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We report linear-response kinetic-energy density functionals, which show significant improvement over the
Wang-Teter, Perrot, Smargiassi-Madden, Wang-Govind-Carter functionals, yet still maii{tsim N) scal-
ing. Numerical tests show that these functionals, which contain a double-density-dependent kernel, can repro-
duce the Kohn-Sham results almost exactly for several aluminum bulk phases. We further show that with a
sensible choice of the uniform background density, energies of formation for the low-index aluminum surfaces,
where the density variations are very large, can be reproduced to within reasonable accuracy.
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. BACKGROUND

Among all linear-scaling O(N) density-functional
methods.~’ the orbital-free Hohenberg-Kohn schefrfeis

Tonlp1= = 3 (X081 V24 V25T =107,
(6)

potentially the most attractive. Without any orbital depen-Itis well known thatT+( p] is only exact at the free-electron
dence, the complication and cost associated with orbital magas limit andT,[ p] is only exact for those systems that can
nipulation, including orbital localization and orbital or- be described by a single spatial orbital, i.e., the one- and
thonormalization, are avoided. For metals, the orbital-fredwo-electron ground-state systefisAny realistic system
scheme is even more rewarding, because the need fdiat falls between these two extremes will have to be bridged

Brillouin-zone (k-point) sampling is completely eliminated.

somehow by a third term, which can also smoothly recover

However, all these positive features come at a price: accuhe two extreme cases if appropriate conditions are met. Eq.
rate, transferable orbital-free kinetic-energy density function{4) is then a natural choice for this functional because it
als do not, as yet, exist in od(N) arsenal. We set our task possesses the same form as Efsand(6). Second, there is

toward surmounting this problem in this paper.

The Wang-TetefWT), Perrot, Smargiassi-Madd¢€8M),
Wang-Govind-CartenfWGC) kinetic-energy density func-
tionals (KEDF’s) can be conveniently written g

Tep)= 2 Telp)=Trelp)+ Tunlpl+ 2 AuTSlp),

)

Tl p]=(tre(r))=Cr(p>3(1)), i)
1/|Vp(r)?

va[P]=<tvw(r)>=§<W>- 3

T p1=Cr{p*(r)|wa(r—r")[p*(r")). (4)

Here, Tt p] is the Thomas-Ferm{TF) functional?® C+¢
=%(37%)?5 and Tywlp] is the von Weizdeker (VW)

functional!* {a} are positive parameters which define

X=Wang-Teter-Perrdt for a=2, X="Perrof for a=1, X
= SM>’ for a=13, and X=WGC® for other choices ofx.

no reason to go beyond the double-integration form because
the highest rank of the operators in the quantum mechanical
Hamiltonian for isolated Coulomb systems is two. This sim-
ply means that for any second-rank operator of the form

ézizl' 6” y

its expectation value can be described by the second-order
reduced density matt& T",

()

(¥[O|W)=(04."), (8)

where V¥ is the total normalized wave function. One step
further, one instantly has

017l
pe(r)pA(r)

wherea and B are positive parameters. Aside from the ex-
plicit density-dependence in the kernel, E) is clearly of

(‘I’|©|‘1’>=<p“(r) pﬁ(r’)>, (€)

{\,} are the corresponding expansion weights that satisfjhe same form as E¢4) whena= g. Third, a more detailed
>, \,=18 The original WT, Perrot, and SM KEDF's only analysis based on Natural Variable argumehteveals a
had one term in the sum in E¢fL), and were generalized to deeper understanding about the mathematical structure of the

have more terms recentfy.

kernel in Eq.(9). Historically, the KEDF's in Eq(1) were

The specific form of Eq(4) is chosen based on the fol- designed solely on the grounds of point 1 abdvewe in-

lowing analysis. First, one can rewritgg p] andT [ p] in
double-integration forf?
Trep]=Cre(p® (1) 8(r—1")[p>&(r")), )
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tend in this paper to coherently take all three points into
consideration.

