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Holes in the t-Jz model: A diagrammatic study
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The t-Jz model is the strongly anisotropic limit of thet-J model which captures some general properties of
doped antiferromagnets~AF’s!. The absence of spin fluctuations simplifies the analytical treatment of hole
motion in an AF background, and allows us to calculate single- and two-hole spectra with a high accuracy
using a regular diagram technique combined with a real-space approach. At the same time, numerical studies
of this model via exact diagonalization on small clusters show negligible finite-size effects for a number of
quantities, thus allowing a direct comparison between analytical and numerical results. Both approaches dem-
onstrate that the holes have a tendency to pair inp- andd-wave channels at realistic values oft/J. Interactions
leading to pairing and effects selectingp andd waves are thoroughly investigated. The role of transverse spin
fluctuations is considered using perturbation theory. Based on the results of the present study, we discuss the
pairing problem in the realistict-J-like model. Possible implications for preformed pairs formation and phase
separation are drawn.@S0163-1829~99!04127-2#
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I. INTRODUCTION

The physics of holes moving in an antiferromagnetic~AF!
background has received much attention because of its
sible connection to high-Tc superconductivity. A micro-
scopic realization of this physics is given by thet-J model,
which was first introduced as a conjecture,1 and then derived
as a low-energy limit of a realistic model representing
electronic structure of cuprates.2,3 Recent comparison of th
t-J model results to angle-resolved photoemission da4

showed that the overall shape of the experimental single-
band can be fitted satisfactorily using the puret-J model. To
account for the detail line shapes, one needs to include m
distant hopping terms (t8, t9, etc.!.5,6 The presence of thes
terms also follows from a careful mapping study.6 Numerical
studies of thet-J model by means of exact diagonalizatio
~ED! and other methods suggest the presence of hole bin
in the physical parameter ranget/J;3,7–9 and that the domi-
nant symmetry of the pairing correlation isdx2-y2. This find-
ing also supports the common belief that some variant of
t-J model is able to describe the physics of real compoun
However, to show that thisd-wave binding in thet-J model
is relevant to the physics of high-Tc materials, one has to
clarify how strong and generic the reasons behind this p
ing are. Unfortunately, numerical studies alone are of limi
use for this purpose, so that an analytical study is neces
to develop insight into the problem.

In this paper we attempt such a study by investigating
Ising limit of the t-J model — thet-Jz model. This is well
known to be a simplified limiting case of thet-J model, but
only recently has its properties been fairly well understo
In the pioneering work of Ref. 10, the single-hole energy
the t/J!1 limit has been calculated. Subsequently, Brin
mann and Rice11 considered theJ50 limit, and introduced
the retraceable-path approximation. In infinite dimensio
PRB 600163-1829/99/60~3!/1592~15!/$15.00
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@d5`# both the retraceable-path approximation and thet-Jz

model become an exact description of thet-J model,12 which
supports the idea that the results of the strongly anisotro
limit of the t-J model are relevant to the physics of th
isotropic case ind52. More recent works13–17used the self-
consistent Born approximation to study thet-Jz , t-J, and
t-t8-J models. Using this approximation, an analytical e
pression for the hole Green’s function in thet-Jz model for
arbitrary values oft/J was found by Starykh and Reiter.18

The pairing of holes in thet-Jz model was considered in th
works by Trugman19 and Shraiman and Siggia,20 where im-
portant results were obtained. Some other studies used
ferent modifications of the variational approach,21,22 and ob-
tained similar results. However, as we shall show, th
earlier analytical treatments involved approximation whi
prevented one from obtaining the correct answers.

The t-Jz model was studied using numerical method7

Barneset al.23 compared their ED results on a 16-site squa
lattice with some analytical results, and Riera and Dagot24

developed a modified Lanczos technique which enab
them to study the one- and two-hole ground states of
model on lattices as large as 50 sites.~For a review, see Ref
7!. It was shown that finite-size effects in the ED data of t
t-Jz model are much smaller than those of thet-J model.24

In this paper we develop an analytical treatment of
t-Jz model based on the results of Ref. 18. Comparison w
our ED data allows us to justify the validity of this analytic
approach. Furthermore, we use the results of this stud
shed light on the problem of whether the pairing in thed
channel is a generic feature oft-J-like models, and which
interaction defines the symmetry of the ground state of
system. Qualitatively similar questions have been addres
in a recent variational study of the hole pairing in thet-J
model.25

Our numerical ED results for thet-Jz model are obtained
1592 ©1999 The American Physical Society
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on a 32-site square lattice using the same method as in R
26 and 27. Up to now these are the only ED results on
largest lattice. This numerically exact method allows us
analyze various properties of the single-hole ground stat
well as two-hole bound states with different symmetries.

