
PHYSICAL REVIEW B 15 DECEMBER 1999-IVOLUME 60, NUMBER 23
Hydrodynamic approximation for the nonlinear response of a metal surface
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We present semiclassical and quantized hydrodynamic models to obtain the quadratic electronic response of
a plane-bounded electron gas. Explicit expressions for the dynamic image potential experienced by charged
particles moving near a jellium surface are derived, up to third order in the projectile charge. These expressions
are employed to compute the image potential at all distances outside the surface. Though nonlinear corrections
are found to be more important far inside the solid than outside, our results indicate that the nonlinear image
potential is enhanced with respect to the linear image potential by a factor that is for Al as large as;1.15 near
the surface in the case of a stationary particle (v→0) with positive unit chargee. @S0163-1829~99!08847-5#
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I. INTRODUCTION

The electronic response of a metal surface to an exte
perturbation encounters a great variety of important pr
lems in surface science.1 Surface spectroscopies employin
electrons, photons, atoms, or ions all involve some kind
electronic excitation at the boundary of the surface. In p
ticular, the interaction of charged particles with solids h
represented an active field of basic and applied physics,2 and
recently a great amount of research has been focused o
case of slow (v,0.5v0 , v0 being the Bohr velocity! highly
charged ions (Z1@1, Z1e being the ion charge! moving near
a solid surface.3–7 For these projectiles, the paramet
Z1v0 /v is not small and first-order perturbation or, equiv
lently, linear-response theories are not,a priori, applicable.8

In the case of charged particles moving inside a solid, n
linear effects have been found to be crucial in the interp
tation of energy-loss measurements.9–12 Nevertheless, the
electronic response of metal surfaces to the presence o
ternal charged particles, which differs significantly from th
in purely two- or three-dimensional systems, had been
scribed so far within linear-response theory.13

A central quantity in the interpretation of ion-surface co
lisions is the so-called image potential, which represents
interaction between the incoming charge and the polariza
charge that it induces on the surface. In the case of a par
of chargeZ1e located at a distancez0 far from the surface,
into the vacuum, this potential approaches the long-ra
classical Coulomb image potentialVim52Z1

2e2/4z0.14 For
smaller values ofz0 the image potential differs significantl
from its classical limit, the deviation from the classical res
increasing asz0 decreases.15

The classical image potential acting between a point c
sical charge and a metal surface may be regarded as o
PRB 600163-1829/99/60~23!/16176~10!/$15.00
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nating in the coupling with the surface plasmon field.16,17

Dynamical corrections to the classical image potential h
been discussed in the framework of linear-respo
theory,18–20and recoil effects have been treated by includi
the exchange of virtual excitations between the exter
charge and the medium.21 Preliminary results for nonlinea
corrections to the image potential associated with the q
dratic response of solid surfaces have been reported
very recently.22

Theoretical approaches commonly used to describe
electronic response of jellium surfaces can be classified
being either hydrodynamic23 in nature or based on the so
called random-phase approximation~RPA!.24 Hydrodynamic
approaches are appealing because of their relative m
ematical and computational simplicity, and have been u
with great success in the description of collective phenom
at metal surfaces.25 Within a hydrodynamic model, one as
sumes that the collective motion of the electron gas may
described in terms of the displacement of the electrons fr
their original uniform state, and the electron system is ch
acterized by the electron density and a velocity field. Th
quantities are then obtained by solving the well-known no
linear Bloch hydrodynamic equations. If one does not
clude quantum properties of the electron system we refe
the hydrodynamic model asclassical, and assemiclassicalif
quantum properties are introduced through the definition
the internal energy density. If one quantizes the hydro
namic Hamiltonian on the basis of the existing norm
modes,26 we have the so-called quantized hydrodynam
model which allows us to apply standard methods of ma
body perturbation theory.

In a previous work,27 we used the quantized hydrody
namic model to describe the quadratic response of a ho
geneous electron gas. We derived expressions for the
16 176 ©1999 The American Physical Society
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dratic polarization induced by a moving charged particle, a
demonstrated that they coincide with the plasmon-p
approximation28 to the more accurate quadratic RP
polarization.29

In this paper, we first develop semiclassical and quanti
hydrodynamic models to derive the quadratic electronic
sponse of a plane-bounded electron gas, and we then f
on the evaluation of the nonlinear dynamic image poten
experienced by charged particles moving parallel to a jelli
surface. In Secs. II and III semiclassical and quantized n
linear hydrodynamic models are presented, respectively
Sec. IV numerical calculations of both linear and quadra
contributions to the image potential are reported, as a fu
tion of the distance from the surface. In Sec. V our conc
sions are presented.

