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Binding of resonant states in a magnetic field
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We report the theoretical prediction of the phenomenon of turniejagoeresonance into a bound state in
the presence of a magnetic field. A model potential for a multishell spherical quantum dot is used in the study.
Sharp changes of the resonance width are observed when the magnetic field is increasing. It is shown that for
some critical value of the field, the above-threshold resonant states undergo an abrupt transformation to bound
states. The effect is explained and the influence of a magnetic field on the width of atomic shape resonances is
discussed[S0163-182809)05947-(

. INTRODUCTION for 1P° of Ref. 5 was also obtained by Fiéor the 3P° H™
shaperesonance lying above the=3 H threshold. On the

In this paper we deal with an unusual phenomenon obther hand, in a recent computation by Bylicki and
turning a quasistationary state of an electron in a quanturNicolaide$ the *P° H™ shaperesonance was followed up to
dot into a bound state under an applied constant homogex field of about 140 T at which its energy level was reached
neous magnetic field. The motivation for the investigation ofhy one component of the= 2 thresholdthe threshold splits
this effect is twofold: Firstly, the study of the energy struc- in the field. For stronger fields the state disappeared from
ture of quantum dots is important because of their possiblgheir computation, i.e., either it had changed so abruptly that
applications in electronic and optoelectronic devitédn it was impossible to follow the change, or it disappeared
particular, a knowledge of the resonance states of quantushysically, i.e., the localization was destroyed. Thus, the
dots is necessary for a proper description and interpretatioftansformation of the!P°® H~ resonance under the applied
of tunneling processes in novel one-electron deviceSec-  magnetic field is far from being determined and understood.
ondly, the impetus comes from atomic physics. It was shown | the case of many-electron atoms a theoretical investi-
by Bylicki, Themelis, and NicolaideSwho first studied au-  gation of resonant states requires large scale calculations to
toionizing resonances of Hin a magnetic field, that for account for electron correlation effects as well as for many
some strength of the field, the resonance level may cross thghen-channel continuum contributions. In the presence of an
continuum threshold causing a change in its energy widthexternal field, the problem is even more complicated and
Apart from a possible case of smooth variation of the widthcomputationally larger due to the breaking of spherical sym-
with respect to the field Strength, two extreme situations a.ftefnetry_ Hence, in a case like tH-@o H™ Shaperesonance in
such a crossing are thinkable. Depending on the relation tg magnetic field, where the resonance energy level crosses
the open and closed channels, the resonance wavefunctige continuum thresholds, obtaining reliable quantitative re-
either delocalizes, i.e., the resonance disappears, or quite ogglts is indeed difficult. However, thghaperesonance is, in
positely, it becomes bound. the first-order approximation, determined by a local barrier-

Recently, H3 and Bylicki and Nicolaidesconsidered the  well potential for the electron scattered in the field of nucleus
case of the hydrogen negative idR° resonance in a mag- and the remaining electrons. Thus, avoiding additional com-
netic field. This state, having the energy position just abovgjications due to electron correlation and many open channel
the n=2 hydrogen levelthe second threshold for the con- continua, one can investigate at least some leading features
tinuum), belongs to the category ahaperesonances. The of the influence of a magnetic field on the energy position
existence, i.e., the wave-function localization, and dynami(and width ofshaperesonances by using a model potentia|_
properties ofshaperesonances are, in the first approxima-
tion, determined by an effective one-electron potential con-
taining a barrier, so they appear because of the particular
shape of the effective potentlTherefore such resonances  In this paper, we chose to investigate a quantum dot,
are referred to ashaperesonances The results obtained by which also is referred to as atificial atom because of the
Ho® show that the width of the!P° resonance decreases similarities of its energy structure to the energy spectrum of
monotonically and smoothly with an increasing fieBl  real atom. The quantum dot is represented here by a simple
reaching, forB=658 Teslas(T), a value twelve times barrier-well potentialFig. 1). The energy position of shape
smaller than in the absence of the magnetic field. Theesonance, shown schematically in Fig. 1 as dotted line, cor-
computation was not carried out for stronger fields. The responds to the energy of resonant tunneling of carriers in a
extrapolation from Ho's results suggests that, apparently, thquantum dot. The advantage of this model is {hat is easy
state is bound for fields stronger than 700 T. Let us noteto deal with computationally to high numerical accuracy, and
however, that such a result is not intelligible. This state can{ii) it can be realized as a chemically synthesized multishell
not be bound at such field values, since its energy is still welsemiconductor nanocrystat® so that theoretical predictions
above then=1 continuum threshold. A result similar to that can be verified experimentally. The use of a semiconductor