Our paper is organized as follows. Sections II and
describe the representation and Feynman rules used in
paper. In Sec. IV we solve the single-hole problem and co
pare the results to ED data. In Sec. V the two-hole prob
is considered in detail. In Sec. VI we summarize our res
and draw conclusions.

II. Hamiltonian and Representation of the Operators

The Hamiltonian of thet-Jz model is

H52t (
^ i j &s

~ c̃is
† c̃ j s1H.c.!1J(

^ i , j &
@Si

zSj
z2 1

4 NiNj #, ~1!

where the summation runs over nearest-neighbor bonds^ i j &,
c̃is

† 5cis
† (12ni s̄), c̃is5( c̃is

† )†, and Ni5 c̃i↑
† c̃i↑1 c̃i↓

† c̃i↓ .
Since we are modeling electrons on a two-dimensio
square lattice, the coordination numberz54 and the spinS
5 1

2 .
Assuming the presence of long-range antiferromagn

order, one can introduce a representation for the Hubb
operators ~operators of spin and constrained fermio!
through the spinless fermion and boson operators.
choice of the representation is, in general, arbitrary, an
motivated by the problem to be solved. In our work we us
generalization of the Dyson-Maleev~DM! representation for
the Hubbard operators. As usual, such a representation
serves the algebra of the operators but extends the Hi
space of the problem.

In sublatticeA5$↑% the DM representation is given by

Si
z5 1

2 ~Xi
↑↑2Xi

↓↓!5 1
2 2ai

†ai2
1
2 f i

†f i ,

Si
25Xi

↓↑5ai
†~12ai

†ai2 f i
†f i !, Si

†5Xi
↑↓5ai ,

c̃i↑5Xi
0↑5 f i

†~12ai
†ai !, c̃i↑

† 5Xi
↑05 f i , ~2!

c̃i↓5Xi
0↓5 f i

†ai , c̃i↓
† 5Xi

↓05 f iai
† ,

Ni5 c̃i↑
† c̃i↑1 c̃i↓

† c̃i↓5Xi
↑↑1Xi

↓↓512Xi
00512 f i

†f i .

In sublattice B5$↓%, the corresponding representation
given by

Sj
z5 1

2 ~Xj
↑↑2Xj

↓↓!52 1
2 1bj

†bj1
1
2 gj

†gj ,

Sj
25Xj

↓↑5bj , Sj
†5Xj

↑↓5bj
†~12bj

†bj2gj
†gj !,

c̃ j↑5Xj
0↑5gj

†bj , c̃ j↑
† 5Xj

↑05gjbj
† , ~3!

c̃ j↓5Xj
0↓5gj

†~12bj
†bj !, c̃ j↓

† 5Xj
↓05gj ,

c̃ j↑
† c̃ j↑1 c̃ j↓

† c̃ j↓5Xj
↑↑1Xj

↓↓512Xj
00512gj

†gj .

Thus we have two types of fermions and bosons associ
with the A and B sublattices. The Hamiltonian in Eq.~1!
expressed in terms of the new variables Eqs.~2! and ~3! is
fs.
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H⇒H01H11H2 ,

H05 1
2 J(

^ i , j &
@ai

†ai1bj
†bj1 f i

†f i1gj
†gj #,

H15t(̂
i j &

@ f i
†gj~bj

†1ai !1H.c.#, ~4!

H252t(̂
i j &

@ f i
†gjbj

†ai
†ai1gj

†f iai
†bj

†bj #

2 1
2 J(

^ i , j &
@ni

fbj
†bj1nj

gai
†ai1ni

fnj
g12ai

†aibj
†bj #.

