager-Casimir
trochemical capacitance for conductors in the mesoscopic aymmetry relations. For example it is no longer a symmetric
nanoscale and the nonequilibrium charge distribution at théunction of magnetic field. The asymmetry of electrochemi-
nonlinear level. Using a full first-principles quantum theory, cal capacitance has been observed for a gate close to the
a semiclassical theory, as well as a direct numerical solutioredge of a quantum Hall b&rThe magneto-electrochemical
we construct an overall physical picture on the effects ofcapacitance of a three-dimensional quantum dot with three
quantum tunneling to the nanoscale capacitance. We algmrobes has been studied numerically in detail in Ref. 9. It is
investigate the density of state correction to capacitance dbund that at low-magnetic fields the magnetocapacitance
nonlinear orders of the external bias. For a pair of very smalshows a large asymmetry under a magnetic field reversal. At
conductors, it has been known that the capacitance may lidgher fields the capacitance is dominated by Aharonov-
quite different from the usual parallel plate capacitance forBohm-type oscillations and the fluctuations of the asymme-
mula given byC,~1/W, whereW is the distance between try is somewhat reduced. For the IlI-V tunneling heterostruc-
the two plates. Apart from the usual electrostatic fringe eftures, the contribution of the density of states on the
fect, there are quantum corrections to the classical formulanagnetocapacitance is also studi®dhe investigation of
Quantum corrections come from several sources: a finit¢he frequency dependent electrochemical capacitance for a
density of states of the plates, a finite screening length to thparallel plate capacitor within the nonequilibrium Green’s-
electron-electron interactions, and quantum tunneling. function formalism show interesting oscillatory behavior,
The quantum correction to classical formula due to denwhich is related to the retardation effect of the Maxwell
sity of states (DOS) has been theoretically and equations?
experimentally investigated in the literature by a number of ~ As mentioned above, quantum tunneling effect changes
authors. For semiconductor heterojunctions they found thate capacitance value as predicted by the classical formula.
DOS contributes a factor to the capacitance giverChy,s  This effect was recently addressed using numerical analysis
=e?(dN/dE) wheredN/dE is the total density of states of of atomic junctions? Numerical calculation'$ of aluminum
the system. Thus, the total capacitar@es a result of a atomic junctions with tiny DOS showed that at small dis-
series connection o€, and Cpgg: 1/C=1/C,+ 1/Cpos- tancesW, the electrochemical capacitan€@=C(W) actu-
This formula has been theoretically studied from a dynamially increaseswith W, which is due to tunneling effect. One
point of view and was derived in the low-frequency limit of expects that at largew when tunneling effects is dimin-
an ac theory:® Significantly, these investigations on DOS ished, the capacitance would follow a crossover to the clas-
effects focused on thdinear capacitance coefficienC, sical prediction. However, due to the very small DOS of the
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formula is derived and will be compared with E@). For a
single tunnel barrier there is a quantitative difference be-
tween these results in the quantum regime, and the difference
diminishes as the classical limit is approached. The quantum
formula and Eq(1) allow investigations of a crossover from
tunneling dominated regime to the classical regime, by vary-

ld“’ ing the barrier widthw. Our derivation as well as the deri-
ld“ vation of Eq.(1) are within the discrete potential modfel
T i that used an approximation where the space is coarse grained
oy l P into a few regions. For the tunnel barrier they are regions to
T the left of the barriefdenoted by(),), to the right of the
U [ e eV barrier (1,), and the barrier region. To confirm that this

_ ) _ approximation does not affect the predictions qualitatively,
FIG. 1. The energy band configuration for a model barrier. Neagye have carried out extensive numerical calculations of the
the barrier the band bottom is different from that away the barrler.LPDOS by directly solving them without the approximation.
The inset is an ideal experimental setup of which the energy band is - pacengly, the theory of non-linear electrochemical capaci-
schematically shown in the figure. tance has been formulated using the response tHédHye
. 1 , electrochemical capacitance of a parallel plate capacitor is a
atomic junctior” no crossover to the classical formula was \onlinear function of the bias voltage due to the finite DOS
found in these atomic systems. near the plates as mentioned above. In this paper, we will

_ The correction to classical capacitance formula due 10 &y,qy effect of screening on the nonlinear electrochemical
finite screening length was most clearly demonstrated from Rapacitance for the “leaky” capacitor, which is an important

dynamic point of view on the electrochemical capacitancepoplem not investigated before and is relevant for experi-

due to the work of Christen and Biker™ where a conduct- a5 of scanning capacitance microsdd@pplied to nano-

ing quantum-point contadQPQ was found to establish a g stems. We will derive a general expression of the second

nonequilibrium charge resulting to a finite electrochemicalyq third-order nonlinear quantum electrochemical capaci-

capacitance. In particular they have derived a formula for 4,6 ysing the discrete potential motfeDur analysis natu-