1. MODEL
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of applications of the CESE method to atomic resonances
V- can be found in Refs. 16 and 17. The method was also ap-
plied to the study of resonant tunneling in low-dimensional
structures>*¥and in this context was described in detail
S e in Refs. 12 and 13.

Here we summarize briefly only the most important fea-
tures of the CESE approach: The resonance wave function
2 can be divided into two terms,

T T
0 a a+b r

\Y

q,:q,loc"')(asympt- (2
FIG. 1. Conduction band-edge profile constituting the radial po- . . . .
tential V(r) for the electron motion in SQDQW. The dotted line '€ localized part¥,c, is square integrable and describes

shows the energy position of a near-threshold resonances state. the quasibound character of the state, whejgagmptakes
care of the proper asymptotic behavior of the state, i.e., it is
environment to study the resonance state dependence on tfgsponsible for the decay of the resonance. Since the decay-
magnetic field gives the possibility of applying fields attain-ing resonance function contains asymptotically only an out-
able in the laboratory, while for atoms a similar study would90ing wave, the corresponding eigenvalue of the Hamil-
require fields stronger by several orders of magnitude. ~ tonian is complex,e=E—iI'/2, with the imaginary part
More specifically, we considered a spherical quantum-dogletermining the decay probability;. Because of different
quantum well(SQDQW) system consisting of three concen- Properties of¥ ;. and xasympr, they require to be repre-
tric shells of different semiconducting materials. The mostsented in different basis sets. In our calculations the localized
internal core, of radius, is built of a material whose energy Part was expanded in a basis of the usual Slater-type orbitals
gap between the valence and conduction band is small. THSTO) of real coordinates, while the asymptotic part was
middle shell, a barrier of thicknesds consists of a cap of a represented by STO's of the complex rotated coordinate
wider-gap semiconductor. The bottom of the conductionre™ '’ (r is the radial coordinaje The use of such a complex
band in the core is &, and in the middle shell is equal to coordinate regularizes the wave function, i.e., makes it
V, (see Fig. 1 The external macroscopic shell is again built Square integrable.
of a small gap material; its conduction band edge is placed When choosing the basis set we took advantage of the
betweenV,; and V, levels. The bottom of the conduction well-defined geometry of the system. Since we knew that the
band of the outer shell, constitutes the continuum thresholfesonance wave function should be localized inside the well,
and is chosen to be zero of the energy scale. As a particuldye chose the nonlinear parameters of the real STO’s so as to
realization of such a quantum dot one can consider a Strudocalize them within the well in the sense of the mean value
ture built of caps of Gan;_,As, Al,In;_,As and of r. The complex rotated S_TO’s, repr_ese_nting the
GayIn; _,As with properly chosen compositions éndy) of a_symptotlc pegrt of the wave functlon,_ were distributed out-
Ga and Al atoms in In A$13 side the well® The Hamiltonian matrix built from such a
We investigated only the electron states and we worked@sis Set is non-Hermitian; its eigenvalues are complex and,
within the one-band effective mass approximation. The elec&S functions of paramete, form the so called)-trajectories
tron effective massn* was, for simplicity, considered as ©n the complex energy .plaﬁé..These complex eigenvalues
being homogeneous in the whole systEnThe conduction of the Hamlltoman matrix, which corresponq to resonances
band-edge profile, shown in Fig. 1, constitutes a sphericaihould be independent of the complex rotation paramgter
potentialV(r), for the electron motion. The Hamiltonian of if the basis set was complete. The basis sets actually used are
the electron in a spherical quantum dot and static homogéfinite and incomplete, so the eigenvalues maytbdepen-

