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Hydrodynamic description of surface plasmons: Nonexistence of the
unrestricted half-space solution
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The surface plasmon solution of the hydrodynamic model is reinvestigated. It is demonstrated that the
extreme sensitivity of the dispersion on the approximation of the surface profile is intimately related to the
nonexistence of the half-space solution if the vacuum region extends to infinity. A remedy of this flaw is
proposed.@S0163-1829~99!08447-7#
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I. INTRODUCTION
Since the pioneering work of Ritchie1 collective elec-

tronic excitations at the boundary of metallic systems are
continuous interest in solid state research. In particular,
identification of the relevant parameters that govern the
persion and damping of surface plasmons have been an
portant topic and considerable progress has been achie
e.g., Refs. 2–5. For example, the frequencyvsp(q) of the
surface plasmons at small wave vectorsq becomes indepen
dent of the surface charge profile but the slope of the dis
sion (5cs) is affected. For a plane surface and neglect
retardation we have

vsp~q!5
vp

A2
1csq1O~q2!, q!kF . ~1!

Here, vp5(n0e2/me0)1/2 is the bulk plasma frequency,kF
5(3p2n)1/3 is the Fermi-wave vector,n0 is the bulk electron
density, m is the electron mass, ande is the elementary
charge.

Most of the dynamical calculations can be divided in
two categories: model calculations@macroscopic electrody
namics in terms of bulk dielectric functions, hydrodynam
~HD! descriptions# and quantum theories~random phase ap
proximation, time-dependent density functional theory!. The
latter are of formidable mathematical and numerical co
plexity so that the HD description until today serves as
useful model for the description of collective electronic e
citations, e.g., Refs. 6–20.

The HD description is based on a set of partial differen
equations for the particle– and velocity densitiesn(r ,t),
v(r ,t) of the charge carriers. Within this model theoretic
studies of surface plasmons have been almost exclusi
performed in connection with ‘‘rigid’’ boundary conditions
i.e., vanishing of the normal component ofv(r ,t) at the geo-
metrical boundary of the fixed positive charge background
outside a finite distance from the geometrical surface. T
latter condition yields a tractable model and has a dis
guished history, e.g. Ref. 9. It also offers the possibility
‘‘smuggle in’’ the spill-out of the electron density across t
geometrical surface which is of quantum origin.21

All too often is heard the alibi that since the theory its
is only approximate, the mathematics needs to be no be
In truth the opposite follows~as stated by Barton9!. The aim
PRB 600163-1829/99/60~23!/16157~7!/$15.00
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of this paper is to draw attention to a rather unpleasant fl
of the HD model which – to our knowledge – has be
overlooked before: The solution of the hydrodynamic eq
tions ceases to exist when extending the vacuum regio
infinity. This property is intimately connected with the o
curance of multipole surface excitations if the~steady state!
electronic surface profile extends considerably across
geometrical boundary of the metal surface and becom
stronger the more the profile cut off is shifted to infinit
This is puzzling as the existence of multipole surface exc
tions have been demonstrated both experimentally and t
retically, e.g., Refs. 4,5,12,22 and 23. Ahlqvist and Apell11

however, concluded that these modes are artificial within
HD model depending on the choice of the surface profile

For a discussion and overview of surface effects in
HD model we refer to the article by Barton.9 A general over-
view on plasmons in the bulk and at the surface of meta
systems and clusters may be found, e.g., in Ref. 24. The
model is a time–dependent generalization of the Thom
Fermi model, which is successfully used for the semiclas
cal description of atoms.25

Our paper is organized as follows: Sec. II summarizes
basic equations in dimensionless form and gives the rele
steady state solution. Sec. III provides the linearized eq
tions which are discussed in Section IV for finite as well
unrestricted surface regions. Section V contains our con
sions and a proposed remedy of the flaw.

II. BASIC EQUATIONS

The basic equations of the HD description are the co
nuity and Euler equations that govern the particle den
n(r ,t) and velocity densityv(r ,t) of the ~mobile! electrons
and the Maxwell equations.

N~r ,t !
]V~r ,t !

]t
52N~r ,t !E~r ,t !2gradP~r ,t !, ~2!

]N~r ,t !

]t
52div @N~r ,t !V~r ,t !#, ~3!

divE~r ,t !5N1~r !2N~r ,t !1Next~r ,t !, ~4!

curlE~r ,t !50, ~5!
16 157 ©1999 The American Physical Society
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16 158 PRB 60GABRIELE LINK AND RALPH v. BALTZ
where

P~r ,t !5CNa~r ,t !. ~6!