QPC with a semiclassical methdd, rally deduces, in appropriate approximations, a semiclassical
expression of theecond-ordenonlinear electrochemical ca-

R 1 1 1 pacitance for QPC. Finally, to compare with results of the
E_C_o+ dN1+ dN,’ @ discrete potential model and semiclassical result, we have
e e’—— directly solved the Poisson equation and calculated numeri-
dE dE

cally the linear and the second-order nonlinear electrochemi-

whereR s essentially a reflection probability of the QRT, cal ca_pacitan(_:e as a function of barrier width of a single
is geometric capacitancdN, /dE anddN,/dE are the total  {Unneling barrier. _ o L
DOS in the regions to the left and to the right of the QPC. The main results of our investigation are summarized in

Qualitatively, the numerical data of the aluminum tunnelth® following sections. In the next section, we present our
junction'? were consistent with Eq(1) in that C is propor- theory of the nonlinear electrochemical capacitance where

tional to R. Formula() is termed “semiclassical” because f_uII quantum tunneling effect is taken into account. At the
not all the relevant scattering local partial density of statedin®ar order, we compare the quantum formula with the
(LPDOS were included in its derivation. The notion of scat- SeMiclassical formula; and using scattering Green's func-
tering LPDOS was proposed by Biker* and subsequently tions we derive second and_ third-order .nonI|nea_1r re_sults. In
by Gasparian, Christen and @iker.* and it plays a very Sec. III,'we present n'umerlcal cglcul_atlons which is com-
important role in low frequency ac transport as well as nonlared W_|th the theo_retl_cal_analy5|s. Finally, the last section
linear dc transport. LPDOS describes the probability of vari-Summarizes the main findings.
ous scattering process¥s.Consider a tunnel barrier as
shown in Fig. 1. An example of a LPDOS is denoted by
da,,(r)/dE which is the contribution of carriers at position
to the DOS, and these carriers come from region 2 and ulti- In general a two-probe system can be considered as hav-
mately return to region 2. Although region 2 is on the right-ing three regions, a scattering region and two electrodes.
hand side of the tunnel barri¢see Fig. ], do,(r)/dE#0  This is illustrated in Fig. 1 where the scattering region in-
even whenr is on the left-hand side of the barrier due to cludes the scattering potential barrier, and two electrodes are
tunneling. In deriving® Eq. (1) for a QPC, contributions such the regions to the left(@,) and to the right ,) of the
asdo,,(r)/dE with positionr on the other side of the QPC, barrier. We are interested in the electrochemical capacitance
has been neglected. of this system by including the full quantum effects. If we
In this paper, we will further investigate nanoscale capacitefer regions(},; and(}, as the two conductors of a capaci-
tors where the two conductors have a dc coupling, namelyor, we are dealing with a “leaky” capacitor since the po-
there is a dc “leakage” from one conductor to the other. Fortential barrier provides a dc coupling between the conduc-
the linear electrochemical capacitance of a tunnel barrier, weors. Far away from the the regions, the system is connected
improve formula(1) by including the tunneling contributions to contacts which are viewed as large thermodynamic reser-
of various LPDOS. This way a full quantum capacitancevoirs, hence in the contacts the electron distributions are
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Fermi Dirac. When a voltag¥; is applied at contact 1 and the DOS for an electron incident from electrode 2 passing
V, at contact 2, assumé; <0, the electron energy band at through region(}, and eventually returning to electrodeé?.
contact 1 is changed bdu,=eV,; and at contact 2 by Both of these LPDOS describe the tunneling process. This
du,=eV,. The relative electrochemical potential difference latter term is neglected for a semiclassical calculations and is
is thusd = du, —du,: due todu electrons are injected into  honzero for a quantum analysis, as emphasized in_Ref. 14.
the system. The force acting on electrons comes from a cominey both contribute to the electrochemical capacitdfice,
bination of external and internal fields. In principle, motion Which is the experimentally measured capacitance defined by

of electrons in the total field can be solved by Sclinger
equation. In particular, we will adopt the scattering matrix c :e—Ql_
approach formulated by Landau@imry,'® and Biitiker?®2 Fodug—du,

to solve the single-electron transport problem which givesl.he rest of the paper is devoted to calculigincluding all
the necessary LPDOS needed for the calculation of electro[he quantum effects discussed above.

