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We describe a variational method to solve the Holstein model for an electron coupled to dynamical, quantum
phonons on an infinite lattice. The variational space can be systematically expanded to achieve high accuracy
with modest computational resources~12-digit accuracy for the one-dimensional polaron energy at intermedi-
ate coupling!. We compute ground-state and low-lying excited-state properties of the model at continuous
values of the wave vectork in essentially all parameter regimes. Our results for the polaron energy band,
effective mass, and correlation functions compare favorably with those of other numerical techniques, includ-
ing the density-matrix renormalization-group technique, the global-local method, and the exact diagonalization
technique. We find a phase transition for the first excited state between a bound and unbound system of a
polaron and an additional phonon excitation. The phase transition is also treated in strong-coupling perturba-
tion theory.@S0163-1829~99!08327-7#
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I. INTRODUCTION

Polaron formation as a consequence of electron-pho
coupling appears in many contexts in condensed-ma
physics, including charge carriers in colossal magnetore
tance materials1,2 and in high-temperature superco
ductors.3,4 As theoretical research in this field spans over fi
decades, many analytical techniques have been applie
this problem.5 The applicability of these methods is usua
limited to a particular parameter regime, frequently far fro
the physically most interesting crossover regime. Despite
tensive analytical work in this field, there remain many op
problems, including the nature of the crossover to large
laron mass, the form of various correlation functions,
nature of the polaron excited states, and dynamic prope
of the polaron.

Constantly growing computer capabilities have allow
research in this field to take advantage of various numer
methods, including exact diagonalization techniqu
~ED!,6–12 quantum Monte Carlo calculations~QMC!,13,14

variational methods including the global-local meth
~GL!,15,16 and recently developed density-matr
renormalization-group techniques~DMRG!.17 A comparison
of results obtained by different methods for energy ba
and effective masses is contained in the work of Rom
et al.15 Although most of these methods give reliable resu
in a wide range of parameter regimes, each suffers fr
different shortcomings. The ED technique gives reliable
sults on small lattices~up to 20 sites8! for ground- and
excited-state properties. Results are limited to discrete
mentumk points. QMC methods can treat large system si
~over 1000 lattice sites! and provide accurate results for the
modynamic polaron properties. Dynamic properties, ho
ever, require analytic continuation from imaginary tim
which is an ill-posed problem that is extremely sensitive
PRB 600163-1829/99/60~3!/1633~10!/$15.00
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statistical noise. The GL method gives reliable results
energy bands and the polaron effective mass on reason
large system sizes~32 sites!; however, it is limited to
ground-state properties. The DMRG method seems to
most successful in computing ground-state properties,
cluding various correlation functions. Despite the lack
translational symmetry, it provides reasonably accurate
sults for energy bands and the effective mass. It can d
with large system sizes~e.g., 80 sites and 30 phonons p
site!, delivering reliable results in essentially all regim
from weak to strong coupling. In the weak-coupling regim
finite-size effects, enhanced by the open boundary co
tions, may become important. It generally treats large s
tems with open boundary conditions and does not allow
calculation of dynamic or large-k properties or excited states
although there are some exceptions to these rules.18

In this paper we focus on several issues of the Holst
problem. We present a simple and computationally effici
method based on the exact diagonalization technique.
apply the method to the one-dimensional, single-elect
Holstein model. Among the advantages of our method
the simplicity of our approach, the efficiency in selecting t
variational space, and the ability to compute both grou
and excited-state physical properties of the system at c
tinuous total wave vectork. We define the variational spac
on an infinite lattice. Even though most of our calculatio
were done on a workstation, our results are often superio
those of other numerically more intensive methods.8,9,17 We
test the method by comparing results for the energy ba
effective mass, quasiparticle weight, and correlation fu
tions with some of the most successful recent numer
methods.

The second part of this paper is devoted to the invest
tion of the first excited state of the model. Using our nume
cal method as well as a strong-coupling analytical approa
1633 ©1999 The American Physical Society
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1634 PRB 60J. BONČA, S. A. TRUGMAN, AND I. BATISTIĆ
we find a phase transition between a state where the pol
forms a bound state with an additional phonon excitati
and one where there is no bound state.

Generalizations of this method can even be used to ca
late coherent quantum dynamics far from equilibrium,
cluding those of a polaron driven by a strong electric field19

and of an electron tunneling across a potential drop w
coupled to phonons.20

We consider the Holstein Hamiltonian21

H52t(
j

~cj
†cj 111H.c.!2l(

j
cj

†cj~aj1aj
†!

1v(
j

aj
†aj , ~1!

wherecj
† creates an electron andaj

† creates a phonon on sit
j. We consider the case where a single electron hops betw
nearest-neighbor Wannier orbitals in one dimension~1D!,
and interacts with dispersionless optical phonons. T
electron-phonon coupling strength isl, and is local in real
space (k independent!. The parameterst,v, andl all have
units of energy, and can be used to form two dimension
ratios. ~Different conventions for the parameters are som
times used in other papers.!