To comply with the first point, the kernel (r—r") is
chosen such that each term in the sum in @g}. TS, satis-
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fies the known exact linear respor&) for a uniform Har- 8 5
tree electron gas without exchange, T LT+ ( 1- w) Tre— w( a+pB— §) (So|tre)
[ &Te 1 4 5 8
gl 2Tl | __ “ZFm, (10 T 9ap|¢TETg)|atB3 (607 tre)
dp(r)dp(r') |, Xtind  Kr
° +0(503), (18)
1 1—%% |[1+q/\ 71 where So=p(r)/po—1. For the nearly free electron gas,
F(n)= §+ P In 1= , (17 | 60| <1.

Unlike the original KEDF's in Eq(1), it is now possible

where £ denotes the Fourier transform, is the average for a single set of«, 8} to simultaneously remove all spu-
electron densityyyiq is the Lindhard susceptibility function 0US do te_:réns from Eq'(18)§ and reduce it to the correct
in reciprocal spact® kg = (37%po) *3is the Fermi wave vec- largeq limit® (CLQL): T,y—5T+. Since the CLQL off¢

tor, and»=q/(2k) is a dimensionless momentum. In other @Pproximatesy, i,y Well for most 5 values larger than 1,

(CGB) is only good for a small area close tg=02 it is

reasonable to focus our attention on eliminating all the spu-

-1 _ _-1_ _ -1
Bw (r—r") = (q):_XLind Xw—Xte _ 5G(7) rious do terms in Eq.(18). Thus, we simply require the
“ “ 202Cep3@™ Y 9a2p22753"  solution of the following two equations:
(12
1 8 3 da+p > (19
———=——and a+B=5,
G(n)=F(n)—37*-1, (13) 9af 5 3
where ytg=—(kg/7?) is the TF LR function andy,w which is
= x1e/(37%%) is the VW LR function. To keep the exact LR 5 \/g
intact for the total KEDF in Eq(1), the expansion weights a,f==*+—, (20)
have to satisfy the normalization constraky\ ,=1.° 6 6
symmetrically displaced arourgl
Il. FUNCTIONAL WITH A DENSITY-INDEPENDENT We note that the general KEDF in E¢l4) has been
KERNEL suggested previously by Wang and Tateith
The previous discussion motivates the following more 5 4\/5_5
general trial KEDF: {a.B}= s &6 I’
TP pl=Trd p]+ Tunlpl+ T4 ], (14)  Vvia a different approach.
T¢P[p1=Crelp“(N)|W g(r=1)[pP(r")),  (15) 1 FUNCTIONALS WITH A

DOUBLE-DENSITY-DEPENDENT KERNEL

where a and B are positive parameters. By enforcing the  So far, we have only considered KEDF's without any
exact LR as done in Eq10), we can express the kernel density dependence in the kernels. We can of course intro-

W, g(r—r") in reciprocal space as duce density-dependence into the kernels, in the same spirit
as Chacn and co-worker§.Unfortunately, this comes at the
5 lenld_X\;V&_X'FFl 5G(7) expense of greatly comphcatmg the der!vat|on and mgkmg a
W, g(0)=— e poy L (16) straightforward numerical implementation computationally
2aBCrepg 9aBpg expensive, scaling quadratically with grid sfzBonetheless,

o ) ) we will introduce a way around this problem in Sec. IV, and
which is fully consistent with Eq(12) whena = B. Follow-  the scheme still scales &N InN).

ing the same procedure as given befome can arrive at Introducing twop(r)’s in the kernel of Eq(14)25 one
equations similar to Eq$24) and(25) of Ref. 6. For slowly 55

varying densities or thg—0 limit,

. . TSPpl=Trel p]1+ Tunl p]+ T5 7 p], (21)
T =Tt g T glat B=1){00ltw) &8 p]= Crep (1) W o[ £,(1.17)r = 1| 0P(E")),
(22)
4
—glatB=1)(a+p=2)(80°|tw)+O(d0°) . r,):(kg(r)+k,¥(r’))1/y -
(17) o 2 ’

