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It is shown that strong electron-electron interactions in disordered systems lead to the enhancement of
intrinsic disorder. The one-band Hubbard model with random on-site energies is studied in the hfimiie
Electron correlations are treated in the mean-field slave boson technique. To average over disorder, both
intrinsic (diagonal and interaction induce(ff-diagona), we use a version of the coherent potential approxi-
mation. We illustrate the approach by calculating density of states, ac electrical conductivity, and effective
carrier concentration. The obtained results are discussed in the context of recent experimental data on disor-
dered strongly correlated material$0163-18289)05243-1

I. INTRODUCTION T..'' It is important to underline that even without extra
impurities these materials are quite strongly disordered as the
The interplay of disorder and interactions is an importantdoping of insulating parent compounds is necessary in order
issue, which has recently been studied very activelyto change them into metals and superconductors. The num-
theoreticall} and experimentall§:® On the theoretical part ber of arguments point out that at the same time they are
early work has started with weak interactions treated pertur-strongly correlated system$.
batively and found that the relevant couplings scale to large All this makes the study of disordered versions of models
values. Thus, one virtually always ends up in the strong coudescribing correlated fermions very important and timely
pling limit. So it seems natural to start from the strongly subject. In this paper, we shall start with the strongly inter-
correlated models suitably generalized to describe disorderacting electrons described by the random version of the Hub-
This point of view has recently been used by a number obard model and show that correlations lead to additional dis-
workers*=® Zimanyi and Abrahanfshave found that disor- order in the system. The disorder is introducéa random
der in thet-J model suppresses superconductivity and leadsite energiess; [cf. Eq. (1) below]. To illustrate the ap-
to formation of localized magnetic moments. Kotliar and proach, we shall calculate the density of states and ac con-
coworker§ have used dynamical mean-field theory to treatductivity for disordered correlated system and compare them
strong interactions, and fouridter alia that even moderate with those calculated for clean correlated and/or disordered
disorder in the Anderson model leads to broad distribution ofioninteracting models. Even though we are not aiming at
Kondo temperatures and thus induces strong ‘“effective”explanation of particular experiments we shall discuss the
disorder in the system. Another example of dramatic effecpbtained results in connection with available experimental
of normal impurities has been demonstrated in Ref. 7, wherdata.
it has been shown that in correlated systems the Korringa The organization of the rest of the paper is the following.
ratio K, is strongly enhanced by impurities beyond its stan-In Sec. Il, we shall present the model and approach, while
dard value 1.0Korringa ratio is defined a&,=1/T,;TK?, Sec. Il contains the numerical examples. The discussion of
whereK is the Knight shift, T temperature, and Tf nuclear  the approach and obtained results concludes the paper.
relaxation ratg It turns out that the proper interpretation of
experiments on correlated systems requires the effect of im-
purities to be taken into account. Il. THEORY
The examples of strongly correlated disordered systems
comprise such materials & various heavy fermion alloys,
e.g.. Cy_,Pd,, Sg_,V,Pd, La;_,CeCuw, -Si,, in which
non-Fermi-liquid features have been obser¥éh); transition
metal perovskite oxides of thaBO; type and their alloys
as, e.g., Ca.,Sr,VO3:1° (c) heavily doped semiconductors H=2 tijcihCjot+ 2 (81— m)Chci,+ U cficicic) .
as Si:P and Si:B (d) copper oxides and other high tempera- e 7 ' 0
ture superconductors. These materials possess complicated
phase diagrams and very intriguing normal and supercon-
ducting state properties. Doping of some of them with ZnHere, ¢\ (c;,) is the creation(annihilation operator of a
(Ref. 12 or othet* impurities has revealed unusual influence spin o electron at sitd, tj; denote(periodig hopping inte-
of impurity scattering on their superconducting and normalgrals, x is the chemical potential and; are random site
state propertiesthermodynamics, transport etcln the su-  energies. They take on valueg(eg) depending on whether
perconducting phase, due to anisotropic character of the ositei is occupied by an atom & or B type. U is the on-site
der parameters, the impurities provide pair breakingelectron-electron repulsion. For arbitrary value of on-site in-
mechanisi? and strongly reduce the critical temperatureteractionU a site can be empty, singly or doubly occupied

