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Spectral and transport properties of strongly correlated disordered systems
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Institute of Physics, Marie Curie-Skłodowska University, PL-20031 Lublin, Poland
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It is shown that strong electron-electron interactions in disordered systems lead to the enhancement of
intrinsic disorder. The one-band Hubbard model with random on-site energies is studied in the infiniteU limit.
Electron correlations are treated in the mean-field slave boson technique. To average over disorder, both
intrinsic ~diagonal! and interaction induced~off-diagonal!, we use a version of the coherent potential approxi-
mation. We illustrate the approach by calculating density of states, ac electrical conductivity, and effective
carrier concentration. The obtained results are discussed in the context of recent experimental data on disor-
dered strongly correlated materials.@S0163-1829~99!05243-1#
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I. INTRODUCTION

The interplay of disorder and interactions is an import
issue, which has recently been studied very activ
theoretically1 and experimentally.2,3 On the theoretical par
early work1 has started with weak interactions treated pert
batively and found that the relevant couplings scale to la
values. Thus, one virtually always ends up in the strong c
pling limit. So it seems natural to start from the strong
correlated models suitably generalized to describe disord

This point of view has recently been used by a numbe
workers.4–8 Zimanyi and Abrahams4 have found that disor-
der in thet-J model suppresses superconductivity and le
to formation of localized magnetic moments. Kotliar a
coworkers6 have used dynamical mean-field theory to tre
strong interactions, and foundinter alia that even moderate
disorder in the Anderson model leads to broad distribution
Kondo temperatures and thus induces strong ‘‘effectiv
disorder in the system. Another example of dramatic eff
of normal impurities has been demonstrated in Ref. 7, wh
it has been shown that in correlated systems the Korri
ratio Kr is strongly enhanced by impurities beyond its sta
dard value 1.0~Korringa ratio is defined asKr51/T1TK2,
whereK is the Knight shift,T temperature, and 1/T1 nuclear
relaxation rate!. It turns out that the proper interpretation
experiments on correlated systems requires the effect of
purities to be taken into account.

The examples of strongly correlated disordered syste
comprise such materials as~a! various heavy fermion alloys
e.g.: Cu52xPdx , Sc12xVxPd3, La12xCexCu2.2Si2 , in which
non-Fermi-liquid features have been observed;9 ~b! transition
metal perovskite oxides of theABO3 type and their alloys
as, e.g., Ca12xSrxVO3;10 ~c! heavily doped semiconductor
as Si:P and Si:B2; ~d! copper oxides and other high temper
ture superconductors.11 These materials possess complica
phase diagrams and very intriguing normal and superc
ducting state properties. Doping of some of them with
~Ref. 12! or other11 impurities has revealed unusual influen
of impurity scattering on their superconducting and norm
state properties~thermodynamics, transport etc.!. In the su-
perconducting phase, due to anisotropic character of the
der parameters, the impurities provide pair break
mechanism13 and strongly reduce the critical temperatu
PRB 600163-1829/99/60~24!/16376~6!/$15.00
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Tc .11 It is important to underline that even without ext
impurities these materials are quite strongly disordered as
doping of insulating parent compounds is necessary in o
to change them into metals and superconductors. The n
ber of arguments point out that at the same time they
strongly correlated systems.14

All this makes the study of disordered versions of mod
describing correlated fermions very important and time
subject. In this paper, we shall start with the strongly int
acting electrons described by the random version of the H
bard model and show that correlations lead to additional
order in the system. The disorder is introducedvia random
site energies« i @cf. Eq. ~1! below#. To illustrate the ap-
proach, we shall calculate the density of states and ac c
ductivity for disordered correlated system and compare th
with those calculated for clean correlated and/or disorde
noninteracting models. Even though we are not aiming
explanation of particular experiments we shall discuss
obtained results in connection with available experimen
data.

The organization of the rest of the paper is the followin
In Sec. II, we shall present the model and approach, w
Sec. III contains the numerical examples. The discussion
the approach and obtained results concludes the paper.

II. THEORY

To be specific let us consider a single-band Hubb
model with random site energies given by the Hamiltonia

H5(
i j s

t i j cis
1 cj s1(

is
~« i2m!cis

1 cis1U(
i

ci↑
1ci↑ci↓

1ci↓ .

~1!