Here we have divided the Hamiltonian@Eqs. ~4!# into three
parts:H0, consisting of the linear spin-excitation and ho
terms:H1 consisting of the bare hole-magnon interacti
term, andH2, consisting of the nonlinear hole-magnon, sta
hole-magnon, direct hole-hole, and magnon-magnon inte
tion terms. The third and fourth terms inH0 take into ac-
count the energy of the four AF bonds broken by a h
introduced into the system. In the following this energy
included in the ground-state energy and the correspond
terms are omitted. Note that we have omitted a cons
term. The same Hamiltonian@Eqs.~4!# in k space is given by

H052J(
q

@aq
†aq1bq

†bq#12J(
k

@ f k
†f k1gk

†gk#,

H154t(
k,q

gk2q@ f k2q
† gkbq

†1gk2q
† f kaq

†1H.c.#, ~5!

H2524t (
k,q,q1,q2

gk2q@ f k2q2q11q2

† gkbq
†aq1

† aq2

1gk2q2q11q2

† f kaq
†bq1

† bq2
#

22J (
k,q,q1

gq2q1
@ f k2q1q1

† f kbq
†bq1

1gk2q1q1

† gkaq
†aq1

#

22J (
k,k8,q

gqf k2q
† gk81q

† gk8 f k

24J (
q1,q2,q

gqaq12q
† bq21q

† bq2
aq1

, ~6!

wheregk5@cos(kx)1cos(ky)#/2, and all summations are re
stricted to the first magnetic Brillouin zone~BZ!.

III. PROPAGATORS AND VERTEX FUNCTIONS

The Feynman rules for the model in Eq.~5! are as fol-
lows.

~i! Hole propagator:G0(e)5Gf (g)
0 (e)5@e1 i0#21 @Fig.

1~a!#.
~ii ! Magnon propagator:D0(v)5Da(b)

0 (v)5@v22J
1 i0#21 @Fig. 1~b!#.

~iii ! Hole-magnon vertex: G0(k,q,k2q)
54tgk2qde1 ,e2v @Fig. 1~c!#. The indices indicate thatf ~or

g) holes can emit onlya ~or b) magnons and absorb onlyb
~or a) magnons. This is an important feature of the ho
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FIG. 1. Feynman rules for Hamiltonian~5!.
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magnon interaction, and is a consequence of spin conse
tion. In the following we omit the indices. We use the fo
lowing shorthand notations:de1 ,e2v denotesd(e12e1v),

and(v means*2`
` (dv/2p i ).

~iv! Hole-two-magnon vertex:G2
0(k,q,q1 ,k2q1q1)5

22Jgq2q1
de1 ,e2v1v1

@Fig. 1~d!#. Note thatf ~or g) holes

interact witha ~or b) magnons only.
~v! Hole-three-magnon vertex:G3

0(k,q,q1 ,q2 ,k2q2q1

1q2)524tgk2qde1 ,e2v2v11v2
@Fig. 1~e!#. Note that there

is no vertex diagram for the reversed order of emissi
absorption because of the non-Hermitian nature of the co
sponding terms in the Hamiltonian@Eq. ~5!#.

~vi! Hole-hole vertex:G f g
0 (k,k8,q)522Jgqde11e2 ,e31e4

@Fig. 1~f!#.
~vii ! Magnon-magnon vertex: Gab

0 (q1 ,q2 ,q)5
24Jgqdv11v2 ,v31v4

@Fig. 1~g!#.

In all cases we use the notationsk5(k,e) andq5(q,v)
for the momentum and frequency of the hole and magn
respectively. Thus the model@Eq. ~5!# involves fermion-
fermion ~hole-hole!, boson-boson~magnon-magnon!, and
three types of fermion-boson~hole-magnon! interactions. In
general the problem of finding the low-energy excitations
such a model is very complicated. However, as we will sh
below, in the case of thet-Jz model it is possible to take into
account the result of renormalization almost exactly usin
regular diagrammatic treatment.