It is clear at the outset that for any finite values of t
parameters, the exact ground state will be a delocalized s
with momentumkW , and not a ‘‘self-trapped’’ solution tha
breaks translation invariance. The simple argument is th
the ground state were self-trapped, its center could be sh
and a degenerate ground state obtained. If the Hamilto
has any nonzero matrix element between states with diffe
centers, a lower energy state can be obtained by a ph
superposition of wave functions with different centers~a
Bloch state!. The only known way that this argument can fa
is with ~unphysically! strong electron-phonon coupling a
v˜0 to a gapless phonon spectrum, in which case the
trix element between different centers can vanish.22 In that
case, an exact ground state can be written as either
trapped or as a Bloch state. Self-trapping cannot occur h
because the phonon spectrum has a gap. Although the e
ground state is a Bloch state, for some parameters~e.g., very
large l), a self-trapped solution can have a low variation
energy.23 It has indeed been proven that polaron ground-s
properties, including the energy and effective mass, are
lytic functions of the Hamiltonian parameters.24 We will see
below that such a theorem cannot be extended to inc
excited states.

II. THE METHOD

A complete set of basis states for the many-body Hilb
space can be written

uM &5u j ; . . . ,nj 21 ,nj ,nj 11 , . . . &, ~2!

wherej is the electron site and there arenm phonons on site
m. A variational subspace is constructed beginning with
initial state, taken to be an electron on sitej 50 with no
phonons, and operating repeatedly (Nh times! with the off-
diagonal pieces of the Hamiltonian, Eq.~1!. At each step, a
basis state is added when there is a nonzerot or l matrix
on
,
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element to a state previously in the space. These states
all of their translations on an infinite lattice are included
the variational space.~A translation moves the electron an
all phonon excitationsm sites to the right.! If a basis state
can be generated in more than one way, only one cop
retained. All nonzero matrix elements of the Hamiltoni
between retained basis states are included~some of this con-
struction appears in Ref. 26!.

A small variational Hilbert space is shown in Fig. 1. Th
dots may be thought of as basis states in the many-b
Hilbert space, or alternatively as Wannier orbitals in a pe
odic ~one-body! tight-binding model, with hopping matrix
elements given by the bonds. The variational space show
Fig. 1 is still infinite, since the lattice repeats periodically
infinity. It is clear from Bloch’s theorem, however, that ea
eigenstate can be written as eik jCm , wherek is the momen-
tum, j is the unit cell, andCm is a set ofM complex ampli-
tudes, one for each state in the unit cell (M57 for the ex-
ample of Fig. 1!. For a given momentumk, the resulting
numerical problem is to find the eigenstates of anM3M
~sparse! Hermitian matrix using Lanczos or another metho

Figure 2 plots the energy eigenvalues for a larger va
tional space containing a maximum of nine phonon exc
tions. The figure superficially resembles a ‘‘band structure
which, however, encodes ground- and excited-state infor
tion for the many-body~many phonon! polaron problem. The
ac conductivity of the polaron, for example, appears as
‘‘interband’’ transition in this mapping.

The largest variational basis that we have used hasNh
522 or M51.23107 states. It is usually unnecessary to u
such a large basis for intermediate-coupling ground-s
properties, even to obtain 12-digit accuracy for the ener
The variational Hilbert space we construct is not a stand
one, and appears to add basis states more efficiently
some other methods. A basis state is included if it can
reached usingNl phonon creation operators andNt electron
hops in any order withNt1Nl<Nh . For a givenNh , there
is a basis state withNh phonon quanta on the same site as
electron and no phonon excitations elsewhere. There is a
basis state withNh21 quanta on the site adjacent to th

FIG. 1. Small variational Hilbert space shown for the polaron
a subset of theNh53 space. Basis states in the many-body Hilb
space are represented by dots, and nonzero off-diagonal matri
ements by lines. Thex coordinate of the dots is~aside from small
displacements! the coordinate of the electron. Vertical bonds crea
phonons, and horizontal or nearly horizontal bonds are elec
hops. Stateu1& is an electron on site 0 and no phonons. Stateu2& is
an electron and phonon, both on site 0. Stateu4& is an electron on
site 1 and a phonon on site 0, which is reached from stateu2& by
hopping the electron to the right. Stateu5& is a translation of state
u2&. The Hamiltonian is sparse in this basis, with at most four bo
attached to a dot. The dots can also be thought of as Wan
orbitals in a one-body periodic tight-binding model.
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PRB 60 1635HOLSTEIN POLARON
electron and no phonon excitations elsewhere. ForNh odd,
there is a basis state with (Nh21)/2 quanta on the electro
site and an equal number simultaneously on a first-neigh
site. The maximum distance that a phonon excitation
appear from the electron isl 5Nh21, but then only a single
quantum and only if there are no phonons excited elsewh
in the system.25 Only the basis states from a single unit c
~a single-electron position! are stored in computer memory

The energy of a polaron for a finite chain ofN sites with
periodic boundary conditions islower than that for an infinite
lattice with the same parameters.~This is easy to verify in
weak-coupling perturbation theory, or numerically.! Thus,
previous exact diagonalization and most other variational
proaches produce energies that are variational for the par
lar lattice sizeN that they treat, but are not variational in th
thermodynamic limitN˜`. The energy we calculate is, i
contrast, variational in the thermodynamic limit.~The quoted
DMRG energies are extrapolated and not variational,
though they are generally rather accurate.!

