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Orbital-free kinetic-energy density functionals with a density-dependent kernel
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We report linear-response kinetic-energy density functionals, which show significant improvement over the
Wang-Teter, Perrot, Smargiassi-Madden, Wang-Govind-Carter functionals, yet still maintainO(N ln N) scal-
ing. Numerical tests show that these functionals, which contain a double-density-dependent kernel, can repro-
duce the Kohn-Sham results almost exactly for several aluminum bulk phases. We further show that with a
sensible choice of the uniform background density, energies of formation for the low-index aluminum surfaces,
where the density variations are very large, can be reproduced to within reasonable accuracy.
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I. BACKGROUND

Among all linear-scaling O(N) density-functional
methods,1–7 the orbital-free Hohenberg-Kohn scheme2–8 is
potentially the most attractive. Without any orbital depe
dence, the complication and cost associated with orbital
nipulation, including orbital localization and orbital o
thonormalization, are avoided. For metals, the orbital-f
scheme is even more rewarding, because the need
Brillouin-zone~k-point! sampling9 is completely eliminated.
However, all these positive features come at a price: ac
rate, transferable orbital-free kinetic-energy density functi
als do not, as yet, exist in ourO(N) arsenal. We set our tas
toward surmounting this problem in this paper.

The Wang-Teter~WT!, Perrot, Smargiassi-Madden~SM!,
Wang-Govind-Carter~WGC! kinetic-energy density func
tionals ~KEDF’s! can be conveniently written as3–7

Ts
$a%@r#5(

a
Ts

a@r#5TTF@r#1TvW@r#1(
a

laTX
a@r#,

~1!

TTF@r#5^tTF~r !&5CTF^r
5/3~r !&, ~2!

TvW@r#5^tvW~r !&5
1

8 K u¹r~r !u2

r~r ! L , ~3!

TX
a@r#5CTF^r

a~r !uwa~r2r 8!ura~r 8!&. ~4!

Here, TTF@r# is the Thomas-Fermi~TF! functional,10 CTF
5 3

10 (3p2)2/3, and TvW@r# is the von Weizsa¨cker ~vW!
functional.11 $a% are positive parameters which defin
X5Wang-Teter-Perrot3,4 for a5 5

6 , X5Perrot4 for a51, X
5 SM5,7 for a5 1

2 , and X5WGC6 for other choices ofa.
$la% are the corresponding expansion weights that sat
(ala51.6 The original WT, Perrot, and SM KEDF’s onl
had one term in the sum in Eq.~1!, and were generalized t
have more terms recently.6

The specific form of Eq.~4! is chosen based on the fo
lowing analysis. First, one can rewriteTTF@r# andTvW@r# in
double-integration form12

TTF@r#5CTF^r
5/6~r !ud~r2r 8!ur5/6~r 8!&, ~5!
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TvW@r#52
1

4
^r1/2~r !ud~r2r 8!¹21¹2d~r2r 8!ur1/2~r 8!&.

~6!

It is well known thatTTF@r# is only exact at the free-electro
gas limit andTvW@r# is only exact for those systems that ca
be described by a single spatial orbital, i.e., the one-
two-electron ground-state systems.13 Any realistic system
that falls between these two extremes will have to be brid
somehow by a third term, which can also smoothly reco
the two extreme cases if appropriate conditions are met.
~4! is then a natural choice for this functional because
possesses the same form as Eqs.~5! and~6!. Second, there is
no reason to go beyond the double-integration form beca
the highest rank of the operators in the quantum mechan
Hamiltonian for isolated Coulomb systems is two. This si
ply means that for any second-rank operator of the form

Ô5(
i , j

ôi j , ~7!

its expectation value can be described by the second-o
reduced density matrix14 G2

^CuÔuC&5^ô12G2&, ~8!

where C is the total normalized wave function. One ste
further, one instantly has

^CuÔuC&5K ra~r !U ô12G2

ra~r !rb~r 8!
Urb~r 8!L , ~9!

wherea andb are positive parameters. Aside from the e
plicit density-dependence in the kernel, Eq.~9! is clearly of
the same form as Eq.~4! whena5b. Third, a more detailed
analysis based on Natural Variable arguments15 reveals a
deeper understanding about the mathematical structure o
kernel in Eq.~9!. Historically, the KEDF’s in Eq.~1! were
designed solely on the grounds of point 1 above.3–8 We in-
tend in this paper to coherently take all three points in
consideration.

