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Thet-J, model is the strongly anisotropic limit of tHeJ model which captures some general properties of
doped antiferromagnet@F’s). The absence of spin fluctuations simplifies the analytical treatment of hole
motion in an AF background, and allows us to calculate single- and two-hole spectra with a high accuracy
using a regular diagram technique combined with a real-space approach. At the same time, numerical studies
of this model via exact diagonalization on small clusters show negligible finite-size effects for a number of
guantities, thus allowing a direct comparison between analytical and numerical results. Both approaches dem-
onstrate that the holes have a tendency to pair iandd-wave channels at realistic valuestdd. Interactions
leading to pairing and effects selectipgandd waves are thoroughly investigated. The role of transverse spin
fluctuations is considered using perturbation theory. Based on the results of the present study, we discuss the
pairing problem in the realistit-J-like model. Possible implications for preformed pairs formation and phase
separation are drawfS0163-182@9)04127-3

. INTRODUCTION [d=c] both the retraceable-path approximation andtttig
model become an exact description of thkmodel*? which
The physics of holes moving in an antiferromagnefi€)  supports the idea that the results of the strongly anisotropic
background has received much attention because of its poBmit of the t-J model are relevant to the physics of the
sible connection to high=, superconductivity. A micro- isotropic case iml=2. More recent works %" used the self-
scopic realization of this physics is given by thd model,  consistent Born approximation to study thd,, t-J, and
which was first introduced as a conjectdrand then derived  t-t’-J models. Using this approximation, an analytical ex-
as a low-energy limit of a realistic model representing thepression for the hole Green’s function in thd, model for
electronic structure of cupratés.Recent comparison of the arbitrary values ot/J was found by Starykh and Reiti.
t-J model results to angle-resolved photoemission dataThe pairing of holes in thée-J, model was considered in the
showed that the overall shape of the experimental single-holgorks by Trugmat? and Shraiman and Siggfdwhere im-
band can be fitted satisfactorily using the ptd&model. To  portant results were obtained. Some other studies used dif-
account for the detail line shapes, one needs to include mofferent modifications of the variational appro&¢#? and ob-
distant hopping termst(, t”, etc).>® The presence of these tained similar results. However, as we shall show, these
terms also follows from a careful mapping stiljumerical  earlier analytical treatments involved approximation which
studies of thet-J model by means of exact diagonalization prevented one from obtaining the correct answers.
(ED) and other methods suggest the presence of hole binding The t-J, model was studied using numerical methdds.
in the physical parameter ranged~3,”~°and that the domi- Barneset al®® compared their ED results on a 16-site square
nant symmetry of the pairing correlationdsz.,2. This find-  lattice with some analytical results, and Riera and Dagbtto
ing also supports the common belief that some variant of theleveloped a modified Lanczos technique which enabled
t-J model is able to describe the physics of real compoundshem to study the one- and two-hole ground states of the
However, to show that thid-wave binding in thé-J model  model on lattices as large as 50 sité=or a review, see Ref.
is relevant to the physics of high: materials, one has to 7). It was shown that finite-size effects in the ED data of the
clarify how strong and generic the reasons behind this pairt-J, model are much smaller than those of thé model®*
ing are. Unfortunately, numerical studies alone are of limited In this paper we develop an analytical treatment of the
use for this purpose, so that an analytical study is necessatyJ, model based on the results of Ref. 18. Comparison with
to develop insight into the problem. our ED data allows us to justify the validity of this analytical
In this paper we attempt such a study by investigating theapproach. Furthermore, we use the results of this study to
Ising limit of the t-J model — thet-J, model. This is well  shed light on the problem of whether the pairing in the
known to be a simplified limiting case of tlte) model, but  channel is a generic feature bfJ-like models, and which
only recently has its properties been fairly well understoodinteraction defines the symmetry of the ground state of the
In the pioneering work of Ref. 10, the single-hole energy insystem. Qualitatively similar questions have been addressed
the t/J<1 limit has been calculated. Subsequently, Brink-in a recent variational study of the hole pairing in thé
mann and RicE considered thed=0 limit, and introduced model?®
the retraceable-path approximation. In infinite dimensions Our numerical ED results for theJ, model are obtained
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on a 32-site square lattice using the same method as in Refs. H=Ho+H,+Hy,
26 and 27. Up to now these are the only ED results on the
largest lattice. This numerically exact method allows us to L N N ; N
analyze various properties of the single-hole ground state as Ho= 5‘](% [ajai+byb;+1ifi+gyg;l,
well as two-hole bound states with different symmetries. !
Our paper is organized as follows. Sections Il and llI
describe the representation and Feynman rules used in this letz [f;‘gj(bJ-T+ai)+H.c.], 4
paper. In Sec. IV we solve the single-hole problem and com- {n
pare the results to ED data. In Sec. V the two-hole problem
is considered in detalil. In Sec. VI we summarize our results 7y, — —tz [flg; b*a*a +g'fial b bl
and draw conclusions. . J

Il. Hamiltonian and Representation of the Operators JE [n b b; +nga a;+n; ng+2a a, b bj].

The Hamiltonian of the-J, model is o )
Here we have divided the Hamiltonid&qgs. (4)] into three

. vy 1 parts: H,, consisting of the linear spin-excitation and hole
Hz_t<§ (Ci(er(r+H-C-)+J<iz> [S'S—2NiNj]l, (1) terms: H, consisting of the bare hole-magnon interaction
e ! term, andH,, consisting of the nonlinear hole-magnon, static
where the summation runs over nearest- neighbor b(J'I]'I¢|S hole-magnon, direct hole-hole, and magnon-magnon interac-
cl,=cl,(1-ny), T,=(cl)!, and N;=cc;;+¢clc;,. tion terms. The third and fourth terms i, take into ac-
Since we are modeling electrons on a two-dimensionafount the energy of the four AF bonds broken by a hole
square lattice, the coordination numizes4 and the spirs  introduced into the system. In the following this energy is
included in the ground-state energy and the corresponding
Assummg the presence of long-range antiferromagneti¢é€rms are omitted. Note that we have omitted a constant
order, one can introduce a representation for the Hubbarterm. The same HamiltonidiEgs.(4)] in k space is given by
operators (operators of spin and constrained fernjion
through the spinless fermion and boson operators. The — 3/,=23> [aganr bgbq]+2J2 [fife+alad,
choice of the representation is, in general, arbitrary, and is q k
motivated by the problem to be solved. In our work we use a
eneralization of the Dyson-Male€idM) representation for _ t t, .t t
fqhe Hubbard operators%/As usual, such aprepresentation con- Ha=4t2 v d i q@ibat Oh-qfig T HeCl, ®
serves the algebra of the operators but extends the Hilbert
space of the problem.
In sublatticeA={71} the DM representation is given by Ha= _4tk,q%,q2 Vk*q[flfq*qﬁngkbaagl%

z_ Loyl _yxlly=1_4t __ t
S=z2 (X =X =z —ajai— 2 fifi, + Ok—qq, +q,fk@GDY, Do, ]

S =x!'=al(1-ala;—ff), S=Xl'=a,
_ZJKqEq ’)’qfql[fl—q+q1fkbgbq1+glI*quqlgkaga(M]
Ehe ERc N R

i =xX"=fl(1-ala), T =x/"=f;, )
~ ~ -2 fl , of
ClL:X?l:fiTaia CiTL:XilO:fiaiTa k% Ya'k- qgk +q9k Tk
=l G+l =X T+ xH =1—-%%=1— ¢
N; CITC|T+CILCW X'+ X 1-Xi=1-f1/f;. _4Jq§ . ?’qagl—qb;ﬁqquaql! (6)
In sublatticeB={|}, the corresponding representation is v
given by where y,=[ cosk,) +cosk)]/2, and all summations are re-

stricted to the first magnetic Brillouin zon82).
S=3(X|!=X}")=—3+b/bj+3g]g;,
lIl. PROPAGATORS AND VERTEX FUNCTIONS
S =xj=b;, s/=x]'=bl(1-b]b~glg)), .
The Feynman rules for the model in E¢) are as fol-

T =X%=glb,, ¢l =x/=gb!, 5 lows.

i =9; it =2 = 9ib; ©) (i) Hole propagatorG®(e) =G (€)=[e+i0]~* [Fig.
T =X%=gl(1-blb), T =xl= 1(a)].
G =X =gf(1-bjb), <] =x{"=g;,

(i) Magnon propagator:D%(w)= Da(b)(w) [w—2]
e e +i0]~* [Fig. 1(b)].
P 4T =X X =1-XP=1—glq.