II. SEMICLASSICAL HYDRODYNAMIC MODEL

Take an inhomogeneous electron system embedded
neutralizing ionic background. In the hydrodynamic limit,30

the total energy of the system can be expressed as31 ~we use
atomic units throughout, i.e.,\5me5e51):

H5
1

2E drne~r ,t !u“c~r ,t !u22
1

2E drn~r ,t !V~r ,t !

2E drn~r ,t !Vext~r ,t !1E drG@ne~r ,t !#, ~1!

where irrotational flow has been assumed, i.e.,u(r ,t)
52“c(r ,t), u(r ,t) being a velocity field, and retardatio
effects have been neglected.ne(r ,t)5n0(r )1n(r ,t) is the
total electron density, withn(r ,t) representing the deviatio
from the equilibrium static densityn0(r ). V(r ,t) is the in-
duced electric potential,Vext(r ,t) represents the external pe
turbation, andG@ne(r ,t)# represents the exchange, corre
tion, and internal kinetic energies of the electron system.
neglect exchange-correlation contributions toG@ne(r ,t)#,
which we approximate by the Thomas-Fermi functional30

G@ne~r ,t !#5
3

10
~3p2!2/3@ne~r ,t !#5/3. ~2!

From Eq.~1!, the basic hydrodynamic equations can
derived, i.e., the continuity equation,

ṅe5“•~ne“c!, ~3!

and the Bernouilli equation,

hc1ċ1m5
1

2
u“cu22U1

dG@ne#

dne
, ~4!

which conserves both momentum and energy. Here,m is a
Lagrangian multiplier~a constant!, andh is a positive num-
ber representing the internal friction of the electron g
which would appear as a consequence of the interaction
excitations not included in this description. If the extern
perturbation is generated by a charge densitynext(r ,t), then
the total electric potentialU(r ,t)5V(r ,t)1Vext(r ,t) is ob-
tained from the Poisson equation

¹2U524p@next2n#. ~5!
d
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These are nonlinear equations, difficult to solve. With
perturbation theory, we expand the induced electron den
n(r ,t) and the velocity potentialc(r ,t) in powers of the
external perturbation,

n5n11n21••• ~6!

and

c5c11c21•••, ~7!

respectively, assuming thatn0@n1@n2@ . . . and c1@c2
@ . . . . Equations~3! and~4! are then expanded in powers o
the external perturbation, and partial differential equatio
for the various orders ofn(r ,t) andc(r ,t) are derived.

A. Linear approximation

Up to first order in the external perturbation one find
after introduction of Eq.~2! into Eq. ~4!, the linearized hy-
drodynamic equations

hc11ċ152U11
b2

n0
n1 ~8!

and

ṅ15n0 ¹2c1 , ~9!

whereU1(r ,t) is obtained from

¹2U1524p@next2n1#, ~10!

and whereb5A1/3qF , qF5(3p2n0)1/3 being the Fermi mo-
mentum. Though this is the value of the hydrodynamic sp
b predicted with use of the Thomas-Fermi function
G@ne(r ,t)# of Eq. ~2!, the valueb5A3/5qF is expected to be
more appropriate when high frequencies of the order of
plasma frequency are involved.32,33

We consider a classical charged particle moving with
locity v outside of a semi-infinite metallic medium, along
trajectory that is parallel to the surface, thereby appro
mately simulating the experimental conditions when the p
jectile approaches the surface at grazing incidence. He
we take the external charge density atr5(r i ,z) to be given
by the following expression:

next~r ,t !5Z1d~r i2vt !d~z2z0!, ~11!

the vacuum occupying the half-spacez.0, andz0 being the
distance of the trajectory from the metal. After Fourier an
lyzing both in time and inr i , one finds the following linear-
ized hydrodynamic equations with variables (z;q,v), q be-
ing the wave vector parallel to the surface:

~2 iv1h!c152U11
b2

n0
n1 ~12!

and

2 ivn15n0~c192q2c1!, ~13!

where the prime denotes the derivative with respect toz,
U1(z;q,v) is obtained from

U192q2U1524pnext14pn1 , ~14!
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and

next~z;q,v!52pZ1d~v2q•v!d~z2z0!. ~15!