and for rapidly varying densities or thee—o limit, Ke(r)=[3m?p(r)]*3, (24)
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FIG. 1. Kernels in momentum space for the uniform electron
gaspo. The KEDF isTY%* 5 for both curves. The broken line is

the density-independent kernel; the solid line is the density-

dependent kernel withy=2.7

wherekg(r) and &,(r,r") are local one-body and nonlocal
two-body Fermi wave vectors, respectively. For the KEDF in
Eq. (21) to recoverT{¢ p] at the uniform electron gas limit,

the kernel has to be normalized to zero

(Wq, gl £,(1,r"),r=r"])=0. (29

The specific choice of the two-body Fermi wave vector

&,(r,r’) is based on natural variable argumett€q. (22)
clearly resembles Eq9).

After enforcing the exact LR at the uniform electron gas
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Eq. (22), Fourier transforming the resultant expression, and
then grouping terms in various orders &. We obtain, at
thegq—0 limit,

o a0
Ts'ﬁ—’TTF+(1_ao) Tow—ao(a+B—1)(bo|tyw)— 7(0

+B—1)(a+ B=2)(80tyw) + O(50°), (27)

32ap

807 36aB—9(at B—1)(at B+1—13)’
and at thegq— < limit,

(28)

TSP =Tt (1-a.) Trea.

5
atp— §)<5‘T|tTF>

a

o0

2

5
a+,8—§

8
a+B— §><5cr2|tTF>+c9( 5a),

(29)
32
A

" 36aB—9(a+ B—53)(at+ B+5/3—I3)"

(30)

One can easily see the differences between EL8. and
(27) and between Eq$18) and(29); the density-dependence
in the kernel is responsible for the second terms in the de-
nominators in Eqs(28) and (30). Once again, we find no
single set of @, B, y} that simultaneously removes all spuri-
ous do terms in Eqs(27) and (29) and makes them reduce

to the second-order CGE and the CLQL, respectively. How-

ever, the sefa,B}={5/6+\/5/6} is particularly attractive
limit as done in Eq(10), one obtains the following universal '

second-order differential equation for every fixed valuej.of

7?W., 5(7,p0) +[y+1—6(a+B) 9w, 5(7,p0)

+36aBW,, 5(7,p0)=20G(7)pg> “TP,  (26)

wherew,, 4(7,p0) andw’, 4(7,po) are the first and the sec-
ond derivatives Oﬁvaﬁ(n,po) with respect toz, respec-
tively. Note thaty is explicitly involved in the determination
of the kernel, and iix+ 8= %, the term involvingp, on the
right-hand side of Eq(26) disappears. Also note that Eq.
(26) is fully consistent with Eq(16) if the kernel is density-
independent, which simply removes the first two terms in-

because it forces Eq29) to yield the CLQL, which is more
mportant than thej— 0 limit (the second-order CGE We

can then use the third parameteto fine-tune the behavior
around theg—0 limit so that the effect of the spuriousr

terms and the leading terms in E&7) can be well balanced.
Of course, for this given set i, 8}, enforcing the second-
order CGE can provide a value fo, but the effect of these

spurious S0 terms then cannot be simply controlled. This
will be discussed further in Sec. V.

IV. NUMERICAL IMPLEMENTATIONS
A. Hohenberg-Kohn self-consistent optimization

The Hohenberg-Kor?ﬁ (HK) total energy functional in

terms ofp(r) is written as
volving derivatives in the left-hand side of E@6). Solving

this universal second-order differential equation is straight-
forward via standard techniques, such as a power seri
solution!®1° Figure 1 compares one such density-depende
kernel in momentum space fdr,8}={2=+ \5/6} and y

&hereV,,, J, E,., andV,, are the electron-nuclear attrac-
Non (including pseudopotentiglselectron-electron Coulomb

Ed p1=Tdpl+Vad pl+ I p]l+Exd pl+Vnn, (31

repulsion, electron exchange-correlation, and nuclear-nuclear
= 2.7 with its density-independent counterpart. Note the sizCoulomb repulsion energy functionals, respectively. For a
able effect of the density-dependence on the kernel.