chemical capacitance. _ _ Based on the above discussions, we can write down the
Study of electrochemical capacitance is closely related t‘?ollowing two equation$ for the classical geometrical ca-
the calculation of changes of the local bad(r). It is clear pacitance. Using charges of regiéh

that this local band change near the tunnel barrier is different
from the shiftduy, which occurs at the contacts far away CoX(U;—Uy)=01(E+du;—Uy)—oy1(E)
from the barrier. At equilibrium conditions the electron en-
ergy near the barrier is given If=E+du,—eU(r) where +op(BE+dus—Uy)—o(B). (3
E is the electron energy at Fermi level without the appliedysing charges of regiof,, ,
voltage.du, denotes the electrochemical potential change in
reservoirk. Near the barrier electrons accumulate for regions CoX(Uy—Up) =0y 1(E+du;—U,) — oy 41(E)
whereE;>E and deplete for regions wheEg<<E. It is these
accumulated charges which we must evaluate. The internal +o(E+du,—Usz)—0y2(E). (4)
potential build-upeU(r) can be solved by a self-consistent
Poisson equation. For simplicity of discussion, in the follow-
ing, we useU4(r) andU,(r) to denote this potential in re-
ions,; and(),, respectively. Furthermore, analytical deri- _ _ _

\g/ation %)f capécitange forn)1/ula in terms of myitcroscopic Cox (U1 Up)=Cpx(dps—duso)- ©
quantities is possible if we use a space-averaged potéhtial Finally, it is important to remember that the internal electro-
to replace the space-dependent potefdiglr), as was done static potentialJ, is a function of the electrochemical poten-
in Ref. 13. This corresponds to the discrete potential modefial at the reservoirs,
proposed by Christen and Buttik&t.

We represent the number of electrons in the redipn Ui=Uq(mq1,42), Uo=Us(uq,12). (6)
(k= 1,2) incident from contack (a«=1,2) byoy,, which is .
a function of electron energyE,. Hence oy,= o, (E In above equations we have set electron chargé so that

+du,—eU,). The number of electrons without external 9#a=Va, Which is the bias voltage at reservair ,
bias (at equilibrium) is thus o, (E), becausdJ,—0 when Equations(3), (4), and(5) are the fundamental equations

du—0. By definition, the electrostatigeometrical capaci- ~ (Nat we will use to derive quantum correctionsdg at the
tanceC, between the two region€, and Q, is given by linear and nonlinear orders. Because our theory is gauge in-
Co=AQ,/(U;—U,) [or by C,=AQ,/(U,~U,)] where variant, without loss (_)f generall_ty we set=V andV,=0

AQy (k=1,2) is the charge measured from the equilibriumthrothOUt the following analysis.

value in region(), regardless where they have come from,

i.e., AQ,==_[0.(E) — 0w.(E)], where, to avoid confu- A. Linear electrochemical capacitance formula

sion we us&=1, 1l to denote the regions from now on. Since  As discussed above, a semiclassical formula of the linear
there are two electrodes, i.ex=1,2, AQ thus consists of electrochemical capacitance has been derived in Ref. 13 in
two parts. For example, in regiof}, (i.e., k=1), a part of  the form of Eq.(1). In this section, we derive a full quantum
AQ), is due to electrons incident from electrode= 1, which  formula.

are scattered back to regi@r-1. We denote this part cfQ, Taking derivatives of Eq¢3), (4), and(5) with respect to

by AN;() =0y (E+dus;—eU;)—o3(E). The second v, we obtain

part of AQ, comes from electrons launched at electrade

@

Because the same charge defines electrochemical capacitance
C, as given by Eq(2), we have

=2 but ended up in regiok=1, this part is expressed by du; dU,\ do; du,\ doj, dU;
ANy (Q))=0(E+du,—eU;)—o2(E). Hence, AQ, °< dav dV): dEl( B dV)_ dE, dV (@)
=AN;(€)) +AN(€)).

The above partition of local charge according to where it dU, duU;| doy; dU,| day, dU,
comes from can be equally applied to the scattering local co( — ): ( — )— (8)
partial density of state¥.Hence, for examplejo1,(Q,)/dE dv.dv dEs dv dE, dv

is the LPDOS, which is the DOS for an electron incident
from electrode 2 passing through regiély and reaching (dUl dUz)_ )
o =

electrode 1. Similarlydo,,(Q,)/dE is the LPDOS, which is dv  dv/) #
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where E;=E+V;—U;, E,=E+V,—U;, E;=E+V; in terms of the bias voltag¥; and internal potentiall ;.
—U,, andE,=E+V,—U,. In deriving the last equation, we The expansion coefficients are energy derivatives of the
have assumed th&, has no bias voltage dependertén  spectral functioro,,, where the first derivative is the linear
general the above derivatives should be done at a finite bidsPDOS used in the last section, while the second derivative
voltageV, but experimentally one can control this parameteris the second-order nonlinear LPDOS, which is analyzed in
and use very small voltage¥<E. Hence, we will evaluate the Appendix A. Similarly higher-order derivatives are the
the derivatives at th¥— 0 limit. In the above equations, the corresponding higher-order nonlinear LPDOS. To simplify
guantitydo, /dE; is just the LPDOS in the corresponding notation in the following we denot®,,=do,/dE and
regions as discussed aboehere we used the notation such p, =2, /dE.2
asdayy /dE). To second order in bias voltage, E@8) and (4) become
From Egs.(7), (8), and (9), eliminating dU;/dV and
dU,/dV, we obtain

