PHYSICAL REVIEW B VOLUME 60, NUMBER 3 15 JULY 1999-I

Holstein polaron

J. Bona
FMF, University of Ljubljana and J. Stefan Institute, 1000, Slovenia

S. A. Trugman
Theory Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

. Batistic
Institute of Physics of the University, HR-1000, Zagreb, Croatia
(Received 2 December 1998

We describe a variational method to solve the Holstein model for an electron coupled to dynamical, quantum
phonons on an infinite lattice. The variational space can be systematically expanded to achieve high accuracy
with modest computational resourcd®-digit accuracy for the one-dimensional polaron energy at intermedi-
ate coupling. We compute ground-state and low-lying excited-state properties of the model at continuous
values of the wave vectdt in essentially all parameter regimes. Our results for the polaron energy band,
effective mass, and correlation functions compare favorably with those of other numerical techniques, includ-
ing the density-matrix renormalization-group technique, the global-local method, and the exact diagonalization
technique. We find a phase transition for the first excited state between a bound and unbound system of a
polaron and an additional phonon excitation. The phase transition is also treated in strong-coupling perturba-
tion theory.[S0163-182009)08327-1

[. INTRODUCTION statistical noise. The GL method gives reliable results for
energy bands and the polaron effective mass on reasonably
Polaron formation as a consequence of electron-phonolarge system size$32 site3; however, it is limited to
coupling appears in many contexts in condensed-mattgground-state properties. The DMRG method seems to be
physics, including charge carriers in colossal magnetoresignost successful in computing ground-state properties, in-
tance materials® and in high-temperature supercon- cluding various correlation functions. Despite the lack of
ductors®* As theoretical research in this field spans over fivetranslational symmetry, it provides reasonably accurate re-
decades, many analytical techniques have been applied tults for energy bands and the effective mass. It can deal
this problent The applicability of these methods is usually with large system sizege.g., 80 sites and 30 phonons per
limited to a particular parameter regime, frequently far fromsite), delivering reliable results in essentially all regimes
the physically most interesting crossover regime. Despite exfrom weak to strong coupling. In the weak-coupling regime,
tensive analytical work in this field, there remain many operfinite-size effects, enhanced by the open boundary condi-
problems, including the nature of the crossover to large potions, may become important. It generally treats large sys-
laron mass, the form of various correlation functions, thetems with open boundary conditions and does not allow the
nature of the polaron excited states, and dynamic propertiesalculation of dynamic or largk-properties or excited states,
of the polaron. although there are some exceptions to these fdles.
Constantly growing computer capabilities have allowed In this paper we focus on several issues of the Holstein
research in this field to take advantage of various numericgbroblem. We present a simple and computationally efficient
methods, including exact diagonalization techniquesmethod based on the exact diagonalization technique. We
(ED),5"*2 quantum Monte Carlo calculation€QMC),**'*  apply the method to the one-dimensional, single-electron
variational methods including the global-local methodHolstein model. Among the advantages of our method are
(GL),*>'® and recently developed density-matrix the simplicity of our approach, the efficiency in selecting the
renormalization-group techniqué®MRG).1” A comparison variational space, and the ability to compute both ground-
of results obtained by different methods for energy bandsind excited-state physical properties of the system at con-
and effective masses is contained in the work of Romerdinuous total wave vectdr. We define the variational space
et al® Although most of these methods give reliable resultson an infinite lattice. Even though most of our calculations
in a wide range of parameter regimes, each suffers fromvere done on a workstation, our results are often superior to
different shortcomings. The ED technique gives reliable rethose of other numerically more intensive meth&as’ we
sults on small latticegup to 20 sited for ground- and test the method by comparing results for the energy band,
excited-state properties. Results are limited to discrete meeffective mass, quasiparticle weight, and correlation func-
mentumk points. QMC methods can treat large system sizesions with some of the most successful recent numerical
(over 1000 lattice sitgsand provide accurate results for ther- methods.
modynamic polaron properties. Dynamic properties, how- The second part of this paper is devoted to the investiga-
ever, require analytic continuation from imaginary time, tion of the first excited state of the model. Using our numeri-
which is an ill-posed problem that is extremely sensitive tocal method as well as a strong-coupling analytical approach,
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we find a phase transition between a state where the polaron
forms a bound state with an additional phonon excitation,
and one where there is no bound state.