To comply with the first point, the kernelwa(r2r 8) is
chosen such that each term in the sum in Eq.~1!, Ts

a , satis-
16 350 ©1999 The American Physical Society
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fies the known exact linear response~LR! for a uniform Har-
tree electron gas without exchange,

F̂S d2Ts
a@r#

dr~r !dr~r 8!
U

r0

D 52
1

xLind
5

p2

kF
F~h!, ~10!

F~h!5S 1

2
1

12h2

4h
lnU11h

12hU D
21

, ~11!

where F̂ denotes the Fourier transform,r0 is the average
electron density,xLind is the Lindhard susceptibility function
in reciprocal space,16 kF5(3p2r0)1/3 is the Fermi wave vec-
tor, andh5q/(2kF) is a dimensionless momentum. In oth
words,wa(r2r 8) can be expressed in reciprocal space as4–7

F̂wa~r2r 8!5w̃a~q!52
xLind

21 2xvW
212xTF

21

2a2CTFr0
2(a21)

5
5G~h!

9a2r0
2a25/3

,

~12!

G~h!5F~h!23h221, ~13!

where xTF52(kF /p2) is the TF LR function andxvW
5xTF /(3h2) is the vW LR function. To keep the exact LR
intact for the total KEDF in Eq.~1!, the expansion weights
have to satisfy the normalization constraint(ala51.6

II. FUNCTIONAL WITH A DENSITY-INDEPENDENT
KERNEL

The previous discussion motivates the following mo
general trial KEDF:

Ts
a,b@r#5TTF@r#1TvW@r#1TY

a,b@r#, ~14!

TY
a,b@r#5CTF^r

a~r !uwa,b~r2r 8!urb~r 8!&, ~15!

where a and b are positive parameters. By enforcing th
exact LR as done in Eq.~10!, we can express the kerne
wa,b(r2r 8) in reciprocal space as

w̃a,b~q!52
xLind

21 2xvW
212xTF

21

2abCTFr0
a1b22

5
5G~h!

9abr0
a1b25/3

, ~16!

which is fully consistent with Eq.~12! whena5b. Follow-
ing the same procedure as given before,6 one can arrive at
equations similar to Eqs.~24! and~25! of Ref. 6. For slowly
varying densities or theq→0 limit,

Ts
a,b→TTF1

1

9
TvW2

8

9
~a1b21!^dsutvW&

2
4

9
~a1b21!~a1b22!^ds2utvW&1O~ds3!

~17!

and for rapidly varying densities or theq→` limit,
Ts
a,b→TvW1S 12

8

9ab DTTF2
8

9ab S a1b2
5

3D ^dsutTF&

2
4

9ab S a1b2
5

3D S a1b2
8

3D ^ds2utTF&

1O~ds3!, ~18!

where ds5r(r )/r021. For the nearly free electron ga
udsu!1.

Unlike the original KEDF’s in Eq.~1!, it is now possible
for a single set of$a,b% to simultaneously remove all spu
rious ds terms from Eq.~18!, and reduce it to the correc
large-q limit 6 ~CLQL!: TvW2 3

5 TTF . Since the CLQL ofTs
a

approximatesxLind well for most h values larger than 1
while the second-order conventional gradient expansio17

~CGE! is only good for a small area close toh50,6 it is
reasonable to focus our attention on eliminating all the s
rious ds terms in Eq.~18!. Thus, we simply require the
solution of the following two equations:

12
8

9ab
52

3

5
and a1b5

5

3
, ~19!

which is

a,b5
5

6
6

A5

6
, ~20!

symmetrically displaced around56 .
We note that the general KEDF in Eq.~14! has been

suggested previously by Wang and Teter3 with

$a,b%5H 5

6
6

4A225

6 J ,

via a different approach.