Here, cis
1 (cis) is the creation~annihilation! operator of a

spin s electron at sitei, t i j denote~periodic! hopping inte-
grals, m is the chemical potential and« i are random site
energies. They take on values«A(«B) depending on whethe
site i is occupied by an atom ofA or B type.U is the on-site
electron-electron repulsion. For arbitrary value of on-site
teractionU a site can be empty, singly or doubly occupie
16 376 ©1999 The American Physical Society
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PRB 60 16 377SPECTRAL AND TRANSPORT PROPERTIES OF . . .
and to trace its state one requires four operators and
constraints.15,16 The theory becomes much simpler in theU
→` limit, valid for narrow band materials and for descri
tion of low energy properties. In this limit the slave bos
approach17 to correlated system makes use of a single bo
operator. One replaces the electron operatorscis

1 by the prod-
uct of fermionf is

1 and bosonbi operators, and introduces th
constraintQi5bi

1bi1(s f is
1 f is51, which says that in this

largeU limit each site can be empty or at most singly occ
pied. The easiest way to incorporate the constraint is to
Lagrange multiplierl i at each sitei and write the Hamil-
tonian

HSb5(
i j s

t i j f is
1 bibj

1 f is1(
is

~« i2m! f is
1 f is

1(
i

l i S bi
1bi2(

s
f is

1 f is21D . ~2!

In the mean-field approach to the above Hamiltonian in cl
system17 one replaces the boson operators by the class
variables^bi&5^bi

1&5r and assumesl i5l. In the random
system at hand, one expects dependence of boson ampli
on site index, i.e., the correlation between these amplitu
and random site energies. The statistical averages^bi& do, in
disordered system, depend on the kind of atom at siti.
Denoting these site-dependent boson amplitudes^bi

1&
5^bi&5j i we arrive at the mean-field Hamiltonian

HSb
MF5(

i j s
j i t i j j j f is

1 f is1(
is

~« i2l i2m! f is
1 f is

1(
i

l i~j i
221! , ~3!

which except diagonal disorder, given by the fluctuating
rameters« i and, possibly,l i possesses also off-diagonal on
i.e., random hopping integralst̃ i j 5j i t i j j j which represent
special form of band width fluctuations. Note that origin
hopping parameterst i j are periodic, i.e., nonrandom quan
ties. It is site-dependent boson amplitudesj i(j j ) that make
the parameterst̃ i j random. Thus, one finds that interactio
in the system induce additional disorder.

To proceed, we propose the following generalization
the Newns and Read17 approach. Let us imagine a give
configuration of atoms in a system~to be denoted by super
script$n%) and calculate the total electron energy appropri
to this configuration of atoms

E$n%5^HSb
M &$n% , ~4!
o
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where^•••& denotes the thermal average

j i
2512(

s
^ f is

1 f is&$n% ~5a!

l ij i
252

1

2 (
j s

j i t i j j j^ f is
1 f j s&$n% . ~5b!

Calculation of the correlation functionŝf is
1 f j s&$n% entering

last equations is in general extremely complicated task
cause they do depend on the positions of all atoms in
system. Surely, one expects the strongest dependence o
type of atoms located at the terminal sites (i , j ). Then it is
legitimate to replace each configuration-dependent quan
Ai j

$n% by the conditionally averaged one:^Ai j & i j –the condition
being that sitesi , j are occupied by given types of atoms a
the rest of the system is replaced by an effective medium
be calculated in the coherent potential approximatio18

~CPA!.
CPA is the best mean-field approximation to treat dis

der. It is the self-consistent theory of the frequenc
dependent self energy associated with impurities. Rec
studies of the disorderedt-J model19 have shown that the
frequency dependence of the impurity self energy toget
with self consistency are the necessary ingredients of
quantitative theory, and especially important in narrow ba
systems and/or in the presence of Van Hove singularit19

CPA respects this requirement.
The multiplicative type of off-diagonal disorder in th

Hamiltonian~3! makes the application of the single site CP
an easy task.20 One defines an operatorĵ5( isj i f is

1 f is and

transforms HamiltonianH̃5 ĵ21H $n%ĵ21 as well as the
Green’s functionG̃(z)5 ĵGĵ5(zĵ222H̃)21. It is a matter
of simple calculation to check that the transformed Ham
tonian H̃ contains only diagonal disorder. The properties
the system, however, are still defined in terms of origin
Green’s functionG or its averaged over impurities counte
part^G& imp . The procedure is standard20 and one gets the se
of equations for the average mediumS(z) to be solved self
consistently

K S~z!2~z2« i1m2l i !/j i
2

12@S~z!2~z2« i1m2l i !/j i
2#F@S~z!#

L
imp

50 ~6!

F~z!5
1

N (
kW

1

z2«~kW !
. ~7!