Generalizations of this method can even be used to calcu-
late coherent quantum dynamics far from equilibrium, in-
cluding those of a polaron driven by a strong electric fi€ld,
and of an electron tunneling across a potential drop while
coupled to phonon®

FIG. 1. Small variational Hilbert space shown for the polaron is

We consider the Holstein Hamiltonign a subset of thél,,=3 space. Basis states in the many-body Hilbert
space are represented by dots, and nonzero off-diagonal matrix el-
H= —t; (C,'TC,'+1+ H.c) _)\Ej: CJ-TCj(aj +aJ-T) ements by lines. The coordinate of the dots iGaside from small

displacemenisthe coordinate of the electron. Vertical bonds create
phonons, and horizontal or nearly horizontal bonds are electron
T wz ala. (1) hops. Statél) is an electron on site 0 and no phonons. Sfajds
T an electron and phonon, both on site 0. Stdfeis an electron on
site 1 and a phonon on site 0, which is reached from $@tdy
WhereCjJr creates an electron ara;! creates a phonon on site hopping the electron to the right. St4&) is a translation of state
j. We consider the case where a single electron hops betwe¢z). The Hamiltonian is sparse in this basis, with at most four bonds
nearest-neighbor Wannier orbitals in one dimensidb), attached to a dot. The dots can also be thought of as Wannier
and interacts with dispersionless optical phonons. Therbitals in a one-body periodic tight-binding model.
electron-phonon coupling strength s and is local in real

spice fk independe(;jt Thebpararr(;e:erfsw, ";md )\d'a” ha_ve | element to a state previously in the space. These states and
units o1 eénergy, and can be used fo form two dimensIoniesyy ¢ yheir yranslations on an infinite lattice are included in

ratios. (Different conventions for the parameters are SOME344 variational spaceA translation moves the electron and

t|mes_ used in other papeys. - all phonon excitationsn sites to the righj. If a basis state
It is clear at the outset that for any finite values of the an be generated in more than one way, only one copy is
parameters, the exact ground state will be a delocalized Stafgtained. All nonzero matrix elements of’ the Hamiltonian

with momentumk, and not a “self-trapped” solution that petween retained basis states are inclugethe of this con-
breaks translation invariance. The simple argument is that i&tryction appears in Ref. 26
the ground state were self-trapped, its center could be shifted A small variational Hilbert space is shown in Fig. 1. The
and a degenerate ground state obtained. If the Hamiltoniaggts may be thought of as basis states in the many-body
has any nonzero matrix element between states with diﬁerer’q”bert space, or a|ternative|y as Wannier orbitals in a peri_
centers, a lower energy state can be obtained by a phasggdic (one-body tight-binding model, with hopping matrix
superposition of wave functions with different centées  elements given by the bonds. The variational space shown in
Bloch statg. The only known way that this argument can fail Fig. 1 s still infinite, since the lattice repeats periodically to
is with (unphysically strong electron-phonon coupling as infinity. It is clear from Bloch’s theorem, however, that each
w—0 to a gapless phonon spectrum, in which case the masigenstate can be written a&/& ,,, wherek is the momen-
trix element between different centers can varfsm that  ym, | is the unit cell, and¥,, is a set ofM complex ampli-
case, an exact ground state can be written as either selfgdes, one for each state in the unit cédl €7 for the ex-
trapped or as a Bloch state. Self-trapping cannot occur hetgmple of Fig. 1. For a given momenturk, the resulting
because the phonon spectrum has a gap. Although the exagimerical problem is to find the eigenstates of M M
ground state is a Bloch state, for some parametets, very  (sparsg Hermitian matrix using Lanczos or another method.
large\), a self-trapped solution can have a low variational Figure 2 plots the energy eigenvalues for a larger varia-
energy:* It has indeed been proven that polaron ground-stat@onal space containing a maximum of nine phonon excita-
properties, including the energy and effective mass, are angons. The figure superficially resembles a “band structure,”
lytic functions of the Hamiltonian parametéfSWe will see  which, however, encodes ground- and excited-state informa-
belqw that such a theorem cannot be extended to includggn for the many-bodymany phononpolaron problem. The
excited states. ac conductivity of the polaron, for example, appears as an
“interband” transition in this mapping.
Il. THE METHOD The largest vari;':\tional basis that we have used Mas
. . =22 orM=1.2X10" states. It is usually unnecessary to use
spzﬁ:gocrgﬁlifviﬁ:tg; basis states for the many-body Hllbertsuch a large basis for .intermgd_iate—coupling ground-state
properties, even to obtain 12-digit accuracy for the energy.
i _ . The variational Hilbert space we construct is not a standard
|M> |Ji 'vnjflinjianrli >7 (2) H .
one, and appears to add basis states more efficiently than
wherej is the electron site and there arg phonons on site  some other methods. A basis state is included if it can be
m. A variational subspace is constructed beginning with arreached usingN, phonon creation operators ahil electron
initial state, taken to be an electron on sjte 0 with no  hops in any order witiN,+ N, <Ny, . For a givenN,,, there
phonons, and operating repeatediy,(times with the off-  is a basis state witN;, phonon quanta on the same site as the
diagonal pieces of the Hamiltonian, Ed). At each step, a electron and no phonon excitations elsewhere. There is also a
basis state is added when there is a nonzeso A matrix  basis state witiN,—1 quanta on the site adjacent to the
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FIG. 3. Polaron energy as a functionlofin units of ). Lines

