PHYSICAL REVIEW B VOLUME 60, NUMBER 23 15 DECEMBER 1999-I

Hydrodynamic description of surface plasmons: Nonexistence of the
unrestricted half-space solution
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The surface plasmon solution of the hydrodynamic model is reinvestigated. It is demonstrated that the
extreme sensitivity of the dispersion on the approximation of the surface profile is intimately related to the
nonexistence of the half-space solution if the vacuum region extends to infinity. A remedy of this flaw is
proposed[S0163-182309)08447-1

[. INTRODUCTION of this paper is to draw attention to a rather unpleasant flaw

Since the pioneering work of RitcHiecollective elec- of the HD model which — to our knowledge — has been
tronic excitations at the boundary of metallic systems are obverlooked before: The solution of the hydrodynamic equa-
continuous interest in solid state research. In particular, théons ceases to exist when extending the vacuum region to
identification of the relevant parameters that govern the disinfinity. This property is intimately connected with the oc-
persion and damping of surface plasmons have been an incurance of multipole surface excitations if tteteady stafe
portant topic and considerable progress has been achieveglectronic surface profile extends considerably across the
e.g., Refs. 2-5. For example, the frequenay,(q) of the  geometrical boundary of the metal surface and becomes
surface plasmons at small wave vectqrisecomes indepen- stronger the more the profile cut off is shifted to infinity.
dent of the surface charge profile but the slope of the disperfhis is puzzling as the existence of multipole surface excita-
sion (=c,) is affected. For a plane surface and neglectingtions have been demonstrated both experimentally and theo-
retardation we have retically, e.g., Refs. 4,5,12,22 and 23. Ahlqvist and Apell,

however, concluded that these modes are artificial within the
® HD model depending on the choice of the surface profile.
wep(0) = —p+csq+0(q2), q<ke. (1) For a discussion and overview of surface effects in the
V2 HD model we refer to the article by BartéA general over-
view on plasmons in the bulk and at the surface of metallic
Here, w,= (noe?/meg)*? is the bulk plasma frequencke  systems and clusters may be found, e.g., in Ref. 24. The HD
= (372n)3is the Fermi-wave vecton is the bulk electron model is a time—dependent generalization of the Thomas—
density, m is the electron mass, anelis the elementary Fermi model, which is successfully used for the semiclassi-
charge. cal description of atom&

Most of the dynamical calculations can be divided into  Our paper is organized as follows: Sec. Il summarizes the
two categories: model calculatiofiiacroscopic electrody- basic equations in dimensionless form and gives the relevant
namics in terms of bulk dielectric functions, hydrodynamic steady state solution. Sec. Ill provides the linearized equa-
(HD) description$ and quantum theoriesandom phase ap- tions which are discussed in Section IV for finite as well as
proximation, time-dependent density functional theofhe  unrestricted surface regions. Section V contains our conclu-
latter are of formidable mathematical and numerical comsions and a proposed remedy of the flaw.
plexity so that the HD description until today serves as a
useful model for the description of collective electronic ex- Il. BASIC EQUATIONS
citations, e.g., Refs. 6-20.

The HD description is based on a set of partial differential The basic equations of the HD description are the conti-
equations for the particle— and velocity densitie@,t), nuity and Euler equations that govern the particle density
v(r,t) of the charge carriers. Within this model theoreticaln(r,t) and velocity density(r,t) of the (mobile) electrons
studies of surface plasmons have been almost exclusivelgnd the Maxwell equations.
performed in connection with “rigid” boundary conditions,

i.e., vanishing of the normal componentwf ,t) at the geo- aVv(r,t)

metrical boundary of the fixed positive charge background or N(r,t) ——==N(rDE(r,O) —gracP(r,1),  (2)
outside a finite distance from the geometrical surface. The

latter condition yields a tractable model and has a distin- IN(T 1)

guished history, e.g. Ref. 9. It also offers the possibility to = —div[N(r,t)V(r,t)], 3)
“smuggle in” the spill-out of the electron density across the at

geometrical surface which is of quantum origin.

All too often is heard the alibi that since the theory itself divE(r, 1) =N, (r) =N(r,t) + Nex(r,t), (4)
is only approximate, the mathematics needs to be no better.

