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We present semiclassical and quantized hydrodynamic models to obtain the quadratic electronic response of
a plane-bounded electron gas. Explicit expressions for the dynamic image potential experienced by charged
particles moving near a jellium surface are derived, up to third order in the projectile charge. These expressions
are employed to compute the image potential at all distances outside the surface. Though nonlinear corrections
are found to be more important far inside the solid than outside, our results indicate that the nonlinear image
potential is enhanced with respect to the linear image potential by a factor that is for Al as lardelé&snear
the surface in the case of a stationary particle~(0) with positive unit charge. [S0163-1829)08847-5

. INTRODUCTION nating in the coupling with the surface plasmon figid’
Dynamical corrections to the classical image potential have
The electronic response of a metal surface to an externddeen discussed in the framework of linear-response
perturbation encounters a great variety of important probtheory!®-?°and recoil effects have been treated by including
lems in surface scienceSurface spectroscopies employing the exchange of virtual excitations between the external
electrons, photons, atoms, or ions all involve some kind otharge and the mediuf.Preliminary results for nonlinear
electronic excitation at the boundary of the surface. In parcorrections to the image potential associated with the qua-
ticular, the interaction of charged particles with solids hasdratic response of solid surfaces have been reported only
represented an active field of basic and applied physics] very recently??
recently a great amount of research has been focused on the Theoretical approaches commonly used to describe the
case of slow {<0.5vy, v, being the Bohr velocityhighly  electronic response of jellium surfaces can be classified as
charged ionsZ,>1, Z,e being the ion chargemoving near  being either hydrodynanfi¢ in nature or based on the so-
a solid surfacé”’ For these projectiles, the parameter called random-phase approximatitRPA).24 Hydrodynamic
Zy1vo/v is not small and first-order perturbation or, equiva-approaches are appealing because of their relative math-
lently, linear-response theories are rmtpriori, applicable’  ematical and computational simplicity, and have been used
In the case of charged particles moving inside a solid, nonwith great success in the description of collective phenomena
linear effects have been found to be crucial in the interpreat metal surface® Within a hydrodynamic model, one as-
tation of energy-loss measuremefits’ Nevertheless, the sumes that the collective motion of the electron gas may be
electronic response of metal surfaces to the presence of egescribed in terms of the displacement of the electrons from
ternal charged particles, which differs significantly from thattheir original uniform state, and the electron system is char-
in purely two- or three-dimensional systems, had been deacterized by the electron density and a velocity field. These
scribed so far within linear-response theoty. quantities are then obtained by solving the well-known non-
A central quantity in the interpretation of ion-surface col- linear Bloch hydrodynamic equations. If one does not in-
lisions is the so-called image potential, which represents thelude quantum properties of the electron system we refer to
interaction between the incoming charge and the polarizatiothe hydrodynamic model agassical and assemiclassicaif
charge that it induces on the surface. In the case of a particiguantum properties are introduced through the definition of
of chargeZ, e located at a distancg, far from the surface, the internal energy density. If one quantizes the hydrody-
into the vacuum, this potential approaches the long-rang@amic Hamiltonian on the basis of the existing normal
classical Coulomb image potentisi™= —Z7e%/4z,.* For  modes?® we have the so-called quantized hydrodynamic
smaller values of, the image potential differs significantly model which allows us to apply standard methods of many-
from its classical limit, the deviation from the classical resultbody perturbation theory.
increasing ag, decrease¥’ In a previous work’ we used the quantized hydrody-
The classical image potential acting between a point clasaamic model to describe the quadratic response of a homo-
sical charge and a metal surface may be regarded as origieneous electron gas. We derived expressions for the qua-
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dratic polarization induced by a moving charged particle, and These are nonlinear equations, difficult to solve. Within
demonstrated that they coincide with the plasmon-polgerturbation theory, we expand the induced electron density
approximatio”R® to the more accurate quadratic RPA n(r,t) and the velocity potentials(r,t) in powers of the

polarization?® external perturbation,
In this paper, we first develop semiclassical and quantized
hydrodynamic models to derive the quadratic electronic re- n=n;+na+--- (6)

sponse of a plane-bounded electron gas, and we then focygq

on the evaluation of the nonlinear dynamic image potential

experienced by charged particles moving parallel to a jellium =gt ot (7)
surface. In Secs. Il and Ill semiclassical and quantized non-

linear hydrodynamic models are presented, respectively. IEfspectE/ely,t_aSSUBmmgdt2a10>r:r1]>n2> ’ d 3nd V1> f
Sec. IV numerical calculations of both linear and quadraticth C .t qu:|;1 |on.:( )ba?' ( )artz ent.ei(p:ja}# € L.n lpowerst_o
contributions to the image potential are reported, as a func: € external perturbation, and partial difierential equations
for the various orders afi(r,t) and (r,t) are derived.