FIG. 2. Ground- and excited-state energy eigenvalilesse  represent our results for two different sets of parameters obtained
E;<0) are plotted as a function d€ (in units of w) for \=w by calculatingE(k) at 100k points. Circles, squares, and diamonds
=1,Np=9, M=1185. Excited states consist of the polaron with agre results obtained with global-locéRef. 15, DMRG (Refs. 15
additional bound or unbound phonon excitations. The hopping paand 17, and ED(Ref. 8 calculations, respectively.
rametert=1 is assumed here and throughout this work wheréver
is not explicitly specified. Further information about the quasiparticle may be ob-

tained by computing the quasiparticle residue, the overlap
electron and no phonon excitations elsewhere. Npiodd, ~ (squared between a bare electron and a polaron,
there is a basis state wittN,—1)/2 quanta on the electron _ a2
site and an equal number simultaneously on a first-neighbor Zi =K ¢nlcl0)I, (4)

site. The maximum distance that a phonon excitat_ion Cayhere|0) is the state with no electron and no phonon exci-

appear from the electron is=N,—1, but then only a single  tations, andy,) is the polaron wave function at momentum

quantum and only if there are no phonons excited elsewherg The numerical results fcZ,_, given in Sec. Ill differ by

in the systent® Only the basis states from a single unit cell jgss than 1% from results for the reciprocal effective mass

(a single-electron positiorare store_d_ in computer memory. mo/m* obtained from Eq(3). At finite k, Z, provides in-
The energy of a polaron for a finite chain Wfsites with  formation about the electronic character of the polaronic

periodic boundary conditions lewerthan that for an infinite  gt5te. The phonon contribution to the quasiparticle can be

lattice with the same parametef3.his is easy to verify in 1 e5sured by th& dependent mean phonon number
weak-coupling perturbation theory, or numericallif.hus,

previous exact diagonalization and most other variational ap- oh ‘ 5
proaches produce energies that are variational for the particu- Ng'= Z [(vdlai'ail i I (5
lar lattice sizeN that they treat, but are not variational in the

thermodynamic limitN— . The energy we calculate is, in To describe the polaron at differekiwe have also com-

contrast, variational in the thermodynamic liniithe quoted  yted the static correlation function between the electron po-
DMRG energies are extrapolated and not variational, alsjtion and the oscillator displacement

though they are generally rather accurate.

Having the capability t_o cor_np_ute the pola_ron enelgk) x(i—j) =<¢k|CiTCi(aj + aJ-T)| D), (6)
at any k rather than being limited to multiples of7ZN o ) )
makes our method more accurate for computing the effectiv@nd the distribution of the number of excited phonons in the

mass of the polaron using the standard formula vicinity of the electron
y(i—)=(lclcialay| ). (7)
my 1 JE(k) .
m* 2t okt |, ® Ill. GROUND-STATE RESULTS

In this section we compare our results for the ground-state
where my=1/(2t) is the effective mass of a free electron. properties of the Holstein model to those obtained by other
The second derivative is evaluated by small finite differencesiumerical methods. We also calculate polaron correlation
in the neighborhood ok=0. Note that although the calcu- functions at finite values of the Bloch wave vector
lated energ¥e (k) is a variational bound for the exact energy, = We start by comparing energy bandgék) for two differ-
there is no such control on the mass, which may be eitheent sets of parameters. Figure 3 compares the present method
above or below the exact answer, and is expected to be mote the DMRG®*’GL,'® and the finite cluster ED techniqfle.
difficult to obtain accurately. Nevertheless, in the UsingN,=20 we achieve an accuracy in the thermodynamic
intermediate-coupling regime where our method\Nat=20  limit of 12 decimal places for smak and at least four deci-
gives an energy accuracy of 12 decimal places, one can catral places for largé. Our results forE(k) are presented as
culate the effective mass extremely accuratély8 decimal  continuous curves. Agreement of our results with DMRG
places by letting Ak—O0. and ED is good; however, there is a slight disagreement with
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TABLE I. A comparison of the polaron ground-state energkat0 for two different parameter sets.

Mo Present EDN=16 DMRGN=32 Global local
1 —2.469684723933 —2.46968477 —2.46968 —2.46931
\/E —2.998828186867 —2.99882816 —2.99883 —2.99802

the global-local method at largkywhich also disagrees with are slightly scattered around our curves. Nevertheless, both
the DMRG method. There is also a slight disagreement withmethods agree well. We have compared our results for effec-
the ED at largek which we attribute to the smaller system tive mass obtained on different systems frddp=16 with
size used in finite cluster ED calculations. As we will dem-M =178617 states tdl,,= 20 with M =2 975 104 states and
onstrate later in this paper, the extent of the lattice deformaebtained convergence of results to at least four decimal
tion (the size of the polargnincreases ak approaches the places in all parameter regimes presented in Fig. 4. Our error
Brillouin-zone boundary, which makes finite-cluster calcula-is therefore well below the linewidth. Even though there is
tions more susceptible to finite-size effects. no phase transition in the ground state of the model, the
In Table | we compare the polaron ground-state energy gbvolaron becomes extremely heavy in the strong-coupling re-
k=0 for two different parameter sets obtained by our andgime. The crossover to a regime of large polaron mass is
three other numerical methods, exact diagonalizaiD),®  more rapid in adiabatic regimsmallerw/t).
DMRG,'" and global-local variationdf. Comparisons with a Figure 5 shows the quasiparticle residijeand the mean
greater variety of methods can be found in Rometal™  phonon numbeNP" as a function ok for the case of small
We have limited our comparison to those methods that arg ;=\2/2wt (\°=0.4, ©=0.8) and large\, (\°=3.2, o