Having the capability to compute the polaron energyE(k)
at any k rather than being limited to multiples of 2p/N
makes our method more accurate for computing the effec
mass of the polaron using the standard formula

m0

m*
5

1

2t

]2E~k!

]k2 U
k50

, ~3!

where m051/(2t) is the effective mass of a free electro
The second derivative is evaluated by small finite differen
in the neighborhood ofk50. Note that although the calcu
lated energyE(k) is a variational bound for the exact energ
there is no such control on the mass, which may be ei
above or below the exact answer, and is expected to be m
difficult to obtain accurately. Nevertheless, in th
intermediate-coupling regime where our method atNh520
gives an energy accuracy of 12 decimal places, one can
culate the effective mass extremely accurately~6–8 decimal
places! by letting Dk˜0.

FIG. 2. Ground- and excited-state energy eigenvalues~those
Ej<0) are plotted as a function ofk ~in units of p) for l5v
51, Nh59, M51185. Excited states consist of the polaron w
additional bound or unbound phonon excitations. The hopping
rametert51 is assumed here and throughout this work wherevt
is not explicitly specified.
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Further information about the quasiparticle may be o
tained by computing the quasiparticle residue, the over
~squared! between a bare electron and a polaron,

Zk5 z^ckuck
†u0& z2, ~4!

whereu0& is the state with no electron and no phonon ex
tations, anduck& is the polaron wave function at momentu
k. The numerical results forZk50 given in Sec. III differ by
less than 1% from results for the reciprocal effective m
m0 /m* obtained from Eq.~3!. At finite k, Zk provides in-
formation about the electronic character of the polaro
state. The phonon contribution to the quasiparticle can
measured by thek dependent mean phonon number

Nk
ph5(

i
z^ckuai

†ai uck& z2. ~5!

To describe the polaron at differentk we have also com-
puted the static correlation function between the electron
sition and the oscillator displacement

x~ i 2 j !5^ckuci
†ci~aj1aj

†!uck&, ~6!

and the distribution of the number of excited phonons in
vicinity of the electron

g~ i 2 j !5^ckuci
†ciaj

†aj uck&. ~7!

III. GROUND-STATE RESULTS

In this section we compare our results for the ground-s
properties of the Holstein model to those obtained by ot
numerical methods. We also calculate polaron correlat
functions at finite values of the Bloch wave vectork.

We start by comparing energy bandsE(k) for two differ-
ent sets of parameters. Figure 3 compares the present me
to the DMRG,15,17GL,15 and the finite cluster ED technique8

UsingNh520 we achieve an accuracy in the thermodynam
limit of 12 decimal places for smallk and at least four deci-
mal places for largek. Our results forE(k) are presented a
continuous curves. Agreement of our results with DMR
and ED is good; however, there is a slight disagreement w

a-

FIG. 3. Polaron energy as a function ofk ~in units of p). Lines
represent our results for two different sets of parameters obta
by calculatingE(k) at 100k points. Circles, squares, and diamon
are results obtained with global-local~Ref. 15!, DMRG ~Refs. 15
and 17!, and ED~Ref. 8! calculations, respectively.
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TABLE I. A comparison of the polaron ground-state energy atk50 for two different parameter sets.

l/v Present EDN516 DMRG N532 Global local

1 22.469684723933 22.46968477 22.46968 22.46931
A2 22.998828186867 22.99882816 22.99883 22.99802
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the global-local method at largerk, which also disagrees with
the DMRG method. There is also a slight disagreement w
the ED at largerk which we attribute to the smaller syste
size used in finite cluster ED calculations. As we will dem
onstrate later in this paper, the extent of the lattice deform
tion ~the size of the polaron! increases ask approaches the
Brillouin-zone boundary, which makes finite-cluster calcu
tions more susceptible to finite-size effects.

In Table I we compare the polaron ground-state energ
k50 for two different parameter sets obtained by our a
three other numerical methods, exact diagonalization~ED!,28

DMRG,17 and global-local variational.15 Comparisons with a
greater variety of methods can be found in Romeroet al.15

We have limited our comparison to those methods that
accurate to at least four decimal places. Our method c
verges to all of the digits shown usingNh515 or M
588 052 basis states forl5v51, and Nh518 or M
5731 027 basis states forl5A2,v51. The ground-state
energy converges exponentially withNh , with the accuracy
improving by approximately one order of magnitude asNh is
increased by 1. This exponential convergence is used to
timate the error. The larger (Nh518) calculation runs in un-
der a minute on a modest workstation.