tion of the distance from the surface. In Sec. V our conclu-
sions are presented.
A. Linear approximation
Il. SEMICLASSICAL HYDRODYNAMIC MODEL Up to first order in the external perturbation one finds,
after introduction of Eq(2) into Eq. (4), the linearized hy-

Take an inhomogeneous electron system embedded incﬂodynamic equations

neutralizing ionic background. In the hydrodynamic lirifit,

the total energy of the system can be expressét(as use . B?
atomic units throughout, i.ef,=m,=e=1): nY1ti=—Us+ oM (8)
1 1
H=3 [ dnarolvue o= 5 [ ameovey 2
ni=ng V2, 9
—J drn(f,t)Vext(f,t)JrJ drGlng(r,t)], (1) whereU(r,t) is obtained from
where irrotational flow has been assumed, ie(r,t) V2U ;1= —4m[ Ney—N4], (10)

=—Vy(r,t), u(r,t) being a velocity field, and retardation
effects have been neglected,(r,t) =ny(r)+n(r,t) is the
total electron density, witin(r,t) representing the deviation
from the equilibrium static densityg(r). V(r,t) is the in-

and where8=\/1/3q¢ , e = (372n,) 3 being the Fermi mo-
mentum. Though this is the value of the hydrodynamic speed
B predicted with use of the Thomas-Fermi functional

duced electric potential/,(r,t) represents the external per- Gne(r,1)] of Eq.(2), the valueB= y3/50 is expected to be

turbation, andG[ng(r,t)] represents the exchange, correla-”;g;?ngp}féoﬁgitce V;?g?ncgc éfégguenc'es of the order of the
tion, and internal kinetic energies of the electron system. wé We congider ayclassical chaf ed particle moving with ve-
neglect exchange-correlation contributions @ ng(r,t)], gedp 9

which we approximate by the Thomas-Fermi functighal |OC.Ity Y outS|de_of a semi-infinite metallic medium, along a
trajectory that is parallel to the surface, thereby approxi-

3 mately simulating the experimental conditions when the pro-
G[ng(r,t)]= E(3772)2’3[ne(r,t)]5’3. (2)  jectile approaches the surface at grazing incidence. Hence,
we take the external charge densityrat(r,z) to be given

From Eq. (1), the basic hydrodynamic equations can beP the following expression:

derived, i.e., the continuity equation, Nexi(F11) = Z18(F| = V1) (2~ Zo), (11)

he=V-(neV ), (3)  the vacuum occupying the half-spaze 0, andz, being the
distance of the trajectory from the metal. After Fourier ana-

and the Bernouilli equation, lyzing both in time and i, one finds the following linear-

. 1 5G[Ng] ized hydrodynamic equations with variablesq, ), q be-
np+ Y+ u= §|Vl/I|2— U+ Te (4) ing the wave vector parallel to the surface:
e
2
which conserves b_oth momentum and.energy.. .Hﬂrds a (—iw+p) i =—U+ B—nl (12)
Lagrangian multipliela constant and » is a positive num- No

ber representing the internal friction of the electron gas, 4

which would appear as a consequence of the interaction with

excitation_s npt included in this description.. If the external —iwn;=ng(¥—q%¢y), (13
perturbation is generated by a charge density(r,t), then ) o )

the total electric potentiall (r,t)=V(r,t) + Ve(r,t) is ob- where the prime .denotes the derivative with respecg,to
tained from the Poisson equation Ui(z;q,w) is obtained from

V2U =~ 4m[Ne,—n]. (5) Ui— QU = —4mnegt 47y, (14
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and Within the hydrodynamic model, one can define two char-
acteristic screening lengths For a stationary charged par-
Nex(Z,Q, @) =27Z16(0—q-V) (2~ 2p). 19 ticle (v=0), \=plw,, and in the case of a swift charged
particle ¢>0qg), A=v/wp. In the limitz,—, the distance
z, of the projectile from the surface being much larger than
the screening length, one finds the classical image potential