In truth the opposite followsas stated by Bartdh The aim curlE(r,t)=0, (5)
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where Ill. LINEAR DYNAMICS

P(r,t)=CN(r,t). (6) Linearization of Eqs(2)—(6) around the steady state so-
) o . lution, i.e., N(r,t)=Ny+Nq, E(r,t)=E+E;, and J.(r,t)
N, (r) denotes the charge density of the rlgld_po§|t|ye bapk-z NoV; vields
ground andN.,(r,t) is an external electron distribution, if
present, e.g., in an electron—energy—loss experiment. For no9J,(r,t)

tational simplification we have used dimensionless quantities ;= ~ No(2)Ea(r,1) =Na(r,1)Eo(2) — gradPy(r,b),
“p M IN4(1,1)
r<—VFr, t—wpt, gq— Cupq, — =—divJy(r,t), (12

Nen/ng, Vevive, E—B/Ey, P<—P/Po, diVE;(r 1) = — Ny(F,t) + Neg(r,t), curlEy(r,t)=0,
where ve=#fks/m is the Fermi-velocity and E, (13
=hwpke/e, Po=mv2n,, respectively denote characteristic where P, (r,t)=f(2)Ny(r,t) with f(z)=aCNS Y(2). We
amplitudes for thdtotal) electric fieldE(r,t) and(adiabatig¢ are looking for a self sustaining.e., Ng=0) plane wave
pressureP(r,t) =P[N(r,t)]. The termvgradv has been g tion propagating parallel to the surfacéy,(r,t)

on"_ntted in Eq.(2) as we are solely mterestgd in linear exci- — N (2) exi(qx—wt)] etc. where the amplitude functions
tations. Furthermore, we ignored retardation and magneti

1(2) etc. obey
effects, as these are only relevant at very small wave vectors

q<wp/c(~10"2A " for Al). VP1(2)=1031(2) ~No(2)E1(2) ~N1(2)Eg(2), (19)
For the degenerate, noninteracting electron Gasl/5,

a=5/3, whereas the correct high-density liniitrandom V-J1(2)=iwNy(2), (15)

phase approximatignof the plasmon dispersion requires

Ca=3/5. There has been some attempts to include exchange V-E1(2)=—N4(z2), VXE1(2)=0, (16

and correlation effects in the pressure functidfigFor our
purpose, however, it is sufficient to approxim&ér,t) by a
power law P=CN® and adjustC, a so that the correct
(experimental or theoreticabulk plasmon dispersion is re-
produced at small wave vectors

whereV=(iq,0,0/9z).

Following Eguiluzet al. the surface plasmon dispersion
can be obtained in the smajllimit by first taking the diver-
gence of Eq(14) and then eliminating/ - J; by Eq. (15).

—0°No(2) ¢1(2)

wop(@)=ptea”+ (G, ep=Cal2. (7 w2N1(Z):diz[No(Z)d¢dliZ)

For a plane, rigid ionic charge profile we hae (r)
=6(—2z), so that the steady state solutions of E@—(5) d ’
No(z) and Eo(r)=[0,0E((z)] are solely functions of the ~ gz Eo@N1(2)] = dzr 3 [f(2)N1(2)],
(z—) coordinate normal to the surface. an
1

d d , .
c— Nal(z>d—Z<N3<Z>> +60(—2)—Ng(z)=0, (8 whereE;=—Ve¢;. Next, $,(2) is represented in terms of

2

dz the Green-function of the Poisson equation
Ey(2)= — aCNa~%(z) ol 9 L[ emaz-2IN (2 )d 7
o(2)==aCNg %(2) —5— ) ¢1(z)=—E e alz=2'IN, (2" )dZ'. (18)

with boundary conditiondNg(—=)=1 andNo(<)=0. In |, 5 second step, we integrate Et7) and perform a partial
addition,Ny(z) and its first derivative must be continuous at integration of the ternNo(2) ¢;(z) with respect to the expo-

z=0. L o nential function. As a result an expansion up to first order in
For <2 the asymptotics is nonexponential in theqyields

vacuum region.
1 1((z-2)Ny(2)

2, \_ = o) o
1—Aex%i), z<0, wsp(A=5773 (Ny(z) q+0(g%), (19

VaC
No(2)= , ) (100  where
o 1 |2=a
ZC , Z>0 + o
(Z—a z+¢ <f(z,z’)>=ff f(z,2') —dl\(le;Z)}dZdZ. (20

