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Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites
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A scaling theory of local-field fluctuations and optical nonlinearities is developed for random metal-
dielectric composites near a percolation threshold. The theory predicts that in the optical and infrared spectral
ranges the local fields are very inhomogeneous and consist of sharp peaks representing localized surface
plasmons. The localization maps the Anderson localization problem described by the random Hamiltonian with
both on- and off-diagonal disorder. The local fields exceed the applied field by several orders of magnitudes
resulting in giant enhancements of various optical phenomena. The developed theory quantitatively describes
enhancement in percolation composites for arbitrary nonlinear optical process. It is shown that enhancement
strongly depends on whether a nonlinear multiphoton scattering includes the act of photon subtraction~anni-
hilation!. The magnitudes and spectral dependencies of enhancements in optical processes with photon sub-
traction, such as Raman and hyper-Raman scattering, Kerr refraction, and four-wave mixing, are dramatically
different from those in processes without photon subtraction, such as in sum-frequency and high-harmonic
generation. At percolation, a dip in dependence of optical processes on the metal concentration is predicted.
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I. INTRODUCTION

Local electromagnetic field fluctuations and related
hancement of nonlinear optical phenomena in me
dielectric composites near percolation threshold~percolation
composites! have recently become an area of active stud
because of many fundamental problems involved and
high potential for various applications. Percolation syste
are very sensitive to the external electric field since th
transport and optical properties are determined by a ra
sparse network of conducting channels, and the field con
trates in the ‘‘weak’’ points of the channels. Therefore, co
posite materials can have much larger nonlinear suscept
ties at zero and finite frequencies than those of its constitu
The distinguished feature of percolation composites, to a
plify nonlinearities of its components, have been recogni
very early,1–6 and nonlinear conductivities and susceptib
ties have been intensively studied during the last decade~see,
for example, Refs. 7–12!.

Here, we consider relatively weak nonlinearities wh
conductivity s(E) can be expanded in the power series
the applied electric fieldE, and the leading term, i.e., th
linear conductivitys (1), is much larger than others. Th
situation is typical for various nonlinearities in the optic
and infrared spectral ranges considered here. Even w
nonlinearities lead to qualitatively new physical effects. F
example, generation of higher harmonics can be much
hanced in percolation composites and bistable behavio
the effective conductivity can occur when the conductiv
switches between two stable values, etc.13 We note that the
‘‘languages’’ of nonlinear currents/conductivities and no
linear polarizations/susceptibilities~or dielectric constants!
PRB 600163-1829/99/60~24!/16389~20!/$15.00
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are completely equivalent and they will be used here in
changeably.

The local-field fluctuations can be strongly enhanced
the optical and infrared spectral ranges for a composite
terial containing metal particles that are characterized by
dielectric constant with negative real and small imagina
parts. Then, the enhancement is due to the surface plas
resonance in metallic granules and their clusters.7,9,14,15The
strong fluctuations of the local electric field lead to enhan
ment of various nonlinear effects. Nonlinear percolati
composites are potentially of great practical importance16 as
media with intensity-dependent dielectric functions and,
particular, as nonlinear filters and optical bistable eleme
The optical response of nonlinear composites can be tu
by controlling the volume fraction and morphology of co
stitutes.

In our previous paper,10 we performed numerical simula
tions for enhancement of various nonlinear optical effects
2d percolation films and developed a scaling approach
high-order moments of the fieldmagnitudes, ^uE(r )un&.
However, nonlinear optical effects depend not only on
magnitude of the field but also on itsphase, so that a non-
linear signal, in general, is proportional to^uE(r )ukEm(r )&.
In this paper, we describe a scaling theory for enhancem
of arbitrary nonlinear optical process~for both 2d and 3d
percolation composites! and show that enhancement diffe
significantly for nonlinear optical processes that include p
ton subtraction~annihilation! and for those that do not. Th
photon subtraction implies that the corresponding field a
plitude in the expression for the nonlinear polarization~cur-
rent! P(n) is complex conjugated.17 For example, the optica
process known as coherent anti-Stokes Raman scatterin
driven by the nonlinear polarizationP(3)}E2(v1)E* (v2),
16 389 ©1999 The American Physical Society
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16 390 PRB 60SARYCHEV, SHUBIN, AND SHALAEV
which results in generation of a wave at the frequencyvg

52v12v2, i.e., in one elementary act of this process, t
v2 photon is subtracted~annihilated!; the corresponding am
plitude E(v2) in the expression forP(3) is complex conju-
gated.

The theory of nonlinear optical processes in met
dielectric composites is based on the fact that the problem
optical excitations in percolation composites mathematic
maps the Anderson transition problem. This allowed us
predict localization of surface plasmons~sp! in percolation
composites and describe in detail the localization pattern.
show that the sp eigenstates are localized on the scale m
smaller than the wavelength of the incident light. The
eigenstates with eigenvalues close to zero~resonant modes!
are excited most efficiently by the external field. Since
eigenstates are localized and only a small portion of them
excited by the incident beam, the overlapping of the eig
states can typically be neglected, that significantly simplifi
theoretical consideration and allows one to obtain relativ
simple expressions for enhancements of linear and nonli
optical responses. It is important to stress again that the
localization length is much smaller than the light wav
length; in that sense, the predicted subwavelength loca
tion of the sp quite differs from the well-known localizatio
of light due to strong scattering in a random homogene
medium.18

We also note that a developed scaling theory of opt
nonlinearities in percolation composites opens new mean
study the classical Anderson problem, taking advantage
unique characteristics of laser radiation, namely, its coh
ence and high intensity. For example, our theory predicts
at percolation there is aminimum in nonlinear optical re-
sponses of metal-dielectric composites, the fact that follo
from the Anderson localization of sp modes and can be s
ied and verified in laser experiments.

In spite of big efforts, most of theoretical consideratio
of the local optical fields in percolation composites are
stricted to mean-field theories and computer simulations~for
references, see Refs. 10–12!. The effective medium theory19

that have the virtue of relative mathematical and concep
simplicity, was extended for the nonlinear response of p
colating composites7,8,20–26and fractal clusters.23 For linear
problems, predictions of the effective medium theory a
usually sensible physically and offer quick insight into pro
lems that are difficult to attack by other means.7 The effec-
tive medium theory, however, has disadvantages typical
all mean-field theories, namely, it diminishes the role of flu
tuations in a system. In this approach, it is assumed that l
electric fields are the same in the volume occupied by e
component of a composite. For example, the effective m
dium theory predicts that the local electric field should be
same in all metal grains regardless of their local arrangem
in a metal-dielectric composite. Therefore the local field
predicted to be almost uniform, in particular, in meta
dielectric composites near percolation. This is, of cour
counter-intuitive since percolation represent a phase tra
tion, where according to the basic principles, fluctuatio
play a crucial role and determine system’s physical prop
ties. Moreover, in the optical spectral range, the fluctuati
are anticipated to be dramatically enhanced because o
resonance with sp modes of a composite.
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In our previous papers we developed rather effective
merical method27 and performed comprehensive simulatio
of the local field distribution and various nonlinear effects
two dimensional percolation composites, namely in rand
metal-dielectric films.10,28–31The effective medium approac
fails to explain results of the performed computer simu
tions. It appears that electric fields in such films consist
strongly localized sharp peaks resulting in very inhomo
neous spatial distributions of the local fields. In pea
~‘‘hot’’ spots!, the local fields exceed the applied field b
several orders of magnitudes~see, Figs. 1 and 2 here an
e.g., Figs. 2 and 3 in Ref. 10!. These peaks are localized i
nm-size areas and can be associated with the sp mode
metal clusters in a semicontinuous metal film. The peak d
tribution is not random but appears to be spatially correla
and organized in some chains. The length of the chains
the average distance between them increase toward the i
red part of the spectrum.

In this paper, we develop the scaling theory of the fie
spatial distributions and show that there is an important
rameter in the scaling theory~missed in our previous consid
eration!, the Anderson localization lengthjA . We also gen-
eralize our previous approach limited to 2d systems to
include both 2d and 3d percolation composites. As men
tioned, enhancement factors for arbitrary optical nonlinea
ties are found in the general form.

Note that in the optical range, field distributions in me
fractals have been studied experimentally using near-fi
scanning optical microscopy allowing a subwaveleng
resolution.32,33 The predicted giant local-field fluctuations i
the percolation composites have been detected in re
microwave34 and optic experiments.35

The rest of the paper is organized as follows. In Sec.
we consider local fields and their high-order moment dis
butions in percolation composites. We also show there
the field distribution maps the Anderson localization proble
in quantum mechanics and employ this fact to describe
detail a localization pattern of sp modes. The mapping a
scaling arguments are used to obtain the field high-order
ments and their dependencies on the frequency of an inci
wave and metal concentration, for arbitrary optical nonl
earity. In Sec. III, we calculate enhancement factors fo
number of optical processes, namely, Raman and hy
Raman scattering, Kerr-type nonlinear refraction and abso
tion, andnth harmonic generation. We show that most of t
enhancement originates from strongly localized nanome
scale areas, where the local electric field has its maxi
Enhancements in these ‘‘hot zones’’ are giant and excee
‘‘background’’ nonlinear signal by many orders of magn
tude. Concluding discussions are presented in Sec. IV.

II. SCALING THEORY OF FIELD FLUCTUATIONS
AND HIGH-ORDER FIELD MOMENTS

In metal-dielectric percolation composites the effective
conductivity se decreases with decreasing the volume co
centration of metal componentp and vanishes when the con
centrationp approaches concentrationpc known as a perco-
lation threshold.7,15,36 In the vicinity of the percolation
thresholdpc , the effective conductivityse is determined by
an infinite cluster of percolating~conducting! channels. For
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PRB 60 16 391ANDERSON LOCALIZATION OF SURFACE PLASMONS . . .
concentrationp smaller then the percolation thresholdpc ,
the effective dc conductivityse50, that is the system is a
dielectriclike. Therefore, metal-insulator transition tak
place atp5pc . Since the metal-insulator transition asso
ated with percolation represents a geometric phase trans
one can anticipate that the current and field fluctuations
scale invariant and large.

In percolation composites, however, the fluctuation p
tern appears to be quite different from that for a second-o
transition, where fluctuations are characterized by the lo
range correlation, and their relative magnitudes are of
order of unity, at any point of a system.37,38 In contrast, for a
dc percolation, local electric fields are concentrated at
edges of large metal clusters so that the field maxima~large
fluctuations! are separated by distances of an order of
percolation correlation lengthj, which diverges when the
metal volume concentrationp approaches the percolatio
thresholdpc .36,39,40

We show below that the difference in fluctuations b
comes even more striking in the optical spectral range, wh
the local-field peaks have the resonance nature and, th
fore, their relative magnitudes can be up to 105, for the linear
response, and 1020 and more, for nonlinear responses, w
distances between the peaks much larger than the percol
correlation lengthj.

In the optical and infrared spectral ranges, the surf
plasmon resonances play a crucial role in metal-dielec
composites. To get insight in the high-frequency proper
of metals, we first consider a simple model known as
Drude metal that reproduces semiquantitatively the basic
tical properties of a metal. In this approach, the dielec
constant of metal grains can be approximated by the Dr
formula

em~v!5eb2~vp /v!2/@11 ivt /v#, ~1!

whereeb is contribution toem due to the inter-band trans
tions, vp is the plasma frequency, andvt51/t!vp is the
relaxation rate. In the high-frequency range considered h
losses in metal grains are relatively small,vt!v. Therefore,
the real partem8 of the metal dielectric functionem is much
larger ~in modulus! than the imaginary partem9 (uem8 u/em9
>v/vt@1), andem8 is negative for the frequenciesv less
than the renormalized plasma frequency,

ṽp5vp /Aeb. ~2!