III. FUNCTIONALS WITH A
DOUBLE-DENSITY-DEPENDENT KERNEL

So far, we have only considered KEDF’s without an
density dependence in the kernels. We can of course in
duce density-dependence into the kernels, in the same s
as Chaco´n and co-workers.8 Unfortunately, this comes at th
expense of greatly complicating the derivation and makin
straightforward numerical implementation computationa
expensive, scaling quadratically with grid size.8 Nonetheless,
we will introduce a way around this problem in Sec. IV, a
the scheme still scales asO(N ln N).

Introducing twor(r )’s in the kernel of Eq.~14!,8,15 one
has

Ts
a,b@r#5TTF@r#1TvW@r#1TZ

a,b@r#, ~21!

TZ
a,b@r#5CTF^r

a~r !uwa,b@jg~r ,r 8!,r2r 8#urb~r 8!&,
~22!

jg~r ,r 8!5S kF
g~r !1kF

g~r 8!

2 D 1/g

, ~23!

kF~r !5@3p2r~r !#1/3, ~24!
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16 352 PRB 60WANG, GOVIND, AND CARTER
wherekF(r ) and jg(r ,r 8) are local one-body and nonloca
two-body Fermi wave vectors, respectively. For the KEDF
Eq. ~21! to recoverTTF@r# at the uniform electron gas limit
the kernel has to be normalized to zero

^wa,b@jg~r ,r 8!,r2r 8#&50. ~25!

The specific choice of the two-body Fermi wave vec
jg(r ,r 8) is based on natural variable arguments;15 Eq. ~22!
clearly resembles Eq.~9!.

After enforcing the exact LR at the uniform electron g
limit as done in Eq.~10!, one obtains the following universa
second-order differential equation for every fixed value ofq:

h2w̃a,b9 ~h,r0!1@g1126~a1b!#hw̃a,b8 ~h,r0!

136abw̃a,b~h,r0!520G~h!r0
5/32(a1b) , ~26!

wherew̃a,b8 (h,r0) andw̃a,b9 (h,r0) are the first and the sec

ond derivatives ofw̃a,b(h,r0) with respect toh, respec-
tively. Note thatg is explicitly involved in the determination
of the kernel, and ifa1b5 5

3 , the term involvingr0 on the
right-hand side of Eq.~26! disappears. Also note that Eq
~26! is fully consistent with Eq.~16! if the kernel is density-
independent, which simply removes the first two terms
volving derivatives in the left-hand side of Eq.~26!. Solving
this universal second-order differential equation is straig
forward via standard techniques, such as a power se
solution.18,19 Figure 1 compares one such density-depend

kernel in momentum space for$a,b%5$ 5
6 6A5/6% and g

52.7 with its density-independent counterpart. Note the
able effect of the density-dependence on the kernel.

Following the same procedure as given before,6 one can
consider the limits of the new KEDF forq→0 andq→`.
This involves substituting the exact solution of Eq.~26! into

FIG. 1. Kernels in momentum space for the uniform electr
gasr0. The KEDF isTs

5/66A5/6 for both curves. The broken line i
the density-independent kernel; the solid line is the dens
dependent kernel withg52.7
r

-

t-
es
nt

-

Eq. ~22!, Fourier transforming the resultant expression, a
then grouping terms in various orders ofds. We obtain, at
the q→0 limit,

Ts
a,b→TTF1~12a0! TvW2a0~a1b21!^dsutvW&2

a0

2
~a

1b21!~a1b22!^ds2utvW&1O~ds3!, ~27!

a05
32ab

36ab29~a1b21!~a1b112g/3!
, ~28!

and at theq→` limit,

Ts
a,b→TvW1~12a`!TTF2a`S a1b2

5

3D ^dsutTF&

2
a`

2 S a1b2
5

3D S a1b2
8

3D ^ds2utTF&1O~ds3!,

~29!

a`5
32

36ab29~a1b25/3!~a1b15/32g/3!
. ~30!

One can easily see the differences between Eqs.~17! and
~27! and between Eqs.~18! and~29!; the density-dependenc
in the kernel is responsible for the second terms in the
nominators in Eqs.~28! and ~30!. Once again, we find no
single set of$a,b,g% that simultaneously removes all spur
ousds terms in Eqs.~27! and ~29! and makes them reduc
to the second-order CGE and the CLQL, respectively. Ho
ever, the set$a,b%5$5/66A5/6% is particularly attractive
because it forces Eq.~29! to yield the CLQL, which is more
important than theq→0 limit ~the second-order CGE!.6 We
can then use the third parameterg to fine-tune the behavio
around theq→0 limit so that the effect of the spuriousds
terms and the leading terms in Eq.~27! can be well balanced
Of course, for this given set of$a,b%, enforcing the second
order CGE can provide a value forg, but the effect of these
spuriousds terms then cannot be simply controlled. Th
will be discussed further in Sec. V.

