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Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites
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A scaling theory of local-field fluctuations and optical nonlinearities is developed for random metal-
dielectric composites near a percolation threshold. The theory predicts that in the optical and infrared spectral
ranges the local fields are very inhomogeneous and consist of sharp peaks representing localized surface
plasmons. The localization maps the Anderson localization problem described by the random Hamiltonian with
both on- and off-diagonal disorder. The local fields exceed the applied field by several orders of magnitudes
resulting in giant enhancements of various optical phenomena. The developed theory quantitatively describes
enhancement in percolation composites for arbitrary nonlinear optical process. It is shown that enhancement
strongly depends on whether a nonlinear multiphoton scattering includes the act of photon subaciion
hilation). The magnitudes and spectral dependencies of enhancements in optical processes with photon sub-
traction, such as Raman and hyper-Raman scattering, Kerr refraction, and four-wave mixing, are dramatically
different from those in processes without photon subtraction, such as in sum-frequency and high-harmonic
generation. At percolation, a dip in dependence of optical processes on the metal concentration is predicted.
[S0163-18209)15547-4

[. INTRODUCTION are completely equivalent and they will be used here inter-
changeably.

Local electromagnetic field fluctuations and related en- The local-field fluctuations can be strongly enhanced in
hancement of nonlinear optical phenomena in metalthe optical and infrared spectral ranges for a composite ma-
dielectric composites near percolation threshgercolation terial containing metal particles that are characterized by the
composites have recently become an area of active studiesdielectric constant with negative real and small imaginary
because of many fundamental problems involved and thparts. Then, the enhancement is due to the surface plasmon
high potential for various applications. Percolation systemsgesonance in metallic granules and their clustér¥:**The
are very sensitive to the external electric field since theistrong fluctuations of the local electric field lead to enhance-
transport and Optica| properties are determined by a rathépent of various nonlinear effects. Nonlinear percolation
sparse network of conducting channels, and the field concelfomposites are potentially of great practical importafies
trates in the “weak” points of the channels. Therefore, com-media with intensity-dependent dielectric functions and, in
posite materials can have much larger nonlinear susceptibilPamC“'e_‘r’ as nonlinear fllters_ and optical b_lstable elements.
ties at zero and finite frequencies than those of its constituted '€ OPtical response of nonlinear composites can be tuned
The distinguished feature of percolation composites, to ampy controlling the volume fraction and morphology of con-
plify nonlinearities of its components, have been recognize&t'tmes' . o . .
very early'=® and nonlinear conductivities and susceptibili- In our previous papef, we performed numerical simula-

. . : . . tions for enhancement of various nonlinear optical effects in
ties have been intensively studied during the last de¢sels 2d percolation films and developed a scaling approach for
for example, Refs. 7-12

. . . . high- f the fiel i E(r)|™M.
Here, we consider relatively weak nonlinearities when igh-order moments of the fieldnagnitudes (|E()|")

- , . However, nonlinear optical effects depend not only on the
conductivity o(E) can be expanded in the power series Ofmagnitude of the field but also on ifhase so that a non-

the applled e|?C-t|'iC fleIdE, and the Ieading term, i.e., th_e linear signal, in general, is proportional (tE(r)|kEm(r)>
linear conductivityo!®, is much larger than others. This | this paper, we describe a scaling theory for enhancement
situation is typical for various nonlinearities in the optical of arbitrary nonlinear optical procesgor both 2d and 3

and infrared spectral ranges considered here. Even wegdgrcolation compositesand show that enhancement differs
nonlinearities lead to qualitatively new physical effects. Forsignificantly for nonlinear optical processes that include pho-
example, generation of higher harmonics can be much enon subtractiorfannihilation and for those that do not. The
hanced in percolation composites and bistable behavior gfhoton subtraction implies that the corresponding field am-
the effective conductivity can occur when the conductivity plitude in the expression for the nonlinear polarizationr-
switches between two stable values, €twe note that the rent P(" is complex conjugatetf. For example, the optical
“languages” of nonlinear currents/conductivities and non-process known as coherent anti-Stokes Raman scattering is
linear polarizations/susceptibilitie@r dielectric constanjs  driven by the nonlinear polarizatioR®)«E?(w,)E* (w,),
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which results in generation of a wave at the frequengy In our previous papers we developed rather effective nu-
=2w,;— w,, i.e., in one elementary act of this process, themerical metho# and performed comprehensive simulations
w, photon is subtractethnnihilated; the corresponding am- 0f the local field distribution and various nonlinear effects in
plitude E(w,) in the expression foP®) is complex conju- two dimensional percolation composites, namely in random
gated. metal-dielectric films%?8-31The effective medium approach
The theory of nonlinear optical processes in metal-f_ans to explain results of the _perfor_med corr_lputer sin_1u|a-
dielectric composites is based on the fact that the problem dfons- It appears that electric fields in such films consist of
optical excitations in percolation composites mathematicallytrongly localized sharp peaks resulting in very inhomoge-
maps the Anderson transition problem. This allowed us tcﬂ‘eouf spatial dIStI’IbutIO.nS of the local f|eld§. In' peaks
predict localization of surface plasmoisp) in percolation (“hot” spots), the local _f|elds exce_ed the applied field by
composites and describe in detail the localization pattern. Wéevera_l orders of magnltudeésee, Figs. 1 and 2 her_e an_d,
show that the sp eigenstates are localized on the scale muéhd- .Flgs. 2 and 3 in Ref. J_OThes.e pea"? are localized in
smaller than the wavelength of the incident light. The Spnm-3|ze areas and can be associated with the sp modes of

eigenstates with eigenvalues close to z@asonant modes metal clusters in a semicontinuous metal film. The peak dis-
are excited most efficiently by the external field. Since thetrIbUtlon is not random but appears to be spatially correlated

eigenstates are localized and only a small portion of them ar@Nd ©rganized in some chains. The length of the chains and

excited by the incident beam, the overlapping of the eigenz e average distance between them increase toward the infra-
ed part of the spectrum.

states can typically be neglected, that significantly simpliﬁesr ) . )
theoretical consideration and allows one to obtain relatively In this paper, we develop the scaling theory of the field

simple expressions for enhancements of linear and nonline:§|p""tIal d'lstr|but|0n§ and ShOW. that Fhere IS an |mportan} pa-
optical responses. It is important to stress again that the sﬁgm_eter in the scaling theo(yl1|s§ed in our previous consid-
localization length is much smaller than the light wave-erat.'oﬁ’ the Andgrson Iocahzatlon. Ie.ngm\. We also gen-
length; in that sense, the predicted subwavelength Iocalizae-rallze our previous approach -I|m|ted ted gsystems to
tion of the sp quite differs from the well-known localization Include both 2 and 3 percolation composites. As men-

of light due to strong scattering in a random homogeneougoned' enhancement factors for arbitrary optical nonlineari-

medium?8 ties are found in the general form.

We also note that a developed scaling theory of optical Note that in the optical range, field distributions in metal
nonlinearities in percolation composites opens hew means tféactal§ have .been ;tud|ed experlmgntally using near-field
study the classical Anderson problem, taking advantage of¢@"n!Ng 3;)3%tlcal microscopy allowing a subwavelength
unique characteristics of laser radiation, namely, its coherf€Selution=“**The predicted giant local-field fluctuations in

ence and high intensity. For example, our theory predicts thd{'® percoéition composites havl% been detected in recent
at percolation there is ainimumin nonlinear optical re- Microwave™ and optic experiments.
sponses of metal-dielectric composites, the fact that follows 1he rest of the paper is organized as follows. In Sec. I,

from the Anderson localization of sp modes and can be stud? e consider local fields and their high-order moment distri-
ied and verified in laser experiments. utions in percolation composites. We also show there that

In spite of big efforts, most of theoretical considerationsthe field distribution maps the Anderson localization problem
of the local optical fields in percolation composites are reln quantum mechanics and employ this fact to describe in
stricted to mean-field theories and computer simulatiéms ~ d€tail a localization pattern of sp modes. The mapping and
references, see Refs. 1031Zhe effective medium theoty, scaling arguments are used to obtain the field high-order mo-
that have the virtue of relative mathematical and conceptud'€nts and their dependencies on the frequency of an incident
simplicity, was extended for the nonlinear response of perVave and metal concentration, for arbitrary optical nonlin-
colating compositd€2-28and fractal cluster® For linear earity. In Sec. lll, we calculate enhancement factors for a

problems, predictions of the effective medium theory arghUmber of optical processes, namely, Raman and hyper-
usually sensible physically and offer quick insight into prob- Raman scattering, Kerr-type nonlinear refraction and absorp-

lems that are difficult to attack by other medrihe effec- tion, andnth harmonic generation. We show that most of the

tive medium theory, however, has disadvantages typical fofnhancement originates from strongly I_ocalized _nanometer-
all mean-field theories, namely, it diminishes the role of fluc-Scale areas, where the local electric field has its maxima.
tuations in a system. In this approach, it is assumed that loc4nhancements in these “hot zones” are giant and exceed a
electric fields are the same in the volume occupied by each?@ckground” nonlinear signal by many orders of magni-
component of a composite. For example, the effective metude. Concluding discussions are presented in Sec. IV.
dium theory predicts that the local electric field should be the

same in all metal grains rega_rdless of their local arrangement | scaL NG THEORY OF FIELD FLUCTUATIONS

in a .metal—dlelectrlc composite. Th.erefore. the qual field is AND HIGH-ORDER FIELD MOMENTS

predicted to be almost uniform, in particular, in metal-

dielectric composites near percolation. This is, of course, In metal-dielectric percolation composites the effective dc
counter-intuitive since percolation represent a phase transéonductivity o, decreases with decreasing the volume con-
tion, where according to the basic principles, fluctuationscentration of metal componeptand vanishes when the con-
play a crucial role and determine system'’s physical propereentrationp approaches concentratiqa known as a perco-
ties. Moreover, in the optical spectral range, the fluctuationgation threshold:*>3¢ In the vicinity of the percolation
are anticipated to be dramatically enhanced because of thresholdp,, the effective conductivityr, is determined by
resonance with sp modes of a composite. an infinite cluster of percolatingconducting channels. For
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concentrationp smaller then the percolation threshgid, A. Local-field distribution in percolation composites
the effective dc conductivityr,=0, that is the system is a with €4=—e€p,

dielectriclike. Therefore, metal-insulator transition takes g suppose that a percolation composite is illuminated by
place atpzpc. Sl_nce the metal-insulator tr_anSltIOﬂ assoCl-light and consider local optical field distribution. A typical
ated with percolation represents a geometric phase transitiQfjeta| grain siza in the percolation nanocomposites is about
one can anticipate that the current and field fluctuations args, nanometer& that is much smaller than the wavelength
scale invariant and large. of the light in the visible and infrared spectral ranges. When

In percolation composites, however, the fluctuation pat'wavelength)\ is much larger than the particle siaeve can

tern appears to be quite different from that for a second-ordef,5qyce potential(r) for the local electric field. Then the
transition, where fluctuations are characterized by the longgy.a1 current densityj can be written asj(r)=o(r)
range correlation, and their relative magnitudes are of thf—V¢>(r)+Eo] whereE, is the applied field and(r) is