Figure 4 shows our results for the effective mass Eq.~3!
computed withNh520 in comparison with GL and DMRG
methods. The parameters span different physical regime
cluding weak and strong coupling~respectively, small and
large l/v), and adiabatic (v/t!1) and antiadiabatic (v/t
@1) regimes. We find good agreement with GL away fro
strong coupling and good agreement in all regimes w
DMRG. DMRG calculations are not based on finite-k calcu-
lations due to a lack of periodic boundary conditions, so th
extrapolate the effective mass from the ground-state data
ing chains of different sizes, which leads to larger error b
and more computational effort. Notice that their discrete d

FIG. 4. Logarithm of the effective massm* /m0 as a function of
l/v. Our results are plotted as full lines, and global-local results
dashed lines~Ref. 15!. Open symbols, indicating the value ofv, are
DMRG results~Ref. 17!.
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are slightly scattered around our curves. Nevertheless,
methods agree well. We have compared our results for ef
tive mass obtained on different systems fromNh516 with
M5178 617 states toNh520 with M52 975 104 states and
obtained convergence of results to at least four deci
places in all parameter regimes presented in Fig. 4. Our e
is therefore well below the linewidth. Even though there
no phase transition in the ground state of the model,
polaron becomes extremely heavy in the strong-coupling
gime. The crossover to a regime of large polaron mas
more rapid in adiabatic regime~smallerv/t).

Figure 5 shows the quasiparticle residueZk and the mean
phonon numberNk

ph as a function ofk for the case of small
l0[l2/2vt (l250.4, v50.8) and largel0 (l253.2, v
50.8). The two sets of parameters correspond to the la
and small polaron regime, respectively.9 The DMRG cannot
straightforwardly compute this quantity, and we compare
results with cluster calculations. Open symbols represent
results of Wellein and Fehske8 obtained on aN514 site
cluster for the same choice of parameters. Except for the
that their results are limited to discretek points defined by
the size of their system, we find excellent agreement betw
the two methods in the weak-coupling case. In the stro
coupling regime there is an approximately 1% disagreem
in Nk

ph due to a lack of phonon degrees of freedom in t
variational space of the ED calculation. Our results in t
weak-coupling case show a smooth crossover from predo
nantly electronic character of the wave function for smalk
~largeZk and smallNk

ph'0) to predominantly phonon char
acter aroundk5p characterized byZk'0 andNk

ph'1. In
the strong-coupling regime there is lessk dependence. The
Zk is already close to zero at smallk, indicating strong
electron-phonon interactions that lead to a large pola
mass.

Jeckelmann and White have calculated the electr

s FIG. 5. Quasiparticle weightZk and in the inset the total numbe
of phononsNk

ph as a function of the wave vectork. Results by
Wellein and Fehske~Ref. 8! are represented by open circles.
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PRB 60 1637HOLSTEIN POLARON
phonon correlations atk50 for the 1D and 2D polaron usin
the DMRG method.17 We compare our results with theirs fo
the 1D case. There is good agreement in Fig. 6~a! for
intermediate-coupling parametersv51 andl50.5. Figure
6~b! plots correlations forv50.1 andl50.1, which corre-
sponds to weak coupling in the adiabatic limit. In this regim
the DMRG method gives less reliable results. The size of
polaron is underestimated, possibly due to finite-size effe
in open boundary conditions. Note also that the DMR
method does not give symmetric results as it should,

FIG. 6. Lattice deformationx as a function of (i 2 j ) for ~a! v
51.0 andl50.5, ~b! v50.1 andl50.1, and~c! v50.1 andl
50.435. Our results are represented by filled symbols and thos
Jeckelmann and White~Ref. 17! by open circles. In case~c! our
results forNh521 have not yet reached the largeNh limit. The star
represents an extrapolation of our data~assuming exponential con
vergence! to Nh˜`, x(0)55.560.1.
e
ts

.,

x( l )5” x(2 l ). In this parameter regime our results have fu
converged, as we can see from the perfect overlap of res
of systems with two different sizes of the Hilbert spaceNh
517,18. Figure 6~c! plots correlations forv50.1 and l
50.435, which belongs to the strong-coupling, small polar
regime. The DMRG produces superior results in this regim
where our calculation atNh521 has not fully converged to
the largeNh limit. Our results are, nevertheless, in qualitati
agreement with the DMRG. We conclude that both tec
niques give reliable results in the intermediate-coupling
gime, and that they complement each other in the weak-
strong-coupling regimes.

A thorough investigation of correlation functions usin
ED and the variational Lanczos method was performed
Wellein and Fehske.9 Although we do not show a direc
comparison with their work, our results for correlation fun
tions agree qualitatively with their calculations.