IV. NUMERICAL IMPLEMENTATIONS

A. Hohenberg-Kohn self-consistent optimization

The Hohenberg-Kohn20 ~HK! total energy functional in
terms ofr(r ) is written as

Etot@r#5Ts@r#1Vne@r#1J@r#1Exc@r#1Vnn , ~31!

whereVne , J, Exc , andVnn are the electron-nuclear attrac
tion ~including pseudopotentials!, electron-electron Coulomb
repulsion, electron exchange-correlation, and nuclear-nuc
Coulomb repulsion energy functionals, respectively. Fo
system with a fixed number of electronsN, one can write
down the functionalP@r#:

P@r#5Etot@r#2m^r~r !&, ~32!
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where m is the Lagrange multiplier. To determine th
ground-state of the system,P@r# must be minimized with
respect tor(r ). However, during the minimization process,
is absolutely necessary to maintain the positivity ofr(r ).
This is not guaranteed in general ifr(r ) is used as the gen
eralized coordinate in conventional optimizatio
algorithms19 such as the steepest-descent or conjug
gradient methods. To circumvent this problem, one can w
with a new variablew(r )

r~r !5w2~r !, ~33!

which ensures a positiver(r ) during the entire minimization
Based on a first-order differential equation with a fic

tious timet

dw~r !

dt
1

dP

dw~r !
50, ~34!

the steepest-descent approach is the simplest scheme2

wn11~r !5wn~r !2D
dP

dwn~r !
, ~35!

dP

dwn~r !
5

dP

drn~r !

drn~r !

dwn~r !
52wn~r !S dEtot

drn~r !
2m D , ~36!

where D is the step size anddP/dwn(r ) is the steepest
descent vector at thenth iteration. In this work, we have
e-
k

formulated the energy minimization in terms of a damp
second-order equation of motion21 for the generalized coor
dinatew(r )

d2w~r !

dt2
1z

dw~r !

dt
1

dP

dw~r !
50, ~37!

which yields

wn11~r !5~11V!wn~r !2Vwn21~r !2VD2
dP

dwn~r !
,

~38!

V5
1

11zD
. ~39!

Here z is a damping or friction coefficient. We have foun
that this scheme is not only easy to implement, but a
offers greater stability even whenD becomes much large
than that of the simple steepest-descent method. We h
also found that minimization algorithms based on t
conjugate-gradient method actually converge faster, but
quire very accurate line minimizations that can be difficult
implement. The Lagrange multiplierm is determined dy-
namically by multiplying both sides of Eq.~38! by wn(r ) and
integrating over all space:
mas-

ier
he
m5
^wnuwn11&2~11V!^wnuwn&1V^wnuwn21&12VD2^wnudEtot /drnuwn&

2^wnuwn&
. ~40!

Conventional plane-wave-basis techniques22,23 were used to set up the various potential terms in the self-consistent Tho
Fermi-like equation10,13,20

dEtot@r#

dr~r !
5m. ~41!

Note that since this scheme is purely based onr(r ), only local pseudopotentials24,25 can be used to calculate theVne term.

B. Evaluation of the density-dependent kernel

The presence of density-dependent terms inside the kernels in Eq.~21! makes a straightforward application of a fast Four
transform~FFT! impossible. However, one can use a Taylor series expansion18 to factor out the density-dependence in t
kernel. For example, the double-density-dependent kernel in real space can be written as~up to second order!,

wa,b@jg~r ,r 8!,r2r 8#5wa,b~kF* ,r2r 8!1
]wa,b@jg~r ,r 8!,r2r 8#

]r~r !
U

r
*

u~r !1
]wa,b@jg~r ,r 8!,r2r 8#

]r~r 8!
U

r
*

u~r 8!

1
]2wa,b@jg~r ,r 8!,r2r 8#

]r2~r !
r
*

u2~r !