1—
— 2
do, doy Co(U1=U2) =2, DigV=DiUs+ 2, 5Di5(V=Uy)
dE; dE, (13)

dojy dfflz_ dojp  doy;

dE, ' dE, dE, @ dE,
C _CO(Ul_UZ):% DIIﬁVB_DIIUZ

s

1 1 1 1 _
- TRY:
Co+do'lll df7|2+d<T||1 doyz’ o +§% Dup(Ve=U2)% (14

dE, ' dE, dE, @ dE,

The electrochemical capacitan€g calculated from this for- Using EQ-_(ll) f’m_d expressiofAl0) of Appendlx A, in the
mula is fully quantum: all the tunneling effects are taken intoS€Miclassical limit the above two equations become
account through the appropriate LPDOS, which can be
evaluated from quantum scattering calculati¢sse below.

The general resultl0) can be reduced to the semiclassi- Cy(U;—U,)=D,
cal form Eq.(1) if we apply the semiclassical version of the
LPDOS. In the semiclassical limit, Ref. 13 showed that the 1 — 1 —
LPDOS is given by +5RD(Vi—Uy)?+ ETDI(VZ_Ul)Z

2
doy, T
€ —2 D« R%Fz)

whereT is the transmission coefficienR is related to the
reflection coefficient,D,=do,,/dE;+do|,/dE, and D,
=doy1/dE;+doy 2 /dE, are essentially total local DOS in
regions(), and(},, . Substituting Eq(11) into Eq.(10), itis
straightforward to prove that E¢LO) reduces to the result of

T T
5 +R|V1+Dy5V,-DU;

(15

+ O

-
5 (11

and

T+R
2

T
_CO(Ul_UZ):DII§V1+DII V,—Dj U,

Ref. 13 1 = 1 =
+§TD||(V1_U2)2+ ERDH(Vz_Uz)Z-
R B 1 N 1 N 1 (12 (16)
Cll C0 DI DII ,
where we used notatiof,; to denote theinear electro- In terms of Cy; of Eq. (12), we obtain internal potential

chemical capacitanc€ , . If we further setR=1,i.e., nodc y, andU, to first order in voltage,
coupling is allowed between the two regions, form(i2)
reduces to the familiar electrochemical capacitance of two
plates where there is no dc current flowing throdgh.

In Sec. lll, we will provide numerical plots of the full
guantum and semiclassical formula, and compare them with
direct numerical solution of the same problem, which doesand
not employ the discrete potential model.

T Cu1
U,=RV;+ E(V1+V2)_D_,(V1_V2) (17

- i - T C
B. Nonlinear electrochemical capacitance formula U,=RV,+ E(V1+V2)+ D—ll(Vl_Vz)- (18)
I

We now derive the second-order nonlinear electrochemi-
cal capacitance from the fundamental E@®, (4), and(5).
A similar procedure leads to higher-order results. To obtairSubstituting Eqs(17) and (18) into the quadratic terms of
nonlinear results we expand Ed8) and (4) order by order  Egs.(15) and(16), we obtain
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T
Vl+ D|§V2_D|U1

2
(V1=

T Cquz
27D,

1 —
+ZRD,

2 V2)2

T T 2v V)2
+5TDh +§—D—l(1— 2)

(19

T+R
2

V2_DIIU2

PRB 60

1<D, 5“) 1
(24)

Cur 4\D; Dy C51+D|_1+D,_|1’
which is generally nonzero. Apparently, we would expect no
charge accumulation wheh=1 henceC;;; and all other
capacitance coefficients would vanish. However, Thel
limit in the above formula only states the fact thajected
charges are going through from one capacitor plate to the
other at thdinear order, and it does not implicate the behav-
ior of the charges at nonlinear order where in gendral
=T(E,U). Thus in settingT(E)=1 in Eqg. (22) is not the
true resonant transmission point: at nonlinear order the reso-
nance occurs af(g,U)=1.

C. Analysis beyond discrete potential model

So far, we have derived the linear and nonlinear electro-
chemical capacitance coefficients within the discrete poten-
tial model, in which the internal potentil, is parametrized
in terms of a geometrical capacitanCg. This parametriza-

tion is necessary in order to carried out analytical deriva-
Combining the above two equations, we finally arrive at tions, and it is adequate to reveal qualitative features of the
physics. On the other hand, if one is willing to perform nu-
merical calculations, it is possible to go beyond the discrete
potential approximation. In this case, we can solve the inter-
nal potentialU=U(r) from a self-consistent Poisson equa-
tion. In this section, we derive capacitance expressions that