Assuming a sharp density profile at the surface, i
n0(z)5n0Q(2z) @Q(z) is the Heaviside step function#, the
appropriate solutions of Eqs.~12! and ~13! are

n1~z;q,v!5n0A1~Dq,v
2 2q2!eDq,vzQ~2z!, ~16!

c1~z;q,v!52 iv~A1eDq,vz1B1eqz!Q~2z!, ~17!

U1
,~z;q,v!5vp

2A1eDq,vz1v~v1 ih!B1eqz, ~18!

and

U1
.~z;q,v!5C1e2qz1Z1

4p2

q
d~v2q•v!e2quz2z0u.

~19!

Here, U1
,,.(z;q,v) is the Fourier-transformed electric po

tential for z ~less than, greater than! zero,vp5(4pn0)1/2 is
the so-called plasma frequency, and

Dq,v5
1

b
Avp

21b2q22v~v1 i h!. ~20!

The constantsA1 , B1, andC1 are evaluated from the bound
ary conditions at the surface:

A152
q

Dq,v
B1 , ~21!

B15
8p2Z1

q

d~v2q•v!e2qz0

@2v~v1 i h!2vp
2~11q/Dq,v!#

, ~22!

and

C15
4p2Z1

q

vp
2~12q/Dq,v!d~v2q•v!e2qz0

@2v~v1 i h!2vp
2~11q/Dq,v!#

. ~23!

The induced electric potentialV1(r ,t) is the difference
between the total and external potentialsU1(r ,t) and
Vext(r ,t), respectively. The image potential is defined as h
of the induced potential at the position of the projectile tim
the projectile charge, and one finds

V1
im5Z1

2
vp

2

4pE d2qe22qz0

3
1/q21/Dq,q•v

@2q•v~q•v1 i h!2vp
2~11q/Dq,q•v!#

. ~24!

This agrees with the result obtained using either the spec
reflexion34 or the semi-classical infinite barrier35 model of
the surface, as long as the hydrodynamic dielectric respo
function of the bulk material is used in these models.
particular, for a stationary charged particle (v50), one finds

V1
im5

1

2
Z1

2E dq
q2Dq,0

q1Dq,0
e22qz0. ~25!

This agrees with the early result of Eguiluz.36
.,

lf
s
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Within the hydrodynamic model, one can define two ch
acteristic screening lengthsl. For a stationary charged pa
ticle (v50), l5b/vp , and in the case of a swift charge
particle (v@qF), l5v/vp . In the limit z0→`, the distance
z0 of the projectile from the surface being much larger th
the screening length, one finds the classical image poten

V1
im52

Z1
2

4z0
. ~26!

B. Quadratic approximation

Up to N th order (N>2) in the external perturbation, on
finds the hydrodynamic equations:

hcN1ċN

5
1

2 (
m51

N21

~“cN2m•“cm!2VN1
3

2
b2n0

22/3

3(
k51

N F )
s51

k

~523s!

n0
k22/33k (

k1 ,k2 , . . . ,kN50

(
i51

N

ki5k;(
i51

N

iki5N

N S )
j51

N nj
k j

kj!
D G

~27!

and

ṅN5n0¹2cN1 (
m51

N21

@nN-m¹2cm1“nN-m•“cm#, ~28!

whereVN(r ,t) is obtained from

¹2VN54pnN . ~29!

After Fourier transforming in time and inr i , we obtain
for N52 the quadratic approximation

2 i~v1 i h!c252V21
1

2
u“c1u(z;q,v)

2 1
b2

n0
n22

b2

6n0
2 n1

2

~30!

and

2 i vn25n0~c292q2c2!1@n1¹2c11“n1•“c1# (z;q,v) ,
~31!

where the prime denotes the derivative with respect toz, and
the Fourier-transformed potentialV2(z;q,v) is obtained
from

V292q2V254pn2 . ~32!

In particular, for a stationary (v50) charged particle Eqs
~30! and ~31! yield

V25
b2

n0
n22

b2

6n0
2 n1

2 , ~33!

where V2(z;q,v) is still obtained from Eq.~32!. Solving
these equations with the assumption of a sharp density
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file at the surface, quadratic contributions to the induced d
sity and potential are found to be given by the followin
expressions:

n2~z;q,v!5Q~2z!FA2eDq,0z1Z1
2 1

6n0
E d2k

~2p!2

3e(Dk,01Dk2q,0)z
~Dk,01Dk2q,0!