; ; 38 '
order of unity, at any point of a systefh™In contrast, for a e |oc| conductivity. In the considered quasistatic case the

dg perc?lfmon, Ioca: ellectnc f|eld§, ar(re] c?nﬁjentrated at §ie|q distribution problem reduces to solution of the Poisson
edges of large metal clusters so that the fie maxiizige equation, representing the current conservation lawj div
fluctuations are separated by distances of an order of the:0 namely

percolation correlation lengtl§, which diverges when the
metal volume concentratiop approaches the percolation V- (a(r)[—Ve(r)+Eg])=0, (3)
thresholdp, . 363940 o _

We show below that the difference in fluctuations be-Where the local conductivity(r) takes eitheirr, or oq val-
comes even more striking in the optical spectral range, wherdes for metal and dielectric components, respectively. It is
the local-field peaks have the resonance nature and, thergonvenient to rewrite Eq3) in terms of the local dielectric
fore, their relative magnitudes can be up tG,1or the linear ~ constante(r)=4mio(r)/ o as follows
Eﬁsponse, and #®and more, for nonlinear responses, W|th_ V. [e(nVh(r)]=¢, @)

stances between the peaks much larger than the percolation
correlation lengtrg. where£=V [ e(r)Ey]. The external fieldE, can be chosen

In the optical and infrared spectral ranges, the surfaceeal, while the local potentialj(r) takes complex values
plasmon resonances play a crucial role in metal-dielectrigince the metal dielectric constast, is complex e,= €.,
composites. To get insight in the high-frequency properties, ; v, the optical and infrared spectral ranges. Because of

of metals, we first consider a s_imple .qu6| known aS Hifficulties to find solution to the Poisson E(B) or (4), a
Drude metal that reproduces semiquantitatively the basic Opg'reat deal of use is made of the tight binding model in which

tical propefmes olf a '.“eta'- Inbth|s appr_oach, dt?,e ‘:\'el%cmgmetal and dielectric particles are represented by metal and
constant of metal grains can be approximated by the Drudgjeeciric honds of a cubic lattice. After such discretization,

formula Eq. (4) acquires the form of Kirchhoff's equations defined on
a cubic lattic€. We write the Kirchhoff's equations in terms
em(w)=eb—(wp/w)zl[l-f—in/w], (1) of the. Iopal diel_ectr.ic constant and assume that the exyernal
electric fieldE is directed along ‘2" axis. Thus we obtain

. o . _the following set of equations
where €, is contribution toe,, due to the inter-band transi-

tions, w, is the plasma frequency, and,=1/7<w, is the D _s

relaxation rate. In the high-frequency range considered here, - €ij(¢j— )= : €ij Eij )
losses in metal grains are relatively small,<w. Therefore,

the real parte/, of the metal dielectric functior,, is much ~ where¢; and ¢; are the electric potentials determined at the
larger (in modulug than the imaginary pare}, (|e,|/en sites o_f the cubic Iatti_ce and the summgtion is over the near-
=wl/w,>1), ande., is negative for the frequencies less €St neighbors of the site The electromotive forcé€EMF) E;;

than the renormalized plasma frequency, takes vaIué_ano, for thg bond(jj) in the positi\_/ez direction
(where a, is the spatial period of the cubic latticeand

—Epay, for the bond(ij) in the —z direction;E,;=0 for the
Z)p: wp/\/e—b- 2) other four bonds at the siteThus, the composite is modeled
by a resistor-capacitor-inductor network represented by
. ) Kirchhoff's Eq. (5). The EMF forcesE;; represent the exter-
Thus, ~the metal  conductivity opn=—iwen/4m g electric field applied to the system. In transition from the
=(epwpldmw)[i(1-w?/wp)+ o, /o] is characterized by continuous medium described by HE) to the random net-
the dominant imaginary part fap,>w> w,, i.e., it is of ~ work described by Eq5) we suppose, as usually;*that
inductive character. Therefore, the metal grains can be modiond permittivitiese;; are statistically independent and set
eled as inductancdswhile the dielectric gaps can be repre- a, to be equal to the metal grain sizg,=a. In the consid-
sented by capacitancés Then, the percolation composite ered case of two component metal-dielectric random com-
represents a set of randomly distributecand C elements.  posite, the permittivitiese;; take valuese,, and eq4, with
The collective surface plasmons excited by the external fieldprobabilitiesp and 1—p, respectively. Assuming that the
can be thought of as resonances in differertC circuits,  bond permittivitiese;; in Eq. (5) are statistically indepen-
and the excited surface plasmon eigenstates are seen as gidaht, we considerably simplify computer simulations as well
fluctuations of the local field. as analytical consideration of local optical fields in the com-
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posite. We note that important critical properties are univercan normalize the system and sgt= —e,,= 1.

sal, i.e., they are independent of details of a model, e.g., According to the one-parameter scaling theory the eigen-

possible correlation of permittivities; in different bonds. states¥,, are all localized for the @ case(see, however,
For further consideration we assume that the cubic latticgliscussion in Refs. 44 and ¥80n the other hand, it was

has a very large but finite number of sitdsand rewrite Eq.  shown in computer simulatiofsthat there is a transition

(5) in matrix form with the “Hamiltonian” H defined in  from chaoti€®>! to localized eigenstates for thed 2Ander-

terms of the local dielectric constants, son problent? with an intermediate crossover region. We
. consider first the case when metal concentrapig;mequal to
Ho=¢, (6)  the percolation thresholg,= 1/2 for the 21 bond percolat-

where ¢ is a vector of the local potentials¢  ing problem. Then the on-diagonal disorder in the KH il

={}1, 02, ... ¢y} determined in alN sites of the lattice, characterized byH/;)=0, (H/?)=4 that corresponds to the

vector £ equals to&;=3¢;Ejj , as it follows from Eq.(5). chaos-localization transitiolf. The KH has also strong off-
The Hamiltonian His NXN matrix that has off-diagonal diagonal disorder, (H/)=0 (i#j), which favors
elements k= —¢; and diagonal elements defined ag H localization?>*® Our conjecture is that eigenstatds, are
=€, Wherej refers to nearest neighbors of siteThe localized for allA, in the 2d system.(We cannot rule out a
off-diagonal elements jitake valuese4>0 ande,=(—1  possibility of inhomogeneous localization, similar to that ob-
+ik)|en| with probability p and 1-p, respectively. The tained for fractal$? or the power-law localizatioft>3 note,

loss factork=ep/|ey| is small, k<1. The diagonal ele- however, that these possibilities are in strong disagreement
ments H are distributed betweend2,, and ey, whered  with the one-parameter scaling thepry

is the dimensionality of the spacedds the number of the In the considered case efj=—¢,=1 andp=1/2, all

neargst neighpors id-dimensional cubic '_‘"‘ttidﬁ parameters in the KH Hare of the order of unity and its

It is convenient to represent Ehe AHam|It9n|anaH asum properties do not change under the transformatige €, .
of two Hermitian Hamiltonians HH'+ixH", where the Therefore, the real eigenvaluds, are distributed symmetri-
term ikH” (k<1) represents losses in the system. Thecally with respect to zero, in an interval of the order of one.
Hamiltonian H formally coincides with the Hamiltonian of The €igenstates withh,~0 are effectively excited by the
tion) in quantum systen&~**More specifically, the Hamil- When metal concentratigndecreasegincreasey the eigen-
tonian H maps the quantum-mechanical Hamiltonian for thes,t""'[es W'thAf)%O are shifted from the qenter O,f the distribu-
Anderson transition problem with both on- and off-diagonaition toward its lower(uppey edge, which typically favors
correlated disorder. Since the off-diagonal matrix elementdocalization. Because of this, we assume that the eigenstates,

in H' have different signs, the Hamiltonian is similar to the or at Ieast. thos_e witi,~0, are localized, for all metal
concentration in the 2d case.

so-called gauge-invariant model. This model, in turn, is a )
simple version of the random flux model, which represents a D€SPite the great effort and all the progress made, the

quantum system with random magnetic ffiésee also re- Anderson transition is not yet fully understood in thet Gase
cent numerical studié% ). Hereafter, we refer to operator and very little is known about the eigenfunctions of the
A’ as to Kirchhoff's Hamiltonian(KH) Anderson Hamiltonian, even in the case of a diagonal disor-
. 41-44,54 ;
Thus, the problem of the field distribution in the system,de" 0r_1|y.§7 We mention here recent computer
i.e., the problem of finding solution to Kirchhoff's E¢p) or ~ Simulations® for a 3d system similar to our system witky

(6), becomes the eigenfunction problem for the KH K, ~ — _ €m=1, P=1/2. The authors of Ref. 46 investigate the
=A, ¥, , whereas the losses can be treated as perturbatioﬁ‘.nderso_n problem with diagonal-matrix elemews distrib-
Since the real pawt/, of metal dielectric functior,, is nega-  Uted uniformly around zero-wo/2<w;;<wo/2 and off-

tive, €,,<0 , and the permittivity of dielectric host is posi- dl_agonal eI_ement$ij = expl¢), with phasesd; alsq dis-
tive, e4>0, the manifold of the KH eigenvalues, contains tributed uniformly O< ;<27 It was fqund that in Fhe
eigenvalues that have the real parts eqoalclose to zero. center of the band, the stateAs are localized for the disorder
Then eigenstates¥, that correspond to eigenvalues Wo>W.=18.8. In our 3l HK H’ Hamiltonian, the diagonal
|A,/en|<1 are strongly excited by the external field and elements are distributed as6<H; <6 and, therefore, the
seen as giant field fluctuations, representing the resonant sfiagonal disorder is smaller than the above critical disorder
modes. If we assume that the eigenstates excited by the ew.. On the other hand, our off-diagonal disorder is stronger
ternal field are localized, they should look like local-field than in calculationé® It is showrf**° that even small off-
peaks. The average distance between the field peaks can fiagonal disorder strongly enforces localization. We conjec-
estimated as((N/n), wheren is the number of the KH ture here that the eigenstates corresponding to the eigenval-
eigenstates excited by the external field ands the total yesA ,~0 in the 3 case are also localized for il

number of the eigenstates. Suppose we found all eigenvaluas, and eigenfunctions

qu we consider in Arr/lore detail behawor of the e_lgen-\I,n of ' Then we can express the potentialn Eq. (6) in
functionsW, of the HK H', in the special case whes,=  torms of the eigenfunctions as= S, A, W, and substitute it

—€q, corresponding the plasmon resonance of individual, gq (6). Thus, we obtain the following equation for coef-
particles in a 2 system. Since a solution to E¢p) does not ficientsA.. -
ne

change when multiplying,,, and €4 by the same factor, we
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R smaller than the system size, and the total number of eigen-
(ikby+ A Agtin X (VAW )AL=E,, (7))  statesV, (A,r) is macroscopically large. When the interstate
men distancel (AA) is much larger than the localization length
whereb, = (¥, |A"|W,), and€,=(¥,|€) is a projection of  £a(A) the localized eigenfunctiord ,(A,r) can be charac-
the external field on eigenstat&,. (The product of two terized by special positions of their “centers’; so that
vectors, e.g.¥, and £ is defined here in a usual way, as Vn(A,r)=Y(A,r—r,) and Eq.(11) acquires the following
En=(V|E)==;¥} &, where the sum is over all lattice form:

siteg. Since all parameters in the real Hamiltoniah &te of

the order of unity, the matrix elements, are also of the (|g|2)=g2+
order of unity. We approximate them by some constant A1, A,
which is about unity. We suggest that eigenstales are

localized within spatial domaing,(A), whereéa(A) is the D EE V(AL r—1,)-VU*(Ay,r—r)]
Anderson localization length, which depends A&n Then, % n,m
the sum in Eq(7) converges and it can be treated as a small (A;+ikb)(A,—ikb) '

perturbation. In the zeroth approximation, (19
O o .