accurate to at least four decimal places. Our method con= 0.8). The two sets of parameters correspond to the large

verges to all of the digits shown usiniy,=15 or M
=88052 basis states fok=w=1, and N,=18 or M
=731027 basis states for=+2,0=1. The ground-state
energy converges exponentially with,, with the accuracy
improving by approximately one order of magnitudeNgsis

and small polaron regime, respectivélfhe DMRG cannot
straightforwardly compute this quantity, and we compare our
results with cluster calculations. Open symbols represent the
results of Wellein and Fehskebtained on aN=14 site
cluster for the same choice of parameters. Except for the fact

increased by 1. This exponential convergence is used to ethat their results are limited to discrekepoints defined by

timate the error. The largeiN,= 18) calculation runs in un-
der a minute on a modest workstation.

Figure 4 shows our results for the effective mass @By.
computed withN,=20 in comparison with GL and DMRG

the size of their system, we find excellent agreement between
the two methods in the weak-coupling case. In the strong-
coupling regime there is an approximately 1% disagreement
in NE“ due to a lack of phonon degrees of freedom in the

methods. The parameters span different physical regimes ivariational space of the ED calculation. Our results in the

cluding weak and strong couplingespectively, small and weak-coupling case show a smooth crossover from predomi-
large M w), and adiabatic ¢/t<1) and antiadiabatic4/t  nantly electronic character of the wave function for snkall
>1) regimes. We find good agreement with GL away from(largeZ, and smallN{"~0) to predominantly phonon char-
strong coupling and good agreement in all regimes withacter arounck= 7 characterized by,~0 andNP"~1. In
DMRG. DMRG calculations are not based on finit@alcu-  the strong-coupling regime there is ldsslependence. The
lations due to a lack of periodic boundary conditions, so the;zk is already close to zero at smat| indicating strong

extrapolate the effective mass from the ground-state data Ugiectron-phonon interactions that lead to a large polaron
ing chains of different sizes, which leads to larger error bargnass.

and more computational effort. Notice that their discrete data jeckelmann and White have calculated the electron-
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FIG. 4. Logarithm of the effective mass*/m, as a function of

M. Our results are plotted as full lines, and global-local results as  FIG. 5. Quasiparticle weiglt#, and in the inset the total number

dashed line$Ref. 15. Open symbols, indicating the value of are
DMRG results(Ref. 17.

of phononsN,’jh as a function of the wave vectd: Results by
Wellein and FehskéRef. 8 are represented by open circles.



HOLSTEIN POLARON 1637

PRB 60
0.5
04 | o=1.0
A=0.5 o-——-o This work
o——o DMRG
03
=
0.2 a)
0.1
0.0 !
-10.0 -5.0 0.0 5.0 10.0
(i-i)
0.4 "
o ——- This work N,=17
=01 o ——-¢ This work N,=18
03 | A=0.1
®02 b)
01
v 3
0.0 :-:“M
-20.0 -10.0
6.0
@=0.1 o—e This work N,=20
2=0.435 =—=a This work N, =21
40 | DMRG
* Extrapolation
=
o)
20t
0.0

210.0 -5.0 0.0
(i-j)
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FIG. 7. Lattice deformatiorny as a function of (—j) for w
=0.8,\?=0.4, andNy,= 18, for four different values of momentum
k. The variational Hilbert space fd¥,,=18 allows nonzero corre-
lations to a maximum distandé— j|a—=17. Only distances up to
15 are plotted.

x(D)# x(=1). In this parameter regime our results have fully
converged, as we can see from the perfect overlap of results
of systems with two different sizes of the Hilbert spadg
=17,18. Figure &) plots correlations foroe=0.1 andA
=0.435, which belongs to the strong-coupling, small polaron
regime. The DMRG produces superior results in this regime,
where our calculation atl,=21 has not fully converged to
the largeNy, limit. Our results are, nevertheless, in qualitative
agreement with the DMRG. We conclude that both tech-
nigues give reliable results in the intermediate-coupling re-
gime, and that they complement each other in the weak- and
strong-coupling regimes.

A thorough investigation of correlation functions using
ED and the variational Lanczos method was performed by
Wellein and Fehsk&.Although we do not show a direct
comparison with their work, our results for correlation func-
tions agree qualitatively with their calculations.