Here,«(kW ) is the Fourier transform of the bare hoppingt i j ;
«kW51/N ( i j t i j e2 ikW (RW i2RW j ). Once the coherent potentialS(z)
is found then the density of statesD(«) is calculated from
D~«!52
1

p
ImK j i

22 F@S~«1!#

12@S~«1!2~«12« i1m2l i !/j i
2#F@S~«1!#

L
imp

~8!
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with the usual limiting process implied by«15«1 i0.
The symbol^•••& imp in Eqs. ~6! and ~8! denotes the av-

eraging over disorder. We specifically assume the distri
tion of local parameters, which is a proper one for the
scription ofAxB12x alloys and define

^Oi& imp5xOA1~12x!OB ~9!
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for arbitrary single-site random quantityOi .
To close the system of equations, we need to relate

chemical potentialm to the carrier concentrationn and cal-
culate parametersnA(nB) and lA(lB) which denote carrier
densities at sites occupied by atomA(B) and the correspond
ing values of Lagrange multipliers. The carrier densities
easily obtained from
nA,B5E dv f ~v!S 2
1

p D ImH jA,B
22 F@S#

12@S~«1!2~«12«A,B1m2lA,B!/jA,B
2 #•F@S#

J . ~10!
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Note that the relation~5a!, which we shall interpret in CPA
in terms of local conditionally averaged quantities as

jA,B
2 512nA,B ~11!

together with Eq.~10! provide the self-consistency cond
tions for the determination ofnA,B and the effective band
width parameters,t i j j ij j .

Unfortunately there is no simple interpretation of E
~5b!, which would allow us the calculation oflA and lB
separately. In principlel i should be calculated at each sit
by evaluating the rhs of Eq.~5b!, which is very difficult task.
The simplest approach is to remind thatl i is the Lagrange
multiplier introduced, in the slave boson technique, in or
to take into account the constraint stating that the numbe
particles~fermions plus bosons! at a sitei cannot exceed 1
As our approach is a mean field one it is thus natura
expect that also in impure systeml i can be assumed sit
independent as in Ref. 15. Mean-field theory of slave bos
neglects the fluctuations ofl i . The same approximation ha
been used previously in the study of random version ot
2J model.4 Therefore, we have assumedlA5lB5l. It can
be further combined with the chemical potentialm into the
effective onem̄5m2l, easily calculated from

n5E d« f ~«!D~«! , ~12!

n being the total concentration of carriers in the system
Eqs.~10! and~12! f («) denotes the Fermi distribution func
tion f («)5(e«/kBT11)21. This finishes the formal analysis
The knowledge of the Green’s function can be used to
culate the combined effect of disorder and correlations
electronic properties of system.

One way to get experimentally the information on t
electronic structure of materials and the dynamics of carr
is to study their optical spectra. This is of special importan
as they can be measured both in normal and supercondu
state. Here we shall, however, be interested in normal s
only. The Kubo-Greenwood formula can be used to calcu
frequency dependent conductivitys(v). It can be expressed
via the function

f~z!5
1

N (
kW

vx
2~kW !

z2«~kW !
~13!
.

r
of

o

s

n

l-
n

rs
e
ing
te
te

of the complex argumentz as20

s~v!5
e2

2p
ReE dh

„f ~h!2 f ~h1v!…

v

3H f@S~h21v!#2f@S~h2!#

S~h21v!2S~h2!

2
f@S~h11v!#2f@S~h2!#

S~h21v!2S~h2!
J , ~14!

whereh65h6 i0 andvx(k)5 1/\ ]«(kW )/]kx is the carrier
velocity.

It is common practice to present the data for the real p
of ac conductivity in the Drude-like form

s~v!5
s~0!

11v2t2~v!
, ~15!

with the frequency-dependent relaxation timet(v), and
s(0) denoting the dc conductivity of the system.

In the experimental study of optical properties of corr
lated systems the important role is played by the effect
carrier densityneff(v0). It is the number of carriers contrib
uting to thes(v) up to the frequencyv0 . We denote it by
neff(v0) and define as21

neff~v0!5
me

8pe2 E0

v0
s~v!dv . ~16!

As it follows from the last equationneff(v0) is a conve-
nient measure of the spectral weight contained in the lo
frequency part ofs(v).

III. NUMERICAL EXAMPLES

For the purpose of numerical illustration of our gene
ideas we have used the three-dimensional system densi
states possessing van Hove singularity in the middle of
band. It corresponds to bcc tight-binding spectrum
nearest-neighbor hopping integralt i j

0 52t

«kW528t cos~kxa!cos~kya!cos~kza! .



m
-
t

so
th
te

pre-
vel

ons
tes
read
im-
re
are
ved

n
to

s

d

is
By
nd
e
ons

t of
er
or-
on

er-
a-
ys-

mall

tant
the

c-

ing

tive
en
rri-

wer
r-
ht,

e of
eV.
er
the

lax-
are

ns

tin

PRB 60 16 379SPECTRAL AND TRANSPORT PROPERTIES OF . . .
Using t50.0625 eV leads to the noninteracting syste
bandwidthW51 eV. In the following all energies and fre
quencies are expressed in eV. The density of states of
clean noninteracting system is shown in Fig. 1.