To be specific let us consider a single-band Hubbard
model with random site energies given by the Hamiltonian
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and to trace its state one requires four operators and twwhere(- - -) denotes the thermal average
constraints>® The theory becomes much simpler in tbe
—oo limit, valid for narrow band materials and for descrip-

tion of low energy properties. In this limit the slave boson g=1-2 (i (53

approach’ to correlated system makes use of a single boson 7

operator. One replaces the electron operatgrdy the prod- 1

uct of fermionf; and bos?rbi operators, and introduces the Nigf=— > > fitij§j<fi+0fj(r>{v}_ (5b)
Tf o= jo

constraintQ;=b;"b;+ =, f;" f;,=1, which says that in this
large U limit each site can be empty or at most singly occu-
pied. The easiest way to incorporate the constraint is to us
Lagrange multipliern; at each sitd and write the Hamil-
tonian

Calculation of the correlation functior(sfif,fj{,){y} entering
last equations is in general extremely complicated task be-
cause they do depend on the positions of all atoms in the
system. Surely, one expects the strongest dependence on the
type of atoms located at the terminal sitesj). Then it is
legitimate to replace each configuration-dependent quantity
- Al/t by the conditionally averaged ongh;;);;—the condition
being that sites,j are occupied by given types of atoms and
N the rest of the system is replaced by an effective medium to
+§i: Ai| b bi_z(r: f be calculated in the coherent potential approximafion
(CPA).
In the mean-field approach to the above Hamiltonian in clean CPA is the best mean-field approximation to treat disor-
system’ one replaces the boson operators by the classicaler. It is the self-consistent theory of the frequency-
variables(b;)=(b;")=r and assumeks;=N\. In the random dependent self energy associated with impurities. Recent
system at hand, one expects dependence of boson amplitudstsdies of the disorderedtd model® have shown that the
on site index, i.e., the correlation between these amplitudesequency dependence of the impurity self energy together
and random site energies. The statistical averaggsdo, in  with self consistency are the necessary ingredients of any
disordered system, depend on the kind of atom at isite quantitative theory, and especially important in narrow band
Denoting these site-dependent boson amplitudes)  systems and/or in the presence of Van Hove singulatity.
=(b;)= ¢ we arrive at the mean-field Hamiltonian CPA respects this requirement.

The multiplicative type of off-diagonal disorder in the
Hamiltonian(3) makes the application of the single site CPA
an easy task® One defines an operatgr S .& i fi, and
transforms HamiltonianH=¢ 'H{"&"1 as well as the
Green’s functionG(z) = £§G&=(z& 2—H) L. Itis a matter
of simple calculation to check that the transformed Hamil-
tonianH contains only diagonal disorder. The properties of
the system, however, are still defined in terms of original
Green’s functionG or its averaged over impurities counter-
part(G)imp. The procedure is stand&Pdnd one gets the set
of equations for the average mediltifz) to be solved self
consistently

+
io

Hsp= 2 t;jf bibj+fi0+i§: (gi—m)fifi,

+

lo

fi,—1 )

H’\sﬂk')::; fitijfjfitrfio"'z (ei—=N—w)fifi,

2 N(E D), 3)
which except diagonal disorder, given by the fluctuating pa
rameters:; and, possibly); possesses also off-diagonal one,
i.e., random hopping integral&ijzgitijgj which represent
special form of band width fluctuations. Note that original
hopping parameters; are periodic, i.e., nonrandom quanti-
ties. It is site-dependent boson amplitude&;) that make

the parameter?;ij random. Thus, one finds that interactions
in the system induce additional disorder.

To proceed, we propose the following generalization of

the Newns and Reafl approach. Let us imagine a given
configuration of atoms in a syste(to be denoted by super-

script{v}) and calculate the total electron energy appropriate

to this configuration of atoms

E{”}=<Hglb>{"}, (4

&

< 3(2)=(z=sit u—N)IE ~0 ©
1-[3(2)— (z—&i+pu— )/ ETF[2(2)] -
1 1
F(2)=5 % ——e (7

Here,s(IZ) is the Fourier transform of the bare hoppig;
eg=1UNZ;t; e *Ri~R)_Once the coherent potenti3(z)
is found then the density of stat€q¢) is calculated from

2F[S(eM)]

S

1-[2(e") ("

.

®)
—eitu=NEIF[Z(D]]
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with the usual limiting process implied ky" =¢+i0. for arbitrary single-site random quanti€; .