Co(U3—=U3)=Cyy(V1—V) +3C115(V1—Vy)? (21

with the nonlinear capacitance

co—C DT Cu|? Dy(T Cu|? are suitable beyond the discrete potential model.
1117 =11 D_I §+D_, a D,, 2 >t D D, We start from the charge pile up written as a three-
. . dimensional spatial integral of the charge derSity
i1c D'(R+T C”>2 D“(R+T C“)2 1
R 11 D| 2 D| D|| 2 D” QQZJ p(X)dSXE% Ca,BV,B_FE% CQB,},V'BV,},‘F

QD{
(22 (25)

This result indicates that the second order nonlinear electrqreference 6 has shown that charge density) is given in
chemical capacitance can be expressed in terms of micr@erms of the linear and nonlinear LPDOS, as

scopic quantities such as the various LPDOS as well as trans-
mission and reflection coefficients. All of these are

calculable and have been studied before. Hence this result is p(x)= % [V —UXx)]

very useful in practical predictions of nonlinear capacitance

coefficient, and it is valid even if there is a dc coupling a(X)

between the two polarization regions of the conductor. 5 E [V,—U(x)]?+ (26)

The general expressid22) is reduced in certain limiting

situations. First, for a spatially symmetric system whbe To proceed further we must solve the internal Coulomb
=D, andD,=D,, , Eq.(22) givesCy;,=0. This is expected potentialU(x) by the Poisson equation
due to symmetry: sinc€,, is the coefficient of the charge

distribution expanded in second order of bias voltage.,
Eqg. (21)], it must vanish as chargg@— — Q for symmetrical
systems wher/— —V. Second, for a capacitor without dc
coupling between the two conductors, i.e., for cases0
identically, Eq.(22) becomes

D, _D”)
3 3/’
Dy Dy

—V2U(x)=4mp(X). 27

As done previously;® for perturbative analysis of the elec-
trochemical capacitance we introduce the characteristic po-
tential u(x)

1
U(x)=§a: ua(x)va+§;ﬁ UggVaVpt - (28

C111=C3, (23

Hence, instead of solving(x) we solve foru(x) order by
which was first derived in a response thebhfinally, a  order. From Eqs(26) to (28), we find Poisson like equations
point worthy some discussion is the “resonant transmissiorfor the characteristic potentidfs
point” by setting T=1 and R=0. For this case from Eq.

(12) the linear electrochemical capacitari¢g= 0. But from do

Eq. (22) C,1,#0 and is given by —VZu T4 U,

do,

47TdE

(29



PRB 60 ELECTROCHEMICAL CAPACITANCE OF A LEAKY . .. 16 735

and erage these LPDOS in the respective regions which gives us
the corresponding quantities in these expressions. On the

do do i i i i
o2 do ap other hand, in applying expressioi82) and (33), which
Vou,g+ 4wdEuaﬁ_4” dE (30 uses the full spatial dependent internal potential, the spatial
o integration range should be the Thomas-Fermi screening
wher lengtl? as giscussed in Appendix B. The screening length is
~ determined by solving the Poisson-like Eq$29) [and Eq.
2 2 2 2
do.s_do, d°o, d%op d°o (30) in the nonlinear cageFrom now on, we will use atomic

=—— 8,3~ ——Ug——U,+ ——U,lg. _ /
dE  dg2 “» de?2 ? de? dez “” units such thak =2m=e=1. In typical nanoscale systefis
(831)  with charge density 18, Fermi wavelength\~47 nm. In

) . the following, we use\ ¢ to set the unit for length and choose
With the help of Egs(29) and(30), the electrochemical Fermi energyE,:zo.BlF. g

capacitance can be calculated from the following expres- g re 2 piots the linear electrochemical capacitance ob-

slons, tained from different approaches as a function of the barrier
do. do width W for the fixed barrier heighH,=0.8: (a). the elec-
CQBEI Qﬁ(x)dex:j (d_EB_EuB)dBX (32)  trochemical capacitanc€ calculated numerically from Eq.
Q, Q, (32 (solid ling); (b). the analytic quantum electrochemical
capacitance formula in the discrete potential approximation
_ 3 3 C, from Eq.(10) (dotted ling; (c). the semiclassical electro-
Capy= J'%ng(x)d X= L)a( dE d_Eu37>d X chemical capacitan¢&C, of Eq. (12) (dashed ling (d). the
(33  effective classical geometric capacitant~1/W (dot-
) ] . dashed ling For very large the barrier width, it is clearly
whereQg(x) andQg,(x) are linear and nonlinear nonequi- shown that all curves approach to the classical behavior
I|br|l_Jm charge dllstr|but|0ns. These results_ are useful for NU-_ 1\ since quantum tunneling effect is negligible. For thin
merical calculations where all the quantities on the right-p,riers where tunneling effect is significant, the behavior of
hand side can be obtained accurately. For instance3.  gjectrochemical capacitances Cq. andCg are completely
has been used in the analysis of atomic junctiSrBquation  gitterent from the classical regime. In this quantum regime,
(33) is derived here. _ _ as one increases the barrier width, the electrochemical ca-
~ To end this section we note that in a numerical calculaycitance increases rather than decreases. This increasing be-
tion, the LPDOSda, /dE can be calculated using the scat- hayior at very smalW is expected since tunneling tends to