Assuming a sharp density profile at the surface, i.e.
No(z) =ny®(—2) [O(z) is the Heaviside step functi¢nthe
appropriate solutions of Eq§l2) and (13) are

2

Ny(Z:,0)=NoAy(A] ,~GP)e*e"0(~2),  (16) vim_ 42_1 26
Zy

U(z:0,0)= —iw(Aeteo’+B1e%)0(~2), (17

- ) A ) B. Quadratic approximation
UT(z:9,0)= 0 Ae%0"+ w(w+in)Be¥ (18 ) _
Up to N th order N=2) in the external perturbation, one

and finds the hydrodynamic equations:
> — 477 —alz— v +l.ﬂ
U7 (z;0,0)=Ce 9%+ 72— 8(w—q-v)e 91772, TYNT YN
aq (19 1 N—1 3
. | _ _ =5 2 (Vin-m Vi — Vit 587052
Here,U7 7 (z;q,w) is the Fourier-transformed electric po- m=1
tential for z (less than, greater thazero, w,= (4mny) 2 is -k -

the so-called plasma frequency, and v | T (5-3s) N N
3| )
1 — T
Aqo=pVopt B207 = w0 +im). (20) S I A
The constantd,, B,, andC, are evaluated from the bound- ,Zl k‘:k;; Kimn
ary conditions at the surface: ) }
(27)
q
Ay=— 1By, (21 and
q.® N-1
8z, S(w—q-v)e 9% nN=noV2¢N+le [NV 2t Vi Vil (28)
B]_: i 2 ’ (22) -
9 [Ro(otin—wy(l+a/Aq,)] whereV\(r,t) is obtained from
and V2V =4mny. (29)
2 201 _ _ -
:47" Z, wp(1-0/Ag.)8(0—q-v)e i 23) After Fourier transforming in time and in;, we obtain
! 4 [20(w+i n)—w§(1+q/Aq'w)] ' for N=2 the quadratic approximation
The induced electric potential(r,t) is the difference _ . _ 1 2 B g,
between the total and external potentidls (r,t) and ~i(o+in) = _V2+§|V¢1|(Ziq’w)+n_0n2_ 6—ngn1
Vexdr,t), respectively. The image potential is defined as half (30)

of the induced potential at the position of the projectile times
the projectile charge, and one finds an

— i wny=ng(¢5— %) + [N V21 + VN1 Vbl 2q.0) »
vin= Zz—f d?qe—29% (31)

where the prime denotes the derivative with respeef tmd

1g—1/Aqq.v (24 the Fourier-transformed potentidl,(z;q,w) is obtained
120 V@V 7)— @21+ AlAgqu] from
This agrees with the result obtained using either the specular V4 —q?V,=4mn,. (32

reflexior™ or the semi-classical infinite barri@rmodel of _ _ _
the surface, as long as the hydrodynamic dielectric response In particular, for a stationarys=0) charged particle Egs.
function of the bulk material is used in these models. In(30) and(31) yield
particular, for a stationary charged particle<0), one finds 2 2
—A 0 szn—nz—G—nznf, (33)
q where V,(z;q,w) is still obtained from Eq.32). Solving
This agrees with the early result of Eguil?ﬁz. these equations with the assumption of a sharp density pro-
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file at the surface, quadratic contributions to the induced denthis is a reasonable approximation for the image potential of
sity and potential are found to be given by the following a stationary charge, as long as the distance from the surface

expressions:

( )=0(—2)| A oZ+z21 il
Ny(z;q,0)=0(—-z e’a —
2 q 2 16n0 (27T)2
2_ 2
X e(8ko0tAk-q07 (Beo* A a0 qz kfk—q /s
(Ay ot Ax—qo?—
(34
- Aqr
V5 (z,q,0w)= A2e a0+ B qu+Z1
_ 6N
q,0
d?k i f_ eltkotAk-q02
xf T — ——. (39
(2m)* (AgotAx—go —A
and
V;(Z;qlw):CZeqza (36)
where
fa=(Aqo—q)e %, (37)
andA, , is obtained from Eq(20). The constantd\,, B,

and C, are evaluated from the boundary conditions at the

surface.