Thus, the metal conductivity sm52 ivem/4p

>(ebṽp/4pv)@ i (12v2/ṽp)1vt /v# is characterized by
the dominant imaginary part forṽp.v@vt , i.e., it is of
inductive character. Therefore, the metal grains can be m
eled as inductancesL while the dielectric gaps can be repr
sented by capacitancesC. Then, the percolation composit
represents a set of randomly distributedL and C elements.
The collective surface plasmons excited by the external fi
can be thought of as resonances in differentL2C circuits,
and the excited surface plasmon eigenstates are seen as
fluctuations of the local field.
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A. Local-field distribution in percolation composites
with ed52em8

We suppose that a percolation composite is illuminated
light and consider local optical field distribution. A typica
metal grain sizea in the percolation nanocomposites is abo
few nanometers,9 that is much smaller than the wavelengthl
of the light in the visible and infrared spectral ranges. Wh
wavelengthl is much larger than the particle sizea we can
introduce potentialf(r ) for the local electric field. Then the
local current density j can be written asj „r …5s(r )
@2¹f(r )1E0#, whereE0 is the applied field ands(r ) is
the local conductivity. In the considered quasistatic case
field distribution problem reduces to solution of the Poiss
equation, representing the current conservation law dj
50, namely

¹•„s~r !@2¹f~r !1E0#…50, ~3!

where the local conductivitys(r ) takes eithersm or sd val-
ues, for metal and dielectric components, respectively. I
convenient to rewrite Eq.~3! in terms of the local dielectric
constante(r )54p is(r )/v as follows

¹•@e~r !¹f~r !#5E, ~4!

whereE5¹•@e(r )E0#. The external fieldE0 can be chosen
real, while the local potentialf(r ) takes complex values
since the metal dielectric constantem is complex em5em

8

1 i em9 in the optical and infrared spectral ranges. Because
difficulties to find solution to the Poisson Eq.~3! or ~4!, a
great deal of use is made of the tight binding model in wh
metal and dielectric particles are represented by metal
dielectric bonds of a cubic lattice. After such discretizatio
Eq. ~4! acquires the form of Kirchhoff’s equations defined o
a cubic lattice.7 We write the Kirchhoff’s equations in term
of the local dielectric constant and assume that the exte
electric fieldE0 is directed along ‘‘z’’ axis. Thus we obtain
the following set of equations

(
j

e i j ~f j2f i !5(
j

e i j Ei j , ~5!

wheref i andf j are the electric potentials determined at t
sites of the cubic lattice and the summation is over the ne
est neighbors of the sitei. The electromotive force~EMF! Ei j
takes valueE0a0, for the bond̂ i j & in the positivez direction
~where a0 is the spatial period of the cubic lattice! and
2E0a0, for the bond̂ i j & in the2z direction;Ek j50 for the
other four bonds at the sitei. Thus, the composite is modele
by a resistor-capacitor-inductor network represented
Kirchhoff’s Eq. ~5!. The EMF forcesEi j represent the exter
nal electric field applied to the system. In transition from t
continuous medium described by Eq.~3! to the random net-
work described by Eq.~5! we suppose, as usually,7,15,35that
bond permittivitiese i j are statistically independent and s
a0 to be equal to the metal grain size,a05a. In the consid-
ered case of two component metal-dielectric random co
posite, the permittivitiese i j take valuesem and ed , with
probabilities p and 12p, respectively. Assuming that th
bond permittivitiese i j in Eq. ~5! are statistically indepen
dent, we considerably simplify computer simulations as w
as analytical consideration of local optical fields in the co
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16 392 PRB 60SARYCHEV, SHUBIN, AND SHALAEV
posite. We note that important critical properties are univ
sal, i.e., they are independent of details of a model, e
possible correlation of permittivitiese i j in different bonds.

For further consideration we assume that the cubic lat
has a very large but finite number of sitesN and rewrite Eq.
~5! in matrix form with the ‘‘Hamiltonian’’ Ĥ defined in
terms of the local dielectric constants,

Ĥf5E, ~6!

where f is a vector of the local potentialsf
5$f1 ,f2 , . . . ,fN% determined in allN sites of the lattice,
vectorE equals toEi5( je i j Ei j , as it follows from Eq.~5!.
The Hamiltonian Hˆ is N3N matrix that has off-diagona
elements Hi j 52e i j and diagonal elements defined as Hi i
5( je i j , where j refers to nearest neighbors of sitei. The
off-diagonal elements Hi j take valuesed.0 andem5(21
1 ik)uem8 u with probability p and 12p, respectively. The
loss factork5em9 /uem8 u is small, k!1. The diagonal ele-
ments Hi i are distributed between 2dem and 2ded , whered
is the dimensionality of the space (2d is the number of the
nearest neighbors ind-dimensional cubic lattice!.

It is convenient to represent the Hamiltonian Hˆ as a sum
of two Hermitian Hamiltonians Hˆ 5Ĥ81 ikĤ9, where the
term ikĤ9 (k!1) represents losses in the system. T
Hamiltonian Ĥ8 formally coincides with the Hamiltonian o
the problem of metal-insulator transition~Anderson transi-
tion! in quantum systems.41–44More specifically, the Hamil-
tonian Ĥ8 maps the quantum-mechanical Hamiltonian for t
Anderson transition problem with both on- and off-diagon
correlated disorder. Since the off-diagonal matrix eleme
in Ĥ8 have different signs, the Hamiltonian is similar to th
so-called gauge-invariant model. This model, in turn, is
simple version of the random flux model, which represen
quantum system with random magnetic field41 ~see also re-
cent numerical studies45–47!. Hereafter, we refer to operato
Ĥ8 as to Kirchhoff’s Hamiltonian~KH!.

Thus, the problem of the field distribution in the syste
i.e., the problem of finding solution to Kirchhoff’s Eq.~5! or
~6!, becomes the eigenfunction problem for the KH, Hˆ 8Cn
5LnCn , whereas the losses can be treated as perturba
Since the real partem8 of metal dielectric functionem is nega-
tive, em8 ,0 , and the permittivity of dielectric host is pos
tive, ed.0, the manifold of the KH eigenvaluesLn contains
eigenvalues that have the real parts equal~or close! to zero.
Then eigenstatesCn that correspond to eigenvalue
uLn /emu!1 are strongly excited by the external field a
seen as giant field fluctuations, representing the resonan
modes. If we assume that the eigenstates excited by the
ternal field are localized, they should look like local-fie
peaks. The average distance between the field peaks ca
estimated asa(N/n)1/d, wheren is the number of the KH
eigenstates excited by the external field andN is the total
number of the eigenstates.

Now we consider in more detail behavior of the eige
functionsCn of the HK Ĥ8, in the special case whenem8 5
2ed , corresponding the plasmon resonance of individ
particles in a 2d system. Since a solution to Eq.~5! does not
change when multiplyingem anded by the same factor, we
r-
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can normalize the system and seted52em51.
According to the one-parameter scaling theory the eig

statesCn are all localized for the 2d case~see, however,
discussion in Refs. 44 and 48!. On the other hand, it was
shown in computer simulations49 that there is a transition
from chaotic50,51 to localized eigenstates for the 2d Ander-
son problem,49 with an intermediate crossover region. W
consider first the case when metal concentrationp is equal to
the percolation thresholdpc51/2 for the 2d bond percolat-

ing problem. Then the on-diagonal disorder in the KH Hˆ 8 is
characterized bŷHi i8 &50, ^Hi i8

2&54 that corresponds to th
chaos-localization transition.49 The KH has also strong off-
diagonal disorder, ^Hi j8 &50 (iÞ j ), which favors
localization.45,46 Our conjecture is that eigenstatesCn are
localized for allLn in the 2d system.~We cannot rule out a
possibility of inhomogeneous localization, similar to that o
tained for fractals,52 or the power-law localization;41,53 note,
however, that these possibilities are in strong disagreem
with the one-parameter scaling theory!.

In the considered case ofed52em51 and p51/2, all

parameters in the KH Hˆ 8 are of the order of unity and its
properties do not change under the transformationed⇔em .
Therefore, the real eigenvaluesLn are distributed symmetri-
cally with respect to zero, in an interval of the order of on
The eigenstates withLn'0 are effectively excited by the
external field and represent the giant local-field fluctuatio
When metal concentrationp decreases~increases!, the eigen-
states withLn'0 are shifted from the center of the distribu
tion toward its lower~upper! edge, which typically favors
localization. Because of this, we assume that the eigenst
or at least those withLn'0, are localized, for all meta
concentrationsp in the 2d case.

Despite the great effort and all the progress made,
Anderson transition is not yet fully understood in the 3d case
and very little is known about the eigenfunctions of t
Anderson Hamiltonian, even in the case of a diagonal dis
der only.41–44,54 We mention here recent compute
simulations47 for a 3d system similar to our system withed

52em51, p51/2. The authors of Ref. 46 investigate th
Anderson problem with diagonal-matrix elementswii distrib-
uted uniformly around zero2w0/2<wii <w0/2 and off-
diagonal elementst i j 5 exp(ifij), with phasesf i j also dis-
tributed uniformly 0<f i j <2p. It was found that in the
center of the band, the states are localized for the diso

w0.wc518.8. In our 3d HK Ĥ8 Hamiltonian, the diagona
elements are distributed as26<Hi i <6 and, therefore, the
diagonal disorder is smaller than the above critical disor
wc . On the other hand, our off-diagonal disorder is stron
than in calculations.46 It is shown44,45 that even small off-
diagonal disorder strongly enforces localization. We conj
ture here that the eigenstates corresponding to the eigen
uesLn'0 in the 3d case are also localized for allp.

Suppose we found all eigenvaluesLn and eigenfunctions

Cn of Ĥ8. Then we can express the potentialf in Eq. ~6! in
terms of the eigenfunctions asf5(nAnCn and substitute it
in Eq. ~6!. Thus, we obtain the following equation for coe
ficientsAn :
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~ ikbn1Ln!An1 ik (
mÞn

~CnuĤ9uCm!Am5En , ~7!

wherebn5(CnuĤ9uCn), andEn5(CnuE) is a projection of
the external field on eigenstateCn . ~The product of two
vectors, e.g.,Cn and E is defined here in a usual way, a
En5(CnuE)[( iCn,i* Ei , where the sum is over all lattic

sites!. Since all parameters in the real Hamiltonian Hˆ 9 are of
the order of unity, the matrix elementsbn are also of the
order of unity. We approximate them by some constanb,
which is about unity. We suggest that eigenstatesCn are
localized within spatial domainsjA(L), wherejA(L) is the
Anderson localization length, which depends onL. Then,
the sum in Eq.~7! converges and it can be treated as a sm
perturbation. In the zeroth approximation,

An
(0)5En /~Ln1 ikbn!. ~8!

The first-order correction toAn is equal to

An
(1)52 ik (

mÞn
~CnuĤ9uCm!Em /~Lm1 ikbm!. ~9!