N1(r ) denotes the charge density of the rigid positive ba
ground andNext(r ,t) is an external electron distribution,
present, e.g., in an electron–energy–loss experiment. Fo
tational simplification we have used dimensionless quanti
with

r← vp

vF
r , t←vpt, q← vF

vp
q,

N←n/n0 , V←v/vF , E←E/E0 , P←P/P0 ,

where vF5\kF /m is the Fermi-velocity and E0

5\vpkF /e, P05mvF
2n0, respectively denote characterist

amplitudes for the~total! electric fieldE(r ,t) and~adiabatic!
pressureP(r ,t)5P@N(r ,t)#. The term v gradv has been
omitted in Eq.~2! as we are solely interested in linear exc
tations. Furthermore, we ignored retardation and magn
effects, as these are only relevant at very small wave vec
q,vp /c('1022 Å 21 for Al !.

For the degenerate, noninteracting electron gasC51/5,
a55/3, whereas the correct high-density limit@5random
phase approximation# of the plasmon dispersion require
Ca53/5. There has been some attempts to include excha
and correlation effects in the pressure functional.26 For our
purpose, however, it is sufficient to approximateP(r ,t) by a
power law P5CNa and adjustC, a so that the correc
~experimental or theoretical! bulk plasmon dispersion is re
produced at small wave vectors

vbp~q!5vp1cbq21O~q4!, cb5Ca/2. ~7!

For a plane, rigid ionic charge profile we haveN1(r )
5u(2z), so that the steady state solutions of Eqs.~2!–~5!
N0(z) and E0(r )5@0,0,E0(z)# are solely functions of the
(z2) coordinate normal to the surface.

C
d

dzFN0
21~z!

d

dz
~N0

a~z!!G1u~2z!2N0~z!50, ~8!

E0~z!52aCN0
a22~z!

dN0~z!

dz
, ~9!

with boundary conditionsN0(2`)51 and N0(`)50. In
addition,N0(z) and its first derivative must be continuous
z50.

For a,2 the asymptotics is nonexponential in th
vacuum region.

N0~z!55 12A expS z

AaC
D , z!0,

2CS a

22a D 2F 1

z1zG
2

22a
, z.0.

~10!

z,A are arbitrary constants which are fixed by the continu
of N0(z) and E0(z) at z50. a52 seems to be another in
teresting case because the steady-state electron distrib
leads to an exponential decay off the surface. Fora.2,
there is no solution of Eq.~8!.
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III. LINEAR DYNAMICS

Linearization of Eqs.~2!–~6! around the steady state so
lution, i.e., N(r ,t)5N01N1 , E(r ,t)5E1E1, and J1(r ,t)
5N0V1 yields

]J1~r ,t !

]t
52N0~z!E1~r ,t !2N1~r ,t !E0~z!2gradP1~r ,t !,

~11!

]N1~r ,t !

]t
52div J1~r ,t !, ~12!

div E1~r ,t !52N1~r ,t !1Next~r ,t !, curlE1~r ,t !50,
~13!

where P1(r ,t)5 f (z)N1(r ,t) with f (z)5aCN0
a21(z). We

are looking for a self sustaining~i.e., Next50) plane wave
solution propagating parallel to the surface,N1(r ,t)
5N1(z) exp@i(qx2vt)# etc. where the amplitude function
N1(z) etc. obey

¹P1~z!5 ivJ1~z!2N0~z!E1~z!2N1~z!E0~z!, ~14!

¹•J1~z!5 ivN1~z!, ~15!

¹•E1~z!52N1~z!, ¹3E1~z!50, ~16!

where¹5( iq,0,]/]z).
Following Eguiluzet al.,8 the surface plasmon dispersio

can be obtained in the smallq limit by first taking the diver-
gence of Eq.~14! and then eliminating¹•J1 by Eq. ~15!.

v2N1~z!5
d

dzFN0~z!
df1~z!

dz G2q2N0~z!f1~z!

2
d

dz
@E0~z!N1~z!#2S d2

dzs
2q2D @ f ~z!N1~z!#,

~17!

whereE152¹f1. Next, f1(z) is represented in terms o
the Green-function of the Poisson equation

f1~z!52
1

2qE2`

1`

e2quz2z8uN1~z8!dz8. ~18!

In a second step, we integrate Eq.~17! and perform a partial
integration of the termN0(z)f1(z) with respect to the expo
nential function. As a result an expansion up to first order
q yields

vsp
2 ~q!5

1

2
1

1

2

^~z2z8!N1~z8!&

^N1~z8!&
q1O~q2!, ~19!

where

^ f ~z,z8!&5E E
2`

1`

f ~z,z8!F2
dN0~z!

dz Gdzdz8. ~20!