{,A are arbitrary constants which are fixed by the continuity

of No(z) andEy(z) atz=0. «=2 seems to be another in- Thus, wsp(0)=1/\/§. The slope of the dispersion curve,
teresting case because the steady-state electron distributibowever, is affected by the electronic surface density profile
leads to an exponential decay off the surface. kor2, and becomes negative My(z) (for g—0) leaks consider-
there is no solution of Eq8). ably outside the geometrical surface. This result is a special
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case of an important observation by Feibelfmtrat the re-

sponse of the surface could be characterized by the centroid

of the induced charge density. Equatid®) holds only for
monopole surface plasmons for whi¢iN,(z'))#0. For
multipole excitations, howeverN;(z'))=0 and wgy(0)

=1//2.
IV. SOLUTION OF THE EQS. (14-16

A. Finite surface region

To solve Eqs(14)—(16), we first eliminate thex compo-
nent of J; by solving Eq.(14), which is a simple algebraic
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equation. Then, the remaining four linear differential equa-

tions are cast in matrix form

d
—F¥V=MV,

1z (21

whereW (z) is a column vector containing,y ,Eq,,J1,,N;.
F is a diagonal matrix with entries 1,1{{z) in the diagonal,
and

0 iq 0 0
—iq 0 0 -1
M (2) = 2
@=1 92 0 0 ile-Tiy
w
0 —No(2) i —Eo(2)

(22

Instead of using the correct self-consistent electron profiles it

is convenient first to consider the following model density
profiles with a finite surface region a<z<b with

1, z<-a 03
N =
o(2) 0, z>b (23
and a(continuous interpolation in between.
For z< —a the solution is
1 iq
vi)(z)=A, e v )(z)=A, _7 e”?
! —1lw ' 2 —iwy '
0 q2_ 72
(24

wherey?=(1— w?)/f+g? andf=«C.
For z>b a consistent solution requird$;=0, J;,=0,
ie.,

1
i

v (2)=B, 0 e 9z, (25)

0

FIG. 1. Dispersion of the fundamental and first excited surface
plasmon mode afj=10"3 as a function of surface widttbE&a).
Full lines: linear interpolation, dashes lines: quadratic interpolation.
Note, the change of the monopole/dipole character of the modes
neara~2.5.

To describe the steady state density profile in the surface
region linea® multistep’ and exponentid! approximations
have been used in the literature. In our first calculations we
used linear and quadratic interpolations N§(z) between
No(z<—a)=1 andNy(z>a)=0. For|z|<a, the quadratic
interpolation  sets No(z) =0 (—2) +squz)(|z| —a)?/2a2.

For both types of interpolations we chod8e-1, a=1, and
setf(z) =const= Ca. Results are shown in Figs. 1 and 2. In
our next series of calculations we approximately incorporate

1.2
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FIG. 2. Density amplitudes of the fundamental and first ex-

A1,A,,B; are constants that are fixed by the requirement otited (b) surface plasmon modes. Linear interpolation between

continuity of E, ,E,, andJ,, atz=—a,b.

(—a,a) with a=0,1,2,3.
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025l the monopole mode. Parameters as in Fig. 3.
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Note, N;(z) has a discontinuity at=b. Moreover, the dis-
persion, Fig. 4, strongly depends on the chosen width of the
surface density profile although these differences can be
hardly seen in Fig. @). Table | illustrates the dependence of
the (negative slope of the dispersion and decreasifidy )

with increasing surface width. The amplitudes of the density
and current density are displayed in Figs. 5 and 6.

FIG. 3. Exact(solid lineg and approximated surface density
profile (a) and electric fieldb) for different surface width param-
eters: @,b)=(2,3), (3,4), and (3,5}dashed, dashed—dot, and dot-
ted lines.

the results folNy(z), Eq(z) from Egs.(8)—(9) to produce a
nearly self-consistent solution for the linear response. This is

. . . A B. Unrestricted surface region
done by introducing a “window function

To investigate the asymptotic behavior of E2j1) we first
w_(z)=1-3(z/a)?>—2(z/a)®, —a<z<O0 eliminate N;(2), J;,(2) in favor of the induced potential
w(z)= W (2)=1—3(2/b)?+2(2/b)?, 0<z<b ®(2), E;=—V® which obeyes a 4th-order differential
(26) equa“on

so that the approximated field and density smoothly join theird? d?®(z) )
left- and right-side values 2 —q°®(2)
9 ’ dz dz
Eo(2)—Eo(2)=Eqo(2)W(2), (27) d b)), dd(z)
+ 1 Eo(2) —q°®(2)| —No(2)
- dz dz dz
dEo(2)