For k→0, most important eigenstates in this sum are th
with uLmu<bk. Since the eigenstatesLn are distributed in
the interval of the order of unity the spatial density of t
eigenmodes withuLmu<bk vanishes asa2dk→0 at k→0 .
Therefore, An

(1) is exponentially small uAn
(1)u

;u(mÞn(CnuĤ9uCm)Em /bmu} exp$2@a/jA(0)#k21/d% and
can be neglected whenk!@a/jA(0)#d. Then, the local po-
tential f is equal to f(r )5(nAn

(0)Cn5(nEnCn(r )/(Ln

1 ikb) @see Eq.~8!# and the fluctuating part of the local fiel
Ef52¹f(r ) is given by

Ef~r !52(
n

En¹Cn~r !/~Ln1 ikb!. ~10!

The average field intensity is as follows:

^uEu2&5^uEf1E0u2&

5E0
21K (

n,m

EnE m* @¹Cn~r !•¹Cm* ~r !#

~Ln1 ikb!~Lm2 ikb! L , ~11!

where we took into account that^Ef&5^Ef* &50. We con-
sider now the eigenstatesCn with eigenvaluesLn within a
small intervaluLn2Lu<DL!k centered atL. These states
are denoted asCn(L,r ). Recall that the eigenstates are a
sumed to be localized so that eigenfunctionsCn(L,r ) are
well separated in space. The average distance between t
l, can be estimated asl (DL);a@r(L)DL#21/d, where

r~L!5ad(
n

d~L2Ln!/V ~12!

is the dimensionless density of states for the KH Hˆ 8 andV is
the volume of the system. We assume here that the m
concentrationp is about one half so that all quantities in th
KH Ĥ8 are about unity and, therefore, the density of sta
r(L) is also about unity at the center of the spectrum, i.e.
L50. Then the distancel (DL) can be arbitrary large fo
DL→0; we assume, of course, thatl (DL) is still much
ll

e

-

em,

tal

s
t

smaller than the system size, and the total number of eig
statesCn(L,r ) is macroscopically large. When the intersta
distancel (DL) is much larger than the localization leng
jA(L) the localized eigenfunctionsCn(L,r ) can be charac-
terized by special positions of their ‘‘centers’’rn so that
Cn(L,r )5C(L,r2rn) and Eq.~11! acquires the following
form:

^uEu2&5E0
21 (

L1 ,L2

3

K (
n,m

EnEm* @¹C~L1 ,r2rn!•¹C* ~L2 ,r2rm!#L
~L11 ikb!~L22 ikb!

,

~13!

where the first sum is over positions of the intervalsuLn
2L1u anduLm2L2u in theL space, whereas the sum in th
numerator is over spatial positionsrn and rm of the eigen-
functions. For each realization of a macroscopically hom
geneous random film, the positionsrn of eigenfunctions
C(L,r2rn) take new values that do not correlate with t
value of L. Therefore, we can independently average
numerator in the second term of Eq.~13! over positionsrn
andrm of eigenstatesCn andCm . Taking into account that
^¹Cn(r )&50, we obtain

^EnE m* @¹C~L1 ,r2rn!•¹C* ~L2 ,r2rm!#&

.^uE nu2u¹C~L1 ,r2rn!u2&dL1L2
dnm , ~14!

where we neglected possible correlations of eigenfuncti
from different intervalsL1 andL2 since the spatial density
of the eigenfunctions excited effectively by the external fie
is estimated asa2dr(L)k, i.e., it vanishes fork→0. Sub-
stitution of Eq.~14! in Eq. ~11! results in

^uEu2&5E0
21(

L

(
n

uE nu2^u¹Cn~L,r !u2&

L21~bk!2
. ~15!

The localized eigenstates are not, in general, degenerat
that the eigenfunctionsCn can be chosen as real. Then w
can estimateuE nu25u(CnuE)u25u( i 51

N Cn,iEi u2 in Eq. ~15! by
replacing the sum over allN sites of the system with integra
tion over the system volumeV, which gives uE nu2

;a22du*CnEdr u2. Using Eqs.~5! and ~4!, we find

uE nu2;a422dU E Cn~E0•¹e!drU2

5a422dU E e~E0•¹Cn!drU2

, ~16!

where to obtain the last relation we integrated by parts
took into account that the eigenstatesCn are localized within
the localization lengthjA(L). Since the local dielectric con
stant ueu are of the order of unity,ueu;1, and the spatial
derivative¹Cn is estimated asCn /jA(L) in Eq. ~16! we
find
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uE nu2;
E0

2a4

a2djA
2~L!

U E Cn~r !drU2

;
E0

2a4

jA
2~L!

U(
i 51

N

Cn,iU2

,

~17!

where we returned back to summation over sites of the tig
binding model. Since the eigenfunctionsCn are normalized
to unity, i.e., ^CnuCn&5( i 51

N uCn,i u251 and localized
within jA(L) we estimate them asCn,i;@jA(L)/a#2d/2 in
the localization domain. Substituting this estimate in Eq.~17!
we obtain

uE nu2;E0
2a2@jA~L!/a#d22. ~18!

In a similar way we can estimate the average spatial der
tive in the numerator of Eq.~15!,

^u¹Cn~L,r !u2&;jA
22~L!^uCn~L,r !u2&

;jA
22~L!N21(

i 51

N

uCn,i u2

;jA
22~L!/N, ~19!

whereN5V/ad is the total number of sites. Now we use th
estimates~18! and~19! and rewrite the numerator of Eq.~15!
as

(
n

uE nu2^u¹Cn~L,r !u2&;
1

N (
n

E0
2@jA~L!/a#d24

;E0
2@jA~L!/a#d24r~L!DL,

~20!

where we took into account that the total number of
eigenstates within intervalDL is equal toNr(L)DL. By
substituting Eq.~20! in Eq. ~15! and replacing the summatio
by integration overL, we obtain the following estimate fo
the field intensity

^uEu2&;E0
21E0

2E r~L!@a/jA~L!#42d

L21~bk!2
dL. ~21!

Since all matrix elements in KH H8 are of the order of unity
~in fact, the off-diagonal elements are61), the density of
statesr(L) and localization lengthjA(L) change signifi-
cantly within an interval of an order of one. In contrast, t
denominator in Eq.~15! has an essential singularity atL5
6 ibk. Then the second moment of the local-electric fie
M2[M2,05^uEu2&/E0

2 is estimated as

M2
!;11r~a/jA!42dE 1

L21~bk!2
dL

;r~a/jA!42dk21@1, ~22!

provided thatk!r(a/jA)42d @we setjA(L50)[jA , r(L
50)[r and approximatedb by unity#. Thus, the field dis-
tribution, in this case, can be described as a set of the
eigenstates localized withinjA , with the field peaks having
the amplitudes

Em
! ;E0k21~a/jA!2, ~23!
t-

a-

e

H

which are separated in distance by the field correlation len

je
!;a~rkb!21/d;a~rk!21/d, ~24!

where again we used thatb;1. All the above speculations
leading to Eqs.~22!–~24! hold when the field correlation
length je

! is much larger than the Anderson localizatio
length, i.e.,je

!@jA . This condition is fulfilled in the limit of
small losses whenk→0.

Note that hereafter by the superscript! we mark the quan-
tities, which are given for the special case2em5ed51 con-
sidered here.~The sign!

, of course, should not be confuse
with complex conjugation denoted by* .! Using the scale
renormalization described in the next subsection, we will
how these quantities are transformed whenuem /edu@1, i.e.,
in the long wavelength part of the spectrum. Note also th
for jA and r we omit the ! sign in order to avoid compli-
cated notations; it is implied that their values are alwa
taken at2em5ed51, even if the case ofuem /edu@1 is con-
sidered.

In the above estimates we supposed that the localiza
length jA is proportional to the eigenstate ‘‘size.’’ This as
sumption might not be exact for the Anderson system,
general~e.g., see discussion in Ref. 41!, but it is confirmed
well by our numerical calculations~see Figs. 1 and 2 and
Figs. 2 and 3 in Ref. 10! for the case of 2d percolation
composites.

The above results for the field distribution are in go
agreement with comprehensive numerical calculations p
formed in Refs. 27, 28, 29 for a 2d system withem /ed'
21 and p5pc51/2. It was shown there that the avera
intensity of the local field fluctuations, i.e., the second m
mentM2

! is estimated asM2
!;k2g, where the critical expo-

nent g'1.0. The authors also found that the correlati
length je

! of the field fluctuations diverges asje
!;k2ne at

k→0, where the critical exponentne'0.5. Ford52, these
values ofg andne are very close tog51 andne51/2 found
here.

Above we assumed that metal concentrationp is about
one half, which corresponds to the percolation threshold
d52. The derivation of Eqs.~21! and~22! was based on the
assumption that the density of statesr(L) is finite and about
unity for L50. This assumption, however, is violated fo
small metal concentrationp, when the eigenvalue distribu
tion shifts to the positive side ofL, so that the eigenstate
with L'0 are shifted to the lower edge of the distributio
Then, the density of statesr in Eq. ~22! becomes a function
of the metal concentrationp. In the limit of p→0, the num-
ber of states effectively excited by the external field is p
portional to the number of metal particles. Then the funct
r(p) can be estimated asr(p);p, for p→0. The same
consideration holds in the other limit, when a small porti
of holes in otherwise continuous film resonate with the e
ternal field and the density of states can be estimated
r(p);12p, for p→1. When the density of states de
creases, localization becomes stronger and we estimate
localization lengthjA as jA(L50,p→0);jA(L50,p→1)
;a. It follows then from Eq.~22! that strong field fluctua-
tions (M2.1) exist in a metal-dielectric composite withed

52em8 in the wide concentration range

k,p,12k, k!1. ~25!
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FIG. 1. Distribution ofx component of local ‘‘THG field source’’~real part! g385Re@E2(r )Ex(r )# in semicontinuous silver films a
wavelengthl51.5 mm, for different metal concentrationp. ~a! and~b!: p50.3; ~c! and~d!: p5pc50.5; ~e! and~f!: p50.7. The positive
@~a!, ~c!, ~e!# and negative@~b!, ~d!, ~f!# values of the local nonlinear fields are shown in different figures. The applied fieldE051.
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Although we estimated above local fields for the special c
of ed52em8 all the above speculations, which are based
the assumption that the eigenstates of KH are localized, h
in a more general case, when the real part of the meta
electric constantem8 is negative and its absolute value is
the order ofed . The important case of the large contra
when uemu@ed will be considered in the next subsection.

Note that the above speculations leading to prediction
giant field fluctuations described by Eqs.~21! and ~22!, do
not require long-range spatial correlations~such, for ex-
ample, as in fractal structures! in particle positions. The large
field fluctuations have been seen in computer simulations
e
n
ld
i-

t

f

in

particular, for the so-called random gas of metal particle,55,56

i.e., for metal particles randomly distributed in space. Th
however, is not true when the contrast is largeuemu@ed ; we
show below that in this case the internal structure of a co
posite becomes crucial.