Zy is larger than the characteristic screening lengt,,

i.e., for zg= T @y, ag="%2/(mee?) being the Bohr radius.
We note that in the high-density limitr {—0) there is no
quadratic contribution to the image potential of a stationary
charge, while at metallic densities,(~-2—6) quadratic cor-
rections might give rise to an image potential that izat

~ Jrsa, larger than the linear image potential by a factor as
large as 1.05-1.3 in the case of a stationary particle with
positive unit charge(Z,=1).

IIl. QUANTIZED HYDRODYNAMIC MODEL

Within a quantized hydrodynamic model of the electron
gas, we first expand the Hamiltonian of Ed) in powers of
the induced electron densityr,t). After introduction of the
Thomas-Fermi functional of Eq2) into Eq. (1), up to third
order one finds

Hence, we find the quadratic contribution to the image

potential of a stationary=0) charged particle to be given

by the following expression:

. ﬂz © ©
v'm=—z3—f d fd
2 1677(»3 o aq o 0191
2 f f f
x| de T8 (39)

(AgotAg 0tAg—q,0°

0 being the angle betweean andq;. In the case of a non-
dispersive electron gas3&0), this contribution to the im-

age potential vanishes. On the other hand, in the limizgas
—oo only the low-momentum form of the integrand of Eq.
(38) contributes to the integration, and we find in this limit

. 1 oo o
Vlm_ _ZS J d J d e_(q+ql)20
2 1877w2 aq o Q141

2w
X f dgela-alzo, (39
0
Numerical integration yields
. 0.82
m__ 3
A e “o
and, thereforg¢see Eq(26)],
Vim= Z 142, 25%1 _2+0(zz) (41
40| 7T (29l ul

H:HG+HO+H1+HeXt1 (42)
where
HG T (3’772)2/3”5/3 (43)
B 1
H0=f dr nO|V¢,//|2+—n —5nv], (44)
1 B2
— = 2_ 7 3
H, fdr 2n|V¢| 18n2 (45)
and
Hext: _J drnVext. (46)

Hg is the Thomas-Fermi ground state of the static unper-
turbed electron systentl, represents the linear deviation
from the ground stateil; appears as a consequence of the
nonlinearity of the electron system, ahtl,; represents the
contribution to the Hamiltonian from the coupling with the
external charged particle.

We consider, as in the previous section, a semi-infinite
electron system embedded in a neutralizing ionic back-
ground, assuming a sharp electron-density profile at the sur-
face. For each value df (the wave vector parallel to the
surface there exist both bulk and surface normal modes of
oscillation with frequencies given by the following disper-
sion relations:

(g p)?=wp+ B9+ p?) (47

and

1
(0g)?=5Lwp+ B2a*+ Ba(2wy+ 70%)7],  (48)
respectively, whergs represents the speed of propagation of
hydrodynamic disturbances in the electron system. As in the
previous section, we chooge= /3/50k .
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Now we follow Ref. 26 to quantize the Hamiltonian of [y S
Eqg. (42) on the basis of the normal modes corresponding to qu(z = &qw;zewz_ (59)
Egs.(47) and(48), which we shall refer to after quantization [a(g+2y4)]

as bulk and surface plasmons, respectively. We find Here y, represents the so-called inverse decay length of sur-

Ho=HS+HE (49) face plasmon charge fluctuatioffs,
HE and HS being free bulk and surface plasmon Hamilto- 1 773
nians, respectively: Vq_ﬁ[_ﬁqu 20p+B707]. (60)

In the absence of electron-gas dispersigi=0), the scalar

_ T : ) .
Hg—ﬁ ZO [1/2+ wf ]a) p()ag (1) (50)  electric potentiakp®(r,t) due to bulk plasmons vanishes out-
ap side the surface; hence, in this case probes exterior to the
and solid can only generate surface excitations.