Following the same procedure as given befomme can
consider the limits of the new KEDF faq—0 andqg—o~.
This involves substituting the exact solution of Eg6) into

system with a fixed number of electrof one can write
down the functionall[ p]:

N[ p]=Ewlp]—uip(r)), (32)
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where u is the Lagrange multiplier. To determine the
ground-state of the systerl[ p] must be minimized with
respect t(r). However, during the minimization process, it
is absolutely necessary to maintain the positivity pgf).
This is not guaranteed in generaldfr) is used as the gen-
eralized coordinate in  conventional  optimization

algorithms® such as the steepest-descent or conjugate-
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formulated the energy minimization in terms of a damped
second-order equation of motfdrfor the generalized coor-
dinate o(r)

gradient methods. To circumvent this problem, one can work

with a new variablep(r)

p(r)=¢?(r), (33
which ensures a positive(r) during the entire minimization.
Based on a first-order differential equation with a ficti-
tious time
oIl 0
Se(r)
the steepest-descent approach is the simplest séheme

de(r)

Tdr 59

en+1(N)=en(r)—A (39

Ol

5‘Pn(r),
oL _ ol opy(r) ( SE ) .
Sen()~ Spn(1) Sen(t) 200\ 5oy T#) GO

where A is the step size andlIl/d¢,(r) is the steepest-
descent vector at thath iteration. In this work, we have

d?e(r) de(r) 610 3
a2 dr Teem 37
which yields
(N=(1+Q)py(r)—Q (r)—QAZ—H
Cn+1\l)= ®n $Pn-1 5¢’n(r) )
(39)
_ 1
S 14+AC (39

Here ¢ is a damping or friction coefficient. We have found
that this scheme is not only easy to implement, but also
offers greater stability even whet becomes much larger
than that of the simple steepest-descent method. We have
also found that minimization algorithms based on the
conjugate-gradient method actually converge faster, but re-
quire very accurate line minimizations that can be difficult to
implement. The Lagrange multiplies is determined dy-
namically by multiplying both sides of E¢38) by ¢,(r) and
integrating over all space:

<€Dn|‘Pn+1> (1+Q)<‘Pn|¢n>+9<€0n|€0n 1>+29A2<(Pn|5Etot/5Pn|‘Pn>

2<‘Pn|‘Pn>

(40)

Conventional plane-wave-basis technicfd@dwere used to set up the various potential terms in the self-consistent Thomas-

Fermi-like equatiotf"*3%°

SEwlp] _

op(r)

Note that since this scheme is purely basegr), only local

(41)

pseudopotentias®® can be used to calculate thg,, term.

B. Evaluation of the density-dependent kernel

The presence of density-dependent terms inside the kernels {@ Banakes a straightforward application of a fast Fourier
transform(FFT) impossible. However, one can use a Taylor series expafisiorfactor out the density-dependence in the
kernel. For example, the double-density-dependent kernel in real space can be writiprt@second ordgr

N . W gl E(r,r"),r—r'] W, gl E(r "), r—r'] ,
W gl E(r,r"),r—r"]=w, g(kg ,r—r')+ (1) p*e(r)+ Go(r") ,, ocr’)
2Wa,ﬁ[§y(r!r,)lr_r,] az(r)+azwa,ﬂ[gy(r!r,)!r_r,] 02(r/)
ap?(r) v 2 ap?(r’) 2

2Wa,ﬁ[§y(rvr’)1r_r’]
ap(r)dp(r’)

p, O(D)O(r" )+,

Py

(42)
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7 ' ' ' T9PLp]=Cre(p ()W p(r =1 pP(r"))
M —om Cre < = ot
ol [y e = 2 Wap@(pr(n]e T pPr)
: i - werm) ]
oo ]
.’! ‘| — CTFE o a —ig-r B ig-r
P =V & Wap(@(p(eTTIKpA e
25 ! | i
i !
S H 1
2 . Creq~  ~ =
& i = S W (D~ DD, (46)

