PHYSICAL REVIEW B VOLUME 60, NUMBER 3 15 JULY 1999-I

Luttinger-liquid state of the zigzag double chain
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The zigzag double chain is investigated using Lanczos techniques. The weak-coupling limit is similar to that
of a ladder system which is known to have a spin gap at half-filling at all coupling strengths. But the half-filled
zigzag system is gapless at strong coupling. The question whether a spin gap occurs upon doping is investi-
gated. It is shown that the doped zigzag chain is a Luttinger liquid in which the holes repel each other. The
criterion is based on exact diagonalization techniques for open shell boundary conditions. As a further cor-
roboration, the hole-hole and the hole-spin correlations are also comp8@b3-18209)07427-3

I. INTRODUCTION fore a very good example of a doped quasi-1D cuprate. Fur-
ther replacing Y by Pr should make the planes insulating and
The study of low-dimensional quantum magnets and thallow the study of the weakly coupled and doped double
effects of doping is a major topic at present, stimulated bychains down to low temperatures.
the discovery of highF, superconductivity in the planar In the noninteracting limit, a double chain is described by
cuprates. The wide range of possible cuprate structures haswo bands(bonding and antibonding The glide symmetry
also encouraged the study of one-dimensididl) systems of the system leads to a degenerackats in the double-
and those which are intermediate between one and two dband description, so these bands are reminiscent of the one-
mensiong2D).2 One such system comes through assemblingpand system of the 1D chain with longer-range hopping.
chains together to form simple ladders and recent studieShus, near half-filling the Fermi surface is given by four
have focused on the very interesting phase diagrams thabints as in the case of the simple two-leg ladder. The weak-
result>* However, cuprates chains may be assembled in argoupling limit of the Hubbard model for this system, exam-
other way, namely to form a zigzag double chain. ined by Fabrizid® Balents and Fishét: renormalizes to a
Recent measurements performed on the underdoped corstrong-coupling fixed point with a spin gap, physically re-
pound YBgaCu,Og (T.=80) have shown that forT lated to the formation of hole pairs.
<200 K thec-axis dc conductivity isnetallic implying the This contrasts with theoretical studies of the half-filled
onset of coherent three-dimensiorfaD) conductivity just  double chain in the strong-coupling regithevhich show
aboveT,.. This difference with other underdoped supercon-that a weak ferromagnetic interchain coupling leads to a gap-
ductors is explained by the special structure of this comiess phase. A small antiferromagnetic interchain coupling
pound. It forms a stack of planes where layers of zigzagppens only an exponentially small gap. The key question
Cu-O double-chain sandwich bilayers of CuGquare whether or not this gapless phase evolves into a gapped
planes. Recent measureméntsave established that the phase upon doping will be investigated in this paper, using
double-chain layers only were responsible for the coherengxact diagonalization techniques with parameter values ap-
c-axis transport. The 3D coupling between the double chainpropriate to the cuprates.
arises through virtual hopping processes, involving empty Along the chain, the copper spins are coupled by the 180°
states in the Cu®square planes. However, the effective Cu-O-Cu interaction, leading to a strong antiferromagnetic
hopping matrix elements between the double chains are veipteraction (,) as in the ladder geometry. The interchain
small. In fact, band-structure calculations display only amagnetic coupling, arises from a 90° Cu-O-Cu bond and is
small dispersion along the axis[AE=0.05 eV (Ref. 7)]  thus expected to be ferromagnetic with a much smaller mag-
and an estimate of the perpendicular interchain coherent homitude thanJd,, |J,|/J,=0.1-0.2"3 Moreover, the zigzag
ping from magnetoresistance experiments gives a value afoupling introduces frustration in the spin ordering. Experi-
t.=3 meV® mental estimates of the magnetic coupling on the stoi-
Moreover, the double-chain resistivity shows a standarahiometric  single-chain (double-chaip ~ compound
Landau form peai=po+AT? for T<450 K?® with poy  SnLCuO; (SrCuQ) give  similar  values, J,
=0.5 uQ cm andA=1.47 ) cm/K2. The low value ofp,  =1800-2100 K:*!°The magnetic coupling is comparable
confirms the very high level of perfection of the double with the valuel,=1500 K2 found in the ladder compound
chains. Previous nuclear magenetic resonghMéR) mea- (SrCa).Cu,,04;. The magnetic coupling in YB&Eu,O; is
surements showed the existence of a Korringa law irelso expected to have approximately similar values. In the
1/(T,T) for the copper in the double chaifi$ These results following, the valueJ,=170 meV (=2000 K) will be
suggest that the double chains form a 3D Landau-Fermi ligused. The interchain coupling is arbitrarily chosen to be
uid although the coupling between double chains is veryd;=—20 meV.
weak when compared to intrachain couplings. Note that in Upon doping, hopping processes are allowed. The values
the compound YB#Cu,Og the double chains are self-doped estimated for (SrCa)Cuw,,0,4; (Ref. 17 will be used where
with a hole concentration=0.3—0.35. This system is there- a similar structural unit separates the two-leg ladders in the
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FIG. 1. The effective model for the CyQ@louble chain used in
this paper.