CjiCjp +Cj Cj =X + X7 =1-X"=1-09;9;. (iii) Hole-magnon vertex:  I'°(k,q,k—q)
Thus we have two types of fermions and bosons associated 4t Yk—q9, .- [Fig. 1(0)]. The indices indicate théft (or
with the A and B sublattices. The Hamiltonian in Eql)  g) holes can emit onla (or b) magnons and absorb only
expressed in terms of the new variables E@$.and (3) is (or @) magnons. This is an important feature of the hole-
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magnon interaction, and is a consequence of spin conservaseudospin associated with the sublattice type. Therefore, the
tion. In the following we omit the indices. We use the fol- crossing diagrams can be omitted and the renormalization of
lowing shorthand notationss, ., denotesd(e;— e+ w), tEe hole energy is gigen gng by the s?ries of diagrarorps V\éhere
© . the magnons are absorbed in exactly the reversed order in
and.Ew means| —.(dw/2i). 0 B which they are emitted. This is the so-called self-consistent
(iv) Hole-two-magnon vertexI'5(k,q,q;,k=q+a) = o, approximation'SCBA), which in the case of the-J,
—2JYq-q,9¢, e~ wtw, [FI9. Ud)]. Note thatf (or g) holes  qel is identical to the retraceable path approximation. This
interact witha (or b) magnons only. coincidence is due to the local nature of the spin excitations
(v) Hole-three-magnon vertext3(k,q,q;,9,,k—q—q;  in the model. The corresponding diagrammatic equation for
+q,) = —4t7k7q551’67ww1+w2 [Fig. 1(e)]. Note that there the hole Green’s function is shown in Fig. 2. Note that the

is no vertex diagram for the reversed order of emissionvertices are unrenormalized. The retraceable path approxi-

absorption because of the non-Hermitian nature of the corrépat.'tort‘. |mpI|esdth£':1ht thﬁ TOle |stponf!ned by ? ‘t‘s:rln'g” orzspmt
sponding terms in the Hamiltonidig. (5)]. excitations an e hole motion is completely incoherent,

(vi) Hole-hole vertex:l“?g(k,k’,q)= — 238 i.e., the hole forms a localized state.

e1terezte, The first nonzero contribution to the hole self-energy from

[Fig. 1(f)]. the crossing diagrams is shown in Fig. 3. It is of sixth order

(vii) Magnon-magnon vertex: ng(ql,qg,q)= in t, and is small compared to the contribution of the ‘“re-
—43Y400,+ wy 05+ 0, [FI9. Q). traceable” diagrams of the samisixth) order due to the

In all cases we use the notatioks: (k,€) andq=(q,®) geometrical factor. This diagram is the first member of the

for the momentum and frequency of the hole and magnonf,am”y of the so-call_ed “Trug_man p_aths.” Their contribution
respectively. Thus the modéEq. (5)] involves fermion- t© the hole energy is small in a wide rangetdd, but they
fermion (hole-holg, boson-boson(magnon-magnon and &€ responsible for the finite coherent band of the hole. Real-
three types of fermion-bosafhole-magnoh interactions. In space consideration shows that such a diagram corresponds

eneral the problem of finding the low-energy excitations into the hole’s motion around an elementary square loop in
guch a modcfl is verv com Iicgted Howeverggs we will ShOWwhich the hole makes one and a half turns. As a result all
y P : ' spin excitations are cured, and the hole is translated along the

below, in the case of theJ, model it is possible to take into - yiaqona] of the square plaquette, i.e., to a next-nearest neigh-
account the result of renormalization almost exactly using &, As we have noted. the corresponding correction to the

regular diagrammatic treatment. energy is small, and we will neglect these diagrams in the
rest of this section.
IV. SINGLE HOLE SinceG°(€) andD°(w) are momentum independent and

the hole-magnon interaction depends onlylong, the full
If we ignoreH,, the Hamiltonian in Eq(5) for a system  Green'’s functionG is alsok independent. Thus the equation
with a single hole is similar to the problem of a single elec-shown in Fig. 2 can be simplified as
tron interacting with the local phonon mode. When the inter-

action ¢ in our casgis small compared to the energy of the 2(6):2 G(e—w)DO(w)E (FE,q)Z

boson (&), we can use perturbation theory and consider B q

only the lowest contribution to the hole energy, which cor- = 412G (e—2J) @
responds to the virtual emission and absorption of a single '

magnon. At larget many-magnon intermediate states must G(e)=[e—4t>G(e—2J)] L.

be considered. Such a problem, if solved self-consistently,

must take into account the renormalization of the fermion-

boson interaction, or crossing diagrams. However, inttie d 5
.. . —_—— = > 4

model it is well known that the lowest correction to the bare

hole-magnon vertex™® is exactly zero, since the hole-  FIG. 2. SCBA for the hole self-energy. Bold lines represent the
magnon interaction conserves the spin, or more exactly, theéressed Green’s functions.
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FIG. 4. One-, two-, and three-magnon strings.

FIG. 3. Trugman’s diagram. The numbers represent the sites ] }
where a magnon is emitte@bsorbeyl this paper we assign the zero energy level to the state with
onestatic hole, i.e.,Eq=Eg"9+2J=0.
The solution of Eq(7) at all t/J can be found in Ref. 18.  According to Ref. 18, in the largelimit the ground-state

One can try an ansatz f@ of the form energy given by Eq(10) is
1Y SCBA= —At+28,t(J/1)%R2-2J | 13
G(E):__ (6) ) (8) €o BO( ) ( )
2t Y(e+2J)

whereB,=2.34 is the first zero of the Airy function. There is
This transforms Eq(7) into a difference equation no alternative asymptotic expression in this limit which is
accurate up to ordetf, but the first two terms which are of
order t and t¥3J%® can be compared to the results of the
“string” approach by Shraiman and Siggfa(SS and the
fitting of 16-site ED data by Barnest al.*3

which is the recursion relation for the Bessel functions. Thus

G(e€) is given by €55=—2\/3t+2.74(JIt)%°

(14)
1 I a(2t13) (10) e5P=—3.63+2.93(J/1)%°
2t J_gp3-2(2t13)°

Y(e+2J)+Y(e—2J)=—%Y(e), ©)

G(e)=—

This comparison makes one suspect that the SGB4.
13)] overestimates both the absolute value of the depth of
e “band” and the slope of the walls of the linear confining

potential.

whereJ,(x) are the Bessel functions.
Such a form is the consequence of the continued fractio
form of the Green’s function, which in turn is the result of

the retraceable-path approximation. Note that in Ref.J18, The origin of these discrepancies becomes evident when