q

whereV is the volume of the simulation cell. Now, the com-
putational cost has been reduced from scaling quadratically
i ] with grid sizé to scaling essentially linearly with the system
1 size O(NInN). The current scheme is only three times as
50 - - s ] expensive as the conventional one based on the density-
0.0 05 " 15 20 independent kernel and linear-response théotBy con-
n =9k trast, the KEDF's based on quadratic-response thdaaye
FIG. 2. Double-density-dependent kernel and its derivatives ifoVer ten times as expensive as the KEDF’s based on linear-
momentum space for the uniform electron gas The KEDF is  response theory with density-independent kerfiéls.
To6=56 with y=2.7. For bulk solids, the natural choice fpy, is obviouslyp,.
However, this scheme is only valid for the nearly free elec-
where 8(r)=p(r)—p, , andkE=(372p, ) are the devia- tron gas, where(r) does not differ too much from,. For
tion from, and Fermi wave vector magnitude of, a referencedther systems such as atoms, molecules, and surfaces, this
uniform densityp, . Itis clear that the density-dependence isscheme might suffer severely becaygeis no longer well-
absorbed into simple powers 6fr), and that all the partial defined andp(r) can have large oscillations and decays to
differentials are functions gf, , which can be evaluated via zero asymptotically. On the other hand,df is carefully

an FET chosen to treat high-density regions satisfactorily, the break-
) ) ~, down in those regions wheygr) is small and far belovp,
P W gL €,(r, 1), r—r1’] _ 7% Wa, (75 1P might not be so severe because the error made in the second-
ap(r) ) 6p, ’ order Taylor series expansion of E¢2) might be sup-
* (43) pres_sed by thg smallnessaffr) Fn these region's. In the next
section, we will show how this can be achieved even for
: W, gL ELT, 1), 1 =1"] realistic surfaces.
ap?(r) , . .
* TABLE I. Calculated lattice parametef8) for bulk aluminum,
25 ( )+ (7—7) W ( ) compared with Kohn-Sham calculation results. sc stands for simple
_ e Wa p\ % P V) s Wa,pt % P ' cubic and dia for diamond. Lattice parameters refer to cell size in
36pi cubic unit cells: fcc cell, 4 atoms, bcce cell, 2 atoms; sc cell, 4 atoms;
dia cell, 8 atoms.
(44)
Model? fcc bcc sc dia
e IPW gl ELr, 1)1 —=1]
ap(r)ap(r’) Kohn-Sham 4.03 3.23 5.33 5.84
P p P p independent
o~ 5 (20} 4.04 3.23 5.33 5.94
" !
_ MWa, p( 75 Px )+ (1+ ) 7 W, 5( 74 Px) [5+(4y2—5/6)) 4.04 3.23 5.33 5.94
36p2 ’ (gxh 4.04 3.23 5.33 5.95
(45) {%i %} 4.04 3.23 5.33 5.97
(2= J5/6} 4.03 3.23 5.33 5.97
where 7, =q/(2kg), andw,, (7, ,p.) andwy, (7, .p,)  p dependent
are the first and the second derivativeswf 5( 7, ,p,) with {8 0}1 4.04 3.22 5.37 5.92
respect tor, , respectively. Figure 2 shows one such kernelis+4,2-5/6)},,, 4.04 3.22 5.37 5.92
and its derivatives in momentum space fow,B8}={¢ {Z+11,, 4.03 3.22 5.37 5.92
+/5/6} andy=2.7. (g, 403 3.22 5.37 5.92
For maximum numerical efficiency, all derivative terms 5.+ /g, . 4.03 3.22 5.38 5.92

of the kernel are kept in momentum space so that one FFT is

saved for each of their evaluations. For example, during thé-or the p independent{a,8} is shown; for thep dependent,
evaluation of Eq(15), the first FFT can be avoided: {a,B}, is shown.
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TABLE Il. Calculated energy per atoieV) for bulk aluminum, compared with Kohn-Sham calculation
results. The last two columns are the vacancy formatidhenergies, the first column is the energy for the
fcc structure, while other columns are energy deviations from the fcc structure. sc stands for simple cubic and
dia for diamond.