Thus, vsp(0)51/A2. The slope of the dispersion curv
however, is affected by the electronic surface density pro
and becomes negative ifN0(z) ~for q→0) leaks consider-
ably outside the geometrical surface. This result is a spe
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PRB 60 16 159HYDRODYNAMIC DESCRIPTION OF SURFACE . . .
case of an important observation by Feibelman2 that the re-
sponse of the surface could be characterized by the cent
of the induced charge density. Equation~19! holds only for
monopole surface plasmons for which^N1(z8)&5” 0. For
multipole excitations, however,̂N1(z8)&50 and vsp(0)
51/A2.

IV. SOLUTION OF THE EQS. „14-16…

A. Finite surface region

To solve Eqs.~14!–~16!, we first eliminate thex compo-
nent of J1 by solving Eq.~14!, which is a simple algebraic
equation. Then, the remaining four linear differential equ
tions are cast in matrix form

d

dz
FC5MC, ~21!

whereC(z) is a column vector containingE1x ,E1z ,J1z ,N1 .
F is a diagonal matrix with entries 1,1,1,f (z) in the diagonal,
and

M ~z!5S 0 iq 0 0

2 iq 0 0 21

2
q

v
N0~z! 0 0 i Fv2

q2

v
f ~z!G

0 2N0~z! iv 2E0~z!

D .

~22!

Instead of using the correct self-consistent electron profile
is convenient first to consider the following model densi
profiles with a finite surface region2a,z,b with

N0~z!5H 1, z,2a

0, z.b
~23!

and a~continuous! interpolation in between.
For z,2a the solution is

C1
(2)~z!5A1S 1

2 i

21/v

0

D eqz, C2
(2)~z!5A2S iq

g

2 ivg

q22g2

D egz,

~24!

whereg25(12v2)/ f 1q2 and f 5aC.
For z.b a consistent solution requiresN1[0, J1z[0,

i.e.,

C1
(1)~z!5B1S 1

i

0

0

D e2qz. ~25!

A1 ,A2 ,B1 are constants that are fixed by the requirement
continuity of Ex ,Ez , andJ1z at z52a,b.
id

-

it

f

To describe the steady state density profile in the surf
region linear,6 multistep,7 and exponential10 approximations
have been used in the literature. In our first calculations
used linear and quadratic interpolations ofN0(z) between
N0(z,2a)51 andN0(z.a)50. For uzu,a, the quadratic
interpolation sets N0(z)5Q(2z)1squ(z)(uzu2a)2/2a2.
For both types of interpolations we chooseC5 1

3 , a51, and
set f (z)5const5Ca. Results are shown in Figs. 1 and 2.
our next series of calculations we approximately incorpor

FIG. 1. Dispersion of the fundamental and first excited surfa
plasmon mode atq51023 as a function of surface width (b5a).
Full lines: linear interpolation, dashes lines: quadratic interpolati
Note, the change of the monopole/dipole character of the mo
neara'2.5.

FIG. 2. Density amplitudes of the fundamental~a! and first ex-
cited ~b! surface plasmon modes. Linear interpolation betwee
(2a,a) with a50,1,2,3.
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16 160 PRB 60GABRIELE LINK AND RALPH v. BALTZ
the results forN0(z), E0(z) from Eqs.~8!–~9! to produce a
nearly self-consistent solution for the linear response. Thi
done by introducing a ‘‘window function’’

w~z!5H w,~z!5123~z/a!222~z/a!3, 2a,z,0

w.~z!5123~z/b!212~z/b!3, 0,z,b
,

~26!

so that the approximated field and density smoothly join th
left- and right-side values,

E0~z!→Ê0~z!5E0~z!w~z!, ~27!

N0~z!→N̂0~z!5u~2z!2
dÊ0~z!

dz
. ~28!

Outside2a,z,b we setw(z)50. This procedure fixes the
density and field atz50 and retains charge conservatio
Results are shown in Fig. 3, whereC5 1

5 , a5 5
3 . For numeri-

cal convenience we additionally approximatef (z) by Ca
5 1

3 , which would be exact ifa51, e.g., Bennet.6

In the surface region, the solutionsC1
(2)(z) andC2

(2)(z)
are propagated numerically fromz52a to z5b by using
the MATHEMATICA Routine NDSolve. The matching cond
tions atz5a,b yield a homogeneous system of three eq
tions. Equating its determinant to zero yields the surfa
plasmon dispersion which is plotted in Fig. 4.