IV. SINGLE HOLE

If we ignoreH2, the Hamiltonian in Eq.~5! for a system
with a single hole is similar to the problem of a single ele
tron interacting with the local phonon mode. When the int
action (t in our case! is small compared to the energy of th
boson (2J), we can use perturbation theory and consid
only the lowest contribution to the hole energy, which co
responds to the virtual emission and absorption of a sin
magnon. At largert many-magnon intermediate states mu
be considered. Such a problem, if solved self-consisten
must take into account the renormalization of the fermio
boson interaction, or crossing diagrams. However, in thet-J
model it is well known that the lowest correction to the ba
hole-magnon vertexG0 is exactly zero, since the hole
magnon interaction conserves the spin, or more exactly,
a-
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a

-
-

r
-
le
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pseudospin associated with the sublattice type. Therefore
crossing diagrams can be omitted and the renormalizatio
the hole energy is given only by the series of diagrams wh
the magnons are absorbed in exactly the reversed orde
which they are emitted. This is the so-called self-consist
Born approximation~SCBA!, which in the case of thet-Jz
model is identical to the retraceable path approximation. T
coincidence is due to the local nature of the spin excitati
in the model. The corresponding diagrammatic equation
the hole Green’s function is shown in Fig. 2. Note that t
vertices are unrenormalized. The retraceable path appr
mation implies that the hole is confined by a ‘‘string’’ of sp
excitations and the hole motion is completely incohere
i.e., the hole forms a localized state.

The first nonzero contribution to the hole self-energy fro
the crossing diagrams is shown in Fig. 3. It is of sixth ord
in t, and is small compared to the contribution of the ‘‘r
traceable’’ diagrams of the same~sixth! order due to the
geometrical factor. This diagram is the first member of t
family of the so-called ‘‘Trugman paths.’’ Their contributio
to the hole energy is small in a wide range oft/J, but they
are responsible for the finite coherent band of the hole. R
space consideration shows that such a diagram corresp
to the hole’s motion around an elementary square loop
which the hole makes one and a half turns. As a result
spin excitations are cured, and the hole is translated along
diagonal of the square plaquette, i.e., to a next-nearest ne
bor. As we have noted, the corresponding correction to
energy is small, and we will neglect these diagrams in
rest of this section.

SinceG0(e) andD0(v) are momentum independent an
the hole-magnon interaction depends only onk2q, the full
Green’s functionG is alsok independent. Thus the equatio
shown in Fig. 2 can be simplified as

S~e!5(
v

G~e2v!D0~v!(
q

~Gk2q
0 !2

54t2G~e22J!, ~7!

G~e!5@e24t2G~e22J!#21.

FIG. 2. SCBA for the hole self-energy. Bold lines represent
dressed Green’s functions.
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The solution of Eq.~7! at all t/J can be found in Ref. 18
One can try an ansatz forG of the form

G~e!52
1

2t

Y~e!

Y~e12J!
. ~8!

This transforms Eq.~7! into a difference equation

Y~e12J!1Y~e22J!52
e

2t
Y~e!, ~9!

which is the recursion relation for the Bessel functions. Th
G(e) is given by

G~e!52
1

2t

J2e/2J~2t/J!

J2e/2J21~2t/J!
, ~10!

whereJn(x) are the Bessel functions.
Such a form is the consequence of the continued frac

form of the Green’s function, which in turn is the result
the retraceable-path approximation. Note that in Ref. 18Jz
52J. Thus the poles of the Green’s function in the SCB
approximation are defined by the zeros of the Bessel fu
tion. Since all these zeros are real, the hole spectral func
consists of the set ofd-function peaks corresponding to th
energy levels of the quasiparticle states in the ‘‘string’’ p
tential well. Inclusion of the Trugman processes does
change this result significantly, because the resulting ba
width is much smaller than the separation of the levels.

Although the solution@Eq. ~10!# of Eq. ~7! is an almost
exact solution ofH01H1, it is not a solution of the origina
t-Jz Hamiltonian. Besides the crossing diagrams, there
other contributions to the self-energy originating fromH2. In
order to compare with other analytical approaches and ED
is necessary to account for these contributions. To make
statement evident let us now consider the two limiting ca
t/J!1 and t/J@1, and compare the results of the SCB
with the known facts from the real-space approach and
numerical data.

For t/J!1 the ground-state energy for the hole is giv
by Eqs.~7! as

e0
SCBA52

2t2

J
. ~11!

This is inconsistent with the result of the real-space appro

e052
8t2

3J
. ~12!