22q2

~Dk,01Dk2q,0!
22Dq,0

2
f k f k2qG ,

~34!

V2
,~z;q,v!5

4p

Dq,0
2 2q2

A2eDq,vz1B2eqz1Z1
2 4p

6n0

3E d2k

~2p!2

f k f k2qe
(Dk,01Dk2q,0)z

~Dk,01Dk2q,0!
22Dq,0

2
, ~35!

and

V2
.~z;q,v!5C2eqz, ~36!

where

f q5~Dq,02q!e2qz0, ~37!

and Dq,v is obtained from Eq.~20!. The constantsA2 , B2,
and C2 are evaluated from the boundary conditions at
surface.

Hence, we find the quadratic contribution to the ima
potential of a stationary (v50) charged particle to be give
by the following expression:

V2
im52Z1

3 b2

6pvp
4E

0

`

dqqE
0

`

dq1q1

3E
0

2p

du
f qf q1

f q2q1

~Dq,01Dq1,01Dq2q1,0!
, ~38!

u being the angle betweenq and q1. In the case of a non
dispersive electron gas (b50), this contribution to the im-
age potential vanishes. On the other hand, in the limit asz0
→` only the low-momentum form of the integrand of E
~38! contributes to the integration, and we find in this lim

V2
im52Z1

3 1

18pvp
2E0

`

dqqE
0

`

dq1q1e2(q1q1)z0

3E
0

2p

due2uq2q1uz0. ~39!

Numerical integration yields

V2
im52Z1

3 0.82

18pvp
2z0

4
, ~40!

and, therefore@see Eq.~26!#,

Vim52
Z1

2

4z0
F11Z1

1.9331022

~z0 /r s!
3

1O~Z1
2!G . ~41!
n-

e

e

This is a reasonable approximation for the image potentia
a stationary charge, as long as the distance from the sur
z0 is larger than the characteristic screening lengthb/vp ,
i.e., for z0*Ar s a0, a05\2/(mee

2) being the Bohr radius.
We note that in the high-density limit (r s→0) there is no
quadratic contribution to the image potential of a station
charge, while at metallic densities (r s;2 –6) quadratic cor-
rections might give rise to an image potential that is atz0

;Ar sa0 larger than the linear image potential by a factor
large as 1.05–1.3 in the case of a stationary particle w
positive unit chargee(Z151).

III. QUANTIZED HYDRODYNAMIC MODEL

Within a quantized hydrodynamic model of the electr
gas, we first expand the Hamiltonian of Eq.~1! in powers of
the induced electron densityn(r ,t). After introduction of the
Thomas-Fermi functional of Eq.~2! into Eq. ~1!, up to third
order one finds

H5HG1H01H11Hext, ~42!

where

HG5
3

10
~3p2!2/3n0

5/3, ~43!

H05E dr F1

2
n0u“cu21

b2

2n0
n22

1

2
nVG , ~44!

H15E dr F1

2
nu“cu22

b2

18n0
2 n3G , ~45!

and

Hext52E drnVext. ~46!

HG is the Thomas-Fermi ground state of the static unp
turbed electron system,H0 represents the linear deviatio
from the ground state,H1 appears as a consequence of t
nonlinearity of the electron system, andHext represents the
contribution to the Hamiltonian from the coupling with th
external charged particle.

We consider, as in the previous section, a semi-infin
electron system embedded in a neutralizing ionic ba
ground, assuming a sharp electron-density profile at the
face. For each value ofq ~the wave vector parallel to the
surface! there exist both bulk and surface normal modes
oscillation with frequencies given by the following dispe
sion relations:

~vq,p
B !25vp

21b2~q21p2! ~47!

and

~vq
S!25

1

2
@vp

21b2q21bq~2vp
21b2q2!1/2#, ~48!

respectively, whereb represents the speed of propagation
hydrodynamic disturbances in the electron system. As in
previous section, we chooseb5A3/5qF .
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Now we follow Ref. 26 to quantize the Hamiltonian o
Eq. ~42! on the basis of the normal modes corresponding
Eqs.~47! and~48!, which we shall refer to after quantizatio
as bulk and surface plasmons, respectively. We find

H05H0
S1H0

B , ~49!

H0
B and H0

S being free bulk and surface plasmon Hamilt
nians, respectively:

H0
B5

1

V (
q,p.0

@1/21vq,p
B #aq,p

† ~ t !aq,p~ t ! ~50!

and

H0
S5

1

A (
q

@1/21vq
S#bq

†~ t !bq~ t !. ~51!