ladder planes. A detailed study of the band structure showe
that sizable longer-range hopping matrix elements occur in ¢
double chain. The matrix element convention is displayed in
Fig. 1 with values oft;=0.018 eV, t,=0.537 eV, t3
=0.053 eV, and,=0.106 eV predicted from local-density
approximation(LDA) calculations.
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FIG. 3. The coupling coefficienty for different velocity ratios

at half-filling.
Il. WEAK-COUPLING

We begin with a recapitulation of the results in the weak-stands for forward scattering between rigot left) movers.
coupling limit which is closely related to the analyses ofIn the one-loop expansion thg couplings will not lead to
Fabrizid®® and Balents and Fish&rfor models with two any divergent diagram and are independent of all the others
bands at the Fermi energy. At half-filling, the Fermi veloci- couplings:® They will not be considered any furthegs de-
ties of the bonding and antibonding bands are taken to beotes the Umklapp processes occurring at half-filing when
equal. First it is checked if the fixed point at half-filling the Fermi energy cut both bands, Wk ;+ kg p= 7.
(called COSO in Ref. 1lis robust for different Fermi veloci- ~ The renormalization grouggRG) flows are derived ac-
ties, characteristic of the double-chain energy bands. Theording to the standard methods described in the literdfure.
couplings constants are defined in Fig. 2 and follow theThe differential equations for the couplings in the case with
g-ology notationt®!° The g, processes denote the backscat-all Umklapp processes of Fig. 2 and different Fermi veloci-
terings implying only one or both bandg, denotes the for- ties are given in the appendix.

ward scatterings between left and right movers, wheggas At half-filling, the three coupling®zaapb:JzabansJzabba
are allowed, leading to a system of 11 coupled differential

equations. The flow of equations are integrated numerically

— _— —  — — - _
a b, a ay b by up to the first divergencA where all couplings are assumed
to diverge like
— —_— — E— — —
b, a_ a, a_ b, b_ - Agio
&1abab € laaaa &1bbbb 9TToAT
a_’ P 2 b o The coefficientg; o is then computed. In Fig. 3, the coeffi-
- - - B i B cientsg; o are plotted as a function of the Fermi speed ratio
L Valvy, Wherev, (vp) is the Fermi energy &g, (Kep). It
b_> b a A b_> b— is seen that no qualitative change occurs arowh@l=1. For
+ * + + * + the band parameters given above, the ratio of the velocities is
82abba 82aaaa 82bbbb Va/vp,=1.08 and the same phase as dot 3, (i.e., a COSD
occurs in agreement with earlier studi@s? Thus, this is
— I _— —= Y clearly in contradiction with the experimental and analytical
a a - by a + study of the half-filled double-chain systéfh'? The intro-
duction of strong interactions will change the nature of the
- - - - fixed point.
b_ b, b a4 a by
3abba &3abab &3aabb Ill. STRONG-COUPLING LIMIT
a_> Ta a—> - a b b The strong-interaction limit is studied in the framework of
- - - % - - - the t-J model with the Hamiltonian
b— b— a a_ b b‘ H=— 2 (tijEiTo-Ej,o'_‘— HC)
g g g e
4abba 4aaaa 4bbbb

FIG. 2. The different couplings for a four-point Fermi surface.
Each one is illustrated with one possible scattering process.

1
+3:2 | SSie,~7MNie |+ 2SS, (D)
! (i,i"



PRB 60 LUTTINGER-LIQUID STATE OF THE ZIGZAG DOUBLE CHAIN 1613

where the last sunkt; i, is taken over all the interchain -23
bonds.J; is chosen to be negative in order to account for the 24 |
ferromagnetic interaction. The projection onto singly occu-
pied sites is included in the operaﬁqr,(rzcj,(,(l—nj,_(,).