To get a further insight in the optical field distribution i
percolation metal-dielectric composites, we employ t
original idea for computer simulations described in details
our previous publications27–31and calculate the local electri
field distribution for a two-dimensional percolation compo
ite ~see Figs. 1 and 2!. We model a film by a square lattic
consisting of metallic bonds, with the conductivitysm5
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FIG. 2. Distribution of local ‘‘Kerr field’’ ~real part! gK
8 5Re@E2(r )uE(r )u2# in semicontinuous silver films at wavelengthl51.5 mm, for

different metal concentrationp. ~a! and~b!: p50.3; ~c! and~d!: p5pc50.5; ~e! and~f!: p50.7. The positive@~a!, ~c!, ~e!# and negative@~b!,
~d!, ~f!# values of the local fields are shown in different figures. The applied fieldE051.
e
he
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lic-
2iemv/4p (L-R bonds! and concentrationp, and dielectric
bonds with the conductivitysd52 i edv/4p and concentra-
tion 12p (C bonds!. The amplitude of the incident wav
E0[E(0) ~for the applied field we use interchangeably t
notationsE0 andE(0)) is set equal one,E051, whereas the
local fields inside the system are complex quantities. T
calculations are performed for silver-on-glass film. The
electric constant of silver has the form of Eq.~1!, with the
interband-transitions contributioneb55.0, plasma frequency
vp59.1 eV, and relaxation ratevt50.021 eV.57 We also
useded52.2 for a glass host. In Fig. 1, as an example,
show the distribution for the local field productg38(r )
e
-

e

5Re@E2(r )Ex(r )#/uE(0)u3, for wavelength l51.5 mm,
which corresponds toem'21181 i3.2 ~three different con-
centrations,p50.3, p5pc50.5, andp50.7 were used in
simulations!. The quantityg3(r ) determines the local nonlin
ear source ~polarization! for third-harmonic generation
third-harmonic generation~THG! ~see Section III!. In Fig. 2,
we also show the local field product gK8 (r )
5Re@E2(r )uE(r )u2#/uE(0)u4 for the same parametersl
51.5 mm, p50.3, p5pc50.5, andp50.7 of the silver
semicontinuous film. The integral ofgK(r ) determines the
average enhancement for the Kerr nonlinearity. For simp
ity, all the distances in Figs. 1 and 2 are given ina units. As
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seen in the figures, the fluctuating nonlinear fields are w
localized. They form a set of peaks with the magnitudes
to 106 for g38(r ) and up to 53107 for gK8 (r ) that are different
in sign; the peaks and their spatial separations become la
with further increase ofl ~see also Fig. 3 in Ref. 10!. Quali-
tatively similar distributions were obtained for the imagina
parts ofg3(r ) andgK(r ) ~not shown!.

B. High-order moments of local electric fields

Now, we consider arbitrary high-order field moments d
fined as

Mn,m5
1

VE0
muE0un

E uE~r !unEm~r !dr , ~26!

where, as above,E0[E(0) is the amplitude of the externa
field and E(r ) @which is defined so thatE2(r )[E(r )
•E(r )] is the amplitude of the local field; the integration
over the total volumeV of a system.
on

ue

r

ll
p

er

-

The high-order field moment̂M2k,m}Ek1mE* k& repre-
sents a nonlinear optical process in which in one elemen
act k1m photons are added andk photons are subtracted.17

This is because the complex conjugated field in the gen
expression for the nonlinear polarization implies photon s
traction so that the corresponding frequency enters the n
linear susceptibility with the negative sign.17 Enhancement
of the Kerr optical nonlinearityGK is proportional toM2,2,
third-harmonic generation~THG! enhancement is given b
uM0,3u2, and surface-enhanced Raman scattering~SERS! is
represented byM4,0 ~see next section!. Integrands in Eq.~26!
for M2,2 and M0,3, i.e., the local nonlinear fieldsg3
5uE(r )u2E(r )/(E0uE0u2) and gK5uE(r )u2E2(r )/(E0

2uE0u2)
are shown in Figs. 1 and 2.

We are interested here in the case whenMn,m@1, which
implies that the fluctuating part of the local electric fieldEf
is much larger than the applied fieldE0. We substitute in Eq.
~26! the expression forEf given by Eq.~10! and obtain for
the momentM2p,2q (p and q are integers! the following
equation
e over all
M2p,2q5K (
n1 ,n2 ,•••n2p ;m1 ,m2 ,•••m2q

N En1
En2

~¹Cn1
•¹Cn2

* !•••En2p21
En2p

~¹Cn2p21
•¹Cn2p

* !

~Ln1
1 ibk!~Ln2

2 ibk!•••~Ln2p21
1 ibk!~Ln2p

2 ibk!

3
Em1

Em2
~¹Cm1

•¹Cm2
!•••Em2q21

Em2q
~¹Cm2q21

•¹Cm2q
!

~Lm1
1 ibk!~Lm2

1 ibk!•••~Lm2q21
1 ibk!~Lm2q

1 ibk!
, ~27!

where^•••& denotes as above the ensemble average, which is equivalent to the volume average and the sums ar
eigenstates of KH Hˆ 8. As a next step, we average Eq.~27! over spatial positions of eigenstatesCn(r )[C(r2rn) as it has
been done in transition from Eq.~13! to Eq. ~15!; this results in the following estimate

M2p,2q;(
L

(
uLn2Lu<DL

uE nu2pE n
2q^~¹Cn•¹Cn* !p~¹Cn•¹Cn!q&

„L21~bk!2
…

p~L1 ibk!2q
, ~28!
r

all
Eq.

er
where the summation in the numerator is over eigenfuncti
Cn5C(L,r2rn) with eigenvalues within the intervaluLn
2Lu<DL!k, while the external sum is over positionsL
of the intervals that cover the whole range of eigenval
Ln . The average in the numerator of Eq.~28! can be esti-
mated as follows@see derivation of Eq.~19!#

^~¹Cn•¹Cn* !p~¹Cn•¹Cn!q&

;
1

NjA
2(p1q)~L!

(
i 51

N

uCn,i u2pCn,i
2q

;
1

NjA
2(p1q)~L!

F a

jA
Gd(p1q21)

, ~29!

where, as above,jA(L) is the localization length,a is the
period of the square lattice in the tight-binding model@see
discussion after Eq.~5!#, andN is the total number of cites in
the lattice. We substitute this equation and expression foEn
s

s

given by Eq.~18! in Eq. ~28!. Then the sum in the numerato
of Eq. ~28! takes the following form

(
uLn2Lu<DL

uE nu2pE n
2q^~¹Cn•¹Cn* !p~¹Cn•¹Cn!q&

;r~L!@a/jA~L!#4(p1q)2dDL, ~30!

wherer(L) is the dimensionless density of states@see Eq.
~12!#. By replacing the first sum in Eq.~28! by integration
over the spectrum we obtain

M2p,2q;E r~L!@a/jA~L!#4(p1q)2d

@L21~bk!2#p~L1 ibk!2q
dL. ~31!

Note that to obtain the above expression we neglected
cross terms in the product of eigenstates, when averaging
~27! over the spatial positions of the eigenfunctionsCn
5C(L,r2rn). It can be shown that after integrating ov
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L, these cross terms result in negligible@in comparison with
the leading term given by~31!# contribution toMn,m , for
k→0.

Assuming that the density of statesr(L) and the local-
ization lengthjA(L) are both smooth functions ofL in the
vicinity of zero and taking into account that all parameters
the KH Ĥ8 for the caseed52em8 51 are of the order one, we
obtain the following estimate for the local-field moments

Mn,m
! ;r~p!@a/jA~p!#2(n1m)2dk2n2m11, ~32!

for n1m.1 andm.0, where we set for simplicityb51.
Note that the same estimate can be obtained by conside
the local fields as a set of peaks~stretched over the distanc
jA), with the magnitudeEm

! and the average distanceje
!

between the peaks given by Eqs.~23! and ~24!. Recall that
the superscript! denotes physical quantities defined in t
system withed52em8 51. In Eq. ~32!, we indicated explic-
itly the dependence of the density of statesr(p) and local-
ization lengthjA(p) on the metal concentrationp @as men-
tioned abover(p) andjA(p) are always given ated52em8
51 and the sign! for them is omitted#. The notationsr(p)
and jA(p) should be understood asr(p)5r(p,L50) and
jA(p)5jA(p,L50), i.e., they are given atL50.

The Anderson localization lengthjA(L) has, typically, its
maximum at the center of theL distribution.46 Whenp de-
parts from 1/2, the valueL50 moves from the center of th
L-distribution toward its wings, where the localization
typically stronger~i.e., jA is less!. Therefore, it is plausible
to suggest thatjA(p) reaches its maximum atp51/2 and
decreases towardp50 andp51, so that the absolute valu
of the local-field moments may have a minimum atp51/2,
according to Eq.~32!. In 2d composites the percolatio
thresholdpc is typically close topc.0.5. Therefore, the mo
mentsMn,m in 2d composites have a local minimum at th
percolation threshold as a function of the metal concentra
p. In accordance with this, the amplitudes of various non
ear processes, while much enhanced, have a characte
minimum at the percolation threshold@see Sec. III, Figs.~5!
and ~6!#.

It is important to note that the moment magnitudes in E
~32! do not depend on the number of ‘‘subtracted’’~annihi-
lated! photons in one elementary act of the nonlinear scat
ing. If there is at least one such photon, then the poles in
~31! are in different complex semiplanes and the result of
integration is estimated by Eq.~32!.

However, for the case when all photons are added~in
other words, all frequencies enter the nonlinear susceptib
with the sign plus!, i.e., whenn50, we cannot estimate th
momentsM0,m[E0

2mV21*Em(r )dr by Eq. ~32! since the
integral in Eq.~31! is not further determined by the poles
L56 ibk. Yet all the functions of the integrand are abo
unity and the momentM0,m must be of the order of unity
M0,m;O(1) for m.1. Note that the momentM0,m de-
scribes, in particular, enhancementGnHG of n-order har-
monic generation, through the relationGnHG5uM0,mu2 ~see
Sec. III!.

Above we assumed thatuemu/ed'1. To estimate the
local-field fluctuations in percolation composites for t
large contrast,uemu/ed@1, we use the scaling approach d
veloped in our previous paper10 and generalize it for an ar
f

ng

n
-
stic

.

r-
q.
e

ty

t

bitrary field moment. Here we recapitulate briefly the ma
points of the scaling renormalization. Consider first a per
lation composite where the metal concentrationp is equal to
the percolation threshold,p5pc . We divide a system into
cubes of sizel and consider each cube as a new renormali
element. All such cubes can be classified into two types
cube that contains a continuous path of metallic particle
considered as a ‘‘conducting’’ element. A cube without su
an ‘‘infinite’’ cluster is considered as a nonconducting, ‘‘d
electric,’’ element.59 The effective dielectric constant of th
‘‘conducting’’ cubeem( l ) decreases with increasing its sizel
asem( l ).( l /a)2t/nem , whereas the effective dielectric con
stant of the ‘‘dielectric’’ cubeed( l ) increases withl as
ed( l ).( l /a)s/ned @ t, s, and n are the percolation critica
exponents for the static conductivity, dielectric constant, a
percolation correlation length, respectively; for 2d case,t
>s>n>4/3, in 3d, the exponents are equal tot.2.0, s
.0.7, andn.0.88 ~Refs. 7 and 36!#. We set now the cube
size l to be equal to

l 5 l r5a~ uemu/ed!n/(t1s). ~33!