The symbol(- - - )i, in Egs. (6) and (8) denotes the av- To close the system of equations, we need to relate the
eraging over disorder. We specifically assume the distribuehemical potentiaj. to the carrier concentration and cal-
tion of local parameters, which is a proper one for the deculate parameters,(ng) andAa(Ag) which denote carrier

scription of A;B;_, alloys and define densities at sites occupied by até(B) and the correspond-
ing values of Lagrange multipliers. The carrier densities are
(O1)imp=XOa+(1-x)Og (9 easily obtained from

-2
F[>
nA,B:f dwf(w)( ——)Im{ —— fasFl>] > ] : (10)
m 1-[2(e")—(e"—epptu—Nap)/énpl-F[2]
|
Note that the relatiori5a), which we shall interpret in CPA  of the complex argumerz as®
in terms of local conditionally averaged quantities as
e (f(n)—f(n+w))
Eap=1-nNap (12) o(w)= ERef dn ”
together with Eq.(10) provide the self-consistency condi- _ B _
tions for the determination ofi, g and the effective band- X AE(n +w)]—¢[2(n7)]
width parameters;; & &; . S(n tw)—2(n)
Unfortunately there is no simple interpretation of Eq. N B
(5b), which would allow us the calculation of, and g 2y )] ¢[X(n)] (14
separately. In principla; should be calculated at each site, S(p +0)-3(7) '

by evaluating the rhs of E@5b), which is very difficult task.

The simplest approach is to remind thatis the Lagrange where "= =i0 andv,(k) = 1/ de(k)/dk, is the carrier
multiplier introduced, in the slave boson technique, in ordekg|ocity.

to take into account the constraint Stating that the number of It is common practice to present the data for the real part
particles(fermions plus bosonsat a sitei cannot exceed 1. of ac conductivity in the Drude-like form
As our approach is a mean field one it is thus natural to

expect that also in impure system can be assumed site (0)
independent as in Ref. 15. Mean-field theory of slave bosons o(w)= — (15)
neglects the fluctuations af . The same approximation has 1+ 0 m(w)

been used previously in the study of random versiort of
—J model? Therefore, we have assumigd=Ag=X\. It can
be further combined with the chemical potentialinto the

effective one;= pu—A\, easily calculated from

with the frequency-dependent relaxation timéw), and
o(0) denoting the dc conductivity of the system.

In the experimental study of optical properties of corre-
lated systems the important role is played by the effective
carrier densityngy(wg). It is the number of carriers contrib-
n:f def(e)D(e), (12 uting to theo(w) up to the frequency,. We denote it by

Nesi(wo) and define &

n being the total concentration of carriers in the system. In

Egs.(10) and(12) f(&) denotes the Fermi distribution func- me (@

tion f(e)=(e**eT+ 1)~ 1. This finishes the formal analysis. Neft( wo) = P J;) o(w)dow. (16)
The knowledge of the Green’s function can be used to cal-
culate the combined effect of disorder and correlations on
electronic properties of system.

One way to get experimentally the information on the
electronic structure of materials and the dynamics of carrier
is to study their optical spectra. This is of special importance
as they can be measured both in normal and superconducting ll. NUMERICAL EXAMPLES
state. Here we shall, however, be interested in normal state
only. The Kubo-Greenwood formula can be used to calculatc?d
frequency dependent conductivity ). It can be expressed
via the function

As it follows from the last equationg4(wg) is a conve-
nient measure of the spectral weight contained in the low-
;requency part obr(w).

For the purpose of numerical illustration of our general
eas we have used the three-dimensional system density of
states possessing van Hove singularity in the middle of the
band. It corresponds to bcc tight-binding spectrum for

1 vi(lZ) nearest-neighbor hopping integltﬁlz —t
b(2)== > - (13
NK 2 (k) eg= —8t cogk.a)cog kya)cogk,a) .
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BT the opening of the real gap in the spectrum and the appre-
ciable increase of the density of states at the fermi level
(taken asE=0 in the figure.

In the clean systems the main effect of strong correlations
100 1 1 is the band narrowing. Thus, the resulting density of states
has the same shape as host one shown in Fig. 1, but spread
out over narrower energy range. The narrowing factor is sim-
ply given by (1—n). In disordered case the situation is more
sor 1 complex and the various components of the band are
changed in different manner. The band narrowing observed
for that part of the spectrum which is of mairycharacter is

0.0 — T different from that found foB component and depends on
-06 -04 -02 00 02 04 05 the carrier concentration. This behavior is easy to
E V) understand—band-narrowing factafs are proportionalvia
FIG. 1. Host system density of states used in the calculations.(11) to 1—n;, weren; is the local carrier concentration. This
in turn is related to the total carrier concentrationvia n
=xnp+(1—X)ng. It, thus, follows that the more occupied

D(E)

Using t=0.0625 eVleads to the noninteracting system subband is narrowed more stronal
bandwidthW=1 eV. In the following all energies and fre- gy

guencies are expressed in eV. The density of states of the The two peak_ structure of D.OS we observe in F_'g' 21s
clean noninteracting system is shown in Fig. 1. rélated to the disorder scattering and not correlations. By