A= Enl (AnFiKby). ®) where the first sum is over positions of the intervpls,
The first-order correction té, is equal to —A4| and|A,,—A,| inthe A space, whereas the sum in the
numerator is over spatial positiomg andr,, of the eigen-
functions. For each realization of a macroscopically homo-
geneous random film, the positiong of eigenfunctions
W (A,r—r,) take new values that do not correlate with the
Qalue of A. Therefore, we can independently average the
numerator in the second term of Ed.3) over positionsr,
andr, of eigenstate® , and¥,. Taking into account that

A= —ik 2 (WA |W)En/(Amtinby). (9
m#n

For k—0, most important eigenstates in this sum are thos
with |A,|<bk. Since the eigenstates, are distributed in
the interval of the order of unity the spatial density of the

eigenmodes withA ,|<bxk vanishes as %%«—0 atk—0 . (VW ,(r))=0, we obtain

Therefore, A is  exponentially small |A()] " '

~|Zmen(W | H' W) Em /| < exp{—[a/éx0)]« ¥} and (EEEIVW(AL,r—1)-VW*(Ay,r—rp)])

can be neglected whex<[a/£(0)]%. Then, the local po-

tential ¢ is equal to ¢(r)==, AW =3 W (r)/(A, =(|€nP V¥ (AL,r =1)[?) 8an,00m: (14
+ikb) [see Eq(8)] and the fluctuating part of the local field ) _ _ )
E;=—V(r) is given by where we neglected possible correlations of eigenfunctions

from different intervalsA; and A, since the spatial density
. of the eigenfunctions excited effectively by the external field
Ef(r):_; EVWn(r)/(Antixb). (100 js estimated as 9p(A)«, i.e., it vanishes fox—0. Sub-
stitution of Eq.(14) in Eq. (11) results in
The average field intensity is as follows:

(|EI%)=(|Er+Eol?) 2 &K VoA D]

ELEE[VYL(r)-VWE(r)] (EA=Ej+> d 5 5 . (19
=E2 m m A A“+(b
“ES*\ 2 (A, TTkD)(Amixb) > @ (b

The localized eigenstates are not, in general, degenerate, so

where we took into account thdE¢)=(E7)=0. We con-  that the eigenfunction®,, can be chosen as real. Then we
sider now the eigenstateB,, with eigenvalues\, within a  can estimat¢,,|2=|(V,|&)|2=|SN, ¥, :&|% in Eq. (15) by
small intervall A ,— A|<AA <« centered af\. These states repacing the sum over ali sites of the system with integra-
are denoted a¥,(A,r). Recall that the eigenstates are as-tion over the system volumeV, which gives |€,|?
sumed to be localized so that eigenfunctiolg(A,r) are  _g-2d|fy cdr|2. Using Egs.(5) and(4), we find

well separated in space. The average distance between them,
|, can be estimated d§AA)~a[p(A)AA] Y, where 2

€, |2~a%—2

jqfn(Eo-ve)dr

p(A)=aD S(A—A,)IV (12) 5
n :a4—2d ' (16)

f €(Eo-VW,)dr
is the dimensionless density of states for the KHandV is

the volume of the system. We assume here that the met@jhere to obtain the last relation we integrated by parts and
concentratiorp is about one half so that all quantities in the took into account that the eigenstats are localized within

KH H’ are about unity and, therefore, the density of stateshe localization lengtf¥A(A). Since the local dielectric con-
p(A) is also about unity at the center of the spectrum, i.e., astant|e| are of the order of unity|e|~1, and the spatial
A=0. Then the distanc(AA) can be arbitrary large for derivative V¥, is estimated asV,/{a(A) in Eq. (16) we
AA—0; we assume, of course, thEtAA) is still much  find
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E25% 2 g2g4 | N 2 which are separated in distance by the field correlation length
&P —2 f v (ndr| ~—2 | w, |
Toadgml) T G = M &~alprb) " M~a(pr) M, (24)

(17 where again we used that-1. All the above speculations
where we returned back to summation over sites of the tightlading to Eqs.(22)—(24) hold when the field correlation
binding model. Since the eigenfunctios, are normalized length & is much larger than the Anderson localization
to unity, ie., (¥, |¥)==N,|¥,|?=1 and localized length, i.e..£5> &, . This condition is fulfilled in the limit of
within £,(A) we estimate them a¥,;~[£a(A)/a] %2 in  small losses wher—0.

the localization domain. Substituting this estimate in @&q) Note that hereafter by the superscripwe mark the quan-
we obtain tities, which are given for the special case,,= e4=1 con-
sidered here(The sign*, of course, should not be confused
|€n|2~E3a%[ £a(A)/a]" 2, (18)  with complex conjugation denoted bY.) Using the scale

renormalization described in the next subsection, we will see
%Fow these quantities are transformed wheg/eq|>1, i.e.,
in the long wavelength part of the spectrum. Note also that,

In a similar way we can estimate the average spatial deriv
tive in the numerator of Eq.15),

2\ __ g2 2 for £, and p we omit the ™ sign in order to avoid compli-
(VH(A D)~ E AN Pa(ADIT) catedA nota?ions; it is implieéJ that their values are aR/vays
N taken at— e,= €4=1, even if the case df,/ey4/>1 is con-
~EAAMNTLY W )2 sidered.
=1 In the above estimates we supposed that the localization
~§;2(A)/N, (19 length &, is proportional to the eigenstate “size.” This as-

sumption might not be exact for the Anderson system, in
whereN=V/a is the total number of sites. Now we use the general(e.g., see discussion in Ref.}4but it is confirmed
estimateg18) and(19) and rewrite the numerator of EQL5) well by our numerical calculationssee Figs. 1 and 2 and
as Figs. 2 and 3 in Ref. )0for the case of @ percolation
composites.

The above results for the field distribution are in good
agreement with comprehensive numerical calculations per-
formed in Refs. 27, 28, 29 for ad2system withe,/e4~

~EJ[£a(A)/a]" *p(A)AA, —1 andp=p.=1/2. It was shown there that the average
(20) intensity of the local field fluctuations, i.e., the second mo-
mentM} is estimated ad’~ «~ 7, where the critical expo-
where we took into account that the total number of thenent y~1.0. The authors also found that the correlation
eigenstates within intervab A is equal toNp(A)AA. By  |ength & of the field fluctuations diverges ag~«~ " at
substituting Eq(20) in Eqg. (15) and replacing the summation x—0, where the critical exponemt,~0.5. Ford=2, these
by integration overA, we obtain the following estimate for ,5),es ofy and v, are very close toy=1 andv,=1/2 found
the field intensity here.
4 Above we assumed that metal concentratpis about
<|E|2>~E2+ Ezf p(A)[a/éa(A)] dA 21) one half, which corresponds to the percolation threshold for
00 A2+ (bx)? ' d=2. The derivation of Eqg21) and(22) was based on the
assumption that the density of stapgs\) is finite and about
Since all matrix elements in KH Hare of the order of unity unity for A=0. This assumption, however, is violated for
(in fact, the off-diagonal elements arel), the density of  gmall metal concentratiop, when the eigenvalue distribu-
statesp(A) and localization lengthéa(A) change signifi-  tion shifts to the positive side of, so that the eigenstates
cantly within an interval of an order of one. In contrast, the\ith A~0 are shifted to the lower edge of the distribution.

1
2 EXIVAA DY~ 2 EfLEa(A)/al"!

denominator in Eq(15) has an essential singularity A= Then, the density of statgsin Eq. (22) becomes a function
+ |bK Then the Second moment Of the |Oca|-e|eCtl’iC f|e|dof the metal Concentratiop. In the limit of pﬂo, the num-
M,=M, o= (|E[?)/E} is estimated as ber of states effectively excited by the external field is pro-

portional to the number of metal particles. Then the function

. 4—d p(p) can be estimated as(p)~p, for p—0. The same
Mo~1+p(alén) f A2+(b;<)2dA consideration holds in the other limit, when a small portion
of holes in otherwise continuous film resonate with the ex-
~plalép) 911, (22)  ternal field and the density of states can be estimated as

p(p)~1—p, for p—1. When the density of states de-

; g _ . creases, localization becomes stronger and we estimate the
=0)=p and approximatedb by unity]. Thus, the field dis- Iocalization lengthé, as £x(A =0,p—0)~éx(A=0,p—1)
tribution, in this case, can be described as a set of the Kl-fa It follows then from Eq (22)’ that strong field fluctua-
eigenstates localized withié, , with the field peaks having tions (M,>1) exist in a metal-dielectric composite with

the amplitudes = — ¢, in the wide concentration range

provided thatk<p(al/&x)* 9 [we setéa(A=0)=¢&n, p(A

En~Eox (alén)?, (23) k<p<l—k, <l (25)
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5.0x10"

2.5x10*

(e) ()

FIG. 1. Distribution ofx component of local “THG field source'(real pari g;=Reg E?(r)E,(r)] in semicontinuous silver films at
wavelengthh =1.5 um, for different metal concentratign (a) and(b): p=0.3; (c) and(d): p=p.=0.5; (e) and(f): p=0.7. The positive
[(a), (c), ()] and negativé(b), (d), (f)] values of the local nonlinear fields are shown in different figures. The appliedHjetdL.

Although we estimated above local fields for the special casearticular, for the so-called random gas of metal parfief®,

of eq= — €, all the above speculations, which are based ori.e., for metal particles randomly distributed in space. This,

the assumption that the eigenstates of KH are localized, holbdowever, is not true when the contrast is lajgg|>€4; we

in a more general case, when the real part of the metal dshow below that in this case the internal structure of a com-

electric constant,, is negative and its absolute value is of posite becomes crucial.

the order ofey. The important case of the large contrast To get a further insight in the optical field distribution in

when|e|> €4 Will be considered in the next subsection.  percolation metal-dielectric composites, we employ the
Note that the above speculations leading to prediction obriginal idea for computer simulations described in details in

giant field fluctuations described by Eq&1) and (22), do  our previous publicatiofé—>*and calculate the local electric

not require long-range spatial correlatiofsuch, for ex- field distribution for a two-dimensional percolation compos-

ample, as in fractal structureis particle positions. The large ite (see Figs. 1 and)2We model a film by a square lattice

field fluctuations have been seen in computer simulations, igonsisting of metallic bonds, with the conductivity,,=
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(e) ®

FIG. 2. Distribution of local “Kerr field” (real par} gk: Rg E?(r)|E(r)|?] in semicontinuous silver films at wavelengtk= 1.5 um, for
different metal concentratiom (a) and(b): p=0.3;(c) and(d): p=p.=0.5;(e) and(f): p=0.7. The positivé(a), (c), (¢)] and negativé(b),
(d), (f)] values of the local fields are shown in different figures. The applied Egld1.