While the strength of the DMRG calculation is exhibited
in its ability to compute ground-state properties of large sys-
tems, it is limited in its computation of excited states. In Fig.
5 we have shown how the nature of the polaron transforms
from predominantly electronic characterkat O to phononic
aroundk= 7. We follow this transformation by computing
the correlation functiony for four different values ofk,

=0.435. Our results are represented by filled symbols and those @fhown in Fig. 7. These parameters correspond to the weak-

Jeckelmann and WhitéRef. 17 by open circles. In casé) our
results forN,,=21 have not yet reached the laiyg limit. The star
represents an extrapolation of our déasuming exponential con-

vergence to N,—, x(0)=5.5+0.1.

phonon correlations &= 0 for the 1D and 2D polaron using
the DMRG method! We compare our results with theirs for
the 1D case. There is good agreement in Fi¢p) Gor
intermediate-coupling parametes#s=1 and\=0.5. Figure
6(b) plots correlations fow=0.1 and\ =0.1, which corre-

coupling case in Fig. 5. At=0, where the group velocity is
zero, the deformation is limited to only a few lattice sites
around the electron. It is always positive and exponentially
decaying. At finite but smak= #/4, the deformation around
the electron increases in amplitude and ririgscillates in
sign as the polaron acquires a finite group velocity. KAt

= /2 the ringing is strongly enhanced. Note also that the
spatial extent of the deformation increases in comparison to
k=0. The range of the deformation is maximumkat 7,
where it extends over the entire region shown in the figure.

sponds to weak coupling in the adiabatic limit. In this regimeln keeping with the larger extent of the lattice deformation
the DMRG method gives less reliable results. The size of th@ear k= 7, the ground-state enerdy§(w) converges more
polaron is underestimated, possibly due to finite-size effectslowly with the size of the Hilbert space.

in open boundary conditions. Note also that the DMRG We have also computegl for the strong-coupling case
method does not give symmetric results as it should, i.e.w=0.8, A>=3.2 (not shown. We find only weakk depen-
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FIG. 9. Phase diagram for the bound to unbound transition of
the first excited state, obtained using the condit\dm,\)=0. The
corresponding phase diagram for the ground state would be blank—
there is no phase transition in the ground state, only a crossover.

FIG. 8. First excited-state binding energy=E,—E;—w as a
function of A. Results are forw=0.5 and various Hilbert space
sizesNy, . Inset: binding energy over a wider rangeXaf

dence, which is a consequence of the crossover to the smf%ll ime x>\ r data have clearl nveraed anec0
polaron regime. The lattice deformation is localized pre- egime, ¢, Ourdata have ciearly converged afe:o.
; ; This is the regime where the extra phonon excitation is ab-
dominantly on the electron site. . .
sorbed by the polaron forming an excited bound polaron.
Since the excited polaron forms an exponentially decaying
IV. WHAT IS THE NATURE OF THE FIRST EXCITED bound state, the method already converges,at 14. In the
STATE? inset of Fig. 8 we show the binding enerdy in a larger
. . . interval of electron-phonon coupling. Although the results
In this section yve_focus on the question of vyhether Aease to converge at larger we notice that the binding
extra phonon excitation forms a bound state with the po-

. . . -~ energyA reaches a minimum as a functionof As we will
laron, or instead remains as two widely separated entities

Using numerical and analytical approaches we will show thafemonstrate within the strong-coupling approximation, the

there exists a sharp phase transition between these two stathr)é\J/.\(le v?ilt%dilrz]gr:;seia%{ alﬂp;?acg E\;\/Sezfggv\?)t(ﬁgnigae”é/igogrse_
Although the ground-state ener@y is an analytic function ) 9- b gram,

of the parameters in the Hamiltonian, there are points a alid fgrk—O,Ze_paratmg the tV\.’O régimes. .ThT'I phase bo.und-
which the energye, of the first excited state is nonanalytic. ary, given by =0, Was.obtamed numerically and using
In previous work, Gogolin has found bound states of thestrong-coupllng perturbation theory tnto first and second
polaron and additional phon¢s), but he does not obtain a
phase transition between bound and unbound states becaus
his approximations are limited to strong couplingw>1 2 tor
A phase transition between a bound and unbound first eX-y,
cited state has been calculated for dimensien3 using a 05 }
dynamical coherent potential approximafiotCPA) and dy-
namical mean-field theory.

A. Numerical results

We begin by computing the energy differenda&=E; Y,
—Eq, whereE; and E, are the first-excited-state and the 05}
ground-state energies kt=0 (the two lowest bands in Fig.
2). In the case where the first excited state of a polaron can )
be described as a polaron ground state and an unbound extr %95 Zs. 5.0 o350 R R 15.0
phonon excitation, this energy difference should in the ther- (i)
modynamic limit equal the phonon frequeneYE=w. In
Fig. 8 we plot the binding energ§=AE— w for «=0.5 as
a function of the electron-phonon coupling for various excited statgb) both computed ak = 0.9 and the same ifc) and
sizes of the variationa_l space. We see two_distinct regimeﬁd) for A=1.0. All data are computéd at phonon frequengy
Be"?‘_"’ Ac~0.95,A Var'es with the system S'Ze_ .bUt remains _g 5 andN, = 18. Note tha{d) is a plot of y; /3. Insets in(b) and
positive (A>0). Physically, forA <A, the additional pho- (qg) represent differences,— v, as a function of the distance (
non excitation would prefer to be infinitely separated from_j) |n (b), y,— y, drops to zero aroundi —j|=15. This is a
the polaron, but is confined to a distance no greater thafinite-size effect. Computing the same quantity with lartygrbe-
Nn—1 by the variational Hilbert space. As the system sizelow the phase transition would lead to a larger extent of the corre-
increasesA slowly approaches zero from above as the “par-lation function indicating that the extra phonon excitation is not
ticle in a box” confinement energy decreases. In the othebound to the polaron.