Model? fec hep® bec sc dia vif via2¢
Kohn-Sham —58.336 0.060 0.068 0.250 0.599 0.646 0.626
p independent

{§¢0} —58.331 0.050 0.060 0.227 0.673 1.104 1.371
{2+(4\2-5/6)} —58.331 0.050 0.061 0.226 0.669 1.101 1.369
{%i%} —58.331 0.050 0.061 0.226 0.664 1.100 1.363
(2«1 —58.333 0.050 0.061 0.221 0.636 1.079 1.346
{%i \/5/6} —58.334 0.050 0.061 0.219 0.626 1.077 1.350
p dependent

{%io}l.g —58.328 0.058 0.065 0.225 0.592 0.693 0.610
{2+(42-5/6)},0 —58.328 0.058 0.067 0.224 0.595 0.693 0.620
{%i%}z.l —58.328 0.058 0.065 0.224 0.596 0.689 0.624
{(2+h,, —58.331 0.058 0.066 0.219 0.585 0.658 0.614
{2+ 5/6},, —58.331 0.058 0.066 0.217 0.584 0.650 0.628

éFor thep independent{a, B} is shown; for thep dependent{a, s}, is shown.

®The hcp calculations were performed using the fcc nearest neighbor distance for each case. Four atoms were
set up in an orthogonal system in the ragid:c=1:3:1/8/3.

“vf4 is for four-site simulation celi3 atoms+ 1 vacancy; vf32 is for 32-site simulation cell31 atoms+ 1

vacancy. The experimental vf number is 0.66 €Ref. 32.

V. RESULTS AND DISCUSSION whereE(N,n,V) is the energy of the system dfatoms and
n vacancies occupyingN+n) sites in a volumeV. As the
change in the vf energy due to ionic relaxation is miniftal,

evaluation ofT [ p]) was strongly affected by the fineness V& k_ept the Ia_ttlce fixed. Since our plane-wave cutoff _and
of the mesh chosen for a given simulation cell, the planek-Point sampling are converged further than previous
wave cutoff (400 eV} used for the Goodwin-Needs-Heine reports;- we will use our KS vf numbers as .the b(_enchmark.
local pseudopotential for alumindfwas not sufficient, and ~ Tables | and Il demonstrate that the inclusion of the
the Kohn-Sham(KS) calculationé® (used for comparison density-dependence in the kernel improves the performance
with the HK orbital-free calculationshad not been fully con- of KEDF's. We do not include other KEDF's whose+ 8
verged with respect to the-point sampling’. To remedy the  # 2, because of their poor performance. For KEDF's with
first problem, we now evaluafp(r) in momentum spac€.  density-dependent kernels, only those with the optimal
This scheme is very stablep to 0.001 eV against changes Vvalues(up to the second decimal pojrdre shown. As dis-

of the mesh beyond a certain minimum mesh size. We alsoussed in Sec. I, only§’6f 5/ satisfies tha— oo limit; all
increased the plane-wave cutoff to 600 eV, and convergedthers shown in Tables | and Il display the delicate interplay
the KS calculations with respect to thepoint sampling  between the effects of the fulfillment of thep—~0 and g

The KS calculations were performed using the plane-wave-0 limits and the elimination of those spuriods terms.
DFT codecAsTeP (Ref. 23 with the finestk-point sampling  The specific choices of othér, 3} are mainly for compari-
allowed by the code. The exchange-correlation effects wergon purposes, except for the one suggested by Wang and
treated at the local-density approximation leffeThe cor- Teter? {a,lg}:{gi(ﬂr\/z_ 5)/6). Without the density-

rections to our previous pagewill be published as an dependence in the kernel, the KEDF's do not even approach

29
errzturk;w.f he h i included in th . __the KS vf energies, since the order-of-magnitude change in
s before, the hep structure Is included in the comparison (r) in the vacancy region is most certainly not nearly-free-

since its energy is only slightly above the more stable fCCyoron.jike. However, after the inclusion of the density-

structure and slightly below the less stable bcc SIr“Cturedependence in the kernel, the KEDF's show significant im-
making it an excellent test case for our trial KEDF's. The '