While the strength of the DMRG calculation is exhibite
in its ability to compute ground-state properties of large s
tems, it is limited in its computation of excited states. In F
5 we have shown how the nature of the polaron transfo
from predominantly electronic character atk50 to phononic
aroundk5p. We follow this transformation by computing
the correlation functionx for four different values ofk,
shown in Fig. 7. These parameters correspond to the w
coupling case in Fig. 5. Atk50, where the group velocity is
zero, the deformation is limited to only a few lattice sit
around the electron. It is always positive and exponentia
decaying. At finite but smallk5p/4, the deformation around
the electron increases in amplitude and rings~oscillates in
sign! as the polaron acquires a finite group velocity. Atk
5p/2 the ringing is strongly enhanced. Note also that
spatial extent of the deformation increases in compariso
k50. The range of the deformation is maximum atk5p,
where it extends over the entire region shown in the figu
In keeping with the larger extent of the lattice deformati
near k5p, the ground-state energyE(p) converges more
slowly with the size of the Hilbert space.

We have also computedx for the strong-coupling case
v50.8, l253.2 ~not shown!. We find only weakk depen-

of

FIG. 7. Lattice deformationx as a function of (i 2 j ) for v
50.8, l250.4, andNh518, for four different values of momentum
k. The variational Hilbert space forNh518 allows nonzero corre-
lations to a maximum distanceu i 2 j umax517. Only distances up to
15 are plotted.
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1638 PRB 60J. BONČA, S. A. TRUGMAN, AND I. BATISTIĆ
dence, which is a consequence of the crossover to the s
polaron regime. The lattice deformation is localized p
dominantly on the electron site.

IV. WHAT IS THE NATURE OF THE FIRST EXCITED
STATE?

In this section we focus on the question of whether
extra phonon excitation forms a bound state with the
laron, or instead remains as two widely separated enti
Using numerical and analytical approaches we will show t
there exists a sharp phase transition between these two s
Although the ground-state energyE0 is an analytic function
of the parameters in the Hamiltonian, there are points
which the energyE1 of the first excited state is nonanalyti
In previous work, Gogolin has found bound states of
polaron and additional phonon~s!, but he does not obtain
phase transition between bound and unbound states bec
his approximations are limited to strong couplingl/v@1.27

A phase transition between a bound and unbound first
cited state has been calculated for dimensiond53 using a
dynamical coherent potential approximation29 ~CPA! and dy-
namical mean-field theory.30

A. Numerical results

We begin by computing the energy differenceDE5E1
2E0, where E1 and E0 are the first-excited-state and th
ground-state energies atk50 ~the two lowest bands in Fig
2!. In the case where the first excited state of a polaron
be described as a polaron ground state and an unbound
phonon excitation, this energy difference should in the th
modynamic limit equal the phonon frequency,DE5v. In
Fig. 8 we plot the binding energyD5DE2v for v50.5 as
a function of the electron-phonon couplingl for various
sizes of the variational space. We see two distinct regim
Below lc;0.95, D varies with the system size but remai
positive (D.0). Physically, forl,lc , the additional pho-
non excitation would prefer to be infinitely separated fro
the polaron, but is confined to a distance no greater t
Nh21 by the variational Hilbert space. As the system s
increases,D slowly approaches zero from above as the ‘‘p
ticle in a box’’ confinement energy decreases. In the ot

FIG. 8. First excited-state binding energyD5E12E02v as a
function of l. Results are forv50.5 and various Hilbert spac
sizesNh . Inset: binding energy over a wider range ofl.
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regime,l.lc , our data have clearly converged andD,0.
This is the regime where the extra phonon excitation is
sorbed by the polaron forming an excited bound polar
Since the excited polaron forms an exponentially decay
bound state, the method already converges atNh514. In the
inset of Fig. 8 we show the binding energyD in a larger
interval of electron-phonon couplingl. Although the results
cease to converge at largerl, we notice that the binding
energyD reaches a minimum as a function ofl. As we will
demonstrate within the strong-coupling approximation,
true binding energy approaches zero exponentially from
low with increasingl. In Fig. 9 we show the phase diagram
valid for k50, separating the two regimes. The phase bou
ary, given byD50, was obtained numerically and usin
strong-coupling perturbation theory int to first and second

FIG. 9. Phase diagram for the bound to unbound transition
the first excited state, obtained using the conditionD(v,l)50. The
corresponding phase diagram for the ground state would be blan
there is no phase transition in the ground state, only a crossov

FIG. 10. Phonon numberg as a function of the distance from
the electron position (i 2 j ) for the ground state~a! and the first
excited state~b! both computed atl50.9 and the same in~c! and
~d! for l51.0. All data are computed at phonon frequencyv
50.5 andNh518. Note that~d! is a plot ofg1 /3. Insets in~b! and
~d! represent differencesg12g0 as a function of the distance (i
2 j ). In ~b!, g12g0 drops to zero aroundu i 2 j u515. This is a
finite-size effect. Computing the same quantity with largerNh be-
low the phase transition would lead to a larger extent of the co
lation function indicating that the extra phonon excitation is n
bound to the polaron.
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order. Details of the latter calculation are given in Sec. IV
The phase transition whereD becomes negative at suffi
ciently large l is also seen in exact diagonalizatio
calculations.31