Here V and A represent the normalization volume and t
normalization area of the surface, respectively, andaq,p(t)
and bq(t) are Bose-Einstein operators that annihilate b
and surface plasmons with wave vectors (q,p) and q, re-
spectively. The quantizedH1 hamiltonian, which contains
the quadratic electronic response of the electron system,
be consider below. For the Hamiltonian containing the c
pling between the external particle and either bulk or surf
plasmon fields, one finds

Hext5Hext
S 1Hext

B , ~52!

where

Hext
B/S5E drrext~r ,t !fB/S~r ,t !, ~53!

fB/S(r ,t) representing operators corresponding to the sc
electric potential due to bulk/surface plasmons. Outside
metal (z.0),

fB~r ,t !52
1

V (
q,p.0

f q,p
B ~z!eiq•r ixq,p

B ~ t ! ~54!

and

fS~r ,t !52
1

A (
q

f q
S~z!eiq•r ixq

S~ t !, ~55!

xq,p
B (t) and xq

S(t) representing operators associated to
electron density induced by the excitation of bulk and s
face plasmon fields, respectively,

xq,p
B ~ t !5aq,p

† ~ t !1a2q,p~ t ! ~56!

and

xq
S~ t !5bq

†~ t !1b2q~ t !, ~57!

and f q,p
B (z) and f q

S(z) being bulk and surface coupling func
tions,

f q,p
B ~z!5

A2p/vq,p
B vppe2qz

@p41p2~q21vp
2/b2!1vp

4/~4b4!#1/2
~58!

and
o

k

ill
-
e

ar
e

e
-

f q
S~z!5

Apgq /vq
Svp

@q~q12gq!#1/2
e2qz. ~59!

Heregq represents the so-called inverse decay length of
face plasmon charge fluctuations,36

gq5
1

2b
@2bq1A2vp

21b2q2#. ~60!

In the absence of electron-gas dispersion (b50), the scalar
electric potentialfB(r ,t) due to bulk plasmons vanishes ou
side the surface; hence, in this case probes exterior to
solid can only generate surface excitations.

We derive the potential induced by the presence of
external perturbing charge as the expectation value of
total scalar potential operator,37

V~r ,t !5
^C0ufH

B1fH
S uC0&

^C0uC0&
, ~61!

whereuC0& is the Heisenberg ground state of the interact
system, and wherefH

B(r ,t) andfH
S(r ,t) are the operators o

Eqs. ~54! and ~55! in the Heisenberg picture. Equation~61!
can be rewritten as follows

V~r ,t !5
^F0uU†~ t,2`!@f I

B1f I
S#U~ t,2`!uF0&

^F0uU†~ t,2`!U~ t,2`!uF0&
,

~62!

where uF0& represents the ground state of an interact
electron system described by the free plasmon Hamilton
H0, andU(t1 ,t0) is the evolution operator,

U~ t1 ,t0!5TH expF2 iE
t0

t1
dt~H1

I 1Hext
I !G J , ~63!

T being the chronological operator, andH1
I /Hext

I representing
the HamiltoniansH1/Hext in the interaction picture.

A. Linear approximation

Up to first order in the external perturbation one find
after introduction of Eq.~63! into Eq. ~62!, the linear contri-
bution to the induced potential:

V1~r ,t !5V1
B1V1

S, ~64!

where

V1
B~r ,t !5Z1E d2q

~2p!2E0

` dp

2p

3 f q,p
B ~z! f q,p

B ~z0!Dq,p
B ~q•v!eiq•(r i2vt) ~65!

and

V1
S~r ,t !5Z1E d2q

~2p!2
f q

S~z! f q
S~z0!Dq

S~q•v!eiq•(r i2v,t),

~66!

Dq,p
B (v) andDq

S(v) representing retarded Green’s functio
for the operatorsxq,p

B (t) andxq
S(t), respectively:
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Dq,p
B ~v!5

2vq,p
B

v~v1 i h!2~vq,p
B !2

~67!

and

Dq
S~v!5

2vq
S

v~v1 i h!2~vq
S!2

. ~68!