=2J. Thus the poles of the Green's function in the SCBA e consider the real-space picture of the retraceable hole

approximation are defined by the zeros of the Bessel funcs, v ement. Figure 4 shows the real-space images of three

tion. Since all these zeros are real, the hole spectral functiogOmponents of the spin-polaron wave function: the one-
consists of the set o-function peaks corresponding to the 14 and three-magnon strings. The first important observa-

energy levels of the quasiparticle states in the “string” po-yion, js that the coordination number in the creation of the
tential well. Inclusion of the Trugman processes does nof; .« magnon is indeed= 4, but isz— 1=3 in the creation of
chgr;]g_e this Lesult lTlgnlr?can'ﬂy, because thef rre]zsulltmg{ bandsach next magnon. This is why the factor in the first term of
width is much smaller than the separation of the levels. : )
. ) the SS expressiofEq. (14)] for the hole energy is 23
Alf[houlgth theﬂiolrt;_c[)r[l_ftq. (102{] of Elqt (7) I?tﬁn a"_“_OStI (instead of 4). Ift is much larger thad, the average length
exact solution OFto i1, ILIS NOt a solution o the original ¢ y, o strings contributing to the spin-polaron wave function

t-J; Hamilt_onie_m. Besides the crossing_ Qiag_rams, there arfs large. Then the weight of the components with coordina-
other contributions to the self-energy originating fréfg. In tion number different from others becomes insignificant.

prder to compare with other analytical apprpaches and ED, Since this component is the “bare” hole, it also means that
is necessary to account for these contributions. To make thlﬁ;]e quasiparticle residue of the state decreasesgrews
statement evident let us now consider the two limiting caseg .y in thet—c limit the spectrum will be incoherent Tr'1is

t/J<1 andt/J>1, and compare the results of the SCBA gt \yas first obtained by Brinkmann and Ricin the J
with the known facts from the real-space approach and E )0 limit

numerical data. R : PR
L Keeping in mind that the energy of spin excitation is de-
Fort/J<1 the ground-state energy for the hole is IV€Ntermined by the number of broken AF bonds associated with
by Egs.(7) as its creation, one can see that the energy of the first magnon in
212 the string is 3/2 (three bonds,/2 each, but the energy of
egCBA: . (11 each subsequent magnon is justtwo bonds. This is true
J for all strings of length =2 and for most other longer strings
This is inconsistent with the result of the real-space approacR*Cept for those which have self-tangencies. Since the latter
cases are relatively rare due to the geometrical factor, one
8t?2 can assign the same eneidy+ J/2 to every string of length
~ 37 (12 I. A more accurate account for the energy of the self-tangent
strings makes only tiny changes in the energy of the whole
The reason for this discrepancy is that the spin{iiagnon  excitation. Thus making the change3-2J andz—z—1 in
has lower energy (B2 compared to 2) if it is located inthe  the expression for the SCBA hole energy will change the
neighborhood of the hole, and the Hamiltonidg+ 7, does  factor 28,=4.68 in the second term of E¢13) to 363,
not take this difference into account. Note that throughout=2.81, leaving it in reasonable agreement with Elaf).

€=
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Here we have useq the relatiah}, vq,—p, ¥p,~q,= 7/.q1_93/4.
— + Thus the renormalized magnon-magnon vertex is given by

0—-4J+i0
FIG. 5. The Bethe-Salpeter equation for the two-magnon prob- Tap(Q2,k=p)==4J 7k—pQ—3J+i0' (18)
lem. Dots represent bare verticEQb, and squares represent full ] ]
verticesI' . The pole of this function{=3J, corresponds to the bound

state whose energy is lower than that of two free magnons by

Summarizing the results of the comparison, one can say-J, .in.agreement with our expectat?ons. _
that the reason for the failure of the SCBA is thaj+ H, is Similarly the hole—two-magnon interactidthe second
not the same a&,_;, and that an improved formalism must term in,, Eq.(5)] lowers the energy of the magnons in the

take into account the following factgi) the energy of the neighborhood of a hole. The hole—three-magnon interaction

first magnon in a string is B2; (i) the energy of thenth  (first term in7,) originates from the projection operator and

magnon (>1) is J; (iii) the coordination number iz—1 projects out the unphysical states with the hole and magnon

=3 for =1 andz=4 for | =0, wherel is the length of the at the same site created by the hopping terrt{ijn A con-

string. After some thinking using the above real-space argusistent consideration of these interactions yields the follow-

ments, one can suggest the following modification to theng Dyson equation for the single-hole propagator:
equation for the Green'’s functidieq. (7)] to meet all these

requirements: G(e)=[e—-2(e)]7 %,
G(e)=[e—4t>G,(e—3J/2)] ¢ 19
€)=|€— €— ,
) S(6)=2 Gle—w)D%w) >, T Iy q(ew),
Gale)=[e—3t2G,(e—I] 71, ¢ q
(15 where the renormalized hole-magnon vertex is
G.(e)= L J-an(2\309) 0 1 2 3 4
a(e)——ﬁm- Tiq(€0)=T7 +T{()+T P (e,0)+T &)+ T e),

Such a modification gives the correct hole energy in the " 0 o
smallt limit. In the t—o limit the resulting hole energy is  T'kq(€)= > I'Ag—01)G(e—w;)D (0)Ty q,(€,01),
—2\/§t. Oy, @y

Let us now come back to the original problem with the
full Hamiltonian Ho+H; + H,, [Eq. (5)], and discuss how F(k?%(e,w)= >y FE_q_qlDO(Q—w)
such an “improvement” of the Green'’s function proposed in A0z @2,
Egs. (15 can be done formally in the diagrammatic lan- B B 0 0y
guage. The fact that magnons in the string have lower energy XG(e= Q) 3p(Q,k=02) D" (w2)D™(Q — wy)

than free excitations is the result of magnon-magnon bind- XG(e=wo)Ty giq (€= w2, Q= wy)
ing. The magnon-magnon interactifiast term ofH,, Eq. B
(5)] is attractive and leads to a bound state. A regular ap- Xl"kyqz(e,wz),
proach to the bound-state problem is based on the Bethe- (20)
Salpeter equation shown in Fig. 5. The equivalent integral
equation is o= 2 > T(k—q-0,)D%w1)D(wy)
01,92 @1.w2
Fab(ﬂ,ql—%)=F2b(q1—q3)+p2 Io5(d1—P1) XG(e~ w1~ wx)l'y—g-g (6~ 01,07)
1

XG(e=w)l g (€,01),
XTap(Q,p1—03) >, D%w)DY%Q - w)

Ii¥%e= > 2 T'3k—-g-Q)D%w,)

- _ 01,92,Q w1,03,Q
XD Q= 01)G(e= Q) 4p(Q,0:—0>)
Iap(Q,p1—0d3) « DO 0
_antorr D*(w,)D*(Q—w,)I" e—wy,N)—w
Q—4J50 (16) (w2)D7( 2 k,ql+Q( 2 2)

It is easy to see that the momentum and frequency depen- XG(e= )l g (€,@2).

dence of the vertex can be separated. The suggesﬂo& diagrammatic representation of Eql9) and (20) is

Tap(Q,01—05) = —4dyq, ol an(Q) transforms Eq.(16)  ghown in Fig. 6.
into Note that the lowest-order correction &l vertices are

Tap(Q)=1-

J
Q—4J+i0rab(9)'

17

zero, and higher-order corrections are neglected. We have
already discussed the absence of one-loop correction to the
hole-magnon vertex. It is less evident in cases of the hole—



PRB 60 HOLES IN THEt-J, MODEL: A DIAGRAMMATIC STUDY 1597

i: 0.0 ' T ; T ; | E— T
—_—— = 0 4

X -32-site ED, k=(0,0)

% Z Z ﬁ Ef z 0S5 W e  -32-site ED, k=(u2,7/2)
= -+ + \

\ —— - analytical result

L0\ -
L . |- -scma
+ + \

FIG. 6. The Dyson equation for the hole Green’s function. Bold | B N
lines are the dressed Green'’s functions, circles are the renormalized \\\
hole-magnon vertices, and squares are the renormalized magnon- 20 AR |
magnon vertice$Fig. 5 and Eq(18)]. S
two-magnon and hole—three-magnon vertices. However, if 25 s " .
one recalls thd,g anda,b indices for the hole and magnon e
lines in Fig. 6, it becomes evident that the emission of an T
extra magnon prior to the hole—two-magnon interaction al- '3‘00,0 1.0 20 3.0 40 5.0
ters the type of the hole, and therefore prevents it from ab- t/J

sorbing and reemitting the original magnon. The same is true
for the hole—three-magnon vertex. It is interesting to notq
that the set of diagrams in Fig. 6 is still in the SCBA, i.e., the ev
crossing diagrams are absent.