The changes of the spectrum due to correlations in disor"f‘ssuming‘l =2 we have pushed the upper Hubbard subband

dered system are illustrated in Fig. 2 where we show thd® infinity and are dealing with lower one modified by the
) disorder. Strong interplay between disorder and interactions

gvi?)ngd( E) ?En)d ;:Oorngﬁlznglly av;”r :3?39%”; |tLes_o(1; %tatesls responsible for the detailed structure of the t@XéE) and
A B 1— =VU.0, Ep=VU.U, ..
eg=0.4 eV) without [Fig. Z(aX)] an);j with[Fig. 2(b)] electron local D og)(E) densities of states. In the present treatment of

: . : correlationsvia mean field slave boson theory the carrier
correlations. The carrier concentratiors=0.4. We observe : .
densityn serves as only parameter, which controls the cor-

relations, and also the off-diagonal disorder. Depending on

SO T T T T 1 the parameters the factorg,,ng can take quite different
- § values and this induces strong off-diagonal disorder. Gener-
40 F A — g((% 4 ally for largen the bands are very narrow. The genuine pa-
N == OE) rameters that control the disorder in the noninteracting sys-

tems arex—the alloy concentration and=(eg—e,)—the
scattering strength. Even if both these parameters are small
the induced disorder can be very large.

The changes in the spectrum have, in turn, an important
influence on the transport properties and in particular on the
ac conductivity o(w) [cf. Eq. (14)] and relaxation time
7(w). Figure 3a) shows the comparison of the ac conduc-
tivity of noninteracting electrongsolid curve with that for
strongly interacting carrier&ashed curjefor the same pa-
rameters as previously. The following comment concerning
these data is in order. Due to thle= limit the upper Hub-
bard subband does not contributedtbw) of correlated sys-

@30 f

111 T T T T T T T
- . tem and the sum rule for the conductivity
95 _
X — D) o mne?
79F v e D,E) . Res(w)do=—— 17
o I Dg(E) 1 ) , . .
5 63 ] does not have its usual meaning and gives only the effective
© 48 [ ] kinetic energy. The integral in the above sum rule, when
a | i evaluated for correlated system, says how strongly the carri-
32 | 4 ers are correlated. This explains why one observes lower
- - values ofa(w) in correlated alloy as compared to noninter-
16 | . acting one. It is the redistribution of the spectral weight,
A o which is important.
0.0 Lt - ;
03 -01 00 02 03 05 07 Comparing the two curves one notes the appearance of
E (eV) the appreciable spectrum for frequencies around 0.2—-0.3 eV.

This, so called, “midinfrared” band arises from the disorder
FIG. 2. Total and local densities of states of the noninteractingn the system. It is seen to be much more pronounced in the
(U=0) (a) and correlatedy ==) (b) Ay gBo 4 System. The Fermi correlated case. Similarly the frequency-dependent relax-
energy is placed & =0. ation times do change with correlation. Their changes are
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40 T T T T T T T T T T T 1 0 T
30 no correlations i 08 ]
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[&] @
< - -
1.0 |
02 | .
OO 00 L 1
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FIG. 5. The normalized effective carrier density calculated from
020 T T T T T T T T T T T . .
Eq. (16) vs carrier concentration.
i no correlations plot we show here the conductivity(w) and relaxation time
015 | ----- with correlations . 7(w) vs frequency w for an Ay Bgs alloy with ex—eg
g =0.3 eV and for two different band fillings=0.1 and 0.25.
= The conductivity shows Drude behavior with practically con-
% . stant relaxation timer for n=0.1 and strongly non-Drude
ks ] behavior (particularly so at elevated frequendiefor n
) . =0.25. In consequence the relaxation times display quite
0.05 | . different frequency dependence with calculated forn
SIS R o) - =0.25 being frequency dependent above 0.1 eV. The strong