Equation~64! agrees with the linear contribution to the in
duced potential obtained, within the semiclassical hydro
namic model, as the difference between the Fourier tra
form of the total potential of Eq.~19! and the externa

FIG. 1. Feynman diagrams representing first-~a! and second-
~b! order contributions to the electric potential induced by an ex
nal charged particle. The external perturbation is represented
white points, and the cross represents a test positive unit cha
Wavy lines represent plasmon propagators and the black point,
ing three plasmon lines, describes the nonlinear interaction betw
three excitations
-
s-

potential Vext(r ,t). Within the semiclassical approach, th
role played by bulk and surface plasmons goes unnotic
however, the quantized hydrodynamic model provides
plicit separate expressions for the contributions to the
duced potential coming from the coupling with bulk and su
face plasmons. The role that bulk and surface plasm
excitation plays on the energy loss of charged particles in
acting with metal surfaces has been investigated recent38

showing that bulk plasmons are excited even in the cas
charged particles that do not penetrate into the solid.

B. Quadratic approximation

Quantizing the HamiltonianH1 of Eq. ~45! on the basis of
both bulk and surface plasmons is a difficult task, becaus
the interaction between bulk and surface plasmon fie
Hence, for the description of the nonlinear response t
charged particle moving outside of a semi-infinite mediu
now we neglect bulk-plasmon contributions and find the f
lowing expression for the quantizedH1 Hamiltonian:

H15
1

A2 (
q1

(
q2

@2Lq1 ,q2
ẋq1

S ~ t !ẋq2

S ~ t !

1Pq1 ,q2
xq1

S ~ t !xq2

S ~ t !#x2(q11q2)
S ~ t !, ~69!

where

r-
by
e.

n-
en
s

ial
Lq1 ,q2
5

gq11q2
1uq11q2u

~gq1
2q1!~gq2

2q2!A2n0q1q2vq1

S vq2

S vq11q2

S

3F uq11q2ugq11q2
gq1

gq2

~q112gq1
!~q212gq2

!~ uq11q2u12gq11q2
!G 1/2Fq1q2~q1•q22gq1

gq2
!

gq1
1gq2

1gq11q2

2
q1gq2

~q1•q22gq1
q2!

gq1
1q21gq11q2

1
q2gq1

~q1•q22q1gq2
!

q11gq2
1gq11q2

2
gq1

gq2
~q1•q22q1q2!

q11q21gq11q2

G ~70!

and

Pq1 ,q2
52

b2

18n0
1/2F q1q2uq11q2ugq1

vq1

S vq2

S vq11q2

S ~q112gq1
!

gq2
gq11q2

~q212gq2
!~ uq11q2u12gq11q2

!G 1/2
~q11gq1

!~q21gq2
!~ uq11q2u1gq11q2

!

gq1
1gq2

1gq11q2

.

~71!

The first term in Eq.~69! comes from the kinetic energy of fluid flow,* drnu“cu2/2, while the second term, which i
proportional tob2, comes from the internal energyG@n# of Eq. ~2!.

Introducing Eqs.~52! and~69! into Eq. ~63!, and Eq.~63! into Eq. ~62!, the quadratic contribution to the induced potent
is found to be given by the following expression:

V2~r ,t !52Z1
2E d2q

~2p!2

d2q1

~2p!2
f q

S~z1z0! f q1

S ~z0! f q2q1

S ~z0!Dq
S~v!Dq1

S ~v1!Dq2q1

S ~v2v1!

3@vv1L2q,q1
2v~v2v1!L2q,q2q1

1v1~v2v1!Lq1 ,q2q1
13Pq,2q1

#eiq•(r i2vt), ~72!

wherev5q•v and v15q1•v. Linear and quadratic contributions to the induced potential@see Eqs.~64! and ~72!# can be
represented diagrammatically as in Fig. 1. As for the quadratic contribution, the external perturbation~white circles! acts twice
on the electron gas through plasmon propagators~wavy lines!, thereby creating an induced potential at pointr and timet
~crosses!.
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In particular, for a stationary charged particle we havev5v150, thereby only the internal kinetic energy of Eq.~2!
contributing to the quadratic induced potential. For the quadratic contribution to the image potential of a stationary
particle we find

V2
im52Z1

3
b2vp

2

6p E
0

`

dqqE
0

`

dq1q1e2(q1q1)z0E
0

2p

du

3
gqgq1

gq2q1
e2(q2q1)z0

~vq
Svq1

S vq2q1

S !2~gq1gq1
1gq2q1

!

~q1gq!~q11gq1
!~ uq2q1u1gq2q1

!