Again the momentum and frequency dependende cén
be separated. The almost evident substitutlon,(e,)

=4tyk_q1~“(e,w) simplifies Egs.(19) and (20) which, after  G,(e)=[e—3t2Gy(e—J)] 1=—

FIG. 7. The single-hole ground-state energytid. The zero
el of energy is taken to be the energy of the hole=a0.

G(e)=[e—4t?G,(e—3J/2)] %,

1 J_45(243t/9)

integrating over the internal frequencies and momenta, be- V3t J_5-1(2V3t/9)
come (23
which is exactly the same as the Green’s function suggested
S(€)=4t2G(e—2I)T (€,2), in Eq. (15).
(21) The rest of this section is devoted to the comparison of
3 3 the results from Eq(23) with our numerical ED results on a
T‘(e,w):l_G(e_ZJ)T‘(G,ZJ)[__4t2_ 32-site lattice. Figure 7 shows the ED results together with
2 w—J analytical results from the SCBAE(Q. (7)] and from Eq.

(23). We recall that contributions from the Trugman’s paths

X[G(e=3I)I'(e=23,J)~G(e—2]~w) are left out from Eqs(23) and(7). These paths give rise to a

. . __seff

XT(e—23,0)]+12G(e—4I)T (e—23,2] small dispersion of the hole,6E,=t; cosk,)cosk,)
(e=2),0)]+1°G(e—4I)I (e ) +t2Tcos(&)+cos(XY]+ - - -, with t5'<te' . This form of

+t[G(e—3NT(e—23,)—G(e—4J) dispersion implies that the correction to the energy at the

point (7/2,7/2) due to the Trugman paths is almost zero.
Therefore, it is natural to compare the ED data at khjmint

to the analytical results. From Fig. 7 one can see a beautiful
agreement of the numerical datalat (7/2,77/2) with the
Each term in the square brackets comes from the correspontesults of Eq(23) in the whole range of/J. For comparison

ing irreducible diagram in Fig. 6. After combining similar purposes, Fig. 7 also shows the numerical dati=a(0,0).
termsT (€,2]) becomes We also remark that our 32-site ED datakat (0,0) agree
with the 50-site results of the modified Lanczos study by
Riera and Dagotfd (not shown in Fig. Y up to the fourth
digit att/J=5 and up to the seventh digit &tJ=1.25.

xT(e—23,23)]

T(62)=G(e—23) " [G(e—23)"*+J/2

—3t2G(e— 3T (e—2J,d) + 4t2G(e— 4] It is already clear from Fig. 7 that our present approach
(¢ (e ) (e ) works better than the SCBA. To illustrate this point further,
xT(e—23,2)]t we plot the quasiparticle residue in Fig. 8. Three sets of data
are shown. They are the results from our present analytical
=G(e—2J) [ e—3J/2—3t?G(e—3J) approach, the SCBA, and our numerical ED study. The ED
~ . results are calculated using the same method as in Ref. 26.
xTI'(e=23,3)] One can see that such a comparison unambiguously favors
 Gu(e—3312) . the present approach.
- G(e—2d) (22)

V. TWO HOLES

where G,(€) has a continued fraction form. Summarizing In this section we consider the problem of hole pairing in
Egs.(19), (21), and(22), one finally obtains thet-J, model using the diagrammatic formalism introduced
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1 3 1 3 1 r 3
= +
2 4 2 4 2 4

FIG. 9. The Bethe-Salpeter equation for the two-hole problem.
Lines represent renormalized Green'’s functions, dashed circles rep-
resent the bare “compact” vertex functidi®, and black circles

represent the exact vertdx?.

At the pole, when(Q=E (E is the energy of the bound
statg, the left-hand side and the second term on the right-

hand side of Eq(24) are singular. ThereforE9s>T9 and
the first term on the right-hand side can be neglected. Hence

the integral equatiof24) becomes homogeneousiif¥. The
variablesp ande’ become parameters and are not defined by

0.0 —t . 1. 1. the equation itself. Omitting them and the indideand g
0.0 1.0 2.0 3.0 40 5.0 yields

7]

FIG. 8. Quasiparticle residue for the lowest polet¥d. The
dashed curve is the result of the SCBA. The solid curve is the result
of the present approach. Dots are the numerical data for the

(77/2,77/2) point. XGp/z_pl(Elz_ El)fp,pl(E!El)' (26)

fp,k<E,e>=pE Tpkp,(E.€,€1)Gpraip (E/2+ €1)
1,€1

in previous sections. Our goal is to study in detail the bound~urther simplifications of this general formula6) are pos-
state of two holes. The role of different interactions andsible based on the specifics of the problem being considered.
higher-order corrections will be analyzed. Bound states witfRather general and frequently used simplifications can be
s, p, and d symmetries and zero total momentum will be performed, for example, when the bare interactloris a
investigated. Throughout this paper we consider $he¢ 0  potential-like term, i.e., independent of the frequency. In this
bound states only. Consequently we are interested in the itasel” becomese independent and plays only an auxiliary
teractions of the particles originating from different sublat-role. Furthermore, it is more convenient to use the bound-

tices (f andg fermions. state wave functionyp (E)=3=.GGI. By changing the

If an exact two-particle Green’s function has a pole in the, 4 iables and integrating both sides of E86) over e, we

scattering channel at a fixed total energy (_)f the particles, thegpiain the Schidinger equation for the bound state in the
there exists a bound state whose energy is the total energy gfomentum representation:

the particles. Thus to analyze the bound-state problem of two
holes one has to solve the Bethe-Salpd®®) equation,

whose most general form is given by Ypi(E)=| 2 Gpask(E/2+ €)Gpjo—(E/2—€)
PHp( Q) =THp(Qee)+ 2 Tp, (@ een) %S Ty, oy (E). @7
' P1
><GP/2+p1(Q/2+ fl)GP/prl(Q/Z_ €1) If the Green’s functions are the bare ones, the sum aver
“tq , simply gives JE— e(P/2+k) — e(P/2—K)], wheree(k) is
XIUpp p(Q,€1,€"), (24 the single-particle energy. In thed, model the following
characteristics allow one to simplify E¢R6) considerably,
where and obtain most of the results for the bound-state problem in

a transparent analytical form:

(i) The single-hole Green'’s function is mos#yindepen-
dent, meaning that in a wide range ofJ ratio the
k-dependent contribution to the self-energy is insignificant or
small.