Then, in the renormalized system, where each cube of
size l r is considered as a single element, the dielectric c
stant of these new elements takes either valueem( l r)
5ed

t/(t1s)uemus/(t1s)(em /uemu), for the element renormalized
from the conducting cube, ored( l r)5ed

t/(t1s)uemus/(t1s), for
the element renormalized from the dielectric cube. The ra
of the dielectric constants of these new elements is equa
em( l r)/ed( l r)5em /uemu>211 ik, where the loss factork
5em9 /uemu!1 is the same as in the original system. Accor
ing to the basic ideas of the renormalization gro
transformation,59,36 the concentration of conducting and d
electric elements does not change under the above tran
mation, provided thatp5pc . The field distribution in a two
component system depends on the ratio of the dielectric
mittivities of the components. Thus after the renormalizati
the problem becomes equivalent to the considered ab
field distribution for the caseed52em8 51. Taking into ac-
count that the electric field renormalizes asE0

!5E0( l r /a),
we obtain from Eq.~23! that the field peaks in the renorma
ized system are

Em.E0~a/jA!2~ l r /a!k21.E0~a/jA!2S uemu
ed

D n/(t1s)S uemu

em9
D ,

~34!

wherejA5jA(pc) is the localization length in the renorma
ized system. In the original system, each field maximum
the renormalized system locates in a dielectric gap in
‘‘dielectric’’ cube of thel r size or in-between two ‘‘conduct
ing’’ cubes of the sizel r that are not necessarily connected
each other.59 There is no a characteristic length in the orig
nal system that is smaller thanl r , except the microscopica
length in the problem, which is a grain sizea. Therefore, it is
plausible to suggest that the width of a local-field peak in
original system is abouta. Then the values of the field
maximaEm do not change when returning from the reno
malized system to the original one. Therefore, Eq.~34! gives
the values of the field maxima in the original system. No
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that valueEm of the field maxima is different from previ
ously obtained estimate~23! due to the renormalization o
the applied fieldE0.

Equation ~34! gives the estimate for the local field ex
trema when the real partem8 of the metal dielectric constan
becomes negative. For metalsem increases in absolute valu
with the wavelength, when the frequencyv is smaller than
ṽp @see discussion below Eq.~1!#. Therefore, the field peak
Em(v) increase strongly with the wavelength~see, for ex-
ample, Fig. 3 in our previous paper10!. For a Drude metal it
happens for the frequenciesv&ṽp , when the dielectric con-
stantem can be approximated as

em~v&ṽp!>2~v2ṽp!
eb

ṽp

1 i
ebvt

ṽp

. ~35!

By substituting this expansion in Eq.~34!, we obtain

Em~v&ṽp!

.E0~a/jA!2S 2ebuv2ṽpu

ṽp
D (n1t1s)/(t1s)

ṽp

vtebed
n/(t1s)

.

~36!

Since losses in a typical metal are small,vt!ṽp , the field
peak amplitudes first increase steeply and then satu

FIG. 3. High-order field moments of local electric field in sem
continuous silver films as a function of the wavelengthl at p
5pc . ~a! Results of numerical calculations ofMn[Mn,0

5^uE/E0un& for n52, 3, 4, 5, and 6 are represented by1 , 0, *, x,
and #, respectively. The solid lines describeMn found from the
scaling formula~41!. ~b! M4,05^uE/E0u4& @scaling formula~41! -
upper solid line, numerical simulations -* ]; M0,45^(E/E0)4&
@scaling formula~42! - upper dashed line#; M2,05^uE/E0u2& @scal-
ing formula ~41! - lower solid line, numerical simulations -1 #;
M0,25^(E/E0)2& @scaling formula~42! - lower dashed line, numeri
cal simulations - 0#. In all presented analytical calculations we s
jA52a andr51 in Eqs.~41! and ~42!.
te

~see below! with the magnitude Em.E0(a/jA)2(eb /
ed)n/(t1s)(ṽp /vt);E0ṽp /vt at v50.5ṽp . Therefore, the
intensity maximaI m exceed the intensity of the inciden
wave I 0 by I m /I 0;(ṽp /vt)

2@1. For a silver-glass perco
lation composite we obtainedI m /I 0;103 ~see also the field
distribution in Figs. 1 and 2!.

Now we consider the case of small frequenciesv!vp
when the dielectric constantem for a Drude metal~see Eq. 1!
takes the form

em~v!vp!>2S v

vp
D 2S 12 i

vt

v D , ~37!

where we again assume thatv@vt . By substituting this
expression in Eq.~34!, we obtain

Em~v!vp!.E0S a

jA
D 2S vp

Aedv
D 2n/(t1s)S v

vt
D . ~38!

For the 2d case, the critical exponents are equal ton>t>s
>4/3 and Eq. ~38! gives Em;(a/jA)2E0vp /(Aedvt)
5(a/jA)2E0Aeb /ed(ṽp /vt), that coincides with the esti
mate obtained from Eq.~36! for v50.5ṽp . This means that
the local-field peaks increase steeply when the real par
the metal dielectric constantem becomes negativeem8 ,0 and
then remain almost the same in the wide frequency ra
ṽp,v,vt , for 2d composites.

For 3d percolation composites, the critical exponents a
equal ton>0.88, t>2.0, s>0.7.7 To simplify estimations
we put belown>(t1s)/3 for d53. Then Eq.~38! takes the
following form Em;E0(eb /ed)1/3ṽp

2/3v1/3/vt , that is the

local-field peaks increase up toEm /E0;ṽp /vt when em8
becomes negative and then the peaks decrease asEm /E0

;(ṽp /vt)(v/ṽp)1/3, with further decrease of frequency
For silver composites, we estimate that the maximum va
of the peaks is achieved atv>0.5ṽp that corresponds tol
>0.6 mm.

Since we know the peak amplitudes for the local elec
field we can estimate the momentsMn,m of the local field. To
obtainMn,m, we consider first spatial distribution of the fiel
maxima for uemu@ed . The average distance between t
field maxima in the renormalized system is equal toje

! given
by Eq. ~24!. Then the average distanceje between the field
maxima in the original system~provided thatr;1) is equal
to

je>~ l r /a!je
!;aS uemu

ed
D n/(t1s)S uemu

em9
D 1/d

. ~39!

In the original system, each field maximum of the renorm
ized system splits inton( l r) peaks of theEm amplitude lo-
cated along a dielectric gap in the ‘‘dielectric’’ cube of thel r
size. The gap ‘‘area’’ scales as the capacitance of the die
tric cube, so does the number of peaks

n~ l r !}~ l r /a!d221s/n. ~40!

There are, on average, (jA /a)d excited clusters. Thus, we
obtain the following estimate for the local-field moments
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Mn,m;~jA /a!dS Em

E0
D n1m n~ l r !

~je /a!d

;r~jA /a!d22(n1m)S l r /a

k D n1m21

~ l r /a!s/n21

;r~jA /a!d22(n1m)F S uemu
ed

D n/(t1s)Gn1m221s/n

3S uemu

em9
D n1m21

~41!

that holds forn1m.1 andn.0. Sinceuemu@ed and the
ratio uemu/em9 @1 the moments of the local field are ve
large, Mn,m@1, in the visible and infrared spectral range
Note that the first momentM0,1;1 that corresponds to th
equation^E(r )&5E0. We stress again that the localizatio
lengthjA in Eq. ~41! corresponds to the renormalized syste
with ed52em8 51. The localization length in the origina
system, i.e., a typical size of the eigenfunction is estima
as (l r /a)jA@a. In other words the eigenstates become m
roscopically large in the limit of large contrastuemu/ed@1
and consist of sharp peaks separated in space by dist
much larger thana. The eigenstates of HK Hˆ cover the vol-
ume (jAl r /a)d;(jAvp /v)d@ad for two-dimensional Drude
metal composites andv!vp .

We consider now the momentsMn,m for n50 that corre-
spond to the volume average of themth power of the com-
plex amplitudeE(r ), namely, M0,m5^Em(r )&/E0

m. In the
renormalized system, where uem( l r)u5ued( l r)u and
em( l r)/ed( l r)>211 ik, the field distribution coincides with
the field distribution in the system withed.2em8 ;1. In the
system withed.2em8 ;1 the field peaksEm

! are different in
phase and because of the destructive interference, the
mentM0,m

! ;O(1) @as it follows from Eq.~31!#. In transition
to the original system the peaks increase by the factorl r /a,
leading to the corresponding increase of the momentM0,m .
We suppose that within a single ‘‘dielectric’’ cube the fie
peaks are in phase, i.e., the field maxima form chains
aligned peaks that are stretched out in a dielectric cube.
assumption is confirmed by results of numerical simulat
shown in Fig. 1, where the field maxima with different sig
are concentrated in different places of a percolation comp
ite. Then we obtain the following equation for the momen

M0,m;M0,m
! ~ l r /a!m

n~ l r !

~je /a!d
;k~ l r /a!m221s/n

;S em9

uemu D S uemu
ed

D (m221s/n)n/(t1s)

, ~42!

which holds whenM0,m given by this equation is larger tha
one.

Using the critical exponents for 2d percolating compos-
ites, t>s>n>4/3,7 we can simplify Eqs.~41! and ~42! as
follows

Mn,m;rF uemu3/2

~jA /a!2Aedem9
G n1m21

~d52!, ~43!
.

d
-

ce

o-

f
is

n

s-

for n1m.1 andn.0, and

M0,m;
em9 uemu(m23)/2

ed
(m21)/2 ~d52!, ~44!

for m.1, n50 and (uemu/ed)(m21)/2.uemu/em9 @the last in-
equality corresponds to the condition that the moment gi
by Eq. ~44! is larger than one#. The momentsMn,m(nÞ0)
are strongly enhanced in 2d Drude metal-dielectric compos
ites. The moments reach the maximum value

Mn,m;rF vp

vtAed~jA /a!2G n1m21

~d52!, ~45!

when frequencyv decreases so that the conditionv!vp is
fulfilled. The spatial moments of the local electric in a 2d
percolation composite are independent of frequency, fov
!vp . For metals it typically takes place in the red and i
frared spectral ranges. For a silver semicontinuous film o
glass substrate, the momentMn,m can be estimated a
Mn,m;@(a/jA)233102#n1m21, for v!vp .

It follows from Eq. ~41! that for 3d metal-dielectric per-
colation composites, where the dielectric constant of me
component can be estimated by the Drude formula~1!, the
momentsMn,m (nÞ0) achieve the maximum value at fre
quencyvmax'0.5ṽp . To estimate the maximum value, w
note that the following relationsn/(t1s)'1/3, s'n are
valid for the 3d case, wheret>2.0, s>0.7 andn>0.88.7

Then the maximum value of the moments is estimated a

Mn,m~v5vmax!

;r~jA /a!@~a/jA!2~eb /ed!1/3ṽp /vt#
n1m21 ~d53!.

~46!

For small frequenciesv!vp , the moments of the local field
decrease with the wavelength as

Mn,m~v!vp!;r~jA /a!F ~a/jA!2vp
2/3v1/3

ed
1/3vt

G n1m21

~d53!.

~47!

In Fig. 3, we compare results of numerical and theoreti
calculations for the field moments in 2d silver semicontinu-
ous films on glass. We see that there is excellent agreem
between the scaling theory@formulas~43! and~44!# and nu-
merical simulations. To fit the data we usedjA'2a. @Re-
sults of numerical simulations forM0,4 are not shown in Fig.
3 since it was not possible to achieve reliable results in
simulations because of large fluctuations in values of t
moment.# The small value ofjA indicates strong localization
of surface plasmons in percolation composites, at least
the 2d case. As seen in Fig. 3~b! the spectral dependence o
enhancementMn,m differs strongly for processes with (n
Þ0) and without (n50) subtraction of photons.

As discussed above, nonlinear optical processes, in g
eral, are phase dependent and proportional to a fa
uEunEm, i.e., they depend on the phase through the termEm

and their enhancement is estimated asMn,m
5^uE/E(0)un(E/E(0))m&. According to the above consider
ation,Mn,m;Mn1m,0 , for n>1. For example, enhanceme
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of the Kerr-type nonlinearityGK5M2,2;GRS.M4,0; ~see
also next section!. For nearly degenerate four-wave mixin
~FWM!, the enhancement is given byGFWM;uGKu2
;uM2,2u2 and can reach giant values up to;1012.