~q12gq!~q112gq1
!~ uq2q1u12g uq2q1

!
, ~73!
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which in the case of a nondispersive electron gas (b50)
vanishes. Hereu is the angle betweenq andq1, and in the
limit as z0→` Eq. ~73! yields

V2
im52Z1

3 0.41

18pvp
2z0

4
. ~74!

This quadratic contribution to the image potential is half t
result obtained within the semiclassical hydrodynamic mo
@see Eq.~40!#. In the case of a stationary charged particle
whole quadratic contribution to the image potential com
from the second term in Eq.~45!, i.e., from the linearly in-
duced electron density acting twice on the external cha
The total electron densityn1 induced at the surface by
stationary charged particle is, in the limitz0→`, A2 times
the electron densityn1

S induced through coupling with sur
face plasmons~see the Appendix!. As a consequence, th
total quadratic contribution to the image potential is in th
limit @see Eq.~40!# twice as large as the quadratic contrib
tion of Eq. ~74!, which has been deduced by neglecting t
coupling with bulk plasmons.

IV. RESULTS

Figure 2 shows plots of the linear contribution to the im
age potential of a particle with unit chargee(Z151) travel-
ing parallel to the surface of a semi-infinite electron gas ch
acterized by a static electron densityn0 equal to the average
electron density in the conduction band of aluminumr s
;2).39 These plots are shown as a function ofz0, the dis-
tance from the surface, and the speed is taken to bev50
@Fig. 2~a!# and v52 @Fig. 2~b!#. Contributions from cou-
plings with bulk and surface plasmon fields, as obtain
from Eqs.~65! and ~66!, respectively, are represented sep
rately by dashed and dotted lines, and the total linear con
bution to the image potential, obtained from either Eq.~24!
or Eq. ~64!, is represented by a solid line. For compariso
the classical image potential of Eq.~26! is represented by a
dashed-dotted line, showing that it converges with the
linear result when the distancez0 is well above the screenin

length, i.e.,z0*Ar sa0 for v50 andz0;
.

2 Ar sa0 for v52.
Quadratic contributions to the image potential of a p

ticle with unit chargee(Z151) traveling, as in Fig. 2, par
allel to the surface of a plane-bounded electron gas are
picted in Fig. 3. The electron-density parameterr s and the
velocity of the external charged particle are the same as th
considered in Fig. 2. In the case of a stationary charged
l
e
s

e.

e

r-

d
-
ri-

,

ll

-

e-

se
r-

ticle @Fig. 3~a!#, the contribution from coupling with the sur
face plasmon field, as obtained from Eq.~73!, is represented
~dotted line! together with the total quadratic contributio
~solid line!, obtained from Eq.~38!. At large distances from
the surface (z0→`), the total quadratic contribution to th
image potential is twice as large as the quadratic contribu
from surface plasmon excitation, as discussed after Eq.~74!.
At smaller values ofz0, the quadratic contribution from the
bulk channel becomes dominant, the total quadratic im
potential being near the surface larger than the quadratic
tribution from the surface channel by a factor of;10. The

FIG. 2. Linear contribution to the image potential of a partic
with chargeZ151 and speedv50 ~a! andv52 ~b! traveling par-
allel to the surface of a semi-infinite electron gas withr s52, as a
function of the distancez0 from the surface. Solid lines represe
the full linear contribution to the image potential. Dashed and d
ted lines represent contributions from the excitation of bulk a
surface plasmons, respectively. The classical image potential of
~26! is represented by a dashed-dotted line.
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quadratic contribution from the surface channel to the im
potential of a charged particle moving with speedv52, as
obtained from Eq.~72!, is represented by a dotted line
Fig. 3~b!.

Figure 4 exhibits by a solid line, as a function of th
distancez0 from the surface, the ratio between full quadra
@solid line of Fig. 3~a!# and linear@solid line of Fig. 2~a!#
contributions to the image potential of a stationary parti
with unit charge e(Z151). For comparison, the ratio
Z11.9331022(z0 /r s)

23, as obtained from Eq.~41!, is rep-
resented by a dashed-dotted line, showing that it conve
with the full ratio ~solid line! when the distancez0 is well
above the screening length, i.e.,z0*Ar sa0.