No(2)—No(2)=6(—2)— (28)

dz qu)
+0°No(2)®(2) - [9*f(2) — w?]| — —q*® | =0.
Outside—a<z<b we setw(z) =0. This procedure fixes the dz?

density and field az=0 and retains charge conservation. (31)
Results are shown in Fig. 3, whe@e= %, o= 3. For numeri-

cal convenience we add|t|ona”y approximdt@) by Ca TABLE |. Surface plasmon frequency qt= 10_7 and average

- %, which would be exact ir=1, e.g., Bennet. density amplitude for different surface width parameters. Solutions

In the surface region, the solutioﬂs([)(z) and\I’(z_)(z) are pormalized according 10N, ||=J|N;(z)|dz=1. Note the cor-
are propagated numerically from=—a to z=b by using "e/2fion between<N,>|<1 andw,(0)# 1/1/2.
the MATHEMATICA Routine NDSolve. The matching condi- 0, 1,
tions atz=a,b yield a homogeneous system of three equa- b @o(®) (N2(2)) ©1(9) (N:(2)
tions. Equating its determinant to zero yields the surface 3 0.55557927 -0.02385037 0.70710686 -0.37521987
plasmon dispersion which is plotted in Fig. 4. 3 4 0.43794554 -0.00315129 0.70710680 -0.37431808
5

For comparison the Ritchie-solutibhfor an abrupt sur- 3 0.35942446 -0.00207955 0.67450302 -0.00662568
face profile,a=b=0, is given explicitly
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FIG. 5. Density(a) and polarizationlI,=J,/io (b) for the

fundamental surface plasmon modé%)(q). q=10"7, other pa-
rameters as in Fig. 3.

FIG. 6. Density(a) and polarizatiodI,=J,,/iw (b) for the first
exited surface plasmon modaét)(q). q=10""7, other parameters
as in Fig. 3.

As a check, we convince ourselves that the bulk plasmon
dispersion is correctly described by E&1. Under homo- The other quantitieg,(z), E,(z), N1(2), andJ;,(z) can be
geneous conditionsNg(z)=1, Eg(z)=0, f(z)=const.,, simply derived from Eq(21).

which implies®(z) =const. Hence, Analogous to the previous study of a finite surface profile
1 we propagate the vacuum solution E84) from a given
=1+ fa2=1+ —fa2+O(a%. 32 starting pointz,>0 down toz=0 where it is matched to
@bp(9) . 2'4 (@) 32 ®(7)(0) and its derivative in terms of E24) when propa-

Equation(32) agrees with Eq(7) for small wavenumbers. gated fromz, <0 towardsz=0. This procedure fixe8, and

With a bit more algebra, the Ritchie solution E@®9) is A, as function ofw. (B;=1 .WithOUt lOSS.Of generality .
reproduced, t0o. Next, the surface plasmon eigenfrequencies are determined

For z>0 the differential Eq(31) possesses a strong sin- PY the requirement of continuity of both,(z) andNy(z).
gularity atz=cc with characteristic index 47 Asymptoti-  NOté, z=0 is an inner point of the interval so that the
cally, its solution can be represented as a Thamemal density must be likewise continuous. Within numerical accu-
series racy, however,J;,(0) andN;(0) match within different fre-

guency intervals, Figs.(@ and 7b). Our broad—minded er-
- , ror estimates include numerical errors by the mathematica
dM(2)=eP@z7 Y ¢z, (33  routine NDSolve as well as systematic errors using finite
1=0 starting points at;<0,z,>0 when extrapolating to infinity.
For the special case=5/3, we getr=0 andP(z) is a Therefore, as already expected, for the unbounded surface
polynomial of(maximum degree 3. With this ansatz all four region no solution exists which fulfills the required boundary
independent solutions with polynomialﬁ’“)(z): -qz conditions. Fore=2, the situation becomes even worse and
P@(2)=qz, P®)(2)=iwz%/10y3, and P*)(z) = —PC)(z) probably no bounded solution existszn-0.
can be found® However, the only solution that fulfills the
boundary condition belongs ®©™)(z)

V. CONCLUSIONS
10

14205 gy U

AL AN
w? =6 41(2q)i—°

®(M)(z)=B,e 9

During the past three decades a hydrodynamic description
has served as a popular and simple model to describe the
collective excitations in the bulk and at the surface of metal-