doping dependence af(w) has recently been observed in
0.00 — experimental resulf$ for the normal state of high-
0.00 0.05 0'20 0.15 (\)/'20 0.25 030 temperature superconducto_rs. Itis i_mportant to note that such
requency (eV) behavior could not be obtained, within the one band model
FIG. 3. (a) Comparison of the frequency-dependent conductivity\yithout correlations or disorder.
calculated forAy B 4 Nnon-interacting(solid curve and correlated We have calculated the effective carrier concentration,
(dashed curvesystems(b) Relaxation times of the same system. Ness Using EQ.(16) andwy= 0.1 eV. Then dependencénote
that doping=1—n) of ns; normalized to its maximal value
shown in Fig. 8b). (Netf)max IS plotted in Fig. 5. To get these data we have
The same “midinfrared” contribution, calculated for dif- assumed that carriers are introduced into the system bl the
ferent alloy and two values of carrier concentration is seen itomponent of an alloy, i.e., we have assumedl—x. The
Fig. 4. Its appearance can be traced back to the enhancsdattering strengtlkg— e, was taken to be very small 0.01
disorder in the system. The effect is seen to be much strong@V, in order not to get splitting of the Van Hove singularity.
for larger electron concentration, when the correlation effecté\ssuming that optimally doped sample corresponds to the
become more important. The interference of disorder andnaximum in the density of states at the Fermi level the data
interactions is responsible for the strong band-filling depenshown in Fig. 5 can be interpreted in the following way. In

dence of the calculated functions. On a doubly logarithmicthe underdoped case there is strong increase.gf with
doping, while in overdoped regime the decreasengf is

) observed. The experimental data obtained in the normal state

L - B R L B R AL of various superconducting oxides show similar behatfior:
- conductivity : the increase ofg¢; with doping in underdoped regime and
10" E i nearly constant value or small decrease in overdoped case.
The experimental data, we are referring to, have been ob-
o [ 7 tained on quasi-two-dimensional systems with different den-
10 E E sity of states. Also it has to be underlined that the single-
i g band Hubbard model is certainly to simple to describe
107k E normal state optical spectra in high-temperature supercon-
- 3 ductors.
2
18 E E IV. DISCUSSION AND CONCLUSIONS
107 '3 TR T ...,.'0 In this paper we have presented calculations illustrating
107 107 107 10 the interplay of disorder and correlations in solids. Using the
frequency (eV) simple but by far not trivial model with diagonal disorder,

FIG. 4. Conductivities and relaxation times fag B, ; system  we have shown the mechanism by which correlations in the
and for two values of the carrier concentratios 0.1 (solid curves  system induce additional strong off-diagonal disorder. For
andn=0.25(dashed curves the purpose of explicit calculations we have assumed very
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500 ——T———F——T——T—— 1T Such small disorder would lead to rigid band picture for
s 0 noncorrelated electrons. It means that the density of states
400 | — n=085 | would be essentially that shown in Fig. 1 for all values of
Tooeeg band-fillingn. We see in Fig. 6 that in correlated system one
i —-— n=06 i gets huge changes of the spectrum witliror large electron
300 ——os concentrationsr(=0.9,0.85,0.8) thésand is very narrow
"-'bi - . e--on=03 . (of order of 0.1 to 0.2 eYand shows two peak structure. For
200 F J lower concentrations the electron mass gets smadtlee
| 1 bandwidth increasg¢sand the peak ifD(E) moves with re-
spect to Fermi energlfg (located atE=0). For the param-
100 | j‘h ] eters studied it moves from belok to above it with de-
- - s S, caee. ] creasingn.
0.0 BT T s R e The pronounced contribution () at midinfrared fre-
-0.10 -0.07 -0.03 0.00 0.03 0.07 0.10 quencies routinely observed experiment&f can in this
E (V) theory be attributed to the, enhanced by correlations, scatter-

FIG. 6. The densities of states for a series of disordered correing of electrons off impurities. There exist in the literature
lated systems of th&,B;_, type with carrier concentration=1  other proposals to explain the “midinfrared” band. One of
—x andey—eg=0.1eV. them, called two component scenario, assumes the existence

of two types of carriers. Beside mobile carriers one considers
strong correlations Y =c) and treated them by the slave bound carriers, which give temperature-independent contri-

boson technique using mean-field approximation. The sam ution to o(w) in midinfrared band. Here, we propose that
conclusion is obviously valid for finitéJ. Moreover, finite the mldlnfrgred band can be caused by speptral weight trans-
correlationU have to be taken into account in order to getfer_lfthe to n:(tehrplayt/) of d'l_soff'%f fm(tjhcor;e?tlo?s. | stat
guantitative description of particular materials. The disorder, IS work has been fimited to the study of hormal state

both diagonal and, interaction induced, off-diagonal has bee roperties and) — limit. The same phenomenon qf corre-
treated in the coherent potential approximation. ation induced disorder, however, does play an important

The effect is very strong and may be of relevance in th(_:role for finite U and also in the superconducting state. These

interpretation of measurements on transition-metal alloy oxProPlems are presently under investigation.
ides, heavy fermion systems, and high-temperature super-
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conductors. To illustrate the statement we show in Fig. 6 the
evolution of the density of states with doping. Here, the bare This work has been partially supported by the KBN
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