—ienw/4m (L-R bond$ and concentratiop, and dielectric  =Re E2(r)E,(r)]/|[E©®|3, for wavelength A\=1.5 um,
bonds with the conductivityry= —ieqw/4m and concentra- which corresponds te,,~—118+i3.2 (three different con-
tion 1—p (C bondg. The amplitude of the incident wave centrations,p=0.3, p=p.=0.5, andp=0.7 were used in
E,=E© (for the applied field we use interchangeably thesimulations. The quantityg,(r) determines the local nonlin-
notationsE, andE(®)) is set equal oneEy=1, whereas the ear source (polarization for third-harmonic generation,
local fields inside the system are complex quantities. Thehird-harmonic generatiofTHG) (see Section I)L In Fig. 2,
calculations are performed for silver-on-glass film. The di-we also show the local field productgy(r)
electric constant of silver has the form of H@), with the =R E?(r)|E(r)|?)/|E®|* for the same parametera
interband-transitions contributios,=5.0, plasma frequency =1.5 um, p=0.3, p=p.=0.5, andp=0.7 of the silver
w,=9.1 eV, and relaxation rate,=0.021 eV>’ We also  semicontinuous film. The integral @f(r) determines the
usedey=2.2 for a glass host. In Fig. 1, as an example, weaverage enhancement for the Kerr nonlinearity. For simplic-
show the distribution for the local field produdgsj(r) ity, all the distances in Figs. 1 and 2 are giverainnits. As
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seen in the figures, the fluctuating nonlinear fields are well The high-order field momentM , EKTME*K) repre-
localized. They form a set of peaks with the magnitudes ugents a nonlinear optical process in which in one elementary
to 1P for g4(r) and up to 5< 10’ for g, (r) that are different ~actk+m photons are added arkdphotons are subtractéd.
in sign; the peaks and their spatial separations become largéhis is because the complex conjugated field in the general

with further increase ok (see also Fig. 3 in Ref. 10Quali- ~ €xpression for the nonlinear polarization implies photon sub-
tatively similar distributions were obtained for the imaginary fraction so that the corresponding frequency enters the non-
parts ofgs(r) andgy(r) (not shown. linear susceptibility with the negative sighEnhancement

of the Kerr optical nonlinearitysy is proportional toM, ,,
B. High-ord s of local electric field third-harmonic generatiofiTHG) enhancement is given by
- High-order moments of focal electric fields Mo 42, and surface-enhanced Raman scattetBBRS is
Now, we consider arbitrary high-order field moments de-represented b , ; (see next sectignintegrands in Ec(26)
fined as for M,, and My, i.e., the local nonlinear fieldgys
= |E()[2E(r)/(EolEol®) and gy =|E(r)|2E(r)/(E3Eql?)
are shown in Figs. 1 and 2.
f [E(n)["E™(r)dr, (26) We are interested here in the case wiMp,,> 1, which
implies that the fluctuating part of the local electric fiélgd
where, as aboveE,=E© is the amplitude of the external is much larger than the applied fieliy. We substitute in Eq.
field and E(r) [which is defined so thaE?(r)=E(r) (26) the expression foE; given by Eq.(10) and obtain for
-E(r)] is the amplitude of the local field; the integration is the momentM,, ,, (p and g are integers the following
over the total volumé/ of a system. equation

B 1
VEg|Eol"

n,m

y % EnEn (Vo VYD) &y, En, (VW VUL )
2PN ) gy my - mag (A, FIDK) (A, —ibK) -+ (A, +ibK)(Ap, —ibk)
5m15m2(vq,ml' V\sz) o '5m2q_15m2q(v\ym2q_l' V\szq)
% (A, T 1DK) (A, F1DK) - - (A, +1DK) (A, +iDK) @

where(- - -) denotes as above the ensemble average, which is equivalent to the volume average and the sums are over all

eigenstates of KH H As a next step, we average HQ7) over spatial positions of eigenstat#s,(r)=V(r—r,) as it has
been done in transition from EL3) to Eq. (15); this results in the following estimate

\ % " |En|PPERU(VY - VI X)P(VW - VT )9)

M2p, 29~ ; , (28

(A%+ (bk)?)P(A +ibk)2d

where the summation in the numerator is over eigenfunctiongiven by Eq.(18) in Eq. (28). Then the sum in the numerator
¥,=WY(A,r—r,) with eigenvalues within the intervdh,  of Eqg. (28) takes the following form

— A|sAA <k, while the external sum is over positiors

of the intervals that cover the whole range of eigenvalues

A,. The average in the numerator of E§8) can be esti- ET |EnPPERN (VY - VI F)P(VW - VW )9)

mated as followgsee derivation of Eq(19)] [An—A[=AA

~p(A)[a/Ea(A)]HPTDTIAN, (30)
(VW VIRV, VW) :
N wherep(A) is the dimensionless density of stafsge Eq.
. 1 E |, i|2Pw2d (12)]. By replacing the first sum in Eq28) by integration
Ng2P+a(A) 51 n ni over the spectrum we obtain
d(p+q-1) _
Nﬁ 2 : (29 M MJ p(A)[alEx(A)]HPT D~ 31)
NEPTD(A) [ €a 2229 ] [ A2+ (br)?JP(A+ibx)2

where, as aboveés(A) is the localization lengtha is the  Note that to obtain the above expression we neglected all
period of the square lattice in the tight-binding moflete  cross terms in the product of eigenstates, when averaging Eq.
discussion after Eq5)], andN is the total number of cites in (27) over the spatial positions of the eigenfunctiows,

the lattice. We substitute this equation and expressiogfor =W (A,r—r,). It can be shown that after integrating over
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A, these cross terms result in negligilbie comparison with  bitrary field moment. Here we recapitulate briefly the main
the leading term given by31)] contribution toM, ,,, for  points of the scaling renormalization. Consider first a perco-
k—0. lation composite where the metal concentrafiois equal to
Assuming that the density of statp¢A) and the local- the percolation thresholdg=p.. We divide a system into
ization lengthé,(A) are both smooth functions ¢f in the  cubes of sizé and consider each cube as a new renormalized
vicinity of zero and taking into account that all parameters ofelement. All such cubes can be classified into two types. A
the KH H' for the casesy= — €/,=1 are of the order one, we cube that contains a continuous path of metallic particles is
obtain the following estimate for the local-field moments ~ considered as a “conducting” element. A cube without such
an “infinite” cluster is considered as a nonconducting, “di-
M;Ym~p(p)[a/fA(p)]z(”+m)—d,<—“—m+1, (32)  electric,” element?® The effective dielectric constant of the

o “conducting” cubee,(I) decreases with increasing its size
for n+m>1 andm>0, where we set for simplicitp=1. 55, (1)=(I/a) V"¢, whereas the effective dielectric con-
Note that the same estimate can be obtained by consideringant of the “dielectric” cubeey(l) increases withl as

the local fields as a set of peafstretched over the distance es(1)=(1/a)%"¢e4 [t, s, and v are the percolation critical

£x), with the magnitudeE;, and the average distandg  gxponents for the static conductivity, dielectric constant, and
between the peaks given by Eq23) and (24). Recall that  percolation correlation length, respectively; fod Zase,t
the superscript” denotes physical quantities defined in the =g~ ,=~4/3 in 3d, the exponents are equal te=2.0, s

system withes= — e, = 1. In Eq.(32), we indicated explic-  ~0.7, andv=0.88 (Refs. 7 and 3§. We set now the cube
itly the dependence of the density of statdp) and local-  sjze| to be equal to

ization lengthé,(p) on the metal concentratiom [as men-

tioned abovep(p) and éA(p) are always given atyg= — €/, I=1,=a(|eml/eq) /9. (33

=1 and the sign* for them is omittedl The notationg(p)

and éa(p) should be understood ggp)=p(p,A=0) and  Then, in the renormalized system, where each cube of the

§a(P)=£a(p,A=0), i.e., they are given ak =0. _ sizel, is considered as a single element, the dielectric con-
The Anderson localization leng#(A) has, typically, its  stant of these new elements takes either vakygl,)
maximum at the center of th& distribution’® Whenp de- = ¢(t+9)| ¢ |s/(t+3)(¢ /| .|, for the element renormalized

parts from 1/2, the valud =0 moves from the center of the from the conducting cube, ary(l,) = €9 e, 9, for

A-distribution toward its wings, where the localization is the element renormalized from the dielectric cube. The ratio
typically strongeri.e., {4 is less. Therefore, it is plausible of the dielectric constants of these new elements is equal to
to suggest that(p) reaches its maximum gi=1/2 and ¢ (1 )/e4(l,)= €n/|€m/=—1+ix, where the loss factok
decreases toward=0 andp=1, so that the absolute value —"/|¢ <1 is the same as in the original system. Accord-
of the local-field moments may have a minimumpat 12, jhg to the basic ideas of the renormalization group
according to Eq.(32). In 2d composites the percolation transformatior?®*® the concentration of conducting and di-
thresholdp, is typically close top=0.5. Therefore, the mo-  gjectric elements does not change under the above transfor-
mentsM,  in 2d composites have a local minimum at the mation, provided thap=p.. The field distribution in a two
percolation thresho_ld asa function qf the metal concentratiogomponent system depends on the ratio of the dielectric per-
p. In accordance with this, the amplitudes of various nonlin-mjtivities of the components. Thus after the renormalization,
ear processes, while much enhanced, have a characterisfis problem becomes equivalent to the considered above
minimum at the percolation threshdlsee Sec. Ill, Figst5)  field distribution for the case,= — e/, = 1. Taking into ac-
and(6)]. count that the electric field renormalizes BS=E(l, /a),