. all ll-ch torized ¢ i provement, especially for the vf energies, if the free
expe“”ge” ally well-characterized vacancy lorma '(”f)_ arametery is carefully tuned. Note also the tiny gaps be-
energy® was also computed to further assess the quality o

. ) i ween the fcc, hep, and bee structures are faithfully repro-
the ”'f”" KEDF’s. The vf energy was caIcuIated. using both 3duced, and even the absolute total energies are very close to
four-site cell(3 atoms+ 1 vacancy and a 32-site cel(31

atoms+ 1 vacancy via the expressioh the KS results. At a finer scal@>/s* "5/ with y=2.7 stands
out clearly as the best KEDF; any deviation frdm, 3}
={2+ /5/6}, however small, degrades the performance.
The next logical step is testing our new KEDF’s on sys-

After the publication of our previous pap&mve found
that the real-space evaluation &fp(r) (needed for the

N-1 | N-1
N— 1,1,—v) —— E(NOV),  (47)

Evf:E N
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TABLE lll. Calculated surface energy (mJnfor aluminum 0.04 T . T

low-index fcc surfaces, compared with Kohn-Sham calculation re- - ;{3':;;:::;‘:
sults. The vacuum has the same thickness as the slab. Tk&lf@c- —-—- pindependent 1
slab has seven layers of atoms, and both of the(f6€) and the
fcc-(111) slabs have five layers of atoms, respectively. 0.03 - |

Model? (110 (100 (111)

Kohn-Sham 986 889 820
p independent o002t 1
{§¢0} 1910 1921 1775
(5+(4\2-5/6)} 1907 1919 1773
(2=h 1902 1915 1769

6—6 0.01 - .
{% + %} 1877 1894 1751
(2= 5/6} 1868 1887 1744
p dependent ;

5 - L . .
{6+0}10 1203 1183 1001 60 -8.0 0.0 8.0 16.0
{g +(4 \/E* 5/6)}2.0 1205 1186 1008 Z (arb. units)

5 1
{6+ 5t21 1196 1178 1000 FIG. 4. Density cross section for aluminum f¢tt0 surface.
{341, 1074 1060 876 The KEDF isTY®* ¥ for hoth nonsolid curves. The long-dashed
{§=\5/6},7 1053 1043 857 line is for the density-dependent kernel wigh 2.7; the dot-dashed

line is for the density-independent kerng), = p5U.

%or the p independent{«,B} is shown; for thep dependent,
{a,B}, is shown. a highly undesirable feature. However, Figs. 3-5 clearly
show that p(r) obtained from the solution of the self-
tems with even more drastic density changes, e.g., realisticonsistent Thomas-Fermi-like equatith’>*° Eq. (41),
surfaces. Those KEDF's without the density-dependence iglosely matches the K5(r) for every case of the aluminum
the kernel can be readily applied to such systems without anpw-index fcc surface$100), (110), and(111). This suggests
numerical instability. However, Table Il reveals that for the that the kinetic-energy potential8T4 p1/ 5p(r), of the sim-
same group of KEDF’s with density-independent kernels, thepler KEDF’'s based on a density-independent kernel are of
surface energies are off by a factor of 2 compared with K&high quality. This further supports the utility of such KEDF’s
predictions and thé€110—(100) ordering is reversed. A more in the recently proposed embedding formaftrthat uses
troublesome finding is that the surface energy strongly desT4 p]/dp(r).
pends on the size of the vacuum, which directly dictates the Unfortunately, with the vacuum-size-dependerit” as
value for the average surface denshgﬁ'”. This is certainly  p, , a straightforward application of those KEDF’s with the

0.04 T . T 0.04 T . T
—— Kohn-Sham Kohn-Sham
——— p dependent
—~~ pdependent —-—- pindependent 1
—-—- pindependent 0 P
0.03 | ; 4 0.03 | 4
= =
o002 4 o002 4
0.01 | 1 0.01 | 1
0.00 L . . 0.00 L . .
-15.0 -7.5 0.0 7.5 15.0 -18.0 -9.0 0.0 9.0 18.0
Z (arb. units) Z (arb. units)
FIG. 3. Density cross section for aluminum f¢B0) surface. FIG. 5. Density cross section for aluminum fttt1) surface.