The changes of the spectrum due to correlations in di
dered system are illustrated in Fig. 2 where we show
averagedD(E) and conditionally averaged densities of sta
DA(E) and DB(E) for an AxB12x alloy (x50.6, «A50.0,
«B50.4 eV! without @Fig. 2~a!# and with@Fig. 2~b!# electron
correlations. The carrier concentrationn50.4. We observe

FIG. 1. Host system density of states used in the calculatio

FIG. 2. Total and local densities of states of the noninterac
(U50) ~a! and correlated (U5`) ~b! A0.6B0.4 system. The Fermi
energy is placed atE50.
he

r-
e
s

the opening of the real gap in the spectrum and the ap
ciable increase of the density of states at the fermi le
~taken asE50 in the figure!.

In the clean systems the main effect of strong correlati
is the band narrowing. Thus, the resulting density of sta
has the same shape as host one shown in Fig. 1, but sp
out over narrower energy range. The narrowing factor is s
ply given by (12n). In disordered case the situation is mo
complex and the various components of the band
changed in different manner. The band narrowing obser
for that part of the spectrum which is of mainlyA character is
different from that found forB component and depends o
the carrier concentration. This behavior is easy
understand–band-narrowing factorsj i are proportionalvia
~11! to 12ni , wereni is the local carrier concentration. Thi
in turn is related to the total carrier concentrationn via n
5xnA1(12x)nB . It, thus, follows that the more occupie
subband is narrowed more strongly.

The two peak structure of DOS we observe in Fig. 2
related to the disorder scattering and not correlations.
assumingU5` we have pushed the upper Hubbard subba
to infinity and are dealing with lower one modified by th
disorder. Strong interplay between disorder and interacti
is responsible for the detailed structure of the totalD(E) and
local DA(B)(E) densities of states. In the present treatmen
correlationsvia mean field slave boson theory the carri
densityn serves as only parameter, which controls the c
relations, and also the off-diagonal disorder. Depending
the parameters the factorsnA ,nB can take quite different
values and this induces strong off-diagonal disorder. Gen
ally for largen the bands are very narrow. The genuine p
rameters that control the disorder in the noninteracting s
tems arex–the alloy concentration andd5(«B2«A) –the
scattering strength. Even if both these parameters are s
the induced disorder can be very large.

The changes in the spectrum have, in turn, an impor
influence on the transport properties and in particular on
ac conductivity s(v) @cf. Eq. ~14!# and relaxation time
t(v). Figure 3~a! shows the comparison of the ac condu
tivity of noninteracting electrons~solid curve! with that for
strongly interacting carriers~dashed curve! for the same pa-
rameters as previously. The following comment concern
these data is in order. Due to theU5` limit the upper Hub-
bard subband does not contribute tos(v) of correlated sys-
tem and the sum rule for the conductivity

E
0

`

Res~v!dv5
pne2

2m
~17!

does not have its usual meaning and gives only the effec
kinetic energy. The integral in the above sum rule, wh
evaluated for correlated system, says how strongly the ca
ers are correlated. This explains why one observes lo
values ofs(v) in correlated alloy as compared to noninte
acting one. It is the redistribution of the spectral weig
which is important.

Comparing the two curves one notes the appearanc
the appreciable spectrum for frequencies around 0.2–0.3
This, so called, ‘‘midinfrared’’ band arises from the disord
in the system. It is seen to be much more pronounced in
correlated case. Similarly the frequency-dependent re
ation times do change with correlation. Their changes

.

g
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16 380 PRB 60KAROL I. WYSOKIŃSKI
shown in Fig. 3~b!.
The same ‘‘midinfrared’’ contribution, calculated for dif

ferent alloy and two values of carrier concentration is see
Fig. 4. Its appearance can be traced back to the enha
disorder in the system. The effect is seen to be much stro
for larger electron concentration, when the correlation effe
become more important. The interference of disorder
interactions is responsible for the strong band-filling dep
dence of the calculated functions. On a doubly logarithm

FIG. 3. ~a! Comparison of the frequency-dependent conductiv
calculated forA0.6B0.4 non-interacting~solid curve! and correlated
~dashed curve! systems.~b! Relaxation times of the same system