In Fig. 10 we compute the distribution of the number
excited phonons in the vicinity of the electrong( i 2 j ), Eq.
~7!, for the ground stateg0 and the first excited stateg1
slightly below (l50.9), and above (l51.0) the transition
for v50.5. The central peak of the correlation functiong1
below the transition point is comparable in magnitude tog0
@Figs. 10~a! and 10~b!#. The main difference between the tw
curves is the long-range decay ofg1 as a function of distance
from the electron, onto which the central peak is super
posed. The extra phonon that is represented by this lo
range tail extends throughout the whole system and is
bound to the polaron. See also the differenceg12g0 in the
inset of Fig. 10~b!. The existence of an unbound, free phon
is confirmed by computing the difference of the total phon
number N0,1

ph5( lg0,1( l ). This difference should equal on
below the transition point. Our numerical values giveN1

ph

2N0
ph;1.02. We attribute the deviation from the exact res

to finite-size effects.
Correlation functions above the transition point@Figs.

10~c! and 10~d!# are physically different. First, phonon co
relations ing1 decay exponentially, which also explains wh
the convergence in this region is excellent. Second, the
of the central peak ing1 is three times higher thang0. @Note
that to match scales in Fig. 10~d! we dividedg1 by 3.# The
difference in total phonon number givesN1

ph2N0
ph;2.33.

We are thus facing a totally different physical picture: t
excited state is composed of a polaron which contains s
eral extra phonon excitations~in comparison to the ground
state polaron! and the binding energy of the excited polar
is D,0. The extra phonon excitations are located alm
entirely on the electron site@see the inset of Fig. 10~d!#. The
value ofg12g0 at j 50 is 2.16, which almost exhausts th
phonon sum.

B. Strong-coupling perturbation theory

In this section we calculate the ground- and excited-s
energies of the polaron perturbatively in the hoppingt. For
t50, the Hamiltonian Eq.~1! describes a harmonic oscillato
with a shifted origin~due to thel force term! on the site with
the electron, and unshifted oscillators on the other sites.
Hamiltonian in the new basis is given by the canonical tra
formationH̃5eSHe2S, where

S52g(
j

nj~aj2aj
†!, ~8!

and g5l/v.32 After some algebra~see also Ref. 12!, the
transformed Hamiltonian takes the following form:

H̃5H01V, H05v(
j

aj
†aj2vg2(

j
nj ,

V52te2g2

(
j

~cj
†cj 11eg(aj

†
2aj 11

† )e2g(aj 2aj 11)1H.c.!,

~9!
.

f

-
g-
ot

n

t

ze

v-

t

te

e
-

wherenj5cj
†cj . The operatoraj

† in Eq. ~9! creates a phonon
excitation on sitej relative to the shifted oscillator if there i
an electron on sitej, and relative to an unshifted oscillator o
the other sites. The first term inH0 is the energy of the
phonon excitations, and the second is the energy gaine
the oscillator that is displaced by the force of the electron
strong-coupling perturbation theory,V in Eq. ~9! is consid-
ered a perturbation. It represents the hopping of an elect
including possible creation and destruction of phonon ex
tations.

The lowest energy eigenstates of the unperturbed Ha
tonian H0 have no extra phonon excitations, and an ene
E0

(0)52l2/v. They can be writtenuf0( j )&5cj
†uO&, where

uO& represents vacuum for electron and phonon degree
freedom. This state represents a polaron localized on the
j. Evidently the ground state isN-fold degenerate, where
N is the number of sites in the system. The perturbat
lifts this degeneracy. The matrix elementsV0( i , j )
5^f0( i )uVuf0( j )& can be readily computed since the exp
nential factors inV are not effective in this case,

V0~ i , j !52te2g2
, j 5 i 61. ~10!

This describes a translation-invariant tight-binding model
one dimension with nearest-neighbor hopping. To first or
in t, the ground-state energy of a polaron with momentumk
is

E0~k!52l2/v22te2g2
cosk. ~11!

Excited states.The lowest energy states ofH0 are theN
degenerate states of energy2l2/v, considered above. Th
next lowest energy sector contains theN2 degenerate state
of energy2l2/v1v, of the formuc1( j ,l )&5cj

†al
†uO&. The

electron is on sitej and the additional phonon excitation is o
site l. We do degenerate perturbation theory toO(t) in this
excited sector. Using the total momentumk as a good quan-
tum number, the 2D tight-binding problem in (j ,l ) becomes
a 1D tight-binding problem. The 1D basis functions a
uf1( j )&5uc1(0,j )&, wherej is the distance between the ph
non and the electron. The nonzero matrix elementsV1( i , j )
5^f1( i )uVuf1( j )& are

V1~0,0!522tg2e2g2
cosk,

V1~0,61!52t~12g2!e2g2
,

V1~21,1!52tg2e2g2
eik, V1~ i , j !52te2g2

,

j 5 i 61, i , j Þ0. ~12!