neous magnetic fiel@=B, is dent. The complex roots that stabilize against the variation of
6 correspond to the resonance states. Their values at the
h2 e? stabilization points of9 trajectories are considered as being
H=s w ATV + 5= B?p?, (1) the best approximations to the complex energies of the reso-

nances,e. In our computation the basis set was also opti-
where p?=x?+y2!* Since the magnetic field breaks the mized with respect to other nonlinear parameters so as to
spherical symmetry of the dot, the orbital angular momentunobtain the best stabilization.
is not a constant of motion and the eigenstatesi afan be

labeled by the magnetic quantum numidérand parity 7. IV. RESULTS AND DISCUSSION
The consecutive states of a giviehand parity are numbered .
by n, i.e, M7 We performed calculations of the resonance spectra for

two different symmetries in two slightly different SQDQW
systems. TheM 7= 0° symmetry states were investigated in
SQDQW defined bya=7, b=25nm, V,=0.37, V,
As a tool for finding the resonance energy positinand ~ =0.1 eV andn* =0.041Im,. The 1° states were studied for a
the energy width,I', we applied the complex eigenvalue system determined by=8, b=2.5nm, V;=0.37, V,
Schralinger equation(CESB approach?® which is a fast =0.13 eV andm* =0.04Im,. The values of the effective
convergent(as the size of basis set is considgretethod massm* and band offset parameteks; andV,, correspond
involving complex coordinate rotation technique as a way ofto SQDQW built of previously mentioned Ghkn;_,As and
handling with the resonance boundary conditions. A reviewAl , In; _,As materialst'3 The thickness of layers was cho-
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FIG. 3. The same as in Fig. 2, but for th& dtate of SQDQW
FIG. 2. The § resonance of SQDQW defined =7, b determined bya=8, b=2.5 nm,V,;=0.37, andV,=0.13 eV.
=2.5nm,V;=0.37, andV,=0.1 eV(see Fig. 1L (a) Energy posi-
tion, E (full points), versus magnetic fiel@. The solid_ Iin_es show  \when the field is onB+0) the electron motion in the plane
the two lowest Landau energy levelEq. (3)] constituting con-  harpendicular to the field direction is quantized and bound,

tinuum thresholds(b) Width, I', vs magnetic field(c) Radiusp, ;o “the electron is trapped in a Landau state. Its total ener
=[(2|M|+1)%/eB]*? (solid line) of the the maximum-charge- I.E<.:,onsists of the Langarl)u state energy ' 9y
e 1

density cylinder of the lowest Landau state. Dotted lines mark th
position of the barrier-shell.

— 1
sen within a practically attainable range and to guarantee the En=r (IM[+n+3), ()
presence of very-near-threshold resonarisee Fig. 1L The

magnetic field was varied in the range from O up to 40 T.gnd of the kinetic energyE,i,, of the asymptotic motion
The energy spectrum of both symmetries had several resgjong the field axis. The energy continuum breaks into an
nance levels. The parameteBSandI’, of high-lying reso- infinite number ofchannels each one associated with a
nances changed smoothly with respect to the variation of thging|e Landau level. For the electron, of a given enefgy
field strength and” did not reach zero for any field. They that tunnels outor is scatteredfrom the dot, the channels
were not of interest in this paper. associated with the Landau levéis<E areopen i.e., en-