FIG. 4. Conductivities and relaxation times forA0.7B0.3 system
and for two values of the carrier concentrationn50.1 ~solid curves!
andn50.25 ~dashed curves!.
in
ed
er
ts
d
-

c

plot we show here the conductivitys(v) and relaxation time
t(v) vs frequency v for an A0.7B0.3 alloy with «A2«B
50.3 eV and for two different band fillingsn50.1 and 0.25.
The conductivity shows Drude behavior with practically co
stant relaxation timet for n50.1 and strongly non-Drude
behavior ~particularly so at elevated frequencies! for n
50.25. In consequence the relaxation times display q
different frequency dependence witht calculated for n
50.25 being frequency dependent above 0.1 eV. The str
doping dependence ofs(v) has recently been observed
experimental results21 for the normal state of high-
temperature superconductors. It is important to note that s
behavior could not be obtained, within the one band mo
without correlations or disorder.

We have calculated the effective carrier concentrati
ne f f using Eq.~16! andv050.1 eV. Then dependence~note
that doping512n) of ne f f normalized to its maximal value
(ne f f)max is plotted in Fig. 5. To get these data we ha
assumed that carriers are introduced into the system by tB
component of an alloy, i.e., we have assumedn512x. The
scattering strength«B2«A was taken to be very small 0.0
eV, in order not to get splitting of the Van Hove singularit
Assuming that optimally doped sample corresponds to
maximum in the density of states at the Fermi level the d
shown in Fig. 5 can be interpreted in the following way.
the underdoped case there is strong increase ofne f f with
doping, while in overdoped regime the decrease ofne f f is
observed. The experimental data obtained in the normal s
of various superconducting oxides show similar behavio21

the increase ofne f f with doping in underdoped regime an
nearly constant value or small decrease in overdoped c
The experimental data, we are referring to, have been
tained on quasi-two-dimensional systems with different d
sity of states. Also it has to be underlined that the sing
band Hubbard model is certainly to simple to descr
normal state optical spectra in high-temperature superc
ductors.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have presented calculations illustrat
the interplay of disorder and correlations in solids. Using
simple but by far not trivial model with diagonal disorde
we have shown the mechanism by which correlations in
system induce additional strong off-diagonal disorder. F
the purpose of explicit calculations we have assumed v

FIG. 5. The normalized effective carrier density calculated fro
Eq. ~16! vs carrier concentrationn.
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PRB 60 16 381SPECTRAL AND TRANSPORT PROPERTIES OF . . .
strong correlations (U5`) and treated them by the slav
boson technique using mean-field approximation. The sa
conclusion is obviously valid for finiteU. Moreover, finite
correlationU have to be taken into account in order to g
quantitative description of particular materials. The disord
both diagonal and, interaction induced, off-diagonal has b
treated in the coherent potential approximation.

The effect is very strong and may be of relevance in
interpretation of measurements on transition-metal alloy
ides, heavy fermion systems, and high-temperature su
conductors. To illustrate the statement we show in Fig. 6
evolution of the density of states with doping. Here, the b
disorder strength is assumed to be small («B2«A50.1 eV!.

FIG. 6. The densities of states for a series of disordered co
lated systems of theAxB12x type with carrier concentrationn51
2x and«A2«B50.1 eV.
.

a,

R
ow

a
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e

t
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n

e
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e

Such small disorder would lead to rigid band picture f
noncorrelated electrons. It means that the density of st
would be essentially that shown in Fig. 1 for all values
band-fillingn. We see in Fig. 6 that in correlated system o
gets huge changes of the spectrum withn. For large electron
concentrations (n50.9,0.85,0.8) theband is very narrow
~of order of 0.1 to 0.2 eV! and shows two peak structure. Fo
lower concentrations the electron mass gets smaller~the
bandwidth increases!, and the peak inD(E) moves with re-
spect to Fermi energyEF ~located atE50). For the param-
eters studied it moves from belowEF to above it with de-
creasingn.

The pronounced contribution tos(v) at midinfrared fre-
quencies routinely observed experimentally22,23 can in this
theory be attributed to the, enhanced by correlations, sca
ing of electrons off impurities. There exist in the literatu
other proposals to explain the ‘‘midinfrared’’ band. One
them, called two component scenario, assumes the exist
of two types of carriers. Beside mobile carriers one consid
bound carriers, which give temperature-independent con
bution to s(v) in midinfrared band. Here, we propose th
the midinfrared band can be caused by spectral weight tr
fer due to interplay of disorder and correlations.

This work has been limited to the study of normal sta
properties andU5` limit. The same phenomenon of corre
lation induced disorder, however, does play an import
role for finite U and also in the superconducting state. Th
problems are presently under investigation.
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