This is a 1D tight-binding model that is translation-invaria
except near the origin, where there is a second-neighbor h
ping term and other modifications. The matrixV1( i , j ) is
Hermitian. Matrix elements in Eq.~12! define a secular equa
tion uV(k)2E(k)u50 for the energies that can easily b
solved numerically for a large system. For each total wa
vector k, there areN-independent solutions. The lowest e
ergy first excited state at momentumk is

E1~k!52l2/v1v1E1
(1)~k!, ~13!
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where E1
(1)(k) is the lowest energy solution of the secul

equation.
The numerical and analytic solution of the secular eq

tion reveals that there is a true phase transition~energy
nonanalytic in the parameters! for the first excited state. This
is perhaps surprising in light of the theorem that there can
no phase transition for the ground state,24 and demonstrate
the impossibility of extending the theorem to include excit
states. We consider first a total momentumk50. For g
.g151, the lowest energy first excited state is found to b
bound state of a polaron and an additional phonon. T
bound state is Raman active. Forg,g1, the first excited state
is unbound, with an energy exactlyv higher than the ground
state. This energy is in fact an upper bound for the fi
excited state in any dimension and at anykW , since one can
construct a variational state with a zero momentum pola
and a momentumkW phonon at infinite separation. The ener
of the first excited state is nonanalytic~discontinuous first
derivative! at g5g1. The bound-state formation is unusu
for several~related! reasons:~a! For g.g1, the binding en-
ergy is linear in (g2g1) for small (g2g1), rather than the
(g2g1)2 dependence that is typical for 1D bound-state pr
lems. ~b! For g,g1, the phase shift is zero between th
polaron and an additional unbound phonon of relative m
mentum q˜0. The polaron and additional phonon pa
through each other transparently, in contrast to the usua
pulsive phase shift.~c! At g5g1, even for finiteN ~periodic
boundary conditions!, there are two exactly degenera
ground states, in contrast to the usual avoided cross
These unexpected properties result in part from the fact
the central site in the tight-binding model@Eq. ~12!# becomes
uncoupled from the rest of the lattice precisely atg5g1. The
binding energy in 1D can, in fact, be determined analytica
from Eq. ~12!. One can show that forg>g1 , E1

(1)(k)

52te2g2
(x211)/x, where

x5
3g2211A~9g221!~g221!

2
, k50,

x5g2, k5p. ~14!

The O(t) strong-coupling analysis can be extended
higher dimensions and to nonzero total momentumkW . The
kW50 state always has an energy less than or equal to th
any otherkW . We find that forg,g1, the first excited state a
any momentumkW is unbound, withg151 in any dimension
d>1. Thek50 phase shift also vanishes forg,g1 in any
dimension. Forg.g2, the first excited state at any mome
tum is bound.33 For g1,g,g2, there is a phase transition o
a surface inkW space such that inside the surface~including
kW50) the first excited state is bound, and outside the surf
@includingkW5(p,p, . . . )# the first excited state is unbound
The location of the surface inkW space isg dependent. The
numerically obtained values areg252.1 in 3D,g251.66 in
2D, andg25g151 in 1D. @1D is special in that there is n
intermediate phase. However, asg˜g1

1 in 1D, the k5p
state is very weakly bound compared tok50; see Eq.~14!.
The k5p state has zero amplitude to have the electron
-

e

a
e

t

n

-

-

e-

g.
at

y

at

ce

d

the additional phonon on the same site.# The binding energy
at kW50 is linear in (g2g1) for higher dimensions, as it is in
1D.

Strong-coupling perturbation theory is carried toO(t2) in
the Appendix.

V. CONCLUSIONS

In summary, we have presented a variational approach
solving the Holstein model with dynamical, quantu
phonons based on an exact diagonalization method.
variational space is defined on an infinite lattice. It is co
structed by successive application of the off-diagonal ter
of the Hamiltonian starting from a single-electron state. T
leads to a systematically improvable variational basis t
turns out to be efficient for calculating the ground-state a
low-lying excited-state properties of the model. The meth
can compute properties in all parameter regimes, but it i
its best in the intermediate-coupling regime, where stro
and weak-coupling perturbation theories and other va
tional methods have problems.

The method allows the computation of energy bands
other physical properties at continuous wave vectors.
intermediate-coupling strengths we are able to reach an
curacy of 12 digits for the ground-state energy at smak
with as few asM588 052 basis states and only a few se
onds of CPU time on a workstation. Our results for ener
bands presented in Fig. 3 compare well with other num
cally more intensive methods and are more precise at b
large and smallk than some of them. Our energies are var
tional in the thermodynamic limit for anyk. We believe that
all results shown for energy bands computed withM53
3106 states converge to at least four digits for arbitraryk.