We have focused our attention on the lowest resonancegrgetically accessible, while the others atesed
0f and X, having energy levels just above the continuum  The field-induced increase of the energy of a quasibound
threshold’® The results obtained for the @nd 1 states are state is governed by the quadratic term of the Hamiltonian.
presented in Figs. 2 and 3, respectively. Two characteristigVhen the field increases, more and more channels get closed
features in the variation of the resonance widths versus madsecause the Landau levelthe thresholds of the continua
netic field are easily seen in Figs(b? and 3b): First, the rise up linearly withB, i.e., for small fields, faster than the
widths change very slightly for weak fields up to some criti- resonance energy. Reduction of the number of open channels
cal value of the field, depending on the ca8€r for 0f and  with an increasing magnetic field manifests itself in the low-
19 T for 17, at which they start decreasing rapidly. Next, for ering of the width of the resonance state as shown in Figs.
fields stronger than 21 T in the case §f,(r 32 T forthe £  2(b) and 3b). The slowly increasing energy positions of the
state, the value of the width is exactly equal to zero. Thi07 and 1 states are shown as functionsBin Figs. 2a) and
means that the nonstationary states have been transform8th), respectively. For comparison, the lowest two Landau
into completelyboundstates. energy levels are displayed in both cases. One can see that

A detailed explanation of the observed effects is giventhe & and X energies fall below the lowest Landau level for
below. Let us first recognize the structure of the continuunthe fieldsB=21 T andB=32 T, respectively. This means
channels open for the decay of a nonstationary state of ouhat all the decay channels are closed, the decayl rat®ps
system. The decay process corresponds to the tunneling & zero [see Figs. &) and 3b)] and the states become
the electron out of the dot through the barrier shell. In thebound. It is noteworthy that the observed binding effect oc-
field-free case B=0) the energy of the electron moving curs for near threshold resonances and may not happen for
outside the dot consists of the kinetic energy, exclusivelyhigher lying states.
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An additional comment is needed to explain the otherbest knowledge this effect was not reported earlier. We have
effect, i.e., a sharp decrease of the resonance widtlob-  explained the effect in terms of the different field depen-
served for the field>9 T in the §f case and foB>19 Tin  dence of the energy positions of the quasibound states and
the 1) case. Let us note, that apart from the Landau stateontinuum thresholds. The observed phenomenon of turning
energy, there is another important feature characterizing Lare quasistationary state into a bound state may occur in any
dau channels and potential scattering in the presence of system of one charged particle in a barrier-well potential. We
magnetic field. This is the radiys,=[(2|M|+1)A/eB]*?  feel strongly that the present results, showing that the abrupt
of the cylinder at which the charge density in the lowestchanges of the width are correlated with breaking through
Landau state reaches its maximum, and its relation to théne continuum thresholds, give some insight into the problem
quantum dot size defined as the external radius of the barrigff stabilizing atomic shape resonances in a magnetic
shell, Rp=a+b. These characteristics are presented in Figsfie|d 59 Let us also note, that the effect of the formation of
2(c) and 3c). If the Landau state idiffuse i.e., if po>Rp, 3 pound state from a resonance state may be of fundamental
the electron can tunnel from the quantum dot in any direcjmportance in the investigation of transport phenomena in
tion. Increasing the field, the Landau statesgpteezednd  |o,y_dimensional nanostructures. Since the binding of a reso-
if the field is strong enoughB>9 T for 0f or B>19 Tin  nance state means the suppression of resonant tunneling
the 1} casg, then p,<Rp, which means that the lowest through this state, the magnetic field could be used to control
Landau state is forced into the dot. From Fig&)2nd 3a)  (to switch on/off the tunneling current in electronic devices
one can see that for fields of that strength, the lowest Landapuilt of quantum dots.
channel is the only open one and the only way open for the
electron to get out of the dot is the field direction. This leads

to a sharp decrease of the resonance width, which is clearly ACKNOWLEDGMENTS
seen in Figs. @) and 3b).
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resonances can become bound in a magnetic field. To ogratefully acknowledged.
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