We derive the potential induced by the presence of the

1 external perturbing charge as the expectation value of the
S_ St
Ho=% zq: [ 172+ wg]bg(1)g(1). (5D total scalar potential operatdf,
Here () and A represent the normalization volume and the (llfo|¢ﬁ+¢ﬁ|\lf0)
normalization area of the surface, respectively, agg(t) V(r,t)= W[y , (61)

and by(t) are Bose-Einstein operators that annihilate bulk

and surface plasmons with wave vectorgp) and g, re-  where|'¥,) is the Heisenberg ground state of the interacting
spectively. The quantizeti; hamiltonian, which contains system, and Wheréﬁ(r,t) andq&ﬁ(r,t) are the operators of
the quadratic electronic response of the electron system, wiltgs. (54) and (55) in the Heisenberg picture. Equatig6l)

be consider below. For the Hamiltonian containing the cou<can be rewritten as follows

pling between the external particle and either bulk or surface

plasmon fields, one finds VD) (DoUT(t,—)[ ¢+ BPU(t, — )| Do)
r‘ =
’ Po|UT(t,—)U(t,—0)[@ '
Hex= ngt_l_ ngtv (52 (o o (62)
where where |®,) represents the ground state of an interacting
electron system described by the free plasmon Hamiltonian
Hgts:f dr pe(r 1) B/S(r 1), (53)  Ho, andU(ty,to) is the evolution operator,
#B'S(r,t) representing operators corresponding to the scalar U(tl,to)ZT[ exp{ —j tldt(H|1+ Hth)} , (63)
electric potential due to bulk/surface plasmons. Outside the to
metal >0), |

T being the chronological operator, aH(’i/Hext representing
1 ‘ the HamiltoniandH,/H,; in the interaction picture.

$Pr =G X fop(@e g0 (59

ap= A. Linear approximation

and Up to first order in the external perturbation one finds,

1 after introduction of Eq(63) into Eq.(62), the linear contri-
d3(r t)y=— A > f5(2)e™ IxS(), (55  bution to the induced potential:
q

_\/B S
Xgp(t) and qu(t) representing operators associated to the Va(r ) =Vi+Vy, (64)

electron density induced by the excitation of bulk and sur4yhere
face plasmon fields, respectively,

d’q (~=dp
B ty—a’ (D+a Bl 1y J'_ ap
Xq,p(t) aq,p(t) a q,p(t) (56) V]_(rvt) Zl (271_)2 o 2
and B B B iq- (r)—vt)
SO bl +b (0 - ><fq'p(z)fq,p(zo)Dq‘p(q-v)eq [ (65
Xq\t)=Bq —qtt)s
and
andfg ,(2) andf(z) being bulk and surface coupling func-
tions, s d’q s s s iq- (|- v.t)
Vl(rlt)zzlj(ZT)zfq(Z)fq(ZO)Dq(q'v)eq =,
NX e 92
G Elel 58 )

T A 224 22 404 a2
[P+ PA(@™+ off )+ 0l (457)] Dgp(w) anquS(w) representing retarded Green'’s functions

and for the operators ,(t) and xg(t), respectively:
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potential Vg, (r,t). Within the semiclassical approach, the
role played by bulk and surface plasmons goes unnoticed;

oNUNUX however, the quantized hydrodynamic model provides ex-
plicit separate expressions for the contributions to the in-
@) ®) duced potential coming from the coupling with bulk and sur-

face plasmons. The role that bulk and surface plasmon

FIG. 1. Feynman diagrams representing fifg- and second- excitation plays on the energy loss of charged particles inter-
(b) order contributions to the electric potential induced by an exter2cting with metal surfaces has been investigated recéhtly,
nal charged particle. The external perturbation is represented b§howing that bulk plasmons are excited even in the case of
white points, and the cross represents a test positive unit chargéharged particles that do not penetrate into the solid.

Wavy lines represent plasmon propagators and the black point, join-
ing three plasmon lines, describes the nonlinear interaction between B. Quadratic approximation

three excitations o o )
Quantizing the Hamiltoniahl; of Eq. (45) on the basis of

both bulk and surface plasmons is a difficult task, because of

B
DB _ 20q, 6 the interaction between bulk and surface plasmon fields.
2 () : =Y (67) en :
o(o+in)—(wgp) Hence, for the description of the nonlinear response to a
charged particle moving outside of a semi-infinite medium,
and now we neglect bulk-plasmon contributions and find the fol-
S lowing expression for the quantizéd, Hamiltonian:
2w
D3(w)= . (68)