(ii) The lowest-order contributions to the compact vertex
prk'pl(E,e,el) have a simple kinematic structure and, to-

gether with (i), allow one to separate the momentum and

and the indices are given in accordance with Fig. 9. frequency dependence of the exact veifexts k-dependent
The bare vertex functiofi 9 includes all diagrams which part can be classified in terms sf p-, andd-wave harmon-

cannot be reduced to the second term of 4), i.e., those ics and can be integrated out easily.

which cannot be cut by a vertical line between the ends 1,2 (iii) All one-loop and lowest-order crossing corrections

and 3,4 into two parts joined only by two hole lines. The setare exactly zero because of spin conservation in the hole-

of all such diagrams is called a “compact” vertex. magnon interaction. Nonzero corrections are of higher order

P:k1+k2:k3+k4:klr+kzr, k=(k1—k2)/2,
p=(k3—ka)/2, p1=(ky —kz)/2,
Q:El+ 62:63+ 64261r+627, 62(61_62)/2,

6,:(63_64)/2, Elz(Elr_fzr)/Z, (25)
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FIG. 10. The lowest-order diagrams contributing to the “compact” vertex fundfin(a) is due to nearest-neighbor hole-hole attraction,
(b) are the one-magnon-exchange diagrams, (ahdre the two-magnon exchange diagrafas. (b), and(c) are of first, second, and third
orders inH;, , respectively. Since the emission of magnon changes the spin of the hole, the positions of the ends of the lines in the diagrams
in (b) are interchanged?/2+ k= (P/2+k,E/2*+ €) andP/2=+ p=(P/2*p,E/2*+ €;).

and are expected to be small. Therefore, the lowest-ordesame spin-conservation rule. For the same reason, higher-
diagrams inl" can be left unrenormalized. order corrections to Fig. 10 are strongly suppressed, so that

(iv) As we have shown in Sec. Il the single-hole spectralthe first dressing of 2, T'®, andI'® by magnons appears in
function consists of a set of well separated quasiparticléhe fifth, sixth, and seventh orders, respectively. The corre-
peaks. Therefore, the Green’s function of the hole can alsponding set of diagrams is given in Fig. 11. Note that be-
ways be written in the form cause all these corrections are of similar origin to the Trug-
man'’s processes for the self-energy, one can expect that they
play only a minor role in the effective interaction.

However, there are other sources of correctioth’ tcom-

] ing from the hole—two-magnon, hole—three-magnon, and
wherea, ande, are the residue and the energy of the pale  agnon-magnon interactions. Most of them result in the

respectively. Then, if the characteristic binding energy isrenormalization of the hole-magnon vertices similar to those
much smaller than the sgparation between the quasipartic|g Fig. 6. While a formal account of such corrections is
peaks Q=E—2ey<Je), i.e., one-half of the bound-state rather difficult, one can anticipate the result of such a renor-
energy is close to the lowest peak/R~ ¢;), one can safely malization using the real-space consideration of the interac-
neglect the contribution of the higher poles and use thgjons. As in the single-hole case, the dressing of the vertex
lowest-pole approximation for the hole Green'’s function:  accounts for two facts. First, the energy of a magnon in the
neighborhood of a hole is- J/2 per hole-magnon link lower
__ (29)  than the energy of a free excitation. Second, the coordination
e~ €t+i0 number for hole hopping in a state with a string of magnons
is z— 1 instead ofz. The first effect renormalizes the energy
of the magnon lines if™® andI'¢, while the second effect
renormalizes the inner hole line iR°. In what follows we
will consider the compact vertek as given byI'®+TIP
+I'¢in Fig. 10, and will include the renormalization later.
We first consider thé=0 limit when the solution of the

6= — 5 @9)

Gle)~—2

As a matter of fact, in the limiting cage>J the separation of
the levels isde~J(t/J)Y3 whereas the binding energy, as
we will show, isA~ —J(J/t). ThusA/se~ (J/t)*3<1, and
the lowest-pole approximation should work well. In the op-
posite limitt<J the binding energy i\ ~—J/2 while the
separation of the quasiparticle polesds~2J. Besides a ) _ - L
factor of the order ofA/Se~1/4, the contribution of the BS equation (2.6) is_ trivial. In- this I,'m't °r."y .Fa.:
higher poles is strongly reduced because their quasiparticle 29 Yk, -k, SUrvives and the hole Green's function is simply
residues are negligible~(t?/J?), thus justifying the lowest- 1/w. Thus Eq.(26) becomes
pole approximation in this case. One can then argue that the
same is true for alt/J. [p(E,e)=—232 v p

With these ideas in mind let us look at the compact vertex ' P1 !
I'. The lowest order contributions to the hole-hole compact A
vertexI" are given in Fig. 10I'3, T'®, andT'® are of first, K e (E.€)
second, and third orders iH;,;=H,+H, [Eq. (4)], respec- e (E2+€,+i0)(E/2—€,+i0)"
tively. They can also be classified in terms of powers]of

andt: T3~J, I'°~t?/J, andT"°~t%/J.
If we conside™® only, the full vertexi® in Fig. 9 is given
by the sum of the ladder diagrams only. To some extent, thisdl" = + + + +
approximation is analogous to the SCBA in the single-hole
problem, and possesses an important property of the latter

all CrOSSingldiagramS and one-loop .corrections are exactly FIG. 11. Lowest-order corrections to the “compact” vertex
zero. More importantly, such corrections &i the lowest-  functionT (Fig. 10. Circles represerff =I'2+T'®+T'°, wavy lines
order diagramsI(?, I'°, andI"®) are also zero because of the are magnons.

(30
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00—

Evidently, the dependence Bfon P is arbitrary and () is

a constant. Integrating ovey one finds 10l 1

2] .
DB == 5 2 % p L, (B, (31)
P1

wherel” now plays the role of the wave function. Since the

structure of thd™@ vertex is very simple, one can classify all <4

solutions of Eq.(31) in terms of the nearest-neighbsyp,

and d waves: ¢p=cosk)+cosk), ¢f=12sinky,

\/fsin(ky), and (pﬂ=cos(<X)—cos(<y). Using the property

2ok PP =50 one can see that these solutions

are degenerate with energyP9=ESP 9= — /2. This is ex-

pected if one remembers that while an individual hole breaks

four AF bonds, two nearest-neighbor holes save one bond. 060 o
A finite hopping constant has three effectdi) the hole 0.0 1.0 20 30 40 50

Green'’s function becomes renormalizéid) I'° andI'° start i7a)

to contribute to the interaction, ardi ) the hole self-energy

also acquires a smak-dependent contribution. In order to

see their roles, let us incorporate these changes into the A three bound states are degenefae. (34)], and are shown by

eqLCJ:atlor_l((jZG) :)hne by one.h the hole G 's functi . the lower curve. When the contact and magnon-exchange interac-
onsicer the case when the hole Greens Tunclion 1§,,q pay b gre considered, thp andd energies are unchanged

renorma_dized as des_cribed in Sec. lll and<i$ndepeno_|ent, (lower curve, while the energy of the state is pushed UiEd. (40)]
but the interaction still comes from tHé? term only. Since (Uupper curve:

I'? is P and e independent, the BS equation is similar to Eq.
(32) consider finiteP bound states because their physics is unim-
portant for the purposes of this paper.