The KEDF isTY%*"%® for both nonsolid curves. The long-dashed The KEDF isT2/®**%/¢ for both nonsolid curves. The long-dashed

line is for the density-dependent kernel wigk=2.7; the dot-dashed line is for the density-dependent kernel wig 2.7; the dot-dashed

line is for the density-independent kerng), = pg". line is for the density-independent kerng), = pg"¥.
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TABLE IV. Contributions of different orders in the Taylor se- and co-workers have developgdAn O(NIn N) method
ries expansion of the kernel, Eq42), to the surface energy \ithout p, in the construction is under development at this
(md/n?) for aluminum low-index fcc surfaces. The KEDF is time; the details of which will be reported lafdy.

T B8 with y=2.7. '

Surface Oth 1st 2nd Total VI. CONCLUSION

(110 561 484 8 1053 In conclusion, we have devised a family of kinetic-energy

(100) 671 386 —14 1043 density functionals which further generalize and improve

(112 395 446 16 857 upon the Wang-Teter, Perrot, Smargiassi-Madden, and

Wang-Govind-Carter kinetic-energy density functionis.
These functionals are still based on linear-response theory.
density-dependent kernels refuses to converge because thbe simple, effective implementation scheme for the nearly
second-order Taylor series expansion in Ef) makes too free electron gas deliver®(NIn N) scaling even for the
big an error in regions where(r) is large. To our surprise, double-density-dependent kernel. Numerical tests show that,
we found that ifp, is chosen to be the bulk-phase averagecompared with those kinetic-energy density functionals
density p"%, the KEDF’s with the density-dependent ker- based on quadratic-response thebfyour functionals can
nels not only converge properly, but also bring the surfaceyield similar results for bulk solids, but with a lower compu-
energies much closer to the KS resulfsble I1), including  tational cost and simpler implementation. More interestingly,
reproducing the correct ordering of the surface stabilitiesall KEDF’s regardless of their kernels’ density dependence
Figures 3—5 also depict some non-trivial improvements inare seen to have very high-qualif 4 p]/8p(r), even for

the density profiles. This surprising success stems from th&rge density variations as at realistic surfaces. This lends
smallness of the fast-decaying density outside the surfaceredence to their use in the recently developed embedding
slab, which actually suppresses the error made in the finitgethod that offers a systematic means of improving upon the
Taylor series expansion in EG2). Kohn-Sham descriptidi?® in a local regior?? In addition,

It is also intriguing to see relative contributions of differ- we have shown how the surface energy can be greatly im-
ent orders in the Taylor series expansion of the kernel, Egproved by a simple, yet reasonable choice of average density.
(42), to the surface energy. Table IV shows that zeroth andrinally, utilizing our functionals inO(N In N) methods of
first orders contribute most while second order only account§rst-principles molecular dynami¢es” has a promising fu-
for less than 2% of the total surface energy. This is a cleature.
sign of convergence of the second-order Taylor series expan-
sion, even for large density variations.

Of course, there is still room for further improvement. It
remains to be seen whether the free parameter system- We thank Dr. Stuart C. Watson for his help in calibrating
independent. More applications and tests are surely necesur code and for his constructive comments on this manu-
sary. ldeally, one would like to remove, from the con-  script. We thank Professor Paul A. Madden for helpful dis-
struction of the KEDF completely, but maintaining the cussions. Financial support for this project was provided by
O(NIn N) scaling may then be impossible. More likely, one the National Science Foundation, the Army Research Office,
would end up with a method wittd(N?) scaling, as Chaeo  and the Air Force Office of Scientific Research.
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