It is important to note that the moment magnitudes in Eq : . : )
(32) do not depend on the number of “subtracte@hnihi- \i/;/gdog;egtr;:;o;r:eEq(B) that the field peaks in the renormal

lated photons in one elementary act of the nonlinear scatter-
i(ngj If there is at least one such photon, then the poles in Eq. e |09 ||
31) are in different complex semiplanes and the result of th _ €m €m
integration is estimatedpby E(BZ).p eEf": Eo(al/én)’(I /a)x 1=E0(a/§A)2(6—d> (7) ’
However, for the case when all photons are added nz34)
other words, all frequencies enter the nonlinear susceptibility
with the sign plug i.e., whenn=0, we cannot estimate the whereé&,=£,(p,) is the localization length in the renormal-
momentsM g ,,= Eo, "V fE™(r)dr by Eq. (32 since the ized system. In the original system, each field maximum of
integral in Eq.(31) is not further determined by the poles at the renormalized system locates in a dielectric gap in the
A==xibk. Yet all the functions of the integrand are about “dielectric” cube of thel, size or in-between two “conduct-
unity and the momenM,, must be of the order of unity ing” cubes of the sizé, that are not necessarily connected to
Mom~O(1) for m>1. Note that the momenM,, de- each other® There is no a characteristic length in the origi-
scribes, in particular, enhanceme®t,; of n-order har- nal system that is smaller thdp, except the microscopical
monic generation, through the relati@y, c=|Mom/° (see length in the problem, which is a grain siaeTherefore, it is
Sec. ll)). plausible to suggest that the width of a local-field peak in the
Above we assumed thdte,|/eg~1. To estimate the original system is about. Then the values of the field
local-field fluctuations in percolation composites for the maximaEg, do not change when returning from the renor-
large contrast]e|/e4>1, we use the scaling approach de- malized system to the original one. Therefore, B4 gives
veloped in our previous pap@rand generalize it for an ar- the values of the field maxima in the original system. Note
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M, (see below with the magnitude E,=Eq(a/ép)?(ey/
102 | €0)" " (w,/w,)~Eqw,/w, at =0.5w,. Therefore, the
intensity maximal ,, exceed the intensity of the incident
ol wave lg by | ,/1o~(w,/w,)?>>1. For a silver-glass perco-
lation composite we obtainedg, /1 ,~10° (see also the field
distribution in Figs. 1 and )2
10° - Now we consider the case of small frequencies o,
when the dielectric constaat, for a Drude meta(see Eq. 1
takes the form
(a) 0.1
M _ o \? O
nm Em(w<wp)=— w—p 1-i ik (37
10° - where we again assume that>w,. By substituting this
expression in Eq(34), we obtain
10% -
c ( . ) - a 2 o, 2V/(t+s)( (38)
WW,)= - = —
107 | ] i m p 0 én \/E—dw w,
L = A (um) For the &l case, the critical exponents are equabtet=s
(0) 0.1 1.0 10.0 100 =4/3 and Eq. (38 gives E,~(a/éx)?Eqw,/(Veqw,)

FIG. 3. High-order field moments of local electric field in semi- = (&/&a)*EqVen/eg(wp/w,), that coincides with the esti-
continuous silver films as a function of the wavelengthat p mate obtained from Ed36) for w=0.5wp_ This means that
=pc. (8 Results of numerical calculations oM,=M,, the local-field peaks increase steeply when the real part of
=(|E/E,|") forn=2, 3, 4, 5, and 6 are represented by 0,*, X,  the metal dielectric constaef, becomes negative,, <0 and

and #, respectively. The solid lines descrillg, found from the  tnen remain almost the same in the wide frequency range
scaling formula(41). (b) M, o=(|E/Eo|*) [scaling formula(4l) - ~ .
wp,<w<w,, for 2d composites.

upper solid line, numerical simulations =]; Mg 4=((E/Eq)*) . . o
[scaling formula(42) - upper dashed lifie M, o= (|E/Eq|?) [scal- For 3d Eercolangn com;103|te7$, the 'cr|t|.cal exponents are
ing formula (41) - lower solid line, numerical simulations + ;  €dual to»=0.88, t=2.0, s=0.7." To simplify estimations

Moo= ((E/E;)?) [scaling formula42) - lower dashed line, numeri- We put belowy=(t+s)/3 for d=3. Then Eq(38) takes the
cal simulations - @ In all presented analytical calculations we set following form E,,~ Eo(eb/ed)l/g(;)gmwl’?’/wf, that is the

éa=2a andp=1 in Egs.(41) and(42). local-field peaks increase up ®,/Eq~w,/w, when e,

becomes negative and then the peaks decreade &8
that valueE,, of the field maxima is different from previ- 9 P EnéBo

o ~ N3 g
ously obtained estimaté&3) due to the renormalization of (wp/w,)(w/wp)™, with further decrease of frequency.
the applied fielE,. For silver composites, we estlmgte that the maximum value
Equation (34) gives the estimate for the local field ex- Of the peaks is achieved at=0.5w,, that corresponds ta
trema when the real paet,, of the metal dielectric constant =06 xm.

becomes negative. For metals increases in absolute value _ Since we know the peak amplitudes for the local electric
with the wavelength, when the frequenayis smaller than field we can estimate the momends, ., of the local field. To

Z)p [see discussion below E6L)]. Therefore, the field peaks obtainM,, ,,, we consider first spatial distribution of the field

. . maxima for |e,|>¢€4. The average distance between the
En(w) increase strongly with the wavelengtbee, for ex- field imain th lized svstem i .
ample, Fig. 3 in our previous papg®: For a Drude metal it ''€'d Maxima inthe renormalized System 1S equatiaiven

L~ . . by Eq.(24). Then th dist bet the field
happens for the frequenciess w,, when the dielectric con- y Eq.(24) en the average distangg between the fie

. maxima in the original systertprovided thatp~1) is equal
stante,, can be approximated as to g ysterip b1 g
( <~ ) 2( ~ ) €p +.€b(1)7. (35) 1/d
Eplw=w,)=L(w—wy)=— T 1——. *
m P P wp wp geg(lr/a)ge'va

By substituting this expansion in E¢B4), we obtain

l€m|
€d

(39

"
m

V/(t+s)( | 6m|

In the original system, each field maximum of the renormal-

Em(wSZ)p) ized system splits inta(l,) peaks of theE,, amplitude lo-
cated along a dielectric gap in the “dielectric” cube of the
o~ (v+t+s)/(t+9) ~ . o Y . .
5 2€p| 00— wy)| wp size. The gap “area” scales as the capacitance of the dielec-
=Eo(alén) ~ v(t+s) tric cube, so does the number of peaks
wp W Ep€Ey
(36) n(l ) (l, fa)d=2+s, (40)

Since losses in a typical metal are smail,,<fop, the field There are, on averageé{/a)? excited clusters. Thus, we
peak amplitudes first increase steeply and then saturatabtain the following estimate for the local-field moments
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n+m for n+m>1 andn>0, and
M, m~(&xla)d _m) Lh)
nmoSAT B (£1a)e " e [(m-3)2
e €ml€ml _
| g nm-1 Mom™ =T~ (d=2) (44)
NP(fA/a)dz(ner)(rT (lr/a)slvfl d

for m>1, n=0 and (ey|/eq) ™ V2> e,/ €l [the last in-
n+m-—2+s/v equality corresponds to the condition that the moment given

by Eq. (44) is larger than one The momentM,, (n#0)

are strongly enhanced ind2Drude metal-dielectric compos-

vl(t+s)

€d

| € n+m-1 ites. The moments reach the maximum value
— (41
E” n+m-1
" M, ~p| ——P (d=2), (45
that holds forn+m>1 andn>0. Since|e,|> €4 and the nm™p w \eq(énla)? ’

ratio |en|/ep,>1 the moments of the local field are very
large, M, ,>1, in the visible and infrared spectral ranges.
Note that the first momern¥l,,~1 that corresponds to the
equation{E(r))=E,. We stress again that the localization
length&, in Eq. (41) corresponds to the renormalized system
with eg=—¢€,,=1. The localization length in the original
system, i.e., a typical size of the eigenfunction is estimate
as (,/a)é,>a. In other words the eigenstates become mac-
roscopically large in the limit of large contrakt,|/e > 1
and consist of sharp peaks separated in space by distan

much larger thara. The eigenstates of HK tdover the vol-
ume €al, /)%~ (éaw,/ )?>a for two-dimensional Drude
metal composites and<wy, .

We consider now the momenié, ., for n=0 that corre-
spond to the volume average of theh power of the com-
plex amplitudeE(r), namely, My,,=(E™(r))/Eg". In the
renormalized  system, where|en(l,)|=|es(l,)] and M, (0=wmna
en(l )/ e4(l,)=—1+ik, the field distribution coincides with
the field d'istribution in the Sy§tem witky= — e,’n~.1. In thg ~P(§A/a)[(a/§/.\)2(fb/Ed)ll%p/wT]n+m_l (d=3).
system withey= — €/,~1 the field peak&, are different in (46)
phase and because of the destructive interference, the m
mentMg,,~O(1) [as it follows from Eq(31)]. In transition
to the original system the peaks increase by the fdgtr,
leading to the corresponding increase of the monégt, .

We suppose that With!n a single; “dielect_ric” cube the field Mpm(@<wp)~p(éala) =
peaks are in phase, i.e., the field maxima form chains of €5 W,

aligned peaks that are stretched out in a dielectric cube. This 47
assumption is confirmed by results of numerical simulation ] ] ]
shown in Fig. 1, where the field maxima with different signs N Fig. 3, we compare results of numerical and theoretical
are concentrated in different places of a percolation Composcalculatlons for the field moments irdXilver semicontinu-

ite. Then we obtain the following equation for the moment; 0us films on glass. We see that there is excellent agreement
between the scaling theofformulas(43) and(44)] and nu-

when frequencyw decreases so that the conditior< w, is
fulfilled. The spatial moments of the local electric in d 2
percolation composite are independent of frequency,afor
<wy,. For metals it typically takes place in the red and in-
frared spectral ranges. For a silver semicontinuous film on a
lass substrate, the momeM, ,, can be estimated as
nm~[(a/€x)?3X 101" ML, for w<w,,.

It follows from Eq. (41) that for 3d metal-dielectric per-
colation composites, where the dielectric constant of metal
ggmponent can be estimated by the Drude form)a the
momentsM, ., (n#0) achieve the maximum value at fre-
quencywmax~0.5?op. To estimate the maximum value, we
note that the following relations/(t+s)~1/3, s~v are
valid for the 3 case, wher¢=2.0, s=0.7 and»=0.88
Then the maximum value of the moments is estimated as

Por small frequenciee<w,, the moments of the local field
decrease with the wavelength as

alEx) 202313 n+m-1
( gA) p (d=3)

n(l,) merical simulations. To fit the data we uség~2a. [Re-
Mom~Mgm(l:/a)™ 3 ~k(l, Ja)ym2+sly sults of numerical simulations fav 4 are not shown in Fig.
(ée/a 3 since it was not possible to achieve reliable results in the
(M—2+5/v)l(t+s) simulations because of large fluctuations in values of this

, (42) moment] The small value of, indicates strong localization
of surface plasmons in percolation composites, at least for

which holds wherM,, ., given by this equation is larger than the 2d case. As seen in Fig (13 the spectral dependence of
one. ' enhancemenM , ,, differs strongly for processes withn(

Using the critical exponents for®percolating compos- # 0) and without (=0) subtraction of photons. _
ites, t=s=»=4/37 we can simplify Eqs(41) and (42) as As discussed above, nonlinear optical processes, in gen-
eral, are phase dependent and proportional to a factor

|€m| €d

follows -
|E|"E™, i.e., they depend on the phase through the tEffin
|€m|3/2 n+m-1 and their enhancement is estimated a¥l,
Mom~p| 57— (d=2), (43 =(|E/IEO|"(E/E®)™). According to the above consider-
(éal2)?\eqer, ation, M, m~M s mo, for n=1. For example, enhancement
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Kerr nonlinearity in metal-dielectric composites. To develop
our previous consideratiod§we obtain here scaling formu-

las for enhancement factors for different nonlinear optical
processes, including those that depend on the field phase.
The enhancement is expressed in terms of the high-order
field moments considered above. We again assume that the
light wavelengthn is larger than any intrinsic spatial scale in
the film, including the skin depthh>a\/e,|. We do not
consider here the effects of light propagation and suppose
thatE, is the macroscopic, average electric field acting in the
system. The field&, changes on the spatial scale of the order
of \, which is much larger than the scale of the microscopic
averaging. For simplicity, we also assume tBgtis linearly
polarized so that it can be chosen real.