V. CONCLUSIONS

First of all, we have presented semiclassical and qu
tized hydrodynamic models to obtain the quadratic electro
response of a semi-infinite electron gas. Then, we have
rived explicit expressions for the dynamic image poten
experienced by charged particles traveling parallel to a

FIG. 3. As in Fig. 2, for the quadratic contribution to the ima
potential of a particle with chargeZ151. Dotted lines represent th
quadratic contribution from to the image potential coming fro
surface plasmon excitation. In the case of a stationary particlev
50), the full quadratic contribution to the image potential is re
resented by a solid line.
e

e

es

n-
ic
e-
l
l-

lium surface, up to third order in the projectile charge. In t
case of a stationary charged particle the total quadratic c
tribution to the image potential has been found to be, at la
distances from the surface, twice as large as the quad
contribution coming from the surface plasmon field. Near
surface, the total quadratic contribution to the image pot
tial of a charged particle withv50 has been found to be
larger than the quadratic contribution from the surface ch
nel by a factor of;10. As the speed of the moving charge
particle increases, linear contributions to the image poten
coming from the bulk channel have been found to decrea
and quadratic contributions from coupling with the bu
plasmon field are also expected to decrease with increa
velocity.

Though nonlinear corrections are found to be more imp
tant far inside the solid29 than outside, our results indicat
that the nonlinear image potential is enhanced with respec
the linear image potential by a factor that is for aluminum
large as;1.15 near the surface in the case of a station
charged particle (v50) with unit chargee(Z151). At large
distances (z0@Ar sa0) from the surface, the ratio betwee
quadratic and linear contributions to the image potential o
stationary charged particle decreases with the distancez0 as
Z11.9331022(z0 /r s)

23, showing that it vanishes at hig
electron densities.

As the speed of the moving charged particle increas
quadratic contributions to the image potential are found to
very small. In particular, in the case of a projectile of char
Z1510 moving with speedv52 near the metal surface, con
tributions to the quadratic image potential from coupli
with the surface plasmon field have been found to enha
the linear image potential near the surface by a a factor
of ;1.14.
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FIG. 4. Ratio between quadratic and linear contributions to
image potential of a stationary particle (v50) with chargeZ151
that is located outside the surface of a semi-infinite electron
with r s52 at a distancez0 from the surface. The solid line repre
sents the ratio between full calculations of quadratic and linear
age potentials. The dashed-dotted line represents the approxi
ratio Z11.9331022(z0 /r s)

23, taken from Eq.~41!.
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APPENDIX

Here we use both semiclassical and quantized hydro
namic models to evaluate the first-order electron densityn1,
which we assume to be induced by a stationary particlev
50) of chargeZ1 that is located far from the surface, i.e
z0→`.

Within the semiclassical hydrodynamic model, this qua
tity is easily found from Eq.~16! to be given by the follow-
ing expression:

n1~z!5Z1

vp

2pb

evpz/b

z0
2

Q~2z!. ~A1!

Within the quantized hydrodynamic model, the operat
corresponding to the induced electron density due to b
and surface plasmons are obtained as follows:

n̂B~r ,t !52
1

V (
q,p.0

gq,p
B ~z!eiq•r ixq,p

B ~ t !Q~2z! ~A2!

and

n̂S~r ,t !52
1

A (
q

gq
S~z!eiq•r ixq

S~ t !Q~2z!, ~A3!

the operatorsxq,p
B (t) andxq

S(t) being given by Eqs.~56! and
~57!, respectively, andgq,p

B (z) and gq
S(z) representing bulk

and surface coupling functions,

gq,p
B ~z!5H 2vp /~pvq,p

B !

@2~vq,p
B !22vp

2#224b2q2~vq,p
B !2J 1/2

3$p@vp
212b2~p21q2!#cospz1qvp

2 sinpz%

~A4!
,

F.

.

w-
n

ate
,

y-

-

s
lk

and

gq
S~z!5Aqgq /~vq

Sp!vp

q1gq

~q12gq!1/2
egqz. ~A5!

The electron density induced by the presence of the
ternal perturbing charge is obtained as the expectation v
of the total electron density operator. Up to first order in t
external perturbation and in the limit asz0→`, we find

n1~z!5n1
B~z!1n1

S~z!, ~A6!

where

n1
B~z!5Z1

vp

2pb

evpz/b2evpz/(A2b)/A2

z0
2

~A7!

and

n1
S~z!5Z1

vp

2pb

evpz/(A2b)/A2

z0
2

. ~A8!

Equation~A6! coincides with Eq.~A1!, and shows that as
long as the stationary charged particle is located far from
surface the total electron densityn1 induced at the surface
(z;0) is, in the limit asz0→`, A2 times the electron den
sity n1

S induced through coupling of the charged particle w
the surface plasmon field.
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