(34 lic systems or degenerate semiconductors. Although such a
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a) caused by the electronic work function. However, a discon-
tinuity in the electronic density away from the real surface
must be considered as a severe approximation error. With
< increasing surface widths the solution does not tend to zero
and the linearized equations become invalid — yet the surface
plasmon dispersion changes in the correct fashiora, lif
> <1. For an unrestricted vacuum region a consistent treat-
ment additionally requireBl;(+)=0, which rules out the
*++ two oscillating solutions so that the matching conditions can-
l; not be fulfilled. In mathematical terms, the HD model defines
o . . L L an ill-posed problem and the finite surface layer model is
o | . not a well defined approximation of the infinite system-
neither for the monopole nor for the multipole surface exci-
v . . . . tations.
++ b) The origin of this flaw lies in the fact that in the vacuum
++ the electronic state is described by quantum mechanics rather
than by the HD model, i.e. the grBdterm becomes less
important(or perhaps meaninglesdnstead, thgsofar for-
gotten finite work function of the metal enforces an expo-

' ' ' ' crease of the electronic density near the surface, which is

m
HH“HHIH

N,(0)
o

S nential decay of the density and current density in the
s vacuum region. This behavior can be simulated by adding a
constant ternE,y to Ey(2) in Egs.(21) and(22). Provided
] the spill-out of the electronic charge is smg(z)~0,
‘ :!' Eo(z)~0 for z>0], we obtain a second solution, which is
‘ . . . linear independent of Eq25)
0 0.2 0.4 0.6 0.8 1.0
(0]
Kq
FIG. 7. Density(a) and polarizatioll,=J,,/iw atz=0 (b) as o
calculated numerically from the vacuurr§ and metal ) region llf(”(z): B iK oKz (35)
as a function of frequency. Error bars give large scale estimates of 2 2 w(|<2_q2) )
the numerical and systematic errors. There is no frequency, where iK(Kz—qz)

both N;(0) andII,(0) [i.e., J;,(0)] can be continuously matched.

model cannot give a fundamental description of (iegative K%wsp/EW~2\/2mV\I/ﬁ2, W is the work function of the
slope of the surface plasmon dispersion or the existence ofmetal. Now, a continuous matching #* with ¥~ is pos-
an extra peak in the photoemission just beley they can  sible. As a result, we obtain for the surface plasmon disper-
readily fit to it (as stated by Schwartz and SchaléhNev-  sion coefficient, Eq(1)
ertheless, fitting experimental data to a surface profile gives
little insight in its true shape. Although the extreme sensitity 1 2f.K2_1
of the surface plasmon dispersion on the approximation of Com——_ 2B =
the “spill-out” of the electronic charge density across the 22 2f K2+ K’
surface was already stated by Ahlqvist and Affetind
5:2?2’3“2 and Schaichits mathematical origin was not re- wheref,=aC is. the b.ulk valug Qif which is related to the
There are two key points which are responsible for thebUIk plasmon d|_spe_r5|on cqefﬁment, E@z)’ b_y fb:zcb.'
mathematical asymmetry of the solution with respect to thézor.K._’OO the Ritchie—solution Ec(.30) IS obtamgd. IfK is
metal and vacuum regionga) There are two fundamental sufﬂqently small.cs b?COm?S negative. For sodium and po-
solutions in the metal but only one in the vacuum whichtassium, however, this estimate seems to be too crude and
obey the boundary conditions for the electric field at infinity. d_oes not lead lo a negative value of the surface plasmon
(b) For a finite surface layer not only the exponentially de-diSPersion coefficient.
caying solution but also the two oscillating modes of Eq.
(21), which belong toP*)(z) of Eq. (31) come into play.
Then, unavoidably, a jump in the density at the vacuum side We thank Professor Dr. E. Martensen for his interest and
of the boundary arises, which is clearly seen in Figa) &nd  advice concerning differential equations and Dr. Ch. Fuchs
6(a). Nevertheless, this is physically acceptable if the jump idfor his help during the first stage of the work. Part of this
located very close to the surface as e.g. in the Ritchie-work was supported by the Deutsche Forschungsgemein-
solution (30). Such a discontinuity mimics the strong de- schaft through Sonderforschungsbereich SFB 195.

(36)
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