For comparison the Ritchie-solution1,9 for an abrupt sur-
face profile,a5b50, is given explicitly

FIG. 3. Exact~solid lines! and approximated surface densi
profile ~a! and electric field~b! for different surface width param
eters: (a,b)5(2,3), (3,4), and (3,5)~dashed, dashed–dot, and do
ted lines!.
is

ir
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e

vsp~q!5A1

2
@11qA2 f 1 f 2q21 f q2#

5
1

A2
1

1

2
Af q1O~q2!, ~29!

N1~z!5A2~g22q2!egzu~2z!. ~30!

Note, N1(z) has a discontinuity atz5b. Moreover, the dis-
persion, Fig. 4, strongly depends on the chosen width of
surface density profile although these differences can
hardly seen in Fig. 3~a!. Table I illustrates the dependence
the ~negative! slope of the dispersion and decreasing^N1&
with increasing surface width. The amplitudes of the dens
and current density are displayed in Figs. 5 and 6.

B. Unrestricted surface region

To investigate the asymptotic behavior of Eq.~21! we first
eliminate N1(z), J1z(z) in favor of the induced potentia
F(z), E152¹F which obeyes a 4th-order differentia
equation

d2

dz2 H f ~z!Fd2F~z!

dz2
2q2F~z!G J

1
d

dzH E0~z!Fd2F~z!

dz2
2q2F~z!G2N0~z!

dF~z!

dz J
1q2N0~z!F~z!2@q2f ~z!2v2#S d2F

dz2
2q2F D 50.

~31!

FIG. 4. Dispersion of the fundamentalvsp
(0)(q) and first excited

vsp
(1)(q) surface plasmon modes. Note, the dipole mode lies be

the monopole mode. Parameters as in Fig. 3.

TABLE I. Surface plasmon frequency atq51027 and average
density amplitude for different surface width parameters. Soluti
are normalized according touuN1uu5* uN1(z)udz51. Note the cor-
relation betweenu,N1.u!1 andvsp(0)5” 1/A2.

a b v0(q) ^N1
0(z8)& v1(q) ^N1

1(z8)&

2 3 0.55557927 -0.02385037 0.70710686 -0.375219
3 4 0.43794554 -0.00315129 0.70710680 -0.374318
3 5 0.35942446 -0.00207955 0.67450302 -0.006625
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PRB 60 16 161HYDRODYNAMIC DESCRIPTION OF SURFACE . . .
As a check, we convince ourselves that the bulk plasm
dispersion is correctly described by Eq.~31!. Under homo-
geneous conditionsN0(z)51, E0(z)50, f (z)5const.,
which impliesF(z)5const. Hence,

vbp~q!5A11 f q2511
1

2
f q21O~q4!. ~32!

Equation~32! agrees with Eq.~7! for small wavenumbers.
With a bit more algebra, the Ritchie solution Eq.~29! is
reproduced, too.

For z.0 the differential Eq.~31! possesses a strong sin
gularity at z5` with characteristic index 4.27 Asymptoti-
cally, its solution can be represented as a Thome´ normal
series

F (1)~z!5eP(z)z2r (
j 50

`

cjz
2 j . ~33!

For the special casea55/3, we getr 50 and P(z) is a
polynomial of~maximum! degree 3. With this ansatz all fou
independent solutions with polynomialsP(1)(z)52qz,
P(2)(z)5qz, P(3)(z)5 ivz3/10A3, and P(4)(z)52P(3)(z)
can be found.28 However, the only solution that fulfills the
boundary condition belongs toP(1)(z)

F (1)~z!5B1e2qzF11
100

v2 (
j 56

10

~21! j
~ j 21!!

4!~2q! j 26
z2 j

1 . . . G . ~34!

FIG. 5. Density~a! and polarizationPz5J1z / iv ~b! for the
fundamental surface plasmon modevsp

(0)(q). q51027, other pa-
rameters as in Fig. 3.
n
The other quantitiesEx(z), Ez(z), N1(z), andJ1z(z) can be
simply derived from Eq.~21!.

Analogous to the previous study of a finite surface pro
we propagate the vacuum solution Eq.~34! from a given
starting pointz2.0 down to z50 where it is matched to
F (2)(0) and its derivative in terms of Eq.~24! when propa-
gated fromz1,0 towardsz50. This procedure fixesA1 and
A2 as function ofv. (B151 without loss of generality!.
Next, the surface plasmon eigenfrequencies are determ
by the requirement of continuity of bothJ1z(z) andN1(z).
Note, z50 is an inner point of thez interval so that the
density must be likewise continuous. Within numerical acc
racy, however,J1z(0) andN1(0) match within different fre-
quency intervals, Figs. 7~a! and 7~b!. Our broad–minded er-
ror estimates include numerical errors by the mathema
routine NDSolve as well as systematic errors using fin
starting points atz1,0,z2.0 when extrapolating to infinity.
Therefore, as already expected, for the unbounded sur
region no solution exists which fulfills the required bounda
conditions. Fora52, the situation becomes even worse a
probably no bounded solution exists inz.0.