The reason for this discrepancy is that the spin-flip~magnon!
has lower energy (3J/2 compared to 2J) if it is located in the
neighborhood of the hole, and the HamiltonianH01H1 does
not take this difference into account. Note that through

FIG. 3. Trugman’s diagram. The numbers represent the s
where a magnon is emitted~absorbed!.
s
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this paper we assign the zero energy level to the state
onestatic hole, i.e.,E05E0

Ising12J50.
According to Ref. 18, in the large-t limit the ground-state

energy given by Eq.~10! is

e0
SCBA524t12b0t~J/t !2/322J , ~13!

whereb052.34 is the first zero of the Airy function. There
no alternative asymptotic expression in this limit which
accurate up to orderJ, but the first two terms which are o
order t and t1/3J2/3 can be compared to the results of th
‘‘string’’ approach by Shraiman and Siggia20 ~SS! and the
fitting of 16-site ED data by Barneset al.:23

e0
SS522A3t12.74t~J/t !2/3,

~14!
e0

ED523.63t12.93t~J/t !2/3.

This comparison makes one suspect that the SCBA@Eq.
~13!# overestimates both the absolute value of the depth
the ‘‘band’’ and the slope of the walls of the linear confinin
potential.

The origin of these discrepancies becomes evident w
we consider the real-space picture of the retraceable
movement. Figure 4 shows the real-space images of th
components of the spin-polaron wave function: the on
two-, and three-magnon strings. The first important obser
tion is that the coordination number in the creation of t
first magnon is indeedz54, but isz2153 in the creation of
each next magnon. This is why the factor in the first term
the SS expression@Eq. ~14!# for the hole energy is 2A3
~instead of 4). Ift is much larger thanJ, the average length
of the strings contributing to the spin-polaron wave functi
is large. Then the weight of the components with coordin
tion number different from others becomes insignifica
Since this component is the ‘‘bare’’ hole, it also means th
the quasiparticle residue of the state decreases ast grows,
and in thet˜` limit the spectrum will be incoherent. Thi
result was first obtained by Brinkmann and Rice11 in the J
50 limit.

Keeping in mind that the energy of spin excitation is d
termined by the number of broken AF bonds associated w
its creation, one can see that the energy of the first magno
the string is 3J/2 ~three bonds,J/2 each!, but the energy of
each subsequent magnon is justJ ~two bonds!. This is true
for all strings of lengthl 52 and for most other longer string
except for those which have self-tangencies. Since the la
cases are relatively rare due to the geometrical factor,
can assign the same energylJ1J/2 to every string of length
l. A more accurate account for the energy of the self-tang
strings makes only tiny changes in the energy of the wh
excitation. Thus making the changes 2J˜J andz˜z21 in
the expression for the SCBA hole energy will change
factor 2b054.68 in the second term of Eq.~13! to 31/6b0
52.81, leaving it in reasonable agreement with Eq.~14!.

s

FIG. 4. One-, two-, and three-magnon strings.



sa

st

g
th

th

he

in
n-
r

nd

ap
th
ra

pe
ti

y

d
by

e
tion
d
non

w-

ave
the

le–

ob
ll

1596 PRB 60A. L. CHERNYSHEV AND P. W. LEUNG
Summarizing the results of the comparison, one can
that the reason for the failure of the SCBA is thatH01H1 is
not the same asHt2J , and that an improved formalism mu
take into account the following facts:~i! the energy of the
first magnon in a string is 3J/2; ~ii ! the energy of thenth
magnon (n.1) is J; ~iii ! the coordination number isz21
53 for l>1 andz54 for l 50, wherel is the length of the
string. After some thinking using the above real-space ar
ments, one can suggest the following modification to
equation for the Green’s function@Eq. ~7!# to meet all these
requirements:

G~e!5@e24t2Ga~e23J/2!#21,

Ga~e!5@e23t2Ga~e2J!#21,
~15!

Ga~e!52
1

A3t

J2e/J~2A3t/J!

J2e/J21~2A3t/J!
.

Such a modification gives the correct hole energy in
small-t limit. In the t˜` limit the resulting hole energy is
22A3t.

Let us now come back to the original problem with t
full HamiltonianH01H11H2, @Eq. ~5!#, and discuss how
such an ‘‘improvement’’ of the Green’s function proposed
Eqs. ~15! can be done formally in the diagrammatic la
guage. The fact that magnons in the string have lower ene
than free excitations is the result of magnon-magnon bi
ing. The magnon-magnon interaction@last term ofH2, Eq.
~5!# is attractive and leads to a bound state. A regular
proach to the bound-state problem is based on the Be
Salpeter equation shown in Fig. 5. The equivalent integ
equation is

Gab~V,q12q3!5Gab
0 ~q12q3!1(

p1

Gab
0 ~q12p1!