As pointed out above, this system is equivalent to a single
chain, however, the notation will follow the double-chain
representation. In the one-electron picture, the two bands can =281 L=t0
be discriminated by using the labe}=+(—) denoting the -2.9 —
bonding(antibonding band such that the energy, (k) ful-

fills the relationshipe . (k,) = € _(27—k,). This relationship

is a consequence of the glide symmetry of the system. Two
analogous parameterk,,o,} will be used to label the
many-body wave functiortwherek, is now the total wave
vector ando, the eigenvalue under exchange of the chains
In the subspac&,=0, the symmetry due to the rotation by
180° of all spins(all spins flipped is also used. It can be
labeled by the character of the rotatiog= *=1. This splits

the Hilbert space into one with even total spB%2n (o FIG. 4. The total-energy spectrum for a single chain doped with
=+1), and one with odd total spi§=2n+1 (o0s=—1).  two holes. The uppermost panel displays the values for a 10-site
In general, the lowest state in the corresponding subspace heésain using PBC. The lowermost panel displays the values for a

-25

Energy [eV]
N
»

Energy [eV]

the minimal total spin, i.e., is a singlétriplet) for o= 20-site chain using APBC.
+1 (—1). The different results will be plotted as a function . . : : .
of {k,, 0, ,0d). to see if they form pairs leading to a spin gap, as in the

simple ladder or if they repel each other favoring a LL. Con-
trary to the 1D case discussed above, if the 2 holes repel each
A. Open shell and Luttinger liquid other, it will introduce a supplementary frustration in the

Usually, in order to avoid overestimating the possibility antiferromagneti_c order of the spir_13 in the chains_. For such a

of a pairing instability, closed shell boundary conditions areSmall system this effect can be important. It will be seen,

used®® Here, open shell boundary conditiof®@SBO with h_owever, t.ha_t the qualitative plc_tgre described apove for the

an even number of holes will be investigated. In the nonin-Single chain is not strongly modified. The case wif}6 is

teracting limit, these BC's allow partially filled band levels /S0 discussed since it is the closest to the compound

atk=k such that ground-state energy is degenerate, implyY B2CWOs that has self-doped double chains with

ing two states, one with the total wave functios 0 and one 20-3_9-35- , )

with k= 2kg. In the strong-coupling limit, a Luttinger liquid In Fig. 5, the lowest eigenvalues of &20 cluster with

(LL) with hole repulsion will favor thek= 2k ground state 2(6) holes is plotted as a function ofk for
since then the two holes have the same wave vdctdt,, PBOAPBC). Both PBC and APBC lead to OSBC in both

minimizing their repulsion. In order to illustrate this effect ases. The system doped with 2 holes gives a smaller energy
the 1D t-J model with only nearest-neighbor interactions When APBC's are used than when PBC’s are used. However,
will be considered. It is well-known that with hole doping, € corresponding Fermi vector kg= /2, allowing the oc-
this 1D system is a Luttinger liquitk-2 Therefore, in this currence of unwanted Umklapp processes. In order o pre-
case, finite-size effects occurring for small systems can b¥ent this small-size artifact, PBC’s are chosen. In the case
studied. -3.8
In the upper(lower) panel of Fig. 4 the energy spectrum
as a function ofk is plotted for a 10(20)-site chain doped
with two holes, using periodi¢antiperiodi¢ boundary con-
ditions, (PBC) (APBC). In the subspace;=1, the lowest
energy is at Re=47/5 as expected for a LL. However, the
ground state of this system is a triplet in the subspagce
—1 atk=0. This is interpreted as a finite-size effect due to
the small size of the cluster and it is reminiscent of the
singlet-triplet degeneracy of a LL. This can be better under- 6—o60=1,0=1 | [—201,0

Energy [eV]

=1
stood when considering the larger cluster with 20 sites. B—80=1,0="1 &—Ag=-1,0,=-1

r

There, the ground state is atk=9#7/10 with os=1,
slightly below the triplet state d&=0.