- S\2° 1 . .
o(w+in)—(wg) Hl:ﬁ E qE [—Aquqzxqsl(t))(qsz(t)
Equation(64) agrees with the linear contribution to the in- z
duced potential obtained, within the semiclassical hydrody- +Poy aXa (DXG,(DIXE g rqy®), (69
namic model, as the difference between the Fourier trans-
form of the total potential of Eq(19) and the external where

7q1+q2+ |ql+ q2|

A =
2 ( Ya,~ qo)( Ya,” dz) \/2n0q1q2qulwq32w§1+q2
|01+ 92l ¥q, + 4,74, V4 Y 410201 G2~ g, ¥q,)  G1Ya,(d1- A2~ ¥q,02)
1 2 1 2 1 2 2 1
>< —
(Q1+27q1)(Q2+27q2)(|Q1+Q2|+27q1+q2) 7q1+7q2+7q1+q2 7ql+q2+7ql+q2
O27q,(A1-02—01%q,)  Yq,Yq,(d1- G2~ 0102)
. _ (70
Q1+7q2+ Ya,+d, ql+q2+7q1+q2
and
112
73 B? 0192|101+ d2| v, Ya,Ya,+a, (d1+ ¥9)(A2+ ¥g,)(|Q1+ 02| + ¥g, +4,)
P 7 :
dp.02 18n$ 2 qulw§2w31+q2(q1+ 2’)/q1) (q+ 2')’q2)(|Q1+ QZ| + 2')’q1+ qz) ')’q1+ 7q2+ Ya,+a,

(71)

The first term in Eq.(69) comes from the kinetic energy of fluid flow,drn|V ¢|%/2, while the second term, which is
proportional tog?, comes from the internal ener@¥{ n] of Eq. (2).

Introducing Eqgs(52) and(69) into Eq.(63), and Eq.(63) into Eq.(62), the quadratic contribution to the induced potential
is found to be given by the following expression:

d’q dqu S S S S S S
(277)2 Wfq(z+ZO)fql(ZO)fq—ql(ZO)Dq(w)Dql(wl)Dq—ql(w_wl)

wun=—ﬁf
X[woiA_gqq ~o(0—01)A_gq-q T oi1(0-01)Aq g-q+ 3Pq,_ql]eiq‘(rH_"t), (72

wherew=q-v and w;=q;-Vv. Linear and quadratic contributions to the induced poteftaé Eqs(64) and(72)] can be
represented diagrammatically as in Fig. 1. As for the quadratic contribution, the external pertuilshitercircles acts twice
on the electron gas through plasmon propagateavy lineg, thereby creating an induced potential at pairdnd timet
(crosses
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In particular, for a stationary charged particle we have w,=0, thereby only the internal kinetic energy of E®)
contributing to the quadratic induced potential. For the quadratic contribution to the image potential of a stationary charged
particle we find

) 2w2 © © 27
v5“=—Z§B pJ qulJ d%Qlei(quql)ZOJ de
67 Jo 0 0
L W (G ye) (A 7o) (10— Gl Ygq)
YaYq,Yq-q, q+ Yg) (1T Y )UA— 01| T Yq—q,

X , 73
(woslwglw(?,ql)z( Yot Yo, + yq,ql) (a+2yg)(ar+ 27q1)(|q_ ap|+ 27\q7q1) 73

which in the case of a nondispersive electron g@s-Q) ticle [Fig. 3(@], the contribution from coupling with the sur-
vanishes. Herd is the angle betweeq andq;, and in the face plasmon field, as obtained from E@3), is represented

limit as zy— Eq. (73) yields (dotted ling together with the total quadratic contribution
(solid line), obtained from EQq(38). At large distances from
_ 0.41 the surface Z,— ), the total quadratic contribution to the
Vy'=-273 (74 image potential is twice as large as the quadratic contribution

1 24"
18mwpzg from surface plasmon excitation, as discussed after(Et).