3Gab~V,p12q3!(
v

D0~v!D0~V2v!

524Jgq12q3
1(

p1

~24Jgq12p1
!

3
Gab~V,p12q3!

V24J1 i0
. ~16!

It is easy to see that the momentum and frequency de
dence of the vertex can be separated. The sugges
Gab(V,q12q3)524Jgq12q3

G̃ab(V) transforms Eq. ~16!

into

G̃ab~V!512
J

V24J1 i0
G̃ab~V!. ~17!

FIG. 5. The Bethe-Salpeter equation for the two-magnon pr
lem. Dots represent bare verticesGab

0 , and squares represent fu
verticesGab .
y

u-
e

e

gy
-

-
e-
l

n-
on

Here we have used the relation(p1
gq12p1

gp12q3
5gq12q3

/4.
Thus the renormalized magnon-magnon vertex is given b

Gab~V,k2p!524Jgk2p

V24J1 i0

V23J1 i0
. ~18!

The pole of this function,V53J, corresponds to the boun
state whose energy is lower than that of two free magnons
2J, in agreement with our expectations.

Similarly the hole–two-magnon interaction@the second
term inH2, Eq. ~5!# lowers the energy of the magnons in th
neighborhood of a hole. The hole–three-magnon interac
~first term inH2) originates from the projection operator an
projects out the unphysical states with the hole and mag
at the same site created by the hopping term inH0. A con-
sistent consideration of these interactions yields the follo
ing Dyson equation for the single-hole propagator:

G~e!5@e2S~e!#21,
~19!

S~e!5(
v

G~e2v!D0~v!(
q

Gk
0

2qGk,q~e,v!,

where the renormalized hole-magnon vertex is

Gk,q~e,v!5Gk2q
0 1Gk,q

(1)~e!1Gk,q
(2)~e,v!1Gk,q

(3)~e!1Gk,q
(4)~e!,

Gk,q
(1)~e!5 (

q1,v1

G2
0~q2q1!G~e2v1!D0~v1!Gk,q1

~e,v1!,

Gk,q
(2)~e,v!5 (

q1,q2
(

v2 ,V
Gk2q2q1

0 D0~V2v!

3G~e2V!Gab~V,k2q2!D0~v2!D0~V2v2!

3G~e2v2!Gk,q1q1
~e2v2 ,V2v2!

3Gk,q2
~e,v2!,

~20!

Gk,q
(3)~e!5 (

q1,q2
(

v1 ,v2

G3
0~k2q2q2!D0~v1!D0~v2!

3G~e2v12v2!Gk2q2q2
~e2v1 ,v2!

3G~e2v1!Gk,q1
~e,v1!,

Gk,q
(4)~e!5 (

q1,q2,Q
(

v1 ,v2 ,V
G3

0~k2q2Q!D0~v1!

3D0~V2v1!G~e2V!Gab~V,q12q2!

3D0~v2!D0~V2v2!Gk,q11Q~e2v2 ,V2v2!

3G~e2v2!Gk,q2
~e,v2!.

A diagrammatic representation of Eqs.~19! and ~20! is
shown in Fig. 6.

Note that the lowest-order correction toall vertices are
zero, and higher-order corrections are neglected. We h
already discussed the absence of one-loop correction to
hole-magnon vertex. It is less evident in cases of the ho

-
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two-magnon and hole–three-magnon vertices. Howeve
one recalls thef ,g anda,b indices for the hole and magno
lines in Fig. 6, it becomes evident that the emission of
extra magnon prior to the hole–two-magnon interaction
ters the type of the hole, and therefore prevents it from
sorbing and reemitting the original magnon. The same is
for the hole–three-magnon vertex. It is interesting to n
that the set of diagrams in Fig. 6 is still in the SCBA, i.e., t
crossing diagrams are absent.

Again the momentum and frequency dependence ofG can
be separated. The almost evident substitutionGk,q(e,v)
54tgk2qG̃(e,v) simplifies Eqs.~19! and ~20! which, after
integrating over the internal frequencies and momenta,
come

S~e!54t2G~e22J!G̃~e,2J!,
~21!