2
1

]2wa,b@jg~r ,r 8!,r2r 8#

]r2~r 8!
U

r
*

u2~r 8!

2

1
]2wa,b@jg~r ,r 8!,r2r 8#

]r~r !]r~r 8!
r
*
u~r !u~r 8!1•••, ~42!
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whereu(r )5r(r )2r* , andkF* 5(3p2r* )1/3 are the devia-
tion from, and Fermi wave vector magnitude of, a referen
uniform densityr* . It is clear that the density-dependence
absorbed into simple powers ofu(r ), and that all the partia
differentials are functions ofr* , which can be evaluated vi
an FFT

F̂S ]wa,b@jg~r ,r 8!,r2r 8#
]r~r !

U
r
*
D 52

h* w̃a,b8 ~h* ,r* !

6r*
,

~43!

F̂S ]2wa,b@jg~r ,r 8!,r2r 8#

]r2~r !
U

r
*

D
5

h
*
2 w̃a,b9 ~h* ,r* !1~72g!h* w̃a,b8 ~h* ,r* !

36r
*
2

,

~44!

F̂S ]2wa,b@jg~r ,r 8!,r2r 8#

]r~r !]r~r 8!
U

r
*

D
5

h
*
2 w̃a,b9 ~h* ,r* !1~11g!h* w̃a,b8 ~h* ,r* !

36r
*
2

,

~45!

whereh* 5q/(2kF* ), and w̃a,b8 (h* ,r* ) and w̃a,b9 (h* ,r* )

are the first and the second derivatives ofw̃a,b(h* ,r* ) with
respect toh* , respectively. Figure 2 shows one such ker

and its derivatives in momentum space for$a,b%5$ 5
6

6A5/6% andg52.7.
For maximum numerical efficiency, all derivative term

of the kernel are kept in momentum space so that one FF
saved for each of their evaluations. For example, during
evaluation of Eq.~15!, the first FFT can be avoided:

FIG. 2. Double-density-dependent kernel and its derivatives
momentum space for the uniform electron gasr0. The KEDF is
Ts

5/66A5/6 with g52.7.
e

l

is
e

TY
a,b@r#5CTF^r

a~r !uwa,b~r2r 8!urb~r 8!&

5
CTF

V (
q

w̃a,b~q!^ra~r !ue2 iq•(r2r8)urb~r 8!&

5
CTF

V (
q

w̃a,b~q!^ra~r !e2 iq•r&^rb~r !eiq•r&

5
CTF

V (
q

w̃a,b~q!r̃a~2q!r̃b~q!, ~46!

whereV is the volume of the simulation cell. Now, the com
putational cost has been reduced from scaling quadratic
with grid size8 to scaling essentially linearly with the syste
size O(N ln N). The current scheme is only three times
expensive as the conventional one based on the den
independent kernel and linear-response theory.3–6 By con-
trast, the KEDF’s based on quadratic-response theory3,7 are
over ten times as expensive as the KEDF’s based on lin
response theory with density-independent kernels.3–6

For bulk solids, the natural choice forr* is obviouslyr0.
However, this scheme is only valid for the nearly free ele
tron gas, wherer(r ) does not differ too much fromr0. For
other systems such as atoms, molecules, and surfaces
scheme might suffer severely becauser0 is no longer well-
defined andr(r ) can have large oscillations and decays
zero asymptotically. On the other hand, ifr* is carefully
chosen to treat high-density regions satisfactorily, the bre
down in those regions wherer(r ) is small and far belowr*
might not be so severe because the error made in the sec
order Taylor series expansion of Eq.~42! might be sup-
pressed by the smallness ofr(r ) in these regions. In the nex
section, we will show how this can be achieved even
realistic surfaces.

n

TABLE I. Calculated lattice parameters~Å! for bulk aluminum,
compared with Kohn-Sham calculation results. sc stands for sim
cubic and dia for diamond. Lattice parameters refer to cell size
cubic unit cells: fcc cell, 4 atoms, bcc cell, 2 atoms; sc cell, 4 ato
dia cell, 8 atoms.