The accuracy of our method can be seen from the co
parison of effective masses in Fig. 4. While our results ha
converged to at least four digits in all parameter regim
presented in Fig. 4, GL and DMRG methods give less r
able results. While deviations of DMRG are insignifican
deviations of GL results near strong coupling seem to
systematic. Results for the quasiparticle residue as a func
of the wave vector in the weak-coupling regime show
smooth crossover between the predominantly electro
character to a predominantly phononic character of the
laron. Our results agree with previous ED calculations.

The correlation functionsx agree well with DMRG re-
sults in the intermediate-coupling regime. In the wea
coupling regime our method gives more reliable resu
Close to the extreme strong-coupling and adiabatic regi
our correlation functions have not fully converged as a fu
tion of Nh for Nh521, M563106. Our results in this re-
gime are qualitatively similar to, but less accurate than, th
of the DMRG. Correlation functionsx computed at different
k provide detailed information on how the weak-couplin
polaron transforms ask increases fromk50 to k5p.

Using numerical and strong-coupling approaches, we fi
a true phase transition~rather than a crossover! in the first
excited state, where a polaron plus phonon system cha
from unbound at weak coupling to bound at strong coupli
The first excited state does not contribute to the optical c
ductivity, but rather is Raman active.

There are a number of extensions to this work that
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have not included in this paper. It is straightforward to co
sider anharmonic phonons.~In fact, the extreme double-we
limit where only the lowest two states are retained is num
cally less demanding than the linear case.! The ac conduc-
tivity and spectral function of a polaron can be calculated
the same methods. Properties of other Hamiltonians, inc
ing those with SSH-type couplings where phonons mod
the hoppingt can be calculated. Extensions that allow cert
phonon excitations to be infinitely far from the electron a
possible. Properties in higher spatial dimensions can be
culated. One can also calculate the properties of bipolar
including Hubbard on-site and longer-range interactions
tween electrons. And finally, one can calculate the cohe
quantum dynamics of electron-phonon coupled syste
driven far from equilibrium using similar methods.19,20
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APPENDIX

For simplicity we have limited our calculation of the e
ergy corrections in second-order strong-coupling pertur
tion theory to 1D and zero momentum,k50. Following the
work of Marsiglio,12 the ground-state correction to seco
order in the hoppingt is given by

E0
(2)522t2

e22g2

v F (
n,m51

g2(m1n)

n!m!

1

n1m
13(

n51

g2n

n!

1

nG .
~A1!

Calculation of the energy corrections of the excited-state
ergy E1 involves degenerate perturbation theory, where m
trix elements between degenerate statesuf1( j )& are com-
puted to second order int. After a straightforward but tediou
calculation we obtain for the nonzero matrix elements

V1~0,0!522tg2e2g2

12t2
g2e22g2

v
F (

n,m51

g2(m1n)

n!m!

S 12
n

g2D 2

12n2m

1 (
n52

g2n

n!

S 12
n

g2D 2

12

12n
12G , ~A2!
-

i-

y
d-
y
n

al-
s,
-

nt
s

s
,

f
f

.

-

n-
-

V1~0,1!52t~12g2!e2g2

2t2
g2e22g2

v
F (

n,m51

g2(m1n)

n!m!

S 12
n

g2D S 12
m

g2D
12n2m

13(
n52

g2n

n!

S 12
n

g2D
12n

12G , ~A3!

V1~1,1!5t2
e22g2

v
F (

n,m51

g2(m1n)

n!m!
S g2S 12

n

g2D 2

12n2m
2

1

n1m
D

1 (
n52

g2n

n!

2g222n1
n

g2 ~n12!

12n
1g2G , ~A4!

V1~21,1!52tg2e2g2
1t2

g2e22g2

v

3F (
n52

g2n

n!

S 12
n

g2D 2

12n
11G , ~A5!

V1~0,2!52t2~12g2!
e22g2

v (
n51

g2n

n!

1

n
, ~A6!

V1~ j , j 12!52t2
e22g2

v (
n51

g2n

n!

1

n
, j >1 ~A7!

V1~ j , j !522t2
e22g2

v F (
n,m51

g2(m1n)

n!m!

1

n1m

12(
n51

g2n

n!

1

nG , j >2 ~A8!

V1~ j , j 11!52te2g2
, j >1. ~A9!

For k50, V1( i , j )5V1( j ,i )5V1(2 i ,2 j ). We numerically
solve the secular equationuV2Eu50. The lowest eigenvalue
E1

(1,2) of the secular equation gives us corrections to
excited-state energyE1 to second order in the hoppingt,

E152l2/v1v1E1
(1,2). ~A10!

The binding energy to second order atk50 is given by Eqs.
~11!, ~A1!, and~A10!,

D5E1
(1,2)12te2g2

2E0
(2) . ~A11!

The second-order results are used to calculate the p
boundary in Fig. 9.
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