tering wave functioff diminish charge polarization, th@&~0 whenW~0. Hence,
do,(x) 1 C(W) should indeed start from small values and increase a
= — (%)%, (34) bit before it goes down whew is large enough.
dE hv To examine the DOS correction that is another quantum

wherev is the velocity of the carrier angi(x) is the scat- effect, we note that one can only separate out the geometrical
tering wave function for incident wave coming from lead ~ €ffect from the DOS effect in the semiclassical lirfais in
Equations(29) and (30) can be numerically solved on a Ed- (12], and in general these effects are mixed. Further-
three-dimensional grid, for instance a multigrid techniqueMOre, in a discrete potential model all the quantitiesth in

was employed in Ref. 12 for such a purpose. guantum and semiclassical calculatipase spatially aver-
aged hence capacitances are underestimated. This is why

both C, and Cg curves are consistently below the full nu-
merical solutionC. Figure 2 shows some difference between

In this section, we present numerical plots for electro-the quantum resulC, and semiclassical resuls. To un-
chemical capacitance of the tunnel barrier in Fig. 1. Thederstand this difference we have plotted the partial DOS
numerical curves were obtained along two lines: by plottingdn;1(£2,,)/dE (solid line) anddny,({2,,)/dE (dotted ling in
the analytical expressiond0), (12), and (22), which are the inset of Fig. 2. As expectedn;,(£2;,)/dE goes to zero
within the discrete potential model; and by direct numericalfor large barrier widthes where the semiclassical theory is a
solution of the self-consistent internal potentld(r) and good approximation. It is nonzero in the quantum tunneling
then applying expressior(82) and (33).28 regime for small barrier widthdn,,(€),,)/dE is also numeri-

To be specific, we choose a numerical calculation boxcally much less thandn,x((),)/dE. Hence, neglecting
with size X, —xg=12\¢ where\g is Fermi wavelength of dn;;(Q,,)/dE in the semiclassical analysis gives a small dif-
the scattering electron. Herg, g are the positions of left ference betwees andCy in the tunneling regimésee Fig.
and right boundary of the calculation box. We fix the tunnel2). To further compare with the semiclassical result of QPC
barrier of widthW symmetrically in the center of the calcu- of Ref. 13, we have also examined the behavior of capaci-
lation box. This way the regionQ, and(),, discussed above tance by varying the barrier heiglt, for a fixed barrier
are given by the space between the calculation box and theidth W: the results using Eq932), (10), and (12) are,
barrier walls. The quantum scattering problem by this singleagain, similar in the quantum regime and the same in the
barrier is easily solved, from which we obtain various LP-classical regime. When the barrier heighy is relatively
DOS using the scattering wavefunction according to Egsmall, the appearance of quantum mechanism leads to a cor-
(34). To apply expressiong§l0), (12), and (22), which are  rection for semiclassical electrochemical capacitance.
appropriate for the discrete potential model, we spatially av- The physical behavior of second-order nonlinear electro-

Ill. NUMERICAL RESULTS
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FIG. 2. The linear electrochemical capaci-
tance as a function of barrier widtiv for a
square barrier with the barrier heighty=0.8.
The solid line is the full quantum numerical cal-
culation C, the dashed line and dotted line are
from the quantum resutt, and the semiclassical
resultCs in the discrete potential approximation,
respectively. The dot-dashed line is the classical
resultC~1/MW. The inset: the corresponding par-
tial density of states versus the barrier width
The solid line isdNy1(Q,)/dE and the dotted
line is dN,(Q,,)/dE.

chemical capacitance coefficie@t, can be studied for an dn,,(Q,)/dE. Within the discrete potential model where all

asymmetric barrier: as discussed ab&@4g,;=0 for symmet- quantities are averaged over the polarization regions, ana-
ric systemdsee Eq(22)]. For the asymmetric barrier where lytic expressions for the linear and second-order nonlinear
the barrier heights arkl;=0.2 andH,=1.0, shown in the electrochemical capacitance have been derived. In addition,
inset of Fig. 3a), Fig. Ya plots C,, versusW and Fig. 3b) linear and nonlinear capacitance coefficients formula are de-
plots C;4,. The linear coefficienC,; is very similar to that rived in terms of the self-consistent potential, and these for-
of Fig. 2 of a symmetric barrier. For the full quantum nu- mula are suitable for numerical calculations in the full quan-

merical resuli(solid ling), C,,; starts from zero and becomes tum regime. Our calculation showed that the analytic results
negativefor very thin barrier, reaches minimum at around using the discrete potential model are consistent with the full
W=1.0, and then oscillates around zero. The oscillatory benumerical solution, for the single tunnel barrier structure.