3
10 [ T T T T T} K
0.01 0.02 0.05 0.1 A. High harmonic generation

FIG. 4. Fourth-order field momentsl,,, (m+n=4) of the We consider here enhancetth harmonic generation
local electric field in 21 metal-dielectric composite wite;=1 and  (NHG) at frequencynw when a percolation metal-dielectric
metal permittivitye,,= —100(1-i«), as functions ok: M, @, composite is irradiated by a light beam at frequeacyFor
M3~ A, My~ . estimations, we assume, as above, that metal grains are char-

acterized by the Drude dielectric function given by Ed).
of the Kerr-type nonlinearityGx =M, ,~Grs=M,0; (see  As shown in previous sections, Anderson localization of sur-
also next section For nearly degenerate four-wave mixing face plasmon excitations results in giant scale-invariant field
(FWM), the enhancement is given bryyu~|Gk|?  fluctuations of the local electric field. This makes the consid-
~|My 4?2 and can reach giant values up-tdl0' ered here high harmonic generation different from the well-

Above, for the sake of simplicity, we assumed that known phenomena of harmonic generation from smof
— p. when considering the case gf<0. Now we estimate and rougf*~* surfaces. _ _
the concentration rang&p=p—p., where the above esti- We assume that the material components forming a com-
mates for the local field moments are vali®We note that POSite possess nonlinear conductivity” that results in
the above expressions for the local field and average fiel@HG; UFH) can also be due to adsorbed molecules in the
momentsM , ,, hold in almost all concentration range given conjpos.|te..As shpwn in Sec. Il, the local field concentrates
by Eq.(25) when e~ — €4. The metal concentration range Mainly in dielectric gaps between metal cIu_sters.'Therefore,
Ap, where the local electric field is strongly enhanced,/@rgest enhancement of nonlinear effects is achieved when
shrinks, however, whee/,<0. The above speculations are either nonlinear adsorbed molecules are located in the dielec-
based on the finite-size scaling arguments, which hold prol'ic 9aps or the dielectric itself possesses the nonlinearity.
vided the scald, of the renormalized cubes is smaller than '€ local electric fielce,(r) induced in a composite by
the percolation correlation lengté=a(|p—pe//pe) *. At the exten::illl f|e.Id E,o generates the Nw current
the percolation threshold, where the correlation lengti- @ Eo(T)Eq (1) in the system. This expression, strictly
verges, our estimates are valid in a wide frequency rang&Peaking, holds only for the SC@}EE nonllnekar conductivity
©,< <y, which includes the visible, infrared, and far- 2"d 0ddn (i€, n=2k+1), whenE" “=(E-E)". However,

infrared spectral ranges for a typical metal. For any particuIaFOr estimates, the for_mula can be u_sed in the general case, for
frequency from this interval, we estimate the c:oncentration‘"lrbltrary n. The non‘!lnear ,current !ntgracts \.N'th the sys.tem
rangeAp , where the giant field fluctuations occur, by equat-and generates th_e seedio electric fIEI.d’ Wlth. the ampli-
: ; ; : = tude E® = eMEN1E /¢, whereo ™) is thelinear con-
ing the values ofl, and ¢, which results in the inequality No 0 —o ' Lo )
|AP|<(eq/| €)Y+, ductivity at frequgncynw. The electric fleld_Enw can _be

In Fig. 4, we show the momentd , 5, M55, andM, as thought.of as an inhomogeneous externa[ f|e_ld excnmg the
a function of « for 2d percolating system withe,, =100 COMPposite ahw frequency. -{QmHG curren,,, induced in
(—1+ik), eg=1 and metal concentratiorp=0.7>p, the film by the “seed” fleIdEAnw can be found in terms of the
=0.5. All the moments are close in magnitude and increasaonlocal conductivity tensax (r,r’) that relates the applied
with decreasing losses according to a power-law depen- (external field at point r’ to the current at pointr,
dence with the same exponent, as it is predicted by(£s). jnw,ﬁ(r)=f2na,,,3a(r,r’)Efﬁlva(r’)dr’, whereX,,, 5, is the
conductivity tensor at frequenayw and the integration is
over the entire film are¥:*° The Greek indices take values
{x,y} for d=2 and{x,y,z} for d=3. The summation over
repeated indices is implied. It is the currgpt that eventu-
ally generates the nonlinear scattered field at the frequency
Nw. Figure 1 shows the normalized real part of the [®cal

In this section, we consider enhancements rith har-  field g3=RgE?(r)E,(r)//|[E?® in a 2d silver-on-glass
monic generation, Raman and hyper-Raman scattering, arfidm. As seen in Fig. 1, the fluctuating.3fields form a set of

Ill. GIANT ENHANCEMENTS OF OPTICAL
NONLINEARITIES AND RAMAN
SCATTERING IN PERCOLATION

COMPOSITES
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sharp peaks, looking up and down, and having the magnwhereE,(r) is the local field exited in the system by the
tudes~10°+10°. Such huge fluctuations of the local fields uniform field E,,, o with frequencynw, e.(nw) is the effec-
are anticipated to strongly enhance the and higher har- tive dielectric constant of the composite at frequemey,
monic generation. and the momenM, is determined by EQq(26). Strictly
For simplicity, we assume that the metal ar_ud dielectricspeaking’ this equation holds fnm<2)p, but we can use it
components of a composite have the same nonlinear condugy the whole frequency range since the metal dielectric con-

tivity o™ (e.g., resulting from adsorbed molecules uni- ) ~
formly distributed in the composite We are interested in sFantem(nw) is of the order of one fonw>w,, and Eq.(50)

enhancement of thew harmonic generation due to the giant 9ives the same result as B9 for nw>w, . At the perco-

local field fluctuations. Therefore, we compare the signal lation threshold the effective conductivity is estimated as
: ' /(t+

from the system with and without metal grains. It is shown in€e(N®) ~ ed(em(nw)/ g9, wheres andt are percola-

our previous papé? that enhancement of theth harmonic ~ tON critical exponents for the dielectric constant and conduc-

generation is given by the following formula tivity, respectively’ Substituting this result together with Eq.
(42) for the momeniM,, in Eq. (50), we obtain the follow-
(T o (N[ Eny(r) - Ew(r)]E[jfl(r)>‘ 2 ing expression for thath harmonic enhancement
Gnhe™~ gn+1 ‘
OdEsw0 GnHG
_ 2 ”
_[(enaDIEnu(n) - EL(NIEL (1) 9 [lem(no)] 25/<t+s>{i [ |em( )| |22 ¢ sIvi(tes)
derz,rrol ‘ €d |€m| €d
whereE,,(r) is the local electric field exited in the system (51
by uniformprobe fieldE,, o that has the same amplitude and
direction as external field,, o, but oscillates with the fre- For a Drude rrzletal a}pdnw<wp, we have | €ml
quencynw; o, (r), og and e, (r), €4 are the linear con- ~|€m(Nw)|~(w,/w)* and ey/| ey ~w./w. For estimates,

ductivities and dielectric functions of the composite with andWe can ses/v=1, which holds ford=2 andd=3 as well.
without metal grains, respectively. The enhancen@pt;  1hen Eq.(51) acquires the following form
does not depend on the amplitude of the external field and is B anvi(t+s)
essentially an intrinsic property of the system. The local G N(“’_f (ﬂ)

fields in Eq.(48), resulting in enhancement ath harmonic Me T w
generation, experience giant fluctuations in the spectral ba

of the plasmon resonances, i.e., fmr7<w,nw<:up, as
shown in Sec. Il. This includes the optical, infrared, and

far-infrared spectral ranges, where the huge enhancement of

nth harmonic generation can be observed in percolation Ghhe™
composites. When frequenay of the incident wave is large

enough so that thath harmonicnw is out of the spectral For 3d system, where the critical exponent (t+s)/3, Eq.
range of the plasmon resonances, s>, we can ne- (52) can be simplified as

glect the fluctuations of thew field in Eq. (48) and this

(52

w

nI(—jor 2d systems, where the critical exponents are equal to
=t=v=4/3, Eq.(52) gives the simple formula o6, ¢

w

—7)2(&> zn, (d=2). (53)
w

(O]

equation simplifies to w,)? @p e
a P GnHG~(; (g) . (d=3). (54)
_ 2
(nu(NEL(NEL (1) _ _ _
Ghueo™ : We can estimate enhancement of second and third harmonics
4B, 0 ‘ in silver-on-glass semicontinuous film &syc~2X 10 and
ne1, |2 Gaye~2%10°, for A=1.5 um, and G,ys~10° and
- {€no(NEL(NE, (r))‘ _ (49) Gays~5X10°, for A=3.0 um. These estimates are in
edEq o ‘ agreement with our numerical calculatiofisin particular,

the simulations indicate thaG, g~ © in the long-

As shown in Sec. I, fields with different frequencies  \yavelength limit, which is exactly the result given by Eq.
fluctuate in space with different spatial scalgéw). There- (53).

fore we can use decoupling in E@8) to obtain the follow- We note that the obtained formulas define enhancement
Ing estimate for a coherent signal of harmonic generation propagating in
n-1 2 the reflected or transmitted direction. As shown in Ref. 70,
Grua~ {€no(NEno(r)) (Eu(NE, (r))‘ the coherent harmonic generation is accompanied by a diffu-
edEml ‘ sive broad-angle nonlinear scattering at frequeney with
the integral enhancement exceeding the coherent signal by
|<¢snw(r)Enw(r)>|2|<Ea,(r)Ez_1(r))|2 many orders of magnitude. This phenomenon dubbed in Ref.
- 2E2 g2n 70 as percolation enhanced nonlinear scatteffgNS has
d=nw,0 ©.0 been observed in experimenrishut was not explained at the
|€e(nw)| time. . _
=———|Mg,l? (50 It follows from Eq. (53) that enhancement increases with

€4 n, so thatG, 11e/Gnue= (w,/w)? is much larger than one.
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It is interesting to note that the fact that enhancementliscussion after Eq(12)]. Thus, we obtain the SERS en-
strongly increases with the order of the optical nonlinearityhancemenGgrs~ 10° silver semicontinuous films at the per-
can result in unusual situation when, for example, secondeolation threshold. For & composite aiw<w,, SERS de-
harmonic generatiofSHG) is dominated by higher-order creases with decreasing frequency aSgrs~p(p)
nonlinearity x“)(—2w;w,w, — ,®), rather than being due X (¢£4/a) Swiw/wi~1Fw/w,, where we used for esti-
to x'?(—2w;w,w). This is becaus#l, ,, which is respon- matesé,~2a, p~1,v~s~(t+s)/3 and substitute the data
sible for enhancement of the abovg(—2w;w,w, ®,=9.1 eV andw,=0.021 eV for silver’