Above, for the sake of simplicity, we assumed thatp
5pc when considering the case ofem8 !0. Now we estimate
the concentration rangeDp5p2pc , where the above esti
mates for the local field moments are valid.28,29We note that
the above expressions for the local field and average fi
momentsMn,m hold in almost all concentration range give
by Eq. ~25! whenem.2ed . The metal concentration rang
Dp, where the local electric field is strongly enhance
shrinks, however, whenem8 !0. The above speculations a
based on the finite-size scaling arguments, which hold p
vided the scalel r of the renormalized cubes is smaller th
the percolation correlation lengthj>a(up2pcu/pc)

2n. At
the percolation threshold, where the correlation lengthj di-
verges, our estimates are valid in a wide frequency ra
vt,v,ṽp, which includes the visible, infrared, and fa
infrared spectral ranges for a typical metal. For any particu
frequency from this interval, we estimate the concentrat
rangeDp , where the giant field fluctuations occur, by equ
ing the values ofl r and j, which results in the inequality
uDpu<(ed /uemu)1/(t1s).

In Fig. 4, we show the momentsM4,0, M3,1, andM2,2 as
a function of k for 2d percolating system withem5100
(211 ik), ed51 and metal concentrationp50.7.pc
50.5. All the moments are close in magnitude and incre
with decreasing lossesk according to a power-law depen
dence with the same exponent, as it is predicted by Eq.~43!.

III. GIANT ENHANCEMENTS OF OPTICAL
NONLINEARITIES AND RAMAN
SCATTERING IN PERCOLATION

COMPOSITES

In this section, we consider enhancements fornth har-
monic generation, Raman and hyper-Raman scattering,

FIG. 4. Fourth-order field momentsMm,n (m1n54) of the
local electric field in 2d metal-dielectric composite withed51 and
metal permittivityem52100(12 ik), as functions ofk: M4,0–d,
M3,1– m, M2,2– j.
ld
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Kerr nonlinearity in metal-dielectric composites. To devel
our previous considerations,10 we obtain here scaling formu
las for enhancement factors for different nonlinear opti
processes, including those that depend on the field ph
The enhancement is expressed in terms of the high-o
field moments considered above. We again assume tha
light wavelengthl is larger than any intrinsic spatial scale
the film, including the skin depth,l@aAuemu. We do not
consider here the effects of light propagation and supp
thatE0 is the macroscopic, average electric field acting in
system. The fieldE0 changes on the spatial scale of the ord
of l, which is much larger than the scale of the microsco
averaging. For simplicity, we also assume thatE0 is linearly
polarized so that it can be chosen real.

A. High harmonic generation

We consider here enhancednth harmonic generation
(nHG) at frequencynv when a percolation metal-dielectri
composite is irradiated by a light beam at frequencyv. For
estimations, we assume, as above, that metal grains are
acterized by the Drude dielectric function given by Eq.~1!.
As shown in previous sections, Anderson localization of s
face plasmon excitations results in giant scale-invariant fi
fluctuations of the local electric field. This makes the cons
ered here high harmonic generation different from the w
known phenomena of harmonic generation from smooth60–64

and rough65–69 surfaces.
We assume that the material components forming a c

posite possess nonlinear conductivitys (n) that results in
nHG; s (n) can also be due to adsorbed molecules in
composite. As shown in Sec. II, the local field concentra
mainly in dielectric gaps between metal clusters. Therefo
largest enhancement of nonlinear effects is achieved w
either nonlinear adsorbed molecules are located in the die
tric gaps or the dielectric itself possesses the nonlinearit

The local electric fieldEv(r ) induced in a composite by
the external field Ev,0 generates the nv current
s (n)Ev(r )Ev

n21(r ) in the system. This expression, strict
speaking, holds only for the scalar nonlinear conductiv
and oddn ~i.e., n52k11), whenEn215(E–E)k. However,
for estimates, the formula can be used in the general case
arbitrary n. The nonlinear current interacts with the syste
and generates the ‘‘seed’’nv electric field, with the ampli-
tude Env

(s)5s (n)Ev
n21Ev /s (1), wheres (1) is the linear con-

ductivity at frequencynv. The electric fieldEnv
(s) can be

thought of as an inhomogeneous external field exciting
composite atnv frequency. ThenHG currentjnv induced in
the film by the ‘‘seed’’ fieldEnv

(s) can be found in terms of the

nonlocal conductivity tensorŜ(r ,r 8) that relates the applied
~external! field at point r 8 to the current at pointr ,
j nv,b(r )5*Snv,ba(r ,r 8)Env,a

(s) (r 8)dr 8, whereSnv,ba is the
conductivity tensor at frequencynv and the integration is
over the entire film area.10,30 The Greek indices take value
$x,y% for d52 and$x,y,z% for d53. The summation over
repeated indices is implied. It is the currentjnv that eventu-
ally generates the nonlinear scattered field at the freque
nv. Figure 1 shows the normalized real part of the 3v local
field g385Re@E2(r )Ex(r )#/uE(0)u3 in a 2d silver-on-glass
film. As seen in Fig. 1, the fluctuating 3v fields form a set of
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16 402 PRB 60SARYCHEV, SHUBIN, AND SHALAEV
sharp peaks, looking up and down, and having the ma
tudes;1034106. Such huge fluctuations of the local field
are anticipated to strongly enhance the 3v and higher har-
monic generation.

For simplicity, we assume that the metal and dielec
components of a composite have the same nonlinear con
tivity s (n) ~e.g., resulting from adsorbed molecules u
formly distributed in the composite!. We are interested in
enhancement of thenv harmonic generation due to the gia
local field fluctuations. Therefore, we compare thenv signal
from the system with and without metal grains. It is shown
our previous paper10 that enhancement of thenth harmonic
generation is given by the following formula

GnHG;U^snv~r !@Env~r !•Ev~r !#Ev
n21~r !&

sdEv,0
n11 U2

5U^env~r !@Env~r !•Ev~r !#Ev
n21~r !&

edEv,0
n11 U2

, ~48!

whereEnv(r ) is the local electric field exited in the syste
by uniformprobe fieldEnv,0 that has the same amplitude an
direction as external fieldEv,0 but oscillates with the fre-
quencynv; snv(r ), sd and env(r ), ed are the linear con-
ductivities and dielectric functions of the composite with a
without metal grains, respectively. The enhancementGnHG
does not depend on the amplitude of the external field an
essentially an intrinsic property of the system. The lo
fields in Eq.~48!, resulting in enhancement ofnth harmonic
generation, experience giant fluctuations in the spectral b
of the plasmon resonances, i.e., forvt,v,nv,ṽp , as
shown in Sec. II. This includes the optical, infrared, a
far-infrared spectral ranges, where the huge enhanceme
nth harmonic generation can be observed in percola
composites. When frequencyv of the incident wave is large
enough so that thenth harmonicnv is out of the spectra
range of the plasmon resonances, i.e.,nv.ṽp , we can ne-
glect the fluctuations of thenv field in Eq. ~48! and this
equation simplifies to

GnHG,0;U^snv~r !Ev~r !Ev
n21~r !&

sdEv,0
n U2

5U^env~r !Ev~r !Ev
n21~r !&

edEv,0
n U2

. ~49!

As shown in Sec. II, fields with different frequenciesv
fluctuate in space with different spatial scalesje(v). There-
fore we can use decoupling in Eq.~48! to obtain the follow-
ing estimate

GnHG;U^env~r !Env~r !&•^Ev~r !Ev
n21~r !&

edEv,0
n11 U2

;
u^env~r !Env~r !&u2

ed
2Env,0

2

u^Ev~r !Ev
n21~r !&u2

Ev,0
2n

5
uee~nv!u2

ed
2

uM0,nu2, ~50!
i-

c
c-

-

is
l

nd

of
n

whereEnv(r ) is the local field exited in the system by th
uniform field Env,0 with frequencynv, ee(nv) is the effec-
tive dielectric constant of the composite at frequencynv,
and the momentM0,n is determined by Eq.~26!. Strictly
speaking, this equation holds fornv,ṽp , but we can use it
in the whole frequency range since the metal dielectric c
stantem(nv) is of the order of one fornv.ṽp and Eq.~50!

gives the same result as Eq.~49! for nv.ṽp . At the perco-
lation threshold the effective conductivity is estimated
ee(nv);ed„em(nv)/ed…

s/(t1s), where s and t are percola-
tion critical exponents for the dielectric constant and cond
tivity, respectively.7 Substituting this result together with Eq
~42! for the momentM0,n in Eq. ~50!, we obtain the follow-
ing expression for thenth harmonic enhancement

GnHG

;F uem~nv!u
ed

G2s/(t1s)F em
9

uemuG
2F uem~v!u

ed
G2(n221s/n)n/(t1s)

.

~51!

For a Drude metal andnv!vp , we have uemu
;uem(nv)u;(vp /v)2 and em9 /uemu;vt /v. For estimates,
we can sets/n.1, which holds ford52 andd53 as well.
Then Eq.~51! acquires the following form

GnHG;S vt

v D 2S vp

v D 4nn/(t1s)

. ~52!

For 2d systems, where the critical exponents are equal ts
.t.n54/3, Eq.~52! gives the simple formula forGnHG

GnHG;S vt

v D 2S vp

v D 2n

, ~d52!. ~53!

For 3d system, where the critical exponentn'(t1s)/3, Eq.
~52! can be simplified as

GnHG;S vt

v D 2S vp

v D 4n/3

, ~d53!. ~54!

We can estimate enhancement of second and third harmo
in silver-on-glass semicontinuous film asG2HG;2310 and
G3HG;23103, for l51.5 mm, and G2HG;103 and
G3HG;53105, for l53.0 mm. These estimates are i
agreement with our numerical calculations.10 In particular,
the simulations indicate thatG2HG;v26 in the long-
wavelength limit, which is exactly the result given by E
~53!.

We note that the obtained formulas define enhancem
for a coherent signal of harmonic generation propagating
the reflected or transmitted direction. As shown in Ref. 7
the coherent harmonic generation is accompanied by a d
sive broad-angle nonlinear scattering at frequencynv, with
the integral enhancement exceeding the coherent signa
many orders of magnitude. This phenomenon dubbed in R
70 as percolation enhanced nonlinear scattering~PENS! has
been observed in experiments,71 but was not explained at th
time.

It follows from Eq. ~53! that enhancement increases wi
n, so thatGn11HG /GnHG5(vp /v)2 is much larger than one
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It is interesting to note that the fact that enhancem
strongly increases with the order of the optical nonlinea
can result in unusual situation when, for example, seco
harmonic generation~SHG! is dominated by higher-orde
nonlinearityx (4)(22v;v,v,2v,v), rather than being due
to x (2)(22v;v,v). This is becauseM2,2, which is respon-
sible for enhancement of the abovex (4)(22v;v,v,
2v,v), at some wavelengths (;1 mm) can exceedM0,2,
by many orders of magnitude. For example, in semiconti
ous metal films the ratio of the momentsM2,2 andM0,2 at the
percolation can be estimated from Eqs.~43! and ~44! as
M2,2/M0,2;(a/jA)6uemu5/edem9

4 , where we set the densit
of statesr.1. Substituting hereed52.2, which corresponds
to the glass substrate, and parameters for the silver diele
constant we obtain the estimateM2,2/M0,2;(a/jA)6107, for
v!vp . Another possible situation is when hyper-Ram
scattering~considered below! is as efficient as ‘‘conven-
tional’’ Raman scattering. Also, we note that when high
order nonlinearities compete with lower-order nonlineariti
a bistable behavior can be obtained, which can be use
various applications in optoelectronics.