FIG. 10. Phonon numbey as a function of the distance from
the electron positioni(-j) for the ground statdéa) and the first
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order. Details of the latter calculation are given in Sec. IV B.wheren;= chcJ- . The operatoajT in EQ. (9) creates a phonon
The phase transition wher& becomes negative at suffi- excitation on sitg relative to the shifted oscillator if there is
ciently large A is also seen in exact diagonalization an electron on sitg and relative to an unshifted oscillator on
calculations’ the other sites. The first term iH, is the energy of the

In Fig. 10 we compute the distribution of the number of phonon excitations, and the second is the energy gained by
excited phonons in the vicinity of the electrarfi —j), Eq.  the oscillator that is displaced by the force of the electron. In
(7), for the ground statey, and the first excited statg;  strong-coupling perturbation theory, in Eq. (9) is consid-
slightly below \=0.9), and aboveN=1.0) the transition ered a perturbation. It represents the hopping of an electron,
for =0.5. The central peak of the correlation functipp  including possible creation and destruction of phonon exci-
below the transition point is comparable in magnitudey§o tations.
[Figs. 1Ga) and 1@b)]. The main difference between the two  The lowest energy eigenstates of the unperturbed Hamil-
curves is the long-range decaypf as a function of distance tonianH, have no extra phonon excitations, and an energy
from the electron, onto which the central peak is superim£{»= —\%w. They can be writtenpo(j))=cl|0), where
posed. The extra phonon that is represented by this lond©) represents vacuum for electron and phonon degrees of
range tail extends throughout the whole system and is ndreedom. This state represents a polaron localized on the site
bound to the polaron. See also the differenge- v, in the  j. Evidently the ground state ibl-fold degenerate, where
inset of Fig. 10b). The existence of an unbound, free phononN is the number of sites in the system. The perturbation
is confirmed by computing the difference of the total phononiifts this degeneracy. The matrix element¥,(i,j)
number N§\==,y,4(1). This difference should equal one =(¢q(i)|V|¢o(j)) can be readily computed since the expo-
below the transition point. Our numerical values giug"  nential factors inV are not effective in this case,
—NB"~1.02. We attribute the deviation from the exact result )
to finite-size effects. Vo(i,j)=—te %, j=ixl. (10)

Correlation functions above the transition poiifigs. This describes a translation-invariant tight-binding model in

10(c) and 1Qd)] are physically different. First, phonon cor- one dimension with nearest-neighbor hopping. To first order

relations iny, dec?‘y expone_ntla!ly, which also explains why in t, the ground-state energy of a polaron with momentum
the convergence in this region is excellent. Second, the size

of the central peak iry4 is three times higher thaw,. [Note
that to match scales in Fig. (d) we dividedy, by 3.] The
difference in total phonon number giva¢?"—NB"~2.33.

We are thus facing a totally different physical picture: the  gEycited statesThe lowest energy states bf, are theN

excited state is composed of a polaron which contains Seyegenerate states of energy\2/w, considered above. The

eral extra phonon excitatiori& comparison to the ground- eyt jowest energy sector contains 1K@ degenerate states

state polaropand the binding energy of the excited polaron ¢ energy— A2 o+ w, of the form| ¢ (j I))=C-Ta|T|O> The

. . . b L ] "

is A<0. The extra phonon excitations are located almospyeciron is on sitpand the additional phonon excitation is on

entirely on the elegtron _S|t[e5ee the |_nset of Fig. 18)]. The site|. We do degenerate perturbation theoryQgt) in this

V‘;"“e of y1= 7 atj=0is 2.16, which almost exhausts the g, iteq sector. Using the total momentlms a good quan-

phonon sum. tum number, the 2D tight-binding problem if,{) becomes

a 1D tight-binding problem. The 1D basis functions are

B. Strong-coupling perturbation theory |#1(J))=¥1(0,j)), wherej is the distance between the pho-

In this section we calculate the ground- and excited-stat@0n and the electron. The nonzero matrix elemeqts )
energies of the polaron perturbatively in the hoppingor = (#1(1)V[¢1(j)) are
t=0, the Hamiltonian Eq(1) describes a harmonic oscillator

Eo(K)=—\%w—2te” 9 cosk. (11)