Model a fcc bcc sc dia

Kohn-Sham 4.03 3.23 5.33 5.84
r independent

$ 5
6 60% 4.04 3.23 5.33 5.94

$ 5
6 6(4A225/6)% 4.04 3.23 5.33 5.94

$ 5
6 6

1
6 % 4.04 3.23 5.33 5.95

$ 5
6 6

1
3 % 4.04 3.23 5.33 5.97

$ 5
6 6A5/6% 4.03 3.23 5.33 5.97

r dependent

$ 5
6 60%1.9

4.04 3.22 5.37 5.92

$5
66~4A225/6!%2.0

4.04 3.22 5.37 5.92

$ 5
6 6

1
6 %2.1

4.03 3.22 5.37 5.92

$ 5
6 6

1
3 %2.5

4.03 3.22 5.37 5.92

$ 5
6 6A5/6%2.7

4.03 3.22 5.38 5.92

aFor the r independent,$a,b% is shown; for ther dependent,
$a,b%g is shown.
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TABLE II. Calculated energy per atom~eV! for bulk aluminum, compared with Kohn-Sham calculatio
results. The last two columns are the vacancy formation~vf! energies, the first column is the energy for th
fcc structure, while other columns are energy deviations from the fcc structure. sc stands for simple cu
dia for diamond.

Model a fcc hcpb bcc sc dia vf4c vf32 c

Kohn-Sham 258.336 0.060 0.068 0.250 0.599 0.646 0.626
r independent

$ 5
6 60% 258.331 0.050 0.060 0.227 0.673 1.104 1.371

$ 5
6 6(4A225/6)% 258.331 0.050 0.061 0.226 0.669 1.101 1.369

$ 5
6 6

1
6 % 258.331 0.050 0.061 0.226 0.664 1.100 1.363

$ 5
6 6

1
3 % 258.333 0.050 0.061 0.221 0.636 1.079 1.346

$ 5
6 6A5/6% 258.334 0.050 0.061 0.219 0.626 1.077 1.350

r dependent

$ 5
6 60%1.9

258.328 0.058 0.065 0.225 0.592 0.693 0.610

$ 5
6 6(4A225/6)%2.0

258.328 0.058 0.067 0.224 0.595 0.693 0.620

$ 5
6 6

1
6 %2.1

258.328 0.058 0.065 0.224 0.596 0.689 0.624

$ 5
6 6

1
3 %2.5

258.331 0.058 0.066 0.219 0.585 0.658 0.614

$ 5
6 6A5/6%2.7

258.331 0.058 0.066 0.217 0.584 0.650 0.628

aFor ther independent,$a,b% is shown; for ther dependent,$a,b%g is shown.
bThe hcp calculations were performed using the fcc nearest neighbor distance for each case. Four ato
set up in an orthogonal system in the ratioa:b:c51:A3:A8/3.

cvf4 is for four-site simulation cell~3 atoms1 1 vacancy!; vf32 is for 32-site simulation cell~31 atoms1 1
vacancy!. The experimental vf number is 0.66 eV~Ref. 32!.
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V. RESULTS AND DISCUSSION

After the publication of our previous paper,6 we found
that the real-space evaluation of¹r(r ) ~needed for the
evaluation ofTvW@r#) was strongly affected by the finenes
of the mesh chosen for a given simulation cell, the pla
wave cutoff ~400 eV! used for the Goodwin-Needs-Hein
local pseudopotential for aluminum25 was not sufficient, and
the Kohn-Sham~KS! calculations26 ~used for comparison
with the HK orbital-free calculations! had not been fully con-
verged with respect to thek-point sampling.9 To remedy the
first problem, we now evaluate¹r(r ) in momentum space.27

This scheme is very stable~up to 0.001 eV! against changes
of the mesh beyond a certain minimum mesh size. We a
increased the plane-wave cutoff to 600 eV, and conver
the KS calculations with respect to thek-point sampling.9

The KS calculations were performed using the plane-wa
DFT codeCASTEP~Ref. 23! with the finestk-point sampling
allowed by the code. The exchange-correlation effects w
treated at the local-density approximation level.28 The cor-
rections to our previous paper6 will be published as an
erratum.29