V. CONCLUSIONS

During the past three decades a hydrodynamic descrip
has served as a popular and simple model to describe
collective excitations in the bulk and at the surface of me
lic systems or degenerate semiconductors. Although suc

FIG. 6. Density~a! and polarizationPz5J1z / iv ~b! for the first
exited surface plasmon modevsp

(1)(q). q51027, other parameters
as in Fig. 3.
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16 162 PRB 60GABRIELE LINK AND RALPH v. BALTZ
model cannot give a fundamental description of the~negative
slope of the! surface plasmon dispersion or the existence
an extra peak in the photoemission just belowvp they can
readily fit to it ~as stated by Schwartz and Schaich.12! Nev-
ertheless, fitting experimental data to a surface profile gi
little insight in its true shape. Although the extreme sensi
of the surface plasmon dispersion on the approximation
the ‘‘spill-out’’ of the electronic charge density across t
surface was already stated by Ahlqvist and Apell11 and
Schwartz and Schaich12 its mathematical origin was not re
vealed.

There are two key points which are responsible for
mathematical asymmetry of the solution with respect to
metal and vacuum regions:~a! There are two fundamenta
solutions in the metal but only one in the vacuum whi
obey the boundary conditions for the electric field at infini
~b! For a finite surface layer not only the exponentially d
caying solution but also the two oscillating modes of E
~21!, which belong toP(3,4)(z) of Eq. ~31! come into play.
Then, unavoidably, a jump in the density at the vacuum s
of the boundary arises, which is clearly seen in Figs. 5~a! and
6~a!. Nevertheless, this is physically acceptable if the jump
located very close to the surface as e.g. in the Ritch
solution ~30!. Such a discontinuity mimics the strong d

FIG. 7. Density~a! and polarizationPz5J1z / iv at z50 ~b! as
calculated numerically from the vacuum (.) and metal (,) region
as a function of frequency. Error bars give large scale estimate
the numerical and systematic errors. There is no frequency, w
both N1(0) andPz(0) @i.e., J1z(0)# can be continuously matched
f

s
y
f

e
e

.
-
.

e

s
–

crease of the electronic density near the surface, whic
caused by the electronic work function. However, a disc
tinuity in the electronic density away from the real surfa
must be considered as a severe approximation error. W
increasing surface widths the solution does not tend to z
and the linearized equations become invalid – yet the sur
plasmon dispersion changes in the correct fashion, ifa,b
!1. For an unrestricted vacuum region a consistent tre
ment additionally requiresN1(1`)50, which rules out the
two oscillating solutions so that the matching conditions c
not be fulfilled. In mathematical terms, the HD model defin
an ill–posed problem and the finite surface layer mode
not a well defined approximation of the infinite system
neither for the monopole nor for the multipole surface ex
tations.

The origin of this flaw lies in the fact that in the vacuu
the electronic state is described by quantum mechanics ra
than by the HD model, i.e. the gradP term becomes less
important ~or perhaps meaningless!. Instead, the~sofar for-
gotten! finite work function of the metal enforces an exp
nential decay of the density and current density in
vacuum region. This behavior can be simulated by addin
constant termEW to E0(z) in Eqs. ~21! and ~22!. Provided
the spill–out of the electronic charge is small@N0(z)'0,
E0(z)'0 for z.0#, we obtain a second solution, which
linear independent of Eq.~25!

C2
(1)~z!5B2S Kq

iK 2

v~K22q2!

iK ~K22q2!

D e2Kz. ~35!

K'vsp /EW'2A2mW/\2, W is the work function of the
metal. Now, a continuous matching ofC1 with C2 is pos-
sible. As a result, we obtain for the surface plasmon disp
sion coefficient, Eq.~1!

csp5
1

2A2

2 f bK221

A2 f bK21K
, ~36!

where f b5aC is the bulk value off which is related to the
bulk plasmon dispersion coefficient, Eq.~32!, by f b52cb .
For K→` the Ritchie–solution Eq.~30! is obtained. IfK is
sufficiently small,cs becomes negative. For sodium and p
tassium, however, this estimate seems to be too crude
does not lead to a negative value of the surface plasm
dispersion coefficient.
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