havior can be traced to oscillations in second-order DS 1 n€ electrochemical capacitance formula derived in this pa-
—d?N/dE? of Eq. (22). In the inset of Fig. &), we plot per are suitable for analyzing ac transport at relatively low

) : frequency. At very high frequency, one has to consider ra-
PDOSD, and D, . Correlating the behavior o€;; and  giation effect thus the quantum equation must be solved self

PDOS, it is clear that the negative valuesf; is due toD. consistently with the full Maxwell equation instead of the
In Fig. 4, the linear and nonlinear nonequilibrium chargePoisson equation used here.

distribution for this asymmetric barrieQ,(x) and Q44(x), Quantum behavior of the electrochemical capacitance is

are plotted. These quantities, especidly,(x), have not found in the tunneling regime that the capacitance increases

been studied carefully before. It is thus interesting to offerwith the barrier widthW. This is in clear contrast to the

several observations(a) The linear charge distribution classical behavior of W. What is the condition that this

Q,(x) is in the form of a resistance dipoté whereas the nonclassical phenomenon be observed? Let's consider this

nonlinear charg®,(x) is more like a quadrupoldb). The  question using the semiclassical formidl&q. (12), which

linear charge distribution is numerically much larger than thecan be rewritten as

nonlinear charge distribution. The total charges are con-

served, i.e./Q(x)dx=[Q;(x)dx=0. (c). In the discrete R

potential model, the average nonlinear chagye is numeri- C~ . (35
cally even smaller. Because of this spatial average, the non- i+ 1

linear charge distribution becomes a dipole in the discrete C D

potential model. This is responsible for the difference be-
tween full quantum calculation and that of the discrete po+for tunnelingR~[1— exp(—Wi)] wherel is a characteristic
tential model. length depending on system details such as the barrier
heights. WhenC=C(W) increases withW, we have
dCldW>0, which gives to a condition for the range of
that allows the nonclassical behavior. Using E85), for

In this paper, we have investigated the quantum version ofiny capacitor plate® <C,, one can have a reasonable and
a “leaky capacitor” in the coherent nanoscale regime in bothexperimentally accessible range of ordeiOn other hand,
linear and nonlinear order in terms of the external bias voltfor large plate>C,, one can not observe the nonclassical
age. We have derived an analytic formula of electrochemicagffect unlesdV is several orders smaller thdnwhich is not
capacitance where the two plates have a dc coupling, anexperimentally accessible. Hence, the condition to observe
tunneling effects between the two plates are fully includedhe non-classical behavior is tunneling and also small DOS.
by explicitly using partial local density of states Systems which satisfy these conditions are nanoscale capaci-

IV. DISCUSSION AND SUMMARY
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self-consistent numerical calculation using expressi®@®  where T=Tr(I',G3',G")/(47?) is the transmission
and (33), although all these results are qualitatively consis-coefficient?® which is a real quantitydo/dE is the total
tent. At second nonlinear order, the nonequilibrium chargdocal DOS.

distribution behaves as a quadrupole, this is compared to the Taking energy derivative of EqA1), we obtain
resistance dipole when linear order charge is considered. It is

interesting to note that the nonlinear charge can be nonzerd?o, oy a ; ; ama ;
when linear charge is zero: this happens at the linear resoﬁzzw IM[(G'G TG 1 G )+ (G'TG GG )
nance point. The nonlinear capacitance coefficient also be-

haves quite differently from the its linear counterpart, as +(G'T,G,G'G"),]. (A5)

shown by its oscillatory behavior linked to the nonlinear . o _
LPDOS. The first term of Eq(A5) can be simplified using EqA3)

as follows,
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APPENDIX A 2

The nonlinear electrochemical capacitance depends on the
nonlinear LPDOS, as shown in Sec. Il. In this appendix, we
derive the nonlineaf2nd ordey LPDOS using Green'’s func-
tions. In particular, we have to relate the second-orde

LPDOSd?c,5/dE? to the total LDOSd?a/dE?, where in-
dicesa, B label the leads.

We start from the definition of LPDOS expressed in terms dE2  dE? dE2 dE? dE?

of the Green’s functiof?

dox(X)
dE

=R 27 (G'T,G,G") ] (A1)

where G' is the retarded Green’s functiof,, is the line-
width function, and Re. . . ] denotes the real part ¢f . .].
Using relatiort*

Gl Gl = GLGL .. (A2)

we have

(GrMGr)xsz G;le G>r<2x

XX
X1X2 172

= G;xz G>r<2x1M Xy Xo G;xTr[Gr M]

X1X2

(A3)
whereM is a matrix. EquatioffAl) becomes,
dog, r a r
4E © =2 Im[ Gy, Tr(I',G*T'1G")]
- el -eyT=1 3 A4
- Z( XX xx) - E d_Ev ( )

iT
(GG (GG, =T (A7)

dE?’