Energy [eV]

B. Double chain n,=

The study of the double-chain system will be based on a -7.0
2X10 cluster with a doping,=2 andn,,=6 holes. The case

with n,=2 is first considered in order to investigate the be- FIG. 5. The uppertlower-) most panel displays the total-energy
havior of the 2 holes introduced in the system. It is of interestpectrum for a X 10 cluster with 2(6) holes using PBGAPBC).
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FIG. 6. The hole-hole correlation for ax210 cluster with 2 FIG. 7. The hole-hole correlation for ax210 cluster with 6

holes using PBC. They are normalized such #ma(1)n,(1)=1 holes using APBC. They are normalized such tfaf(1)ny(1))
(this point is out of the graphsThe site inde) is chosen such that =1 (this point is out of the graphsThe site indey is chosen such
1<j=<10 labels the sites of the first chain and<ljl< 20 labels the that 1<j=<10 labels the sites of the first chain and<ljl< 20 labels
sites of the second chain. the sites of the second chain.

with 6 holes, APBC leads to the OS with the lowest groundpulsive correlation. When the first hole is fixed to the first
state and will be used. In each graph, the four curves give theite, the correlation foj<10 displays two spread-out local
energies in the subspaces labeled {loy ,05}. The most maxima atj=4,5 andj=7,8 with a tiny local minimum at
striking feature is that the energy curve in the subsdage j=6. This favors the picture of three repulsive holes on the
=1,0,=1} is analogous to the 1D case. It has a local mini-first chain. The branch with>10 is nearly flat again indi-
mum at Xe=4x/5(3x/5) for n,=2(6), indicating that the cating the lack of correlation between the chains. Therefore,
system is a LL. The lower energy found in the seatQr= the same repulsive character exists for the holes as in the
—1, we ascribe to a finite-size effect as in the 1D case. previous case and it is again concluded that this system be-
haves like a LL.

C. Hole-hole correlations

The pairing of holes, if it occurs, can be directly observed D. Hole-spin correlation

in the hole-hole correlatiofin,(1)ny(j)). In Fig. 6 they are A property of a LL is the relationship between the spin
plotted in the different subspaces for thg=2 case. They excitations(spinong and the holegholong. The magnetic
are normalized such théh,(1)n,(1))=1 (this point is not energy introduces a weak attraction between spinons and ho-
shown in the graphs The subspace witlr,=—1k= is  lons and just a small energy is necessary to separate these
equivalent to that withr, =1 k=, and thus only five cor- particles allowing them to move freely and independently of
relations are plotted in the corresponding subspaces. On tigach other (spin-charge separatipn The S=1 (S,=1)
horizontal axis, the site indek is chosen such that<ij manifold of a 2< 10 double chain, doped with 2 holes, con-
<10 labels the sites of the first chain and<ljl<20 labels sists of 2 spinongeach one identified with &7-spin paip
the sites of the second chain. and 2 holons as schematically plotted in Fig. 8. The corre-

The correlations corresponding to the lowest energies argponding lowest energies in this subspace are those labeled
of interest here since they characterize the ground-state propith os=—1 (triplets) in Fig. 5.
erties. When the first hole is fixed gt 1, the second hole The correlation between the spins and the halgy(j)
has nearly no probability of being on the same chain and is=(ny(1)S*(j)) is computed. It is interpreted as fixing one
equally found on the sites of the next chain. This shows thahole atj=1 and looking at the remaining spins. In Fig. 9
the holes repel each other where no correlation is found bghese hole-spin correlations for the<20 cluster doped with
tween the chains and thus that both chains behave indepetwo holes in the sectols=0 andk=4=/5 are plotted. The
dently, forming a LL. A few correlations are peculiar as in curves corresponding to the lowest energy states are consis-
the caseo,=—1,0,=1k=4mx/5, where both holes are on tent with each other. For<j=<10 the correlations show an
the same chain but still repel each other. This state has a
much higher energy than the ground-state energy and repre-
sents an excitation of the system. This point does not modify
the proposed picture and will not be discussed further.

In Eig. 7 the hole-hole correlation for a system .With SiX =,
holes is shown. In order to reduce the computing time, only
the correlations fok=0 andk=3x/5 corresponding to the FIG. 8. Schematic plot of 2 spinons and 2 holons in the double-
lowest energies have been computed. They also show a rehain system.