As before, the hcp structure is included in the comparis
since its energy is only slightly above the more stable
structure and slightly below the less stable bcc structu
making it an excellent test case for our trial KEDF’s. Th
experimentally well-characterized vacancy formation~vf!
energy30 was also computed to further assess the quality
the trial KEDF’s. The vf energy was calculated using both
four-site cell~3 atoms1 1 vacancy! and a 32-site cell~31
atoms1 1 vacancy! via the expression31

Evf5ES N21,1,
N21

N
VD2

N21

N
E~N,0,V!, ~47!
-

so
ed

e

re

n,
c
e,

of
a

whereE(N,n,V) is the energy of the system ofN atoms and
n vacancies occupying (N1n) sites in a volumeV. As the
change in the vf energy due to ionic relaxation is minima31

we kept the lattice fixed. Since our plane-wave cutoff a
k-point sampling are converged further than previo
reports,31 we will use our KS vf numbers as the benchma

Tables I and II demonstrate that the inclusion of t
density-dependence in the kernel improves the performa
of KEDF’s. We do not include other KEDF’s whosea1b
Þ 5

3 , because of their poor performance. For KEDF’s w
density-dependent kernels, only those with the optimag
values~up to the second decimal point! are shown. As dis-
cussed in Sec. III, onlyTs

5/66A5/6 satisfies theq→` limit; all
others shown in Tables I and II display the delicate interp
between the effects of the fulfillment of theq→` and q
→0 limits and the elimination of those spuriousds terms.
The specific choices of other$a,b% are mainly for compari-
son purposes, except for the one suggested by Wang

Teter,3 $a,b%5$ 5
6 6(4A225)/6%. Without the density-

dependence in the kernel, the KEDF’s do not even appro
the KS vf energies, since the order-of-magnitude chang
r(r ) in the vacancy region is most certainly not nearly-fre
electron-like. However, after the inclusion of the densi
dependence in the kernel, the KEDF’s show significant i
provement, especially for the vf energies, if the fr
parameterg is carefully tuned. Note also the tiny gaps b
tween the fcc, hcp, and bcc structures are faithfully rep
duced, and even the absolute total energies are very clo
the KS results. At a finer scale,Ts

5/66A5/6 with g52.7 stands
out clearly as the best KEDF; any deviation from$a,b%
5$ 5

6 6A5/6%, however small, degrades the performance.
The next logical step is testing our new KEDF’s on sy
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tems with even more drastic density changes, e.g., real
surfaces. Those KEDF’s without the density-dependenc
the kernel can be readily applied to such systems without
numerical instability. However, Table III reveals that for th
same group of KEDF’s with density-independent kernels,
surface energies are off by a factor of 2 compared with
predictions and the~110!–~100! ordering is reversed. A more
troublesome finding is that the surface energy strongly
pends on the size of the vacuum, which directly dictates
value for the average surface density,r0

surf. This is certainly

TABLE III. Calculated surface energy (mJ/m2) for aluminum
low-index fcc surfaces, compared with Kohn-Sham calculation
sults. The vacuum has the same thickness as the slab. The fcc-~110!
slab has seven layers of atoms, and both of the fcc-~100! and the
fcc-~111! slabs have five layers of atoms, respectively.

Model a ~110! ~100! ~111!

Kohn-Sham 986 889 820
r independent

$ 5
6 60% 1910 1921 1775

$ 5
6 6(4A225/6)% 1907 1919 1773

$ 5
6 6

1
6 % 1902 1915 1769

$ 5
6 6

1
3 % 1877 1894 1751

$ 5
6 6A5/6% 1868 1887 1744

r dependent

$ 5
6 60%1.9

1203 1183 1001

$ 5
6 6(4A225/6)%2.0

1205 1186 1008

$ 5
6 6

1
6 %2.1

1196 1178 1000

$ 5
6 6

1
3 %2.5

1074 1060 876

$ 5
6 6A5/6%2.7

1053 1043 857

aFor the r independent,$a,b% is shown; for ther dependent,
$a,b%g is shown.