The BS equatior(26) at P=0 with interactionT'®+T'®
reads

FIG. 12. Binding energiegn units ofJ) of thes, p, andd bound
tes. When only the contact interactibf is taken into account,

IW(E)=— 2J§, yk,plfpl(E)g G(E/2+ €;)G(E/2— ;).
(32

Since thek structure of the core is unchanged, all three har- 'ok(E, €)= —232 G(E/2+€1)G(E/2—€)
monics remain degenerate. Hence '

S . 8t? 1
J Ye—pT T VoW T 50
1=-3 3 G(E2+e)G(E2—€y). (33) b PrJ P et e —20+00
€1
1 .
In the lowest-pole approximatio® is given by Eq.(29), so +m }FO,D(E1€1)- (36)

the binding energy relative to the bottom of the hole band is R
Evidently, thek and e dependencies df can be separated
A=E—250=—Ja§/2. (34 and one can see that thee and d-wave solutions are not
o o affected by the magnon-exchange interaction because
In the limit t<J, A~—J(1-16:/93%)/2. In the limit t S vpeh@=0. This observation can be expressed in a dif-
>J, ap~J/t s0A~—J(J/t)% The binding energyin units  ferent form: in the zero total momentupa or d-wave state

of J) vs t/J is shown in Fig. 12. This energy is always the amplitudes of the spin-flip exchange from different lobes
negative because we assume that the hole forms a completely the wave function cancel each other.

localized excitation. In this case a bound state is always
formed as long as the effective interaction remains attractivet.e

Now we consider the magnon exchange interactién
which is given by

For thes-wave state, substituting, (€)= ¢iI'(€) and in-
grating ovelk give

J
[e(e)=—= > G(E/2+€,)G(E/2—¢€;)

2 %
b 12| YPIZ-pYPI2-k Yei2+pYPI2+k !
Depple ) =180 0 T e e — 20410/ iy 8t2 1
(35 J |ete—23+i0
SinceI'® depends on the total momentum of the fRijrthe 1 A
solutions of the BS equation also dependsFoiThe energy +m I'e(ey). (37
—e—e—

of the bound state at differeRtprovides a dispersion law for
the pair. In general, the lowest-energy bound state is alwayth the so-called static approximation, when the retardation
at zero or some finite momenta corresponding to highdue to the magnon propagator is negleci&tjs e indepen-
symmetry points in thek space. In this work we do not dent, and Eq(37) becomes
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J 8t2 . O j O X
1=-3 1—T§G(E/2+61)G(E/2—el) 00 = o0x = ox 5% 00
5 2 FIG. 13. Real-space image of the process in Fidc)10
_ J ag 8t 28
Tt e %9

Fﬁ,p(E,e,q):—2J<4t>27k_p§ Vi q

As in the previous caseA*=E®—2e,. The problem with
retardation can be solved using a method introduced in Ref. xS o G(e+E/2— “’)_
28. One can assume thBt(e) has no singularitie®’ and o 0—2J+i0lo—ete—2]+i0
therefore the integral oves; in Eq. (37) is defined by the G(—e+E2— o)
poles of G and the magnon propagator only. In the lowest-
pole approximation, by using the obvious parf)(—e)

=T'(€) and by choosing the proper contour of integration, integration over the inner momentum and frequencye
one obtains yields

. (41

+oo~l—e—¢51—2J+i0

1
1 FEYP(E,6,61)=—8Jt2yk,p;[G(e+ E/2—2J)
e+AS2—2J+i0

. J aj . 8t2
J

—G(—€e+ER-2))—(e—e)]. (42
1

+
—€e—A®2-2J+i0

Te(A%2). (399 One can see that the kinematic structure of this vertex is
identical toI'?, i.e., this term is effectively a contact nearest-
neighbor interaction. This is evident from the real-space pic-

Multiplying both sides byG(E/2+ €)G(E/2—¢€) and inte- ture of the process, whi.ch is sh_own in Fig. 13. Ini_tiaIIy the

grating overe finally yields ho!es are at r]earest—ne|ghbor sites. Qne pf themljl_Jmps to a

neighboring site creating a spin-flip at its site of origin. Then
the second hole virtually absorbs and reemits this magnon.
Finally the first hole jumps back and the original state is
. (40 restored. Naturally, such an interaction depends only on
Yk-p, and does not depend dh One can also guess the
character of the resulting interaction. Being in the neighbor-

This expression coincides with that given by the Wigner-hOOd of another hole, the spin excitation generated by the

Brillouin perturbation theory. The resulting binding energiesNOPPINg of the first hole lowers its energy. Therefore, the
(from T3+ T?) vs t/J are shown in Fig. 12. interaction between the holes via such a process must also be

attractive.

J a’ 1612
14+ ——
J(AS-2J)

Thus the swave binding energy vanishes at/J)|.
=1/(2y/2)=0.35. Since the spin polarons are assumed to be
localized, the disappearance of the bound state is not due to__ 5
the competition between the delocalizing kinetic energy and Iy p(E.e,€1)=—8Itagyk—p
an attraction, but rather due to the competition between dif-
ferent types of interaction. One can see that the magnon ex-
change actually leads to an effective repulsion between the
holes. In a naive point of view the holes can be mutually
attracted by following each other in a caterpillarlike process, +(€,6,——€,—€7)
because in this way the disturbance on the AF background is
only virtual. However, this scenario does not take into ac-

count the fact that after an elementary hopping of a hole IoairOne can consider the static limit of the problem by eliminat-

the order of the holes is different from the initial one, i.e. ihg the frequency dependence of the propagators in43y.

In the lowest-pole approximatioil®, Eq. (42) is given by

1
X (X Al2—23110)(e,+ Al2—23110)

. (43

they are exchangel. This in turn makes the corresponding This gives
energy correction positive, i.e., it leads to repulsion. 2
It is interesting to note that while the hole-magnon inter- E’p: _4ja07k—p- 4

action plays a major role in the hole dressing, it has no direct
effect on thep andd bound states and is destructive for the o ) .
swave state. The conclusion that the caterpillarlike pro-n the t>J limit this expression yieldsI'y ;= — 4ty
cesses disfavas waves and leavp andd waves degenerate =(2t/J)I'§ ;>T'¢ ;. Thus in this limit the effective interac-
was reached in Ref. 25 using a different approach. tion constant of the contact interaction is renormalized from
Let us now add the third part of the hole-hole interactionJ to t. For thep andd waves this gives a bound-state energy
', and see if the combination of the hole-magnon interacAP@~ —ta3~ — J(J/t), which is a factor of {/J)>1 larger
tion with the two-magnon vertex causes an additional attracthan the result obtained withi® only. This result, while be-
tion. The diagrams in Fig. 16) are equivalent to ing quite simple, is somewhat unexpected. In a real-space
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variational study of thé-J model, a similar effect has been 020 ———7——— 1 1
observed in the context of the caterpillarlike movement of
holes?®

A rigorous account for the retardation yields modified
equations for the bound-state energies, leaving the qualita-
tive picture drawn in the static limit essentially unchanged:

3 & | 8t%a,

T2 0@ +(Ap(d>—23)2]’ p and d waves,

J aﬁ 8t2a, 16t2 0.40
1=—-—¢1+ >t , S wave.
2 AS (AS—23)%2  J(AS—-2J) 050
(45) ‘

Thus the energies of thp- and d-wave states are always 060 ——
negative. In theswave bound statd;° cannot overcome the /7
magnon-exchange repulsidff. It also has little effect on o _
I is roughly four times smaller thaRP. all three interactions shown in Fig. 10 are taken into account and

We now consider the effect of the renormalization. As Wethe energy of the magnons in the intermediate state is renormalized.

noted above we have enough reasons to rule out the possignificantly from those in Fig. 12. Thus the hierarchy of
bility that the Trugman-like diagram@ig. 11) can change (erms in the effective hole-hole interaction emerged from our
the interaction constants significantly. The anticipated Sma”'study is as follows.

ness of these diagrams in the J region is due to the geo-  (j) The contact “sharing common link” attraction yields
metrical factor, which is of the order of £/=1/64. Most of  pound states withs, p, and d symmetries with energy
these corrections are relatively easy to evaluate using the _ j/2 at smallt/J.