/S Y S N N SUN R s S|




PRB 60 LUTTINGER-LIQUID STATE OF THE ZIGZAG DOUBLE CHAIN 1615

0.010 - TABLE I. Correspondence with the notation of Ref. 11.
0.008
glaaaa gl(rlz
= 0.006 1 J1bbbb 02,/2
<: 0.004 | J1abab gx0'/2
J1aabb gtalz
0.002 J2aaaa 910/4_91/1
0.000 92bbbb 924/4— 092,
J2abba gxo'/47 gxp
0.008
J2aabb gtn'/4_ gtp
s 0.006 | J3aabb ~Oxu
<= 0.004 - J3abba _gtu:l
O3abab gtu2
0.002 | Oo—0k=0
o=—1 |B—ak=4n/5
0.000 —& .
Y 10 20 APPENDIX: RG EQUATIONS
j (site index)

FIG. 9. The hole-spin correlation for ax210 cluster with 2 The der.lvatlve of the_cou_pllrlg can be_ written using
holes and a total magnetizati®&=1 using PBC. The site indgyis ~ — d9/dl, with I =—Inx/(mv). v=3(vatv,) is the average
chosen such that<j<10 labels the sites of the first chain and Of the Fermi velocities of the antibonding and bonding
11<j<20 labels the sites of the second chain. bands.x=w/Ey is the scaling parameter of the system,

whereE, is the cutoff. Thus, the flow is parametrized with

alternating function of local maximum and minimum. This |:0—. Using the parameter=v/v, andg=v/vy, the Lie
means that when one hole is fixed on the first site, theéquations for the RG flows of the different couplings are
supplementary spins are spread out along the ctepim-  diven by

charge separatigrwith a slight preference for the up spins
lying around the hole, reminiscent of the weak spinon-holon
attraction. The spins are ordered antiferromagnetically, im-
plying a field felt by the spins of the second chain and thus a — UsabatJ3abbals

relative ordering of the spins at £]j<20. This interchain

correlation is much less important than the intrachain corre- . 5 5

lation. It should be pointed out that the hole-hole correlation J1aaaa= —[97aaaa® t (93abbat J1aabtd2aabb
is the same as in Fig. 7 in the subspace= —1, where it

was found that holes repel each other, corroborating the LL ~ Ozabbazanan) A1,
picture for the doped double chain.

: _ 2 2 2
91abab™ ~[97ababt 91aabbt I3abab™ J1aabtd2aabb

i 2 2
91bbbb™ — [91bbbbB T (93apbat J1aabtd2aabb

IV. CONCLUSION ~ Uzapbad3aban) @],

Therefore, the strong-coupling limit of the double-chain
system displays a completely different behavior than that of 1 N
the weak-coupling model. In fact the numerical data show Y1aabb™ [2(91a0a882aa00 T J1aabt200aa) @

strong evidences_ for a system of dec_ou_pled ch_ains, egch be- + H(910001928800+ G1aabtd26000)

having as a LL without a spin gap. This is consistent with an

analogous work using a 1D Hubbard modet-¢’ —U) but +201abatd1aabbt 93abatdzaabb™ J1abatd2aabb
with a positive next nearest hoppiAThus, the fixed point

governing the physics of an isolated double chain has been ~91aabtd2abba Y3aabtd3abbal.

shown to be a LL without hole-pair formation. If hole pairs
were formed as in the two-leg ladder, then weak 3D coupling
should lead to a superconducting or a charge-density-wave
ground staté® Instead, a model of weakly coupled Luttinger

- _ 1,2 2 2 2
O2abba= — 2 (91abab— 92aanb— U3abba— 93aabb)s

liquids is found for the double chains in YBau,Og and Uoanaa= _%[(giaaaa)aﬂgiaabﬁ ggaabb_ ggabab)lgl
from experiment it seems they form a 3D Landau-Fermi lig-
uid.
: — _1r(n2 2 2 _ 2
92bbbb™ — 2[(91bbb) B+ (FTaabbt 92aabb— I3anan) ]
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. _ . . _
J3abba™ — [5(291aaaagaabba_ J1aaaad3abab J3aabb™ — [glababg3aabb+ 293ababglaabb_ J1aabbd3abba
- +1(2 - ~2 —~ N
O3abbad2aaaa) @+ 2(201ppbtd3abba U3abatd2aabb™ #93aabbd2abba™ 92aabbd3abbal -

— J1bbbtd3abab— Y3abbad2bbbb) B

—(92abbad3abbat 92aabtIzaabb) I, The meaning of the different couplings is schematically
. ) . given in Fig. 2. Their notations follow the standageblogy
93abab= — [~ 292aaaad3abab® ~ 2 92bbbtd3ababB notation and their derivation is analogous to the 1D ¢ase.

order to get a direct rewriting of these formulas in terms of

+2 —+ — . .
J1avatdsaban™ J1aabtdzaany™ J1abandzanva the current-algebra notation used by Balents and Fisher, the

— U3ababd2abba— 93aabbd2aabhls relationship between the two notations is given in Table I.
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