This quadratic contribution to the image potential is half theAt Smaller values o, the quadratic contribution from the
result obtained within the semiclassical hydrodynamic modepPulk channel becomes dominant, the total quadratic image
[see Eq(40)]. In the case of a stationary charged particle thePotential being near the surface larger than the quadratic con-
whole quadratic contribution to the image potential comedribution from the surface channel by a factor-efl0. The
from the second term in Ed45), i.e., from the linearly in-

duced electron density acting twice on the external charge

The total electron density; induced at the surface by a
stationary charged particle is, in the linzig—o, |2 times

the electron densitylf induced through coupling with sur- i
face plasmongsee the Appendix As a consequence, the E _ 01t
total quadratic contribution to the image potential is in this > o
limit [see Eq.(40)] twice as large as the quadratic contribu- 015 -
tion of Eq. (74), which has been deduced by neglecting the i
coupling with bulk plasmons. -0.2

0 ————F ==

IV. RESULTS -0.25 |

Figure 2 shows plots of the linear contribution to the im- 0
age potential of a particle with unit chargéZ,=1) travel-
ing parallel to the surface of a semi-infinite electron gas char- L--
acterized by a static electron density equal to the average r
electron density in the conduction band of aluminuny ( g - T ]
~2).% These plots are shown as a functionzgf the dis- -0.05 [ e ]
tance from the surface, and the speed is taken to b€ £ i o ]
[Fig. 2@] and v=2 [Fig. 2(b)]. Contributions from cou- >~ i e
plings with bulk and surface plasmon fields, as obtained } a ]
from Eqgs.(65) and (66), respectively, are represented sepa- 01 ¢ ! ]
rately by dashed and dotted lines, and the total linear contri- oy ; (b) ]
bution to the image potential, obtained from either E24) /
or Eq. (64), is represented by a solid line. For comparison, L
the classical image potential of E@6) is represented by a
dashed-dotted line, showing that it converges with the full Z,
linear result when the distaneg is well above the screening

. > FIG. 2. Linear contribution to the image potential of a particle
length, i.e..zo=F<@, for v=0 andz,~2 \ra, for v=2. with chargeZ,=1 and speed=0 (a) andv=2 (b) traveling par-

Quadratic contributions to the image potential of a par-ye| to the surface of a semi-infinite electron gas wigk 2, as a
ticle with unit chargee(Z;=1) traveling, as in Fig. 2, par- function of the distance, from the surface. Solid lines represent
allel to the surface of a plane-bounded electron gas are dene full linear contribution to the image potential. Dashed and dot-
picted in Fig. 3. The electron-density parametgrand the ted lines represent contributions from the excitation of bulk and
velocity of the external charged patrticle are the same as thosirface plasmons, respectively. The classical image potential of Eq.
considered in Fig. 2. In the case of a stationary charged par26) is represented by a dashed-dotted line.

6 8 10
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0 L L L L L B L L L R L L T ]
[ 0.14 1 b
8 1 012 | ]
-0.1 g [ ]
- 01 ]
g : ]
= o 02 ] ~ 008y 1
> g 0.06 | b
No Py 008 ]
— 03[ 7 > 0.04 [ N 3
L N ]
¥ 0.02 .~ 3
-0.4 T (a) ] 0 L [ -‘ '''''''''''''
0 1 2 3 4 5
0.5 ! ZO
0 1 2 7 3 4 5 FIG. 4. Ratio between quadratic and linear contributions to the
0 image potential of a stationary particle£€0) with chargeZ,=1
0 - that is located outside the surface of a semi-infinite electron gas
r e ] with rg=2 at a distance, from the surface. The solid line repre-
i sents the ratio between full calculations of quadratic and linear im-
-0.05 - - age potentials. The dashed-dotted line represents the approximate
i ratio Z;1.93<1072(z,/r¢) "3, taken from Eq(41).
g
>N 0.1 ¢ ] lium surface, up to third order in the projectile charge. In the
« [ case of a stationary charged particle the total quadratic con-
9 015 - ] tribution to the image potential has been found to be, at large
i distances from the surface, twice as large as the quadratic
L b ] contribution coming from the surface plasmon field. Near the
0.2 (®) ] surface, the total quadratic contribution to the image poten-
I ] tial of a charged particle witty=0 has been found to be
025 o] larger than the quadratic contribution from the surface chan-
0 1 2 3 4 5 nel by a factor of~10. As the speed of the moving charged
ZO particle increases, linear contributions to the image potential

coming from the bulk channel have been found to decrease,
FIG. 3. As in Fig. 2, for the quadratic contribution to the image and quadratic contributions from coupling with the bulk