In deriving the last equation we used the fact 16462 is a

feal quantity. Using Eq(A7) we find
dzﬂ'll d20'22_d20' d20'12 d20'21_ d20'

— - Z=(1-2T)

dE?’
(A8)

Now we consider a system with a dc current passing
through. Due to polarization we again divide the system into
two regions (), and ,,. In the semiclassical treatment
where the tunneling is neglected, the partial DOS
d?0,,/dE?=0 in region I, and similarlyd?cy;/dE?=0 in
region Il. These relations and Eq#\7) and (A8) lead to

Coiag_ 80 5 1= 2T)60 Tl (A9)
dez  de?’ o

wherek labels the polarization regiof,. For two probe

system, it gives

d’oy, d%c

= E[TJr(l—ZT)éak]. (AlO)

This expression is the semiclassical second-order nonlinear
LPDOS, which is in contrast to the semiclassical linear
LPDOS Eq.(11) derived in Ref. 13. The nonlinear LPDOS
plays a crucial role in determining the nonlinear electro-
chemical capacitance, as given in Sec. Il.

APPENDIX B

In this appendix, we give an example of calculating the
second-order nonlinear capacitarig ; by directly solving
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Poisson equation. This can be done analytically only for veryyhere we have introduced another screening |e@ﬁ
simple systems. =4md%0,/dE? corresponding to LPDOS%,/dE? and

Consider a system which consists of three regions: twQ\, and A, are known from the calculation af,. The solu-
leads(regions | and Il) and an infinite potential barrigre-  tion of Eq.(B5) is

gion 1l). Since the calculation is perturbative, we have to

calculate the linear characteristic potential by solving Pois-

son equation E¢29). We assume that the partial local DOS . A ) 2X
do, /dE and d?c; /dE? are constant in region | and zero region I: u11=—3—A1 exp(h
otherwise> Similarly do-, /dE andd?c-, /dE? are constant in
region Il and zero otherwise. The solution of the Poisson

equation Eq(29) is region Il:  up=a,x+b,
) X
region I: u=1-A, exr{)\—) )\g ) 2X X
1 i : =——= —|+ —.
region Ill:  uqq 3EAZ exp{ x, B, ex v
region Il:  u;=a;x+b; (B6)
X After matching boundary conditions ata/2,—a/2, we ob-
region Ill:  u;=A, ex;{ - )\—) (B1) tain
2
whereAq, A,, a;, andb, are constants to bg determms:gl. In _a A\ 233+ a 203, S
Eq. (B1), we have defined the screening lenghth, B, exp =—|= 5 = |-
=4mdo,/dE and the boundary conditiohshatu;—1 as 2N1) (@t Nty 31 3\

x——o and u;—0 asx—» have been used. Using the (B7)
boundary condition thati; anddu; /dx be continuous ak

=a/2 and—a/2, it is straightforward to find The second-order nonlinear electrochemical capacit@nce

IS

1 b= (at 20
TatA Ay 1=5 (@t2h) _1f 3?p(X)

m=35 0 V2

a

a
Ai=aiN ex;{ 2—)\1

a
) A2: al)\z eXF{ 2_)\2> (BZ) _1 )\1 a
2
= 2 VUil e A= ﬁAl eXP( - )\—l)

The linear electrochemical capacitance can be obtained im- AL
mediately, B, % a
— 1 exg — —
Cnff ap—(x)dx= -t V2u,dx= _—1Vu1|_ A s o
0, oVq 4ar O, 4 a2 A 1 )\‘11 )\‘21
A1 T AT (atagt ) s_fi_s_gl (B9
T Amath A, (B3)

From the definition of the screening length, we have
whereA is the cross-section area of the metallic wire. Using

the global DOSdN,/dE=Volume dr,/dE=\_ Adc,/dE N 1 1
=Al4m\ ,, we arrive at the result first obtained by'llﬂkler,5 N 4wAN do, [dE = dN, /dE’ (B9)
1 47a 1 1

= + + ) (B4)  Where we have used the fact that there is charge polarization
Cu A dN/dE  dN,/dE only in the regionA\ ,. Similarly, we obtain

With the solution ofu,, the Eq.(30) becomes

X, 1
1 1 2x AT N a2 (B10)
region I: —V2u;+ —up==A32 exp<—> d*N,/dE
g 11 )\i 11 E 1 Ny
With the help of Egs(B9), (B10), and(B4), we finally have
region Il:  V?u;;=0

c c3,| d2N;/dE2  d2N,/dE? (512

1 1 2X 1117~ 5~ - '

regon I~ ViUt u= A exp(r), 3 (AN /AE)®  (dN,/dE)?

2 2 2

(B5)  which agrees with Eq23).
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