- - i e wi V(0,0 = — 2tg2e~ % cosk
with a shifted origin(due to the\ force term on the site with 1(Y, g )
the electron, and unshifted oscillators on the other sites. The s
Hamiltonian in the new basis is given by the canonical trans- V1(0,£1)=—t(1—g?e ¥,

formationH=eSHe S, where L ,
Vi(—1,D)=—tg?e e, Vy(i,j)=—te 7,

S=-92 nja-a)). ® j=ix1, i,j#0. (12)

This is a 1D tight-binding model that is translation-invariant
except near the origin, where there is a second-neighbor hop-
ping term and other modifications. The matN4(i,]) is
3 Hermitian. Matrix elements in Eq12) define a secular equa-
H=Ho+V, Ho=0X aaj—wg®> n;, tion |V(k)—E(k)|=0 for the energies that can easily be

) ] solved numerically for a large system. For each total wave
vectork, there areN-independent solutions. The lowest en-
ergy first excited state at momentuais

and g=\w.3? After some algebrdsee also Ref. 12 the
transformed Hamiltonian takes the following form:

V= —te‘gzz (c;‘cj +1e9(af‘af+1)e—g<aj—aj+1) +H.c),
J
9) Ev(k)= -2 w+w+EP k), (13
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where E{Y(k) is the lowest energy solution of the secular the additional phonon on the same difEhe binding energy

equation. atk=0 is linear in @—g;) for higher dimensions, as it is in
The numerical and analytic solution of the secular equa4p.
tion reveals that there is a true phase transitienergy Strong-coupling perturbation theory is carried@¢t?) in

nonanalytic in the parameterr the first excited state. This the Appendix.
is perhaps surprising in light of the theorem that there can be

no phase transition for the ground stat@nd demonstrates

the impossibility of extending the theorem to include excited V. CONCLUSIONS

states. We consider first a total momentkw0. For g In summary, we have presented a variational approach for
>g,=1, the lowest energy first excited state is found to be aolving the Holstein model with dynamical, quantum
bound state of a polaron and an additional phonon. Thehonons based on an exact diagonalization method. The
bound state is Raman active. Fpr g, the first excited state variational space is defined on an infinite lattice. It is con-
is unbound, with an energy exacty higher than the ground  structed by successive application of the off-diagonal terms
state. This energy is in fact an upper bound for the firstof the Hamiltonian starting from a single-electron state. This
excited state in any dimension and at dﬁysince one can leads to a systematically improvable variational basis that
construct a variational state with a zero momentum polaroturns out to be efficient for calculating the ground-state and
and a momenturk phonon at infinite separation. The energy lOW-lying excited-state properties of the model. The method
of the first excited state is nonanalytidiscontinuous first ~¢an compute properties in all parameter regimes, but it is at
derivative at g=g,. The bound-state formation is unusual its best in the intermediate-coupling regime, where strong-
for several(related reasons{(a) For g>g,, the binding en- and weak-coupling perturbation theories and other varia-
ergy is linear in §—g,) for small (g—g,), rather than the tional methods have problems.

(g—g,)? dependence that is typical for 1D bound-state prob- The met_hod allows Fhe computation of energy bands and
lems. (b) For g<g,, the phase shift is zero between the Other physical properties at continuous wave vectors. For
polaron and an additional unbound phonon of relative mo_mtermedlate-co_uplmg strengths we are able to reach an ac-
mentum q—0. The polaron and additional phonon passCUracy of 12 digits for the ground-state energy at srkall

through each other transparently, in contrast to the usual réVith as few asM=88052 basis states and only a few sec-
pulsive phase shiftc) At g=g,, even for finiteN (periodic onds of CPU time on a workstation. Our results for energy

boundary conditions there are two exactly degenerate bands pres_ented _in Fig. 3 compare well with oth(_er numeri-
ground states, in contrast to the usual avoided crossing@lly more intensive methods and are more precise at both
These unexpected properties result in part from the fact thag"9€ and smalk than some of them. Our energies are varia-
the central site in the tight-binding mod&q. (12)] becomes tional in the thermodynamic limit for ank. We belle\_/e that
uncoupled from the rest of the lattice preciselgatg,. The &l results shown for energy bands computed with=3

binding energy in 1D can, in fact, be determined analytically’ 10° states converge to at least four digits for arbitriary
from Eq. (12. One can show that fog=g; E(ll)(k) The accuracy of our method can be seen from the com-

B —g2(y2 parison of effective masses in Fig. 4. While our results have
=—te 9 (x"+1)/x, where converged to at least four digits in all parameter regimes
presented in Fig. 4, GL and DMRG methods give less reli-
able results. While deviations of DMRG are insignificant,
deviations of GL results near strong coupling seem to be
systematic. Results for the quasiparticle residue as a function
x=g% k= (14) of the wave vector in the weak-coupling regime show a
smooth crossover between the predominantly electronic