same approximations as above. The results of these calcula- (il) The magnon-exchange interaction has no effect on the

tions show that those terms with the same kinematic strucp_ g p- and d-wave states because of symmetry reasons
ture as i3, T'°, andT"¢ are indeed suppressed by this small g4 is strongly repulsive for thewave state.

factor. They also show that among the corrections there are jii) The hole-magnon attraction, which leads to an attrac-
terms with a more complicated kinematic structure than th§jon petween a hole and a string of another hole, is the stron-
original I'. Since these terms are not suppressed by the smalst interaction in the present problem in the physical limit
factor, they might enhance the effective interaction. Some o t>J). It leads to deepep andd bound states with energy
these terms correspond to the contact interaction between the _ JQI).
holes in states where both of them have “tails” of strings. N, after all essential interactions are taken into account
Evidently, this leads to an interaction of polarons at siteSng carefully analyzed, the last effect which has to be incor-
farther than nearest neighbors. For the bound-state wavgsated into the BS equation before we can make a compari-
function this would mean that harmonics higher than theso, with numerical results is tHe-dependent contributions
nearest-neighbor one should be considered. Nevertheless, Weine hole Green’s function. As noted in Sec. Il such con-
do not expect these terms to make any qualitative changgiptions are small, but lead to a coherent hole band. There-
and in the following we will omit all corrections from Fig. fore the ED data show some dispersion in the hole energy.
11 to avoid complications. _ For instance, at/J=5 the energy difference between tke

At the same time, diagrams of the non-SCBA t8.  _ (0 0) andk = (#/2,7/2) points(almost exactly half of the
6) are straightforward to include using the real-space Ianbandwidth is W/2=0.07& = 0.39. Although this difference
guage. We have to take into account the lower energy of thgs a1 compared to the absolute value of the lowest-pole
magnons in t_he |.ntermed|ate state in t_he diagrams FI(IQ) 10 energy.e,=— 2.8, or the separation between the energy lev-
and 1Qc). This simply change®,=2J in the denominators g 5.t it is as large as the hole-hole binding energy

of Egs.(45) to wo=J. Renormalization of the hole energy in calculated aboveA~ —0.3J. Therefore, one would expect
the intermediate state i produces much weaker effect. this dispersion to have strong influence on the pairing of

This renormalization finally yields holes. One can also foresee that such an influence is likely to
be destructive, because now the pairing is not only an inter-
AP@ a2 8t%a, play between repulsions and attractions, but also the question
3 2 —(Ap(d)—J)2 ' of how much kinetic energy is lost if the holes are in a bound
state.
AS a3 8t2a, 16t? (46) For our purposes we will need the hole Green’s function
N (35— 1)? + )| in the lowest-pole approximation, which now reads
. . . . a
Solutions of these equations are plotted in Fig. 14. One can Gle)~ 0 (47)

see that the energies of theandd bound states are changed e—EO—Wek/2+i0'
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FIG. 15. Half of the hole bandwidth in units bfs the function FIG. 16. Binding energies of te, p-, andd-wave bound states.
of t/J. Bold lines are the solutions of E48). Triangles, diamonds, and

solid circles are the 32-site ED results for thed, andp waves,
Wherezo= €0— W2, Ek:[l—coskx)cosky)]>0, W>0, and respectively. Lines connecting these points are guides for the eye.
we have neglected the dependence of,. The role of the Empty circles are the results of modified Lanczos study on a 50-site
Trugman’s loops larger than an elementary square is neglluster from Ref. 24.
gible, so we consider the dispersion given by the next-
nearest-neighbor hopping only. The resulting band is isotroThe sum ovep gives a number of the order of unity. Thus,
pic and has a minimum at the center of the Brillouin zonethere is a value oW[(W/t),=4J%/t?<1] at which the
(BZ). Now in the BS equatiori26) it is easier to integrate equality condition is satisfied. MV grows witht, as it in fact
over ¢, first. Neglecting the effect of the dispersion on the does, then above this point E@8) has no solution. Using
retardation, and after some algebra one obtains the dependence & on t/J (Fig. 15, the critical values of
t/J|PY can be extracted from the same condition ).

2
o =—2Jaz>, ﬁ[ Yeop| 1+ 8t_a°2 The second statement is a consequence of the isotropic
p €p (A-=J) form of the dispersion law. The sum ovgrin Eqg. (49) can
be rewritten as:
+ Lo (48) d
VYo A — [ p,

JA=J) APA="> qDL:Z o {1+ cog ky) cogk,)
whereg is a nearest-neighbar p, or d wave. As before the CS P
magnon-exchange interactigthe second term in the curly +[cogk,)cogk,)]?+ - - A=1+Cy+Cot---.
brackej is orthogonal to thg- andd-wave states. Equation Y
(48) is an almost evident generalization of Eg46) to the (50

case of finite hole dispersion. The only new parameter introT
duced is the hole bandwidW. Our numerical ED data for 1~ _3 |1 the case ob wave C,=0 for oddn, andC
W/2t as a function oft/J calculated on a 32-site lattice are _ fcfr eg\}enn Numerical integra?ion giveﬁpz'l 27 ar?d
given in Fig. 15. We do not calculate this quantity analyti- Ad=0 .73 and.therefore the-wave solution disapbears at a
cally. Instead we treat it as a parameter and use the numeric%lWer .valyue oft/J

values in Fig. 15. '

n the case ofl wave the series is alternating wi@y, = — 3

Numerical solutions of Eq(48) for all three symmetries

Yogether with results of our 32-site ED calculations are
H s,p,d g
(48). Now all three symmetries have thresholdgJj|¢ shown in Fig. 16. For the purpose of comparison we also

above which negative energy solution of the correspondinghow the results obtained by a modified Lanczos method on
symmetry cease to exist. Also, tipeandd waves are split a 50-site cluster in Ref. 24. One can see a very guaan-

with the_p wave state havin_g Iow«_ar energy. titative agreement between our analytical and numerical re-
The first statement is evident if one considers the threshéu'tS for thes-wave state. For the and p states, they have
old condition A =0) for thep- or d-wave state in Eq(48), ’

; _ the same qualitative behaviors. It is clear that our @8),
assuming>J so thatap=J/t: while involving different kinds of approximations, captures
2 p,d 2 all essential effects of the pairing problem in thé, model

J3J s [ 8t J]

- in a very good quantitative level. It also describes the prob-

lem in a very easy and transparent way. That is, all essential

p.d tendencies in the hole binding are described by this formula:

~ ﬂi E “p (49) (i) theswave is pushed up to the continuum by the magnon-
Wt %' [1—cogk,)cogky)]’ exchange processii) the p and d waves are much more

2% —we |ttt
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stable, and(iii) the Trugman’s dispersion splits these two Corrections to the bound-state energies offitendd waves
levels and pushes them to the continuum at some larger critisp to first order ina are
cal values oft/J.