B. Raman and hyper-Raman scattering

Surface-enhanced Raman scattering~SERS! from various
nanostructured random media~rough films, colloidal aggre-
gates, etc.!, is one of most intriguing optical effects discov
ered in the last two decades.72–74Recent studies indicate tha
SERS is especially large in strongly disordered media, s
as fractal small-particle composites and self-affine thin film
where the local-field fluctuations are especially large beca
of strong spatial localization of optical modes in differe
random parts of the object.9 Because of the sp localization i
percolation composites, SERS also experiences giant
hancement in these media.30

In most studies, the average~integrated! SERS was con-
sidered. Recently, it was shown that the local enhancem
in the hot spots can exceed the average enhancemen
many orders of magnitude making possible SERS fr
single molecules.31,73,74

It was shown in our previous papers10,31 that the SERS
enhancement is given byGRS;M4,05^uE(r )/E0u4&. Using
Eq. ~41!, we obtain

GRS;r~p!@jA~p!/a#d28S uemu
ed

D (2n1s)/(t1s)S uemu

em9
D 3

,

~55!

where we indicated explicitly dependence of the density
statesr(p) and localization lengthjA(p) on the concentra-
tion p of metal grains. Thus, the obtained Raman enhan
mentGRS depends strongly on localization lengthjA . When
the states are delocalizedjA→` andGRS vanishes very rap-
idly.

Now we consider frequency and concentration dep
dence of Raman scattering predicted by Eq.~55!. For 2d
composites and frequencyv!vp Eq. ~55! results in the en-
hancementGRS;r(p)@a/jA(p)#6(vp /vt)

3/ed
3/2, which is

independent of frequency. For silver-on-glass percolat
films we setjA'2a according to our computer simulation
@see Figs.~1! and ~2!# and density of stater(pc);1 @see
t
y
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discussion after Eq.~12!#. Thus, we obtain the SERS en
hancementGRS;106 silver semicontinuous films at the pe
colation threshold. For 3d composite atv!vp , SERS de-
creases with decreasing frequency asGRS;r(p)
3(jA /a)25vp

2v/vt
3;106v/vp , where we used for esti-

matesjA'2a, r;1,n's'(t1s)/3 and substitute the dat
vp59.1 eV andvt50.021 eV for silver.57

The localization radiusjA of the eigenstatesCn with ei-
genvaluesL'0 decreases when we shift fromp5pc toward
p50 or p51 since the eigenvalueL50 shifts from the
center of theL distribution to its tails, where localization o
the eigenstates is stronger. Therefore, according to Eq.~55!,
Raman scattering has aminimumat the percolation thresh
old. As a result, the double maximum dependenceGRS(p)
takes place as was observed in experiments and nume
calculations,31 with one maximum below the percolatio
thresholdpc and another above thepc .

The intensity of the local Stokes sourcesI RS(r )}uE(r )u4

~provided the Stokes shift of frequency is small! follows the
local-field distribution. In the peaks~hot spots!, Eq. ~34!
gives

I RS,max}uE~r !u4;E0
4~a/jA!8S uemu

ed
D 4n/(t1s)S uemu

em9
D 4

.

~56!

For a 2d Drude metal atp5pc and v!vp , we estimate
I RS,max}uE(r )u4/E0

4;(jA /a)28(vp /vt)
4@1. If the density

of Raman-active molecules is small enough, then each p
of the local field can be due to Raman scattering from
singlemolecule.

Consider now hyper-Raman scattering whenn photons of
frequencyv are converted in one hyper-Stokes photon of
frequencyvhRS5nv2V, whereV is the Stokes frequency
shift corresponding to the frequency of molecule oscillatio
~electronic or vibrational!. Following the approach devel
oped in Ref. 29 we obtain the following result for surfac
enhanced hyper-Raman scattering~SEHRS!

GhRS5
^ushRS~r !u2uEhRS~r !u2uE~r !u2n&

usdu2uE0,hRSu2uE0u2n

5
^uehRS~r !u2uEhRS~r !u2uE~r !u2n&

uedu2uE0,hRSu2uE0u2n
, ~57!

whereEhRS(r ) is the local-field excited in the system by th
uniform probe fieldE0,hRS oscillating with vhRS; shRS(r )
andehRS(r ) are the local conductivity and dielectric consta
at the frequencyvhRS. At n51 formula ~57! describes the
conventional SERS.

To estimateGhRS we take into account that the spati
scales for the local field fluctuations,je , at the fundamenta
frequencyv and hyper-Stokes frequencyvhRS are signifi-
cantly different. Therefore, we can decouple the average
Eq. ~57! and approximate it by

^uehRS~r !u2uEhRS~r !u2uE~r !u2n&

;^uehRS~r !EhRS~r !u2&^uE~r !u2n&

5^uehRS~r !EhRS~r !u2&M2n,0uE0u2n.
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16 404 PRB 60SARYCHEV, SHUBIN, AND SHALAEV
It follows from the scaling analysis of the current-curre
correlation function fulfilled in Refs. 57 and 58 that the se
ond moment of the current^uehRS(r )EhRS(r )u2& is estimated
as ed

2@em(vhRS)/ed# (t12s)/(t1s)M2,0
! uE0,hRSu2, where the mo-

mentM2,0
! is given by Eq.~32!. By substituting these result

in Eq. ~57!, we obtain

GhRS;@ uem~vhRS!u/ed# (t12s)/(t1s)M2,0
! M2n,0 , ~58!

where the momentM2,0
! is taken at frequencyvhRS. Now we

use the expressions for momentsM2,0
! and M2n,0 given by

Eqs. ~32! and ~41! and take into account that forp.pc the
density of states in Eq.~32! is about unityr;1. Thus, we
obtain the following formula for enhancement of hype
Raman scattering

GhRS

;~jA /a!2d24(11n)F uem~vhRS!

ed
G ~ t13s!/~ t1s!F uem~vhRS!u

em9 ~vhRS!
G

3F uem~v!u
ed

G @2n(n21)1s#/(t1s)F uem~v!u

em9 ~v!
G 2n21

, ~59!

where n>2. For a Drude metal and frequenciesv!ṽp ,
vhRS!ṽp the metal dielectric constant can be approxima
as uem(vhRS)u;uem(v)u;(vp /v)2, em9 (v)/uem(v)u
;vt /v and Eq.~59! acquires the form

GhRS;~jA /a!2d24(11n)S vp

v D 2@2n(n21)14s1t#/(t1s)F v

vt
G2n

,

~60!

which holds in the vicinity to the percolation threshold. F
2d composites where the critical exponents aret5s5n
54/3 Eq.~59! simplifies to

GhRS;~a/jA!4nS vp

v D 2(n11)S vp

vt
D 2n

, ~61!

which for n52 in silver semicontinuous films is estimated
GhRS;1014(a/jA)8l2, where the wavelengthl is given in
microns. As above for Raman scattering, the local enhan
ment in the hot spots can be much larger than the ave
one.

C. Kerr-type third-order optical nonlinearity

For the Kerr-type nonlinearity the displacement currenD
in the simplest case can be written as17

D5@ee1ee
(3)uE0u2#E0 , ~62!

whereee and ee
(3) are the effective linear and nonlinear d

electric constants. The nonlinear term is responsible, in
ticular, for the nonlinear refraction and nonline
absorption.17

As shown, for example, in Ref. 10, the effective nonline
dielectric constantee

(3) in a random composite is given by

ee
(3)5

^e (3)~r !E2~r !uE~r !u2&

E0
2uE0u2

, ~63!

wheree (3)(r ) is the local nonlinear dielectric constant of th
composite. The local ‘‘Kerr field’’gK5E2(r )uE(r )u2/uE0u4
t
-

d

e-
ge

r-

r

in silver semicontinuous films is shown in Fig. 2. We a
interested here in the average enhancementGK ~given by the
integral of gK over the system volume! of the Kerr nonlin-
earity ee

(3) due to fluctuations of the local fields in meta
dielectric composites. When the local field fluctuations a
negligible, the effective nonlinear dielectric constantee

(3)

;^e (3)(r )&.
We consider first the case whene (3)(r ) in the dielectric

component is of the same order of magnitude or larger t
in the metal component.~The opposite case of almost linea
dielectric ued

(3)u!uem
(3)u will be considered below!. Then the

Kerr enhancementGK is estimated as

GK;ee
(3)/^e (3)~r !&;M2,2

;r~jA /a!d28S uemu
ed

D (2n1s)/(t1s)S uemu

em9
D 3

, ~64!

where we used Eq.~41! for the momentM2,2 of the local
field. This expression forGK coincides with Eq.~55! for the
enhancement of Raman scattering. Forv!vp the Kerr en-
hancement for 2d composites~semicontinuous metal films!
is estimated asGK;r(jA /a)d28(vp /vt)

3 where we use the
Drude formula~1! for the metal dielectric constantem . For
silver-on-glass semicontinuous filmsjA /a'2 andr'1, we
obtainGK;106.

In Fig. 5 we show results of numerical simulations forGK
as a function of the metal filling factorp, for d52. The plot
has a two-peak structure, as in the case of Raman scatte
However, in contrast toGRS, the dip atp5pc is much stron-
ger and atp5pc is proportional~as simulations show! to the
loss factork. This implies that atp5pc , the enhancement is
actually given byGK;kM2,2, whereM2,2 was found above.
This result might be a consequence of the special symm
of a self-dual system atp5pc . Formally, it could happen if
the leading term in the power expansion ofM2,2 over 1/k
cancels out because of the symmetry@see the discussion fol
lowing Eq. ~31!#. When this symmetry is somehow broke
e.g., by slightly moving away from the pointp5pc , the
enhancementGK increases and becomesGK;M2,2;GRS
;M4,0, as seen in Fig. 4. The fact that the minimum atp

FIG. 5. Average enhancement of the Kerr optical nonlinea
GK5M2,2 in silver semicontinuous films as a function of the me
concentrationp for three different wavelengths. The nonlinear Ke
permittivity e (3) is the same for metal and dielectric components
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5pc is much less for SERS than for the Kerr process
probably related to the fact that the latter is a phase sens
effect.

As shown in Sec. II, the local field maxima are conce
trated in the dielectric gaps whenuemu@ed . Therefore, the
enhancement estimate in Eq.~64! is valid when the Kerr
nonlinearity is located in these gaps~it can be due to the
dielectric itself or due to adsorbed molecules!.

Consider now the case when the Kerr nonlinearity is d
to metal grains as in recent experiment.11 Provided thatem8
>2ed , the local electric field are equally distributed
metal and dielectric components. Therefore, the Kerr
hancement is still given by Eq.~64! where one should se
uemu/ed51. The situation changes dramatically whenuemu
@ed since now the local field are concentrated in the diel
tric gaps between the conducting clusters achieving there
valuesEm given by Eq. ~34!. The total currentJg of the
electric displacement flowing in the dielectric gap betwe
two resonate metal clusters of sizel r can be estimated a
Jg5aEmeel r

(d22) , whereaEm is the voltage drop across th
gap,ee is effective dielectric constant of the composite. B
cause of the current continuity, the same current should fl
in the adjacent metal clusters. In the metal cluster the cur
is concentrated in a percolating channel.7,36 The electric field
in the metal channel, which spans over the cluster, can
estimated asEin;Jg /(emad21). Then nth moment of the
local electric field in a metal cluster of sizel r is equal to
^Ein

n &5Ein
n Lad21/ l r

d , where Lad21 is the volume of the
conducting channel,L5a(em /ee) l r

2d12 is the effective
length of the conducting channel. Now, we take into acco
that only the fractionk5em9 /uemu!1 of metal clusters of size
l r are excited by the external electric field; then we obtain
following estimate for the momentsMn

(metal)5^uEun&metal

5k^Ein
n & of the local field averaged over the metal comp

nent only

Mn
(metal);S uemu

em9
D n21S uemu

ed
D n[n(d212t/n)1t/n1222d]/( t1s)

,

~65!

where we use expression~33! for the sizel r of the resonate
clusters. For two-dimensional systems (d52), wheret>s
>n>4/3, we obtain from Eq. ~65! GK

metal;M4
(metal)

;(uemu/em9 )3(ed /uemu)1/2. Computer simulation results fo
enhancement of the Kerr nonlinearityGK

metal for silver semi-
continuous film are shown in Fig. 6 as a function of the me
concentrationp. From Figs. 5 and 6 we seeGK

metal!GK as
expected. Near the percolation threshold we can comp
GK

metal andGK quantitatively. Considering for simplicity 2d
case, wheret's'n, and using Eqs.~64! and~65! we obtain

GK

GK
metal

;S uemu
ed

D 2

. ~66!