FIG. 3. Density cross section for aluminum fcc-~100! surface.
The KEDF isTs

5/66A5/6 for both nonsolid curves. The long-dashe
line is for the density-dependent kernel withg52.7; the dot-dashed
line is for the density-independent kernel.r* 5r0

bulk .
tic
in
y

e
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-
e

a highly undesirable feature. However, Figs. 3–5 clea
show that r(r ) obtained from the solution of the self
consistent Thomas-Fermi-like equation,10,13,20 Eq. ~41!,
closely matches the KSr(r ) for every case of the aluminum
low-index fcc surfaces~100!, ~110!, and~111!. This suggests
that the kinetic-energy potentials,dTs@r#/dr(r ), of the sim-
pler KEDF’s based on a density-independent kernel are
high quality. This further supports the utility of such KEDF
in the recently proposed embedding formalism32 that uses
dTs@r#/dr(r ).

Unfortunately, with the vacuum-size-dependentr0
surf as

r* , a straightforward application of those KEDF’s with th

-

FIG. 4. Density cross section for aluminum fcc-~110! surface.
The KEDF isTs

5/66A5/6 for both nonsolid curves. The long-dashe
line is for the density-dependent kernel withg52.7; the dot-dashed
line is for the density-independent kernel.r* 5r0

bulk .

FIG. 5. Density cross section for aluminum fcc-~111! surface.
The KEDF isTs

5/66A5/6 for both nonsolid curves. The long-dashe
line is for the density-dependent kernel withg52.7; the dot-dashed
line is for the density-independent kernel.r* 5r0

bulk .
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density-dependent kernels refuses to converge becaus
second-order Taylor series expansion in Eq.~42! makes too
big an error in regions wherer(r ) is large. To our surprise
we found that ifr* is chosen to be the bulk-phase avera
densityr0

bulk , the KEDF’s with the density-dependent ke
nels not only converge properly, but also bring the surfa
energies much closer to the KS results~Table III!, including
reproducing the correct ordering of the surface stabiliti
Figures 3–5 also depict some non-trivial improvements
the density profiles. This surprising success stems from
smallness of the fast-decaying density outside the sur
slab, which actually suppresses the error made in the fi
Taylor series expansion in Eq.~42!.

It is also intriguing to see relative contributions of diffe
ent orders in the Taylor series expansion of the kernel,
~42!, to the surface energy. Table IV shows that zeroth a
first orders contribute most while second order only accou
for less than 2% of the total surface energy. This is a cl
sign of convergence of the second-order Taylor series ex
sion, even for large density variations.

Of course, there is still room for further improvement.
remains to be seen whether the free parameterg is system-
independent. More applications and tests are surely ne
sary. Ideally, one would like to remover* from the con-
struction of the KEDF completely, but maintaining th
O(N ln N) scaling may then be impossible. More likely, on
would end up with a method withO(N2) scaling, as Chaco´n

TABLE IV. Contributions of different orders in the Taylor se
ries expansion of the kernel, Eq.~42!, to the surface energy
(mJ/m2) for aluminum low-index fcc surfaces. The KEDF
Ts

5/66A5/6 with g52.7.

Surface 0th 1st 2nd Total

~110! 561 484 8 1053
~100! 671 386 214 1043
~111! 395 446 16 857
,
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and co-workers have developed.8 An O(N ln N) method
without r0 in the construction is under development at th
time; the details of which will be reported later.33

VI. CONCLUSION

In conclusion, we have devised a family of kinetic-ener
density functionals which further generalize and impro
upon the Wang-Teter, Perrot, Smargiassi-Madden,
Wang-Govind-Carter kinetic-energy density functionals.3–7

These functionals are still based on linear-response the
The simple, effective implementation scheme for the nea
free electron gas deliversO(N ln N) scaling even for the
double-density-dependent kernel. Numerical tests show t
compared with those kinetic-energy density function
based on quadratic-response theory,3,7 our functionals can
yield similar results for bulk solids, but with a lower compu
tational cost and simpler implementation. More interesting
all KEDF’s regardless of their kernels’ density dependen
are seen to have very high-qualitydTs@r#/dr(r ), even for
large density variations as at realistic surfaces. This le
credence to their use in the recently developed embed
method that offers a systematic means of improving upon
Kohn-Sham description13,26 in a local region.32 In addition,
we have shown how the surface energy can be greatly
proved by a simple, yet reasonable choice of average den
Finally, utilizing our functionals inO(N ln N) methods of
first-principles molecular dynamics2,5,7 has a promising fu-
ture.
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