—w,w), at some wavelengths{(1 um) can exceed,, The localization radiug, of the eigenstate¥ , with ei-
by many orders of magnitude. For example, in semicontinugenvalues\ ~0 decreases when we shift frops= p, toward
ous metal films the ratio of the momemik, ,andMg,atthe  p=0 or p=1 since the eigenvalud =0 shifts from the
percolation can be estimated from Edd3) and (44) as  center of theA distribution to its tails, where localization of
Mo/ Mg~ (al€x)®| €m|® g€l . Where we set the density the eigenstates is stronger. Therefore, according to(E,
of statesp=1. Substituting herey=2.2, which corresponds Raman scattering hasrainimumat the percolation thresh-
to the glass substrate, and parameters for the silver dielectrgld. As a result, the double maximum depende@ge(p)
constant we obtain the estiméaé, ,/M O,2~(a/§A)6107, for  takes place as was observed in experiments and numerical
w<w,. Another possible situation is when hyper-Ramancalculations’ with one maximum below the percolation
scattering(considered beloyis as efficient as “conven- thresholdp, and another above the..

tional” Raman scattering. Also, we note that when higher-  The intensity of the local Stokes sourdeg(r)|E(r)|*
order nonlinearities compete with lower-order nonlinearities (provided the Stokes shift of frequency is smédillows the

a bistable behavior can be obtained, which can be used ilcal-field distribution. In the peakg¢hot spot$, Eq. (34)

various applications in optoelectronics. gives
4
B. Raman and hyper-Raman scattering 4 ca of l€ml AEEs) [ el
. IRSmaxoc|E(r)| ~Egp(a/én)®| — - -
Surface-enhanced Raman scatte(i8&RS from various €m
nanostructured random mediaugh films, colloidal aggre- (56)

gates, etg, is one of most intriguing optical effects discov- ,

ered in the last two decad®s.’*Recent studies indicate that For @ & Dru4de4metal ap=Pe and w<wp, We estimate
SERS is especially large in strongly disordered media, suchrsma|E(")|*/Eg~(éa/a) " *(wp/w,)*>1. If the density

as fractal small-particle composites and self-affine thin films Of Raman-active molecules is small enough, then each peak
where the local-field fluctuations are especially large becaus@f the local field can be due to Raman scattering from a

of strong spatial localization of optical modes in different Singlemolecule. _
random parts of the objeBecause of the sp localization in _Consider now hyper-Raman scattering wimgphotons of
percolation composites, SERS also experiences giant effequencyw are converted in one hyper-Stokes photon of the
hancement in these meda. frequencyw,rs=nw—Q, where() is the Stokes frequency
In most studies, the averagimtegrated SERS was con-  Shift corresponding to the frequency of molecule oscillations
sidered. Recently, it was shown that the local enhancement§léctronic or vibrational Following the approach devel-
in the hot spots can exceed the average enhancement Bped in Ref. 29 we obtain the following result for surface-
many orders of magnitude making possible SERS fronfhhanced hyper-Raman scatteriSEHRS
single moleculest 37 , , ,
It was shown in our previous papé&ts! that the SERS _(lonrdNI[Enrd N|?[E(M)[")
enhancement is given b@grs~M, o= (|E(r)/Eo|*). Using hRS™ |oo|2|Eoprd?/Eol >

Eq. (41), we obtain ) 5 )
:<|ths(r)| |Enrd NI?E(r)|*")

» 3
GRs~p(p)[§A(p)/a]d8<|€—ml> ’ +SW+S)( |6m|) : €l [ Bonrd ol ™
€d

: (57)

€m (55) whereEnrdr) is the local-field excited in the system by the
uniform probe fieldEyyrs oscillating with wyrs; ohrdr)

where we indicated explicitly dependence of the density ofNdenrgr) are the local conductivity and dielectric constant

statesp(p) and localization lengthi,(p) on the concentra- at the frequencyopgs. At n=1 formula(57) describes the

tion p of metal grains. Thus, the obtained Raman enhanceconventional SERS.

mentGgs depends strongly on localization lengih. When To estimateGnhrs we take into account that the spatial
the states are delocalizég— o andGgsvanishes very rap- scales for the local field fluctuation,, at the fundamental
idly. frequencyw and hyper-Stokes frequenay,rs are signifi-

Now we consider frequency and concentration depencantly different. Therefore, we can decouple the average in
dence of Raman scattering predicted by B8p). For 2d  Ed. (57) and approximate it by
composites and frequeney<w, Eq. (55) results in the en- ) ) o
hancementGrs~ p(p)[a/EA(P) 1%(wp/ )% 3% which is (| enrd NI[Enrd [?[E(N)[*")
independent of frequency. For silver-on-glass percolation 2 2n
fiImspwe setép~2a c'lolccor(;/ing to our compgter sirFr)mIations {lenrd NI Brrd IH(EMI™)
[see Figs.(1) and (2)] and density of state(p.)~1 [see =(|lenrd N Enrd1)|?) My o Eol?".
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It follows from the scaling analysis of the current-current
correlation function fulfilled in Refs. 57 and 58 that the sec-
ond moment of the curredte,rdr)Enrdr)|?) is estimated
as €5 em(wnrd/ €4] T2V TIMS |Egprd?, where the mo-
mentM3 ,is given by Eq.(32). By substituting these results
in Eq. (57), we obtain

Ghrs~| | fm(ths)|/€d](t+25)/(t+S)M E,OM 2n,01 (58

where the momeni¥l; ,is taken at frequency,rs. Now we
use the expressions for momemis, , and M, o given by
Egs.(32) and(41) and take into account that fgr=p,. the
density of states in Eq32) is about unityp~1. Thus, we
obtain the following formula for enhancement of hyper-
Raman scattering

Ghrs FIG. 5. Average enhancement of the Kerr optical nonlinearity
Gk =M, in silver semicontinuous films as a function of the metal
(”35)’(”9[ |em(thS)|l concentratiorp for three different wavelengths. The nonlinear Kerr

|€m(thS)
- permittivity € is the same for metal and dielectric components.

_ 2d—4(1+n)
(énla) )

€m(whRr9

[20(n—1)+s]/(t+s) rn—l in silver semicontinuous films is shown in Fig. 2. We are

|€m(w)|

€d

|6m(w)|

(59) interested here in the average enhancer@gntgiven by the
€m(®)

integral of gx over the system volumeof the Kerr nonlin-

wheren=2. For a Drude metal and frequencies<a earity eff’) due to fluctuations of the local fields in metal-
~ i . P dielectric composites. When the local field fluctuations are

wprs< 0, the metal dielectric constant can be approximated, o yjigile, the effective nonlinear dielectric constas}f’

as |6m(th§|~|Em(w)|_~(wp/"))21 eﬁ](w)/|em(w)| ~<6(3)(I’)>.

~w;/w and Eq.(59) acquires the form We consider first the case whef®)(r) in the dielectric

2n component is of the same order of magnitude or larger than

w 2[2v(n—1)+4s+t]/(t+s) ®
GhRS~(§A/a)2d4(”“)<—p) — in the metal componentThe opposite case of almost linear
@ @r dielectric | (¥ <|€{®)| will be considered beloy Then the
(60) . :
_ _ o ) Kerr enhancemer®y is estimated as
which holds in the vicinity to the percolation threshold. For
2d composites where the critical exponents ares=v GK~e§)/<e(3)(r)>~M2,2
=4/3 Eq.(59) simplifies to
2(n+1) 2n d-s8 | €ml (@vre)it+s) | €ml :
® w ~p(éala)™ (—) — | (69
Ghrs™~ (a/€x)™" ?p) <—p) : (61) piea €d em

which forn=2 in silver semicontinuous films is estimated aswhere we used Eq41) for the momentM, , of the local
Grrs~ 10"(a/£,)8\%, where the wavelength is given in  field. This expression fo6x coincides with Eq(55) for the
microns. As above for Raman scattering, the local enhanceenhancement of Raman _scatterin.g. Eqﬁwp the Kerr en-
ment in the hot spots can be much larger than the averagegancement for @ composites'semicontinuous metal films

one. is estimated aGy~ p(£a/a)? 8(w,/w,)® where we use the
Drude formula(1) for the metal dielectric constant,,. For
C. Kerr-type third-order optical nonlinearity silver-on-glass semicontinuous filnfg/a~2 andp~1, we
For the Kerr-type nonlinearity the displacement curi@gnt Obta'“GK~106- o _
in the simplest case can be writtent as In Fig. 5 we show results of numerical simulations €
as a function of the metal filling factqn, for d=2. The plot
D=[eet+ 623)|E0|2]E0, (62 has a two-peak structure, as in the case of Raman scattering.

However, in contrast tGrg, the dip atp=p. is much stron-
ger and ap=p. is proportional(as simulations showto the
loss factorx. This implies that ap=p., the enhancement is
actually given byGg~ «M, », whereM, , was found above.
This result might be a consequence of the special symmetry
of a self-dual system gi=p.. Formally, it could happen if
the leading term in the power expansion Mf, , over 1k
(5(3)(r)E2(r)|E(r)|2) cancels out because of the symmdsge the discussion fol-
E2[E,? : (63 lowing Eq.(31)]. When this symmetry is somehow broken,
Sl e.g., by slightly moving away from the poim=p., the
wheree®)(r) is the local nonlinear dielectric constant of the enhancemenGy increases and become3~M, ,~Ggg
composite. The local “Kerr field"gx=E?(r)|E(r)|?/|Eo|*  ~Myy, as seen in Fig. 4. The fact that the minimumpat

where e, and {¥) are the effective linear and nonlinear di-
electric constants. The nonlinear term is responsible, in pa
ticular, for the nonlinear refraction and nonlinear
absorption"’

As shown, for example, in Ref. 10, the effective nonlinear
dielectric constank(eg) in a random composite is given by

)=
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=p. is much less for SERS than for the Kerr process is 7= 06pm
probably related to the fact that the latter is a phase sensitive e+ A=t5um
effect. 4 = - = X=100um
As shown in Sec. Il, the local field maxima are concen-
trated in the dielectric gaps whea,|>¢4. Therefore, the
enhancement estimate in E(4) is valid when the Kerr
nonlinearity is located in these gagis can be due to the
dielectric itself or due to adsorbed molecyles
Consider now the case when the Kerr nonlinearity is due
to metal grains as in recent experiméhProvided thate/, - !
=—¢4, the local electric field are equally distributed in -2 ' |
'
!

metal and dielectric components. Therefore, the Kerr en-
hancement is still given by Eq64) where one should set 4]
lem|/eg=1. The situation changes dramatically whien| 10 — P

T T
> €4 since now the local field are concentrated in the dielec- 0.0 02 04 06 08 1.0

tric gaps between the conducting clusters achieving there the FIG. 6. Average enhancement of the Kerr optical nonlinearity

valuesEr, given by Eq.(34). The total current, of the metal_ \jmetaljn sjlver semicontinuous films as a function of the
electric displacement flowing in the dielectric gap between_X 2,2

. . metal concentratiop for three different wavelengths. The nonlin-
two resonatde_ 2metal cIusters_ of sitecan be estimated as .. keorr permittivitye® is in the metal component only.
Jy=aEnedl "2, whereaE, is the voltage drop across the
gap, €, is effective dielectric constant of the composite. Be- i i
cause of the current continuity, the same current should floff€ Smaller than the external field on average. For semicon-
in the adjacent metal clusters. In the metal cluster the currerffnuous silver films on a glass substrate it happens for wave-
is concentrated in a percolating chanh# The electric field '€ngthA>10 um as one can see in Fig. 6.
in the metal channel, which spans over the cluster, can be e also note here that enhancement for nearly degenerate
estimated afin~\]g/(6mad71)_ Then nth moment of the four-wave m_|X|ngGFWM_, such as cohe_rent_antl-Stokes Ra-
local electric field in a metal cluster of side is equal to ~Man scattering and optical phase conjugation process, is es-