Thus, for uemu@ed the Kerr nonlinearity enhancement
much larger when the ‘‘seed’’ nonlinearity is located in t
dielectric gaps where the local fields are much larger tha
metal. It follows from Eq.~66! and also from Fig. 6 that the
Kerr enhancementGK

metal may become less than one. Th
means that local electric fields in the metal component
s
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be smaller than the external field on average. For semic
tinuous silver films on a glass substrate it happens for wa
lengthl.10 mm as one can see in Fig. 6.

We also note here that enhancement for nearly degene
four-wave mixingGFWM , such as coherent anti-Stokes R
man scattering and optical phase conjugation process, is
timated asGFWM;uGKu2 and can be very large.10

D. Discussion of models: Swiss-Cheese dielectric

So far, we restricted our consideration to the model c
taining only two types of elements, with metal dielectr
function em and dielectric constanted and the volume con-
centrationsp and 12p, respectively. The more realisti
model of a metal-dielectric composite should take into
count that metal elements can be different and character
by some distributionF(em). The same is true for dielectric
elements whose properties in real percolation composites
vary over the system. We note that a narrow distribution
the parameters originating, for example, from different siz
of metal grains does not affect the critical exponents,7,36 so
that the above estimates for the field moments remain
changed.

The situation changes, however, when a distribution
the internal parameters is broad, as in the Swiss-Che
model75 suggested for continuous media. In this model
the 3d case, while the critical indexn for the correlation
length remains the same as in the lattice model, the trans
exponents, such ast, can be different from their lattice val
ues. For the 2d random checkerboard model76 it was argued
that the ‘‘dielectric’’ exponents is different from the lattice
value, while the percolation exponents remain the same.77 It
was shown in Ref. 78 that although the critical exponents
transport in continuous media may be different from the l
tice values, they still satisfy the standard scaling relation
the statistical mechanics as do their lattice counterparts
despite the fact that the values of the critical exponents
continuous media can be different we speculate that the
responding functional dependencies may remain unchan
for a number of physical processes.

FIG. 6. Average enhancement of the Kerr optical nonlinea
GK

metal5M2,2
metal in silver semicontinuous films as a function of th

metal concentrationp for three different wavelengths. The nonlin
ear Kerr permittivitye (3) is in the metal component only.
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Very little is known about the effect of a broad parame
distribution on the local em fields. Consider, for example,
Swiss-Cheese model that can be mapped onto randomR-C
network with a broad distributionf (R) of resistorsR so that
the average valuêR&5* f (R)dR5` diverges. The geo-
metrical structure of the conducting ‘‘R’ ’ bonds does not
depend on the distributionf (R); therefore, the spatial inho
mogeneity is still given by the percolation correlation leng
j for the resistor concentrationp close to the percolation
threshold. When all the conducting elements are the sa
the conductance in the spatial scalej, according to the per-
colation theory, is determined by the ‘‘critical’’ chain o
resistors.36 The potential drop~and the local electric field! is
approximately the same for the resistors in the critical ch
and its resistance can be estimated as^R&L, whereL is the
length of the chain. On the other hand, for the Swiss-Che
model the distributionf (R) is so broad that the resistance
the critical chain is due to a single element with the larg
resistance. Then the voltage drops mainly in this critical
sistor, which determines the conductivity in the scalej. Note
that the dependence of the critical exponentt on the resis-
tance distributionf (R) follows from this fact.79–81

The momentsMn of the local fields are power-law func
tions of the percolation correlation lengthMn;jq(n), sincej
is a single spatial scale in the considered static case. W
the local field concentrates in a single element~in the scale
j) the critical exponentq(n) acquires the form of a linea
function of n, implying a constant gap between the exp
nentsq(n) for consecutiven. Therefore, the field distribution
becomes compact and looses its multifractal nature for
Swiss-Cheese model.36

Contrary to these conclusions, in Ref. 82 it has been
gued that for the Swiss-Cheese model in the ‘‘truly’’ co
tinuous case the local-field distribution becomes wid
Analysis of a continuous metal film perforated by circu
voids shows that the local field concentrates in narrow sp
between the voids. This concentration of the field results
the power-law tails in the local field distribution~this analy-
sis was also performed for the static field!.

In the considered here case of optical properties, the c
tinuous structure of a medium may affect the conductivity
metal clusters~e.g., the bottle-neck contacts between t
metal grains! and result in renormalization of the exponent
in the formulas obtained above for the spatial moments
the local optical fields. This, however, does not affect
functional dependencies derived above.

The situation changes when a dielectric componen
characterized by a broad distribution of parameters. Re
that the highest electric fields are concentrated in the die
tric gaps, rather than in metal clusters. In this case, not o
the critical exponents may be renormalized but the co
sponding functional dependencies may also be different.

We have shown in Sec. II B that the local electric fie
concentrates in a dielectric gap between resonating m
clusters of the sizel !. The voltage drop between the tw
resonating metal clusters can be estimated from Eq.~34! as
Um5Ema, and thenth field moment averaged over the vo
ume of the gap can be written as

^En&gap;
Um

n

aSgap
E dq

x~q!n21
, ~67!
r
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where x(q) is the thickness of the gap~depending on the
coordinateq along the gap! and the integration is over th
gap areaSgap}ad21n( l r), wheren( l r) is given by Eq.~40!.
Hereafter, we set, for simplicity,E051.

We suppose now that the thicknessx of a dielectric gap
between two metal clusters is distributed asf (x). Then Eq.
~67! can be rewritten as

^En&gap;
Um

n

a E
0

xmaxf ~x!

xn21
dx. ~68!

Provided that the distributionf (x) has a well-defined maxi-
mum near the granular sizea, the averagêEn&gap;Em

n , in
accordance with previous considerations.

Now we consider the case when the gap distributionf (x)
does not vanish atx→0; for simplicity, we assume that th
gap sizex is distributed uniformly between 0 anda, i.e.,
f (x)5a21 for 0<x<a. In this case the integral in Eq.~68!
diverges at the lower limit and this equation cannot be u
to estimate the field moments. In this case the integral in
~67! is determined by the distancexmin for the closest ap-
proach of the clusters. Since the distancesx are distributed
uniformly in the segment 0<x<a the ‘‘effective’’ xmin can
be estimated asxmin;a/n( l r), where the number of capac
tance contacts, i.e., the ‘‘effective area’’ of the gapn( l r) is
given by Eq.~40!. By approximating the integral in Eq.~67!
as;ad21/xmin

n21 we obtain

^En&gap;
Um

n

Sgap

ad22

xmin
n21

;Em
n n~ l r !

n22

;Em
n ~ l r /a!(d221s/n)(n22). ~69!

By substituting this expression instead ofEm
n in Eq. ~41!, we

obtain the new estimate for the field moments:

Mn,m;r~jA /a!d22(n1m)S uemu
ed

D $@s#(n22)1s}/ ~s1t !

3S uemu

em9
D n1m21

~70!

that holds forn1m>2. Thus, we arrive at the conclusio
that the field moments in the Swiss-dielectric model dif
from those obtained previously for the discrete network
the factor (uemu/ed)(n22)[n(d22)1s]/s1t, which is much larger
than one forn1m.2.

The spatial distribution of the local fields also chang
significantly in the Swiss-dielectric model: instead of a cha
of local maxima between resonating metal clusters we ha
single peak with the amplitudeEmax;Em(xmin /a)
;Em(uemu/ed) @n(d21)1s#/(s1t), which is much larger than the
previous estimate forEm given by Eq.~34!. We speculate
that in this case, the maximum enhancement for the lo
field is achieved since we have only one peak within the fi
correlation lengthje .

IV. CONCLUSIONS

In this paper we studied the local electric field distributi
and enhancement of optical nonlinearities of random me



os
a

on

es
ia
ny
ra
re
e
it
na
e
er
el
f

ng
ar
n
p
e

fie
o

t o
e
.

rms
re of
sses
it

o a
sses
an

ve
or
ency

ear
ng-
em
ee-
the

gi-
ility
n-
ef-
ing
lu-
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dielectric composites. We show that the surface plasmon~sp!
modes are localized in metal-dielectric percolation comp
ites, and the electric fields in such systems consist of sh
peaks resulting in very inhomogeneous spatial distributi
of local fields. In peaks~‘‘hot’’ spots!, the local fields exceed
the applied field by several orders of magnitudes. Th
peaks are localized in nm-sized areas and can be assoc
with the eigenstates of the Kirchhoff’s Hamiltonian. For a
particular frequency in the visible and infrared spect
ranges we can find the eigenstates representing the sp
nance modes. The amount of metal grains supporting th
resonance excitations is negligibly small in comparison w
the total number of metal grains. Nevertheless, the reso
clusters cover the entire volume of the film because of th
fractality. The incident light excites the resonance clust
and they interact with each other. As a result, the local fi
is concentrated in sharp peaks placed in some subset o
resonance clusters. The amplitudes of the peaks and the
erage distances between them increase with the wavele

The strongly fluctuating fields associated with the sh
peaks in various random parts of a film, result in giant e
hancements of nonlinear optical processes since they are
portional to the enhanced local fields raised to a pow
greater than one. Because of such pattern for the local
distribution, the nonlinear signals are mostly generated fr
very small nm-sized areas.

We have obtained scaling formulas for enhancemen
arbitrary nonlinear optical processes that in general dep
not only on the field magnitudes but also on their phases
.V
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was shown that the enhancement strongly depends, in te
of its magnitude and spectral dependence, on exact natu
the nonlinear process and can be different, even for proce
with the same order of optical nonlinearity. Namely,
strongly depends on whether there is~at least one! act of
photon subtraction in the multiphoton scattering leading t
generated wave. As a result, the enhancement for proce
with photon subtraction, such as Raman and hyper-Ram
scattering, Kerr-type nonlinear refraction and four-wa
mixing, is significantly different from the enhancement f
processes without photon subtraction, such as sum-frequ
and high-harmonic generation.

Both the local and average enhancements for nonlin
optical processes strongly increase toward the lo
wavelength part of the spectrum for two-dimensional syst
and decrease with increasing the wavelength for thr
dimensional percolation systems. Note also that because
‘‘hot’’ spots are localized in nm-sized areas and provide
ant enhancement in their locations, a fascinating possib
of nonlinearspectroscopy of single molecules on a semico
tinuous metal film becomes feasible. These nano-optical
fects can be probed, for example, with near-field scann
optical microscopy providing sub-wavelength spatial reso
tion.
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