The analytical results underestimate the pairing strength, d_ Ad 2t? 2 d\2_ 2
especially in the regiot/J~ 1. We believe that this is due to AT=Aot2a| A= 5ap % (ep)™7
the contribution from the higher poles which are neglected in 5
our study. In this region a significant portion of the spectral _Ady E(A— Laz
weight is transferred to these poles, while the separation be- °°8 J o)
tween them is still of the order ofR Since our lowest-pole (54)
approximation uses the ratih/ Se(=1/4 in this region as 2t? ) 9 2
the small parameter, one would expect the energy correction AP=Af+2a| A+ Tao 2 (QDS) Yp
from the higher poles to be of the same order. In the region P
where the binding energy is close to zero we expect this 3a 2t2 )
approximation to be more accurate. However, forgtandd =Af+ 8 A+ 5 %)

waves this is also the region ofJ>2 where the omitted

higher-order diagrams with more complicated kinematicwhere the first term in the bracket comes from the dispersion
structure contribute to the interaction. We refer the smalle@nd the second is from the magnon-exchange interaction.
splitting of thep- and d-wave states found in our analytical The kinetic energy pushes up the energy of both states, but
results compared to those in our ED data to the effect ofor the p wave this shift is three times larger. An important
these corrections. The same higher-order interactions causeogservation is that the magnon-exchange interaction is now
tiny splitting of the states afJ<1, which is shown in Fig. attractive for thed-wave state and repulsive for tipewave

16. We remark that &#J dependence of the binding energies State.

very similar to our ED results has been found recently by To show how subtle the selection between theand
series-expansion calculatiofs Thus we believe that the d-wave ground states is, let us consider a more “realistic”
agreement between the results can be improved by an accélispersion law:

rate consideration of the contribution of higher poles and

higher-order diagrams of various types. However, this is be- 5ek=zA[COS(kX)2+COS(k )2]. (55)
yond of the scope of our paper. 4 Y

It is natural and instructive to consider the case WhereI'his is more realistic in the sense that it has minima at
T e ) e (- 12112) OIS WhGh a 50O and I grees wi
. - TS help ; the experimentally measured profile in the cuprates better
of these fluctuations on the pairing problem, and to infer the[han the one in Eq(51). It is now known that this difference

tendencies in the isotropicJ model. As noted in Ref. 18 between tha-J model dispersion layEg. (51)] and the one
only two changes are necessary to account for these fluctua;

. i . . . . Observed in realityEq. (55)] is due to additional intrasublat-
tions up to first order inv. First, the holes acquire a disper- . . A ; . )
) . tice hoppings {’,t", etc) in the real system3With the dis-
sion law given by . ) . o .
persion law in Eq(55), corrections to the binding energies

Sex=aAy?, (51)  are given by
whereA is of the order oft?/J in the t<J limit and of the g4 @ 2t? . 2t*
order ofJ in thets>J limit.'® Such a band is strongly aniso- A"=A0+ g|5A— &), AP=Ag+ o| 3A+ F-a5].
tropic, i.e., degenerate minima form a line along the mag- (56)

netic BZ boundary. In the full-J model (@=1) this disper- o
sion dominates over the Trugman’s terms att&ll Second, NOw the kinetic energy pushes up tdewave energy 5/3

=(a/4)[2t2a(2)/J—A] is not necessarily positive. Therefore,
F(k%%:‘”[?’k—q— Fayyqt+O(a?)]. (52)  thep wave can again become a ground state.

Summarizing our observations in the smalllimit, we

Corrections to the magnon energy are of higher ordez:in . .
wo=2J+0(a?). As we shall see, both changes lead to theconclude that the transverse fluctuations create an additional

splitting of the p- and d-wave levels, and both favor the gttractiye ipte(action in thd—symmetry state and that an an-
wave as the ground state of the syétem isotropic kinetic-energy profile also favors tdevave. Thus

Consider Eq/(48) with the dispersion from Eq51) and we suggest that thd wave is most likely to be the ground

the hole-magnon exchange term coming from B5g). For  State of the system in tteJ model (@=1). This conclusion
the purpose of illustration it is sufficient to consider the in- is in agreement with many a_nalytlcal and numerical studies.
teractions in the static limit: Nevertheless, a recent 32-site ED study showed thatJat

> 3.3 the ground state of the two-hdledd model is ap-wave

@ 8t%a, state with total momentun®= (7, #).>? [In our case mo-
o= —2Ja§2 | Yk—p| 1t —— mentaP=(0,0) andP=(,7) are equivalent because of the
P A—2aAy, J existence of long-range ordéFurthermore, such a behavior
1612 @

(53) Due to the apparently strong finite-size effects on the ED

is also suggested by recent series-expansion calculdfions.
] ' results, it is difficult to conclude whether this behavior will

- ?{ V¥~ 5 Yerp( Vit 7p)
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survive in the thermodynamic limit. Nevertheless, these datprocesses, and is, in fact, very small. However, it has impor-
show that even in the purteJ model, the final word on the tant consequences. It is responsible not only for the signifi-
problem of the symmetry of the bound state is still to comecant splitting between thp- and d-wave states, but also for
Besides effects arising from ttieJ model, there are also the destruction of hole pairing at some critica!LX)|§'d. The
concerns about the robustness of the bound states in the résbtropic form of the dispersion favors thewave as the
system. The characteristic bound-state energy found in thground state of the system.
t-J model is of the order of-0.1] in the physical region of We have also considered the role of transverse fluctua-
t/J. This energy is far below the accuracy of the model itself.tions in the perturbative limite<<1. These lead to an aniso-
This means that in order to describe the real materials, th&opic hole dispersion and an additional hole-hole interac-
low-energy model must include at least additional hoppingtion. We have shown that both features favor theave as
terms ¢',t”, etc). It is worth noting again that because of the lowest energy state. However, in this case the selection
these terms the realistic dispersion is isotropic, which, as weetweenp and d waves strongly relies on the anisotropic
have just shown, can favor tipewave. More important con- form of the hole dispersion, and such a dispersion does not
jecture can be made using the results of Ref. 28 and Eldgree with the experimentally measured dispersion in real
data® Since the isotropic dispersion involves a higher ki- systems. Moreover, since the characteristic energy of the
netic energy, the overall pairing tendency is weakened byound states found in theJ models is small, we are skep-
these additional hopping terms. It can push all the boundical that these states can survive when additional kinetic-
states up to the continuum, thus destroying the foundation ofnergy terms are included in the model. Our skepticism is
the preformed pair and phase separation scenarios well bgupported by earlier stud@sand recent numerical dat4>>

fore the physical region of parameters is reached. Such conclusions for the pairing problemtid-like mod-
els drawn from our study create a framework in which it
VI. CONCLUSIONS might be necessary to look forwave superconductivity un-

) ) related to the Bose condensation of preforrdedave pairs.
In this paper we attempt to address the issue of how gerrthermore, to make the phase-separation scenario possible,

neric d-wave pairing int-J-like models is, and to clarify the 5 might need to invoke arguments other tharagoiori
problem of how this symmetry is selected among others. Weyisting collapsing tendency in the spin-hole system.
have thoroughly examined ttieJ, model by means of ana-

lytical diagrammatic study supplemented by our 32-site ED
results. This formalism is tested in the one-hole problem, and
perfect agreement with ED results is found. The ground state We are indebted to Professor R. J. Gooding for suggesting
of two holes in the physical regiotiJ>1 is found to be a this work, and for valuable discussions and comments. We
p-wave bound state. From a careful analysis of the interacalso thank F. Marsiglio for illuminative discussion, A. Castro
tions involved in the pairing problem we established that theNeto, M. Zhitomirsky, and O. Starykh for comments, and P.
pairing in thesswave channel is highly unfavorable becauseWrobel for correspondence. The work of A.L.C. was sup-
of the repulsive character of the magnon-exchange interagorted in part by the NSERC of Canada and the University
tion in this state. While this reason is rather generic, theof California and Los Alamos National Laboratory under the
problem of selecting between theand d waves is much auspices of the U.S. Department of Energy. The work of
more subtle. In our analytical study these states remain d&®.W.L. was supported by the Hong Kong RGC grant
generate until the hole dispersion is included. In thg,  HKUST6144/97P. Numerical diagonalizations of the 32-site
model such a dispersion comes from higher-order hoppingystems were performed on the Intel Paragon at HKUST.
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