H 2
(EM)y=E" £a® /19, where £a® ! is the volume of the timated asGryu~|Gk|? and can be very larg€.

n ro
conducting channeI,L‘,za(em/ee)lr’d+2 is the effective

length of the conducting channel. Now, we take into account

that only the fractionc= €;/| e, <1 of metal clusters of size _ _ _

|, are excited by the external electric field; then we obtain the SO far, we restricted our consideration to the model con-

following estimate for the momentM (™' =(|E|" oa taining only two types of elements, with metal dielectric
n

— «(E") of the local field averaged over the metal compo-function &, and dielectric constanty and the volume con-
nent only centrationsp and 1-p, respectively. The more realistic

model of a metal-dielectric composite should take into ac-
)n—l( e |> v[n(d—1—t/v)+t/v+2—2d]/(t+s) count that metal elements can be different and characterized
m

D. Discussion of models: Swiss-Cheese dielectric

—_— by some distributior-(¢,,). The same is true for dielectric
elements whose properties in real percolation composites can
(65  vary over the system. We note that a narrow distribution of

where we use expressid83) for the sizel, of the resonate the parameters originating, for example, from different sizes

clusters. For two-dimensional systen=(2), wheret=s  Of metal grains does not affect the critical exponérifsso
=y=4/3, we obtain from Eq.(65) GMmetal__ p (meta) that the above estimates for the field moments remain un-
=p=4/3, . K 4

~(J€nl/€n)*(eq/|enl) " Computer simulation results for Ch?l%?aeiituation changes, however, when a distribution of
enhancement of the Kerr nonlineartBf*‘®!for silver semi- o e ma parameters is broad, as in the Swiss-Cheese
continuous film are shown in Fig. 6 as afunctiotnlof the metalrnode75 suggested for continuous ’media. In this model for
concentratiorp. From Figs. 5 and 6 we seB{““<Gx @S he 3 case, while the critical index for the correlation
expected. Near the percolation threshold we can compaligngih remains the same as in the lattice model, the transport
Gy~ andG quantitatively. Considering for simplicity®  exponents, such as can be different from their lattice val-
case, wheré~s~v, and using Eqs64) and(65) we obtain  yes. For the @ random checkerboard modIt was argued
that the “dielectric” exponens is different from the lattice
Gk _ @ 2 value, while the percolation exponents remain the s&nite.

Gﬁ“e‘a' € | was shown in Ref. 78 that although the critical exponents for
transport in continuous media may be different from the lat-
Thus, for |en|>€q4 the Kerr nonlinearity enhancement is tice values, they still satisfy the standard scaling relation of
much larger when the “seed” nonlinearity is located in the the statistical mechanics as do their lattice counterparts. So
dielectric gaps where the local fields are much larger than inlespite the fact that the values of the critical exponents in
metal. It follows from Eq(66) and also from Fig. 6 that the continuous media can be different we speculate that the cor-
Kerr enhancemerﬂ;[?eta' may become less than one. This responding functional dependencies may remain unchanged
means that local electric fields in the metal component caffor a number of physical processes.

" ’
€
€m d

| €ml
Mg]metabw(_

(66)
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Very little is known about the effect of a broad parameterwhere x(q) is the thickness of the gafiepending on the
distribution on the local em fields. Consider, for example, thecoordinateq along the gapand the integration is over the
Swiss-Cheese model that can be mapped onto rari@l@n  gap are£gapmad*1n(lr), wheren(l,) is given by Eq.(40).
network with a broad distributiofi(R) of resistorsR so that  Hereafter, we set, for simplicityg,=1.
the average valuéR)= [f(R)dR=< diverges. The geo- We suppose now that the thicknes®f a dielectric gap
metrical structure of the conductingR*’ bonds does not between two metal clusters is distributedf¢z). Then Eq.
depend on the distributiof(R); therefore, the spatial inho- (67) can be rewritten as
mogeneity is still given by the percolation correlation length
¢ for the resistor concentratiop close to the percolation N Up (maxf(X)
threshold. When all the conducting elements are the same, (E >gap~?f n-19%
the conductance in the spatial scgleaccording to the per-
colation theory, is determined by the “critical” chain of Provided that the distributioh(x) has a well-defined maxi-
resistors® The potential drogand the local electric fielkds ~ mum near the granular size the averageéE") g~ Ep,, in
approximately the same for the resistors in the critical chairaccordance with previous considerations.
and its resistance can be estimated RsC, where. is the Now we consider the case when the gap distribufipo)
length of the chain. On the other hand, for the Swiss-Cheesgoes not vanish at— 0; for simplicity, we assume that the
model the distributiorf(R) is so broad that the resistance of gap sizex is distributed uniformly between 0 ard i.e.,
the critical chain is due to a single element with the Iargeslf(x):a—l for 0<x=a. In this case the integral in E¢69)
resistance. Then the voltage drops mainly in this critical rediverges at the lower limit and this equation cannot be used
sistor, which determines the conductivity in the scalélote  to estimate the field moments. In this case the integral in Eq.
that the dependence of the critical exponewn the resis- (67) is determined by the distanos,;, for the closest ap-
tance distributiorf (R) follows from this fact/®~®* proach of the clusters. Since the distangesre distributed

The momentsM , of the local fields are power-law func- uniformly in the segment &x=<a the “effective” X, can
tions of the percolation correlation length,~ £, sinceé  pe estimated a,,;,~a/n(l,), where the number of capaci-
is a single spatial scale in the considered static case. Wheagince contacts, i.e., the “effective area” of the ga@,) is
the local field concentrates in a single eleméntthe scale given by Eq.(40). By approximating the integral in E467)
£) the critical exponeng(n) acquires the form of a linear as~ad*1/x”m}n1 we obtain
function of n, implying a constant gap between the expo-

(68)
X

nentsq(n) for consecutiven. Therefore, the field distribution un ad-2
becomes compact and looses its multifractal nature for the (E”)Qap~s— =) ~Epn(l,)"2
Swiss-Cheese mod#. 9ap Xmin

Contrary to these conclusions, in Ref. 82 it has been ar- ~EN(1, Ja)@-2+n(-2) 69)

gued that for the Swiss-Cheese model in the “truly” con-
tinuous case the local-field distribution becomes WideI’.By substituting this expression insteadE# in Eq. (41), we
Analysis of a continuous metal film perforated by circular gptain the new estimate for the field moments:
voids shows that the local field concentrates in narrow splits
between the voids. This concentration of the field results in a- 200+ my| L €ml {[sn=2)+sh/ (s+1)
the power-law tails in the local field distributidthis analy- Mpm~p(éala) .
sis was also performed for the static field d

In the considered here case of optical properties, the con- ( |Em|)“+m‘l

tinuous structure of a medium may affect the conductivity of (70

metal clusters(e.g., the bottle-neck contacts between the
metal graing and result in renormalization of the exponeént hat holds forn+m=2. Thus, we arrive at the conclusion
in the formulas obtained above for the spatial moments ofat the field moments in the Swiss-dielectric model differ

the local optical fields. This, however, does not affect thefrom those obtained previously for the discrete network by
functional dependencies derived above. the factor (e,|/eg) " Md=2+8lIs+t \which is much larger

The situation changes when a dielectric component i$yan one fom-+m>2.
characterized by a broad distribution of parameters. Recall The gpatial distribution of the local fields also changes

that the highest electric fields are concentrated in the dieleGsignjficantly in the Swiss-dielectric model: instead of a chain

tric gaps, rather than in metal clusters. In this case, not onlyfocal maxima between resonating metal clusters we have a
the critical exponents may be renormalized but the COMegingle peak with the amplitudeE qac Em(Xmin/a)

sponding functional dependencies may also be different. ~Ep(|€nll € )[P(@=D+sl(s+) which is much larger than the

We have shown in Sec. II1B that the local electric field . m M ¢ '
concentrates in a dielectric gap between resonating met
clusters of the sizé*. The voltage drop between the two
resonating metal clusters can be estimated from(E4). as
U,,=Ea, and thenth field moment averaged over the vol-
ume of the gap can be written as

"

€m

revious estimate foE,, given by Eq.(34). We speculate

at in this case, the maximum enhancement for the local-
field is achieved since we have only one peak within the field
correlation lengthé, .

IV. CONCLUSIONS

n
(EMygap~ Un f dq (67) In this paper we studied the local electric field distribution
9% aSyap x(q)" L’ and enhancement of optical nonlinearities of random metal-
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dielectric composites. We show that the surface plasepn  was shown that the enhancement strongly depends, in terms
modes are localized in metal-dielectric percolation composef its magnitude and spectral dependence, on exact nature of
ites, and the electric fields in such systems consist of sharfhe nonlinear process and can be different, even for processes
peaks resulting in very inhomogeneous spatial distributionsvith the same order of optical nonlinearity. Namely, it
of local fields. In peakg‘hot” spots), the local fields exceed strongly depends on whether there (& least ong act of
the applied field by several orders of magnitudes. Thesghoton subtraction in the multiphoton scattering leading to a
peaks are localized in nm-sized areas and can be associatgenerated wave. As a result, the enhancement for processes
with the eigenstates of the Kirchhoff’'s Hamiltonian. For anywith photon subtraction, such as Raman and hyper-Raman
particular frequency in the visible and infrared spectralscattering, Kerr-type nonlinear refraction and four-wave
ranges we can find the eigenstates representing the sp resuixing, is significantly different from the enhancement for
nance modes. The amount of metal grains supporting theggocesses without photon subtraction, such as sum-frequency
resonance excitations is negligibly small in comparison withand high-harmonic generation.
the total number of metal grains. Nevertheless, the resonant Both the local and average enhancements for nonlinear
clusters cover the entire volume of the film because of theioptical processes strongly increase toward the long-
fractality. The incident light excites the resonance clustersvavelength part of the spectrum for two-dimensional system
and they interact with each other. As a result, the local fieldand decrease with increasing the wavelength for three-
is concentrated in sharp peaks placed in some subset of tligmensional percolation systems. Note also that because the
resonance clusters. The amplitudes of the peaks and the alhot” spots are localized in nm-sized areas and provide gi-
erage distances between them increase with the wavelengtint enhancement in their locations, a fascinating possibility

The strongly fluctuating fields associated with the sharpmf nonlinearspectroscopy of single molecules on a semicon-
peaks in various random parts of a film, result in giant entinuous metal film becomes feasible. These nano-optical ef-
hancements of nonlinear optical processes since they are prfects can be probed, for example, with near-field scanning
portional to the enhanced local fields raised to a powepptical microscopy providing sub-wavelength spatial resolu-
greater than one. Because of such pattern for the local fieltion.
distribution, the nonlinear signals are mostly generated from
very small nm-sized areas.

We have obtained scaling formulas for enhancement of
arbitrary nonlinear optical processes that in general depend This work was supported in part by NSf&rant No.
not only on the field magnitudes but also on their phases. IDMR-9810183, PRF, NATO, and RFF(98-02-17628
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