The O(t) strong-coupling analysis can be extended tocharacter to a predominantly phononic character of the po-

higher dimensions and to nonzero total momentiunThe laron. Our resu_lts agree with previous ED _calculanons.
The correlation functiong agree well with DMRG re-

k=0 state always has an energy less than or equal to that @5 in the intermediate-coupling regime. In the weak-
any otherk. We find that forg<<g;, the first excited state at coupling regime our method gives more reliable results.
any momentunk is unbound, withg;=1 in any dimension Close to the extreme strong-coupling and adiabatic regime,
d=1. Thek=0 phase shift also vanishes fgrcg, in any  our correlation functions have not fully converged as a func-
dimension. Foig>g,, the first excited state at any momen- tion of Ny, for N,=21, M=6x10P. Our results in this re-
tum is bound®® For g, <g<gs, there is a phase transition on gime are qualitatively similar to, but less accurate than, those

a surface irk space such that inside the surfa@ecluding of the I_DMRG. (_Zorre_lation fu_nction,s computed at differen_t
k=0) the first excited state is bound, and outside the surfaclé provide detailed information on how the weak-coupling

) R ) " ; polaron transforms ak increases fronk=0 to k= .
[includingk=(m,, ...)] the erst excited state is unbound. Using numerical and strong-coupling approaches, we find
The location of the surface ik space isg dependent. The a true phase transitiofrather than a crossovein the first
numerically obtained values agg=2.1 in 3D,g,=1.66 in  excited state, where a polaron plus phonon system changes
2D, andg,=g;=1 in 1D.[1D is special in that there is no from unbound at weak coupling to bound at strong coupling.
intermediate phase. However, gs»g; in 1D, thek=7  The first excited state does not contribute to the optical con-
state is very weakly bound comparedkie 0; see Eq(14). ductivity, but rather is Raman active.

The k=7 state has zero amplitude to have the electron and There are a number of extensions to this work that we

392—1+(9g°—1)(g*-1)
X=

2 ) kZOI
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have not included in this paper. It is straightforward to con- V,(0,1)= —t(1—gz)e‘92

sider anharmonic phonon@n fact, the extreme double-well

limit where only the lowest two states are retained is numeri- m
cally less demanding than the linear caskhe ac conduc- gze—292 g2(m+n) 1- g2\ ¢?

tivity and spectral function of a polaron can be calculated by —t? ® “ . niml 1-n—m

the same methods. Properties of other Hamiltonians, includ- nm= o

ing those with SSH-type couplings where phonons modify n

the hopping can be calculated. Extensions that allow certain g2n ( ?

phonon excitations to be infinitely far from the electron are +32 ——+2], (A3)

possible. Properties in higher spatial dimensions can be cal-
culated. One can also calculate the properties of bipolarons,

2
including Hubbard on-site and longer-range interactions be- o2 s gz( 1— 12)
tween electrons. And finally, one can calculate the cohereny, 1 1)=t2e g g2m+m g/ 1
quantum dynamics of electron-phonon coupled systems '™ ® | nm=1 n'm! 1-n—m n+m

driven far from equilibrium using similar method$2°
n
2g9%°—2n+ ?(n+2)
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e 29 92n 1
' n’

V1(0,2=—t*(1-g? — A6
APPENDIX 1(0.2 (1=g)—, ngl n (A6)
For simplicity we have limited our calculation of the en-
ergy corrections in second-order strong-coupling perturba- e 20 92" 1
tion theory to 1D and zero momentuis= 0. Following the Vi(j,j+2)=—t2 > — -, =1 (A7)
work of Marsiglio}? the ground-state correction to second n=1 NN
order in the hopping is given by
—2g2 g2(m-%—n) 1
Py — 2
, - Vil p)=—2t L;ﬂ n'm n+m
-2g 2(m+n 2n
e g 1 g"1
E@)=—2t2 +3> —=|. 2n 1
0 ® n,;ﬂ n'm' n+m ngl n!' n +23 g_|_' j=2 (A8)
(Al) —1 Nt n
Calculation of the energy corrections of the excited-state en- Vi(j,j+1)= —tefgz, j=1. (A9)
ergy E, involves degenerate perturbation theory, where ma- o o o )
trix elements between degenerate stdigg(j)) are com- For k=0, Vi(i,j)=Vy(j,i)=V.(—i,—j). We numerically
puted to second order inAfter a straightforward but tedious S(()l\/z? the secular equatigW —E|=0. The lowest eigenvalue
calculation we obtain for the nonzero matrix elements Ei" of the secular equation gives us corrections to the
excited-state energlf; to second order in the hoppirig
_ 2
V1(0,00=—2tg’e™? Ei= —Nw+w+EL?. (A10)
2
) (1_ ﬂ) The binding energy to second orderkat O is given by Egs.
2,—29 2(m+n) 2
,9°€ g g (11), (A1), and(A10),
+2tc——
w nm=1 nIm!' 1-n—m
n\2 A=E{M42te 9~ ED. (A11)
2n ( 1_ _Z + 2
+E 9 9 42 (A2) The second-order results are used to calculate the phase
=5 nl! 1-n ' boundary in Fig. 9.
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