potential of a particle with chargé, = 1. Dotted lines represent the plasmon field are also expected to decrease with increasing
quadratic contribution from to the image potential coming from yvelocity.
surface plasmon excitation. In the case of a stationary particle ( Though nonlinear corrections are found to be more impor-
=0), the full quadratic contribution to the image potential is rep-tant far inside the solfd than outside, our results indicate
resented by a solid line. that the nonlinear image potential is enhanced with respect to

the linear image potential by a factor that is for aluminum as
quadratic contribution from the surface channel to the imaggarge as~1.15 near the surface in the case of a stationary
potential of a charged particle moving with speed 2, as  charged particle(=0) with unit chargee(Z,=1). At large
obtained from Eq/(72), is represented by a dotted line in gistances £,>\ra,) from the surface, the ratio between
Fig. 3b). quadratic and linear contributions to the image potential of a

_ Figure 4 exhibits by a solid line, as a function of the stationary charged particle decreases with the distapes
distancez, from the surface, the ratio between full quadratic Z,1.93x10 %(zy/r¢) "3, showing that it vanishes at high

[solid line of Fig. 3a)] and linear[solid line of Fig. 28)]  glectron densities.

contributions to the image potential of a stationary particle as the speed of the moving charged particle increases,
with unit charge e(Z,=1). For comparison, the ratio qyadratic contributions to the image potential are found to be
Z,1.93107%(z,/r5) ~°, as obtained from Eq(41), is rep-  very small. In particular, in the case of a projectile of charge
resented by a dashed-dotted line, showing that it converges, = 10 moving with speed =2 near the metal surface, con-
with the full ratio (SO“d ||ne) when the d|StanC€0 is well tributions to the quadratic image potentia' from Coup“ng

above the screening length, 1.2, I s8o. with the surface plasmon field have been found to enhance
the linear image potential near the surface @ a factor
V. CONCLUSIONS of ~1.14.

First of all, we have presented semiclassical and quan-
tized hydrodynamic models to obtain the quadratic electronic
response of a semi-infinite electron gas. Then, we have de- A.B. and J.M.P. wish to acknowledge partial support by
rived explicit expressions for the dynamic image potentialthe Basque Unibertsitate eta lkerketa Saila and the Spanish
experienced by charged particles traveling parallel to a jelMinisterio the Educacio y Cultura.
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APPENDIX and

Here we use both semiclassical and quantized hydrody-
namic models to evaluate the first-order electron demsity

which we assume to be induced by a stationary partiele ( (z) NG| /(w W)wp 1IZquZ. (A5)
=0) of chargeZ, that is located far from the surface, i.e., Yq)
Zo— 0.

Within the semiclassical hydrodynamic model, this quan-
tity is easily found from Eq(16) to be given by the follow-
ing expression:

The electron density induced by the presence of the ex-
ternal perturbing charge is obtained as the expectation value
of the total electron density operator. Up to first order in the
external perturbation and in the limit ag—«, we find

wp ewpﬂ,B
ni(z2)=2; > 0(-2). (A1)
2mB Z2 5 S
ni(2)=n%(2)+n3(2), (A6)
Within the quantized hydrodynamic model, the operators
corresponding to the induced electron density due to bu"§vhere
and surface plasmons are obtained as follows:
- 1 - w2l B A0l (VZB)
B(r=—o X g2,(2€9 ¢ ()0(-2) (A2) g w, er?F—e? (212
Q a.p a.p ny(z)=2 A7
q,p>0 l( ) 12773 ZS ( )
and
R 1 _ and
nS(r,t)=— A2 2 95N G 1)O(-2),  (A3)
the operators(q o(D) anqu(t) being glven by Eqs(56) and S(2)=2 wp € el 23)/\/— (A8)
(57), respectively, an(gq p(2) and gq(z) representing bulk N1 L2mB zg
and surface coupling functions,
20, /(0B ) 12 Equation(A6) coincides with Eq.(Al), and shows that as
98 (2)= p q.p long as the stationary charged particle is located far from the
P [2(wf )~ wp]* = 4B%0 (g )? surface the total electron density induced at the surface

(z~0) is, in the limit aszy— o, /2 times the electron den-
sity nf induced through coupling of the charged particle with
(A4)  the surface plasmon field.

x{plw3+2B2%(p?+q?)]cospz+ qu} sinpz}
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