G̃~e,v!512G~e22J!G̃~e,2J!F J

2
24t2

J

v2J

3@G~e23J!G̃~e22J,J!2G~e22J2v!

3G̃~e22J,v!#1t2G~e24J!G̃~e22J,2J!

1t2@G~e23J!G̃~e22J,J!2G~e24J!

3G̃~e22J,2J!#G .
Each term in the square brackets comes from the corresp
ing irreducible diagram in Fig. 6. After combining simila
termsG̃(e,2J) becomes

G̃~e,2J!5G~e22J!21@G~e22J!211J/2

23t2G~e23J!G̃~e22J,J!14t2G~e24J!

3G̃~e22J,2J!#21

5G~e22J!21@e23J/223t2G~e23J!

3G̃~e22J,J!#21

5
Ga~e23J/2!

G~e22J!
, ~22!

where Ga(e) has a continued fraction form. Summarizin
Eqs.~19!, ~21!, and~22!, one finally obtains

FIG. 6. The Dyson equation for the hole Green’s function. Bo
lines are the dressed Green’s functions, circles are the renorma
hole-magnon vertices, and squares are the renormalized mag
magnon vertices@Fig. 5 and Eq.~18!#.
if

n
l-
-
e

e

e-

d-

G~e!5@e24t2Ga~e23J/2!#21,

Ga~e!5@e23t2Ga~e2J!#2152
1

A3t

J2e/J~2A3t/J!

J2e/J21~2A3t/J!
,

~23!

which is exactly the same as the Green’s function sugge
in Eq. ~15!.

The rest of this section is devoted to the comparison
the results from Eq.~23! with our numerical ED results on a
32-site lattice. Figure 7 shows the ED results together w
analytical results from the SCBA@Eq. ~7!# and from Eq.
~23!. We recall that contributions from the Trugman’s pat
are left out from Eqs.~23! and~7!. These paths give rise to
small dispersion of the hole,dEk5t1

e f f cos(kx)cos(ky)
1t2

ef f@cos(2kx)1cos(2kx)#1•••, with t2
e f f!t1

e f f . This form of
dispersion implies that the correction to the energy at
point (p/2,p/2) due to the Trugman paths is almost ze
Therefore, it is natural to compare the ED data at thisk point
to the analytical results. From Fig. 7 one can see a beau
agreement of the numerical data atk5(p/2,p/2) with the
results of Eq.~23! in the whole range oft/J. For comparison
purposes, Fig. 7 also shows the numerical data atk5(0,0).
We also remark that our 32-site ED data atk5(0,0) agree
with the 50-site results of the modified Lanczos study
Riera and Dagotto24 ~not shown in Fig. 7! up to the fourth
digit at t/J55 and up to the seventh digit att/J51.25.

It is already clear from Fig. 7 that our present approa
works better than the SCBA. To illustrate this point furthe
we plot the quasiparticle residue in Fig. 8. Three sets of d
are shown. They are the results from our present analyt
approach, the SCBA, and our numerical ED study. The
results are calculated using the same method as in Ref
One can see that such a comparison unambiguously fa
the present approach.

V. TWO HOLES

In this section we consider the problem of hole pairing
the t-Jz model using the diagrammatic formalism introduc

ed
on-

FIG. 7. The single-hole ground-state energy vst/J. The zero
level of energy is taken to be the energy of the hole att50.
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in previous sections. Our goal is to study in detail the bou
state of two holes. The role of different interactions a
higher-order corrections will be analyzed. Bound states w
s, p, and d symmetries and zero total momentum will b
investigated. Throughout this paper we consider theSz50
bound states only. Consequently we are interested in the
teractions of the particles originating from different subl
tices (f andg fermions!.

If an exact two-particle Green’s function has a pole in t
scattering channel at a fixed total energy of the particles, t
there exists a bound state whose energy is the total energ
the particles. Thus to analyze the bound-state problem of
holes one has to solve the Bethe-Salpeter~BS! equation,
whose most general form is given by

ĜP,k,p
f g ~V,e,e8!5GP,k,p

f g ~V,e,e8!1 (
p1,e1

GP,k,p1

f g ~V,e,e1!

3GP/21p1
~V/21e1!GP/22p1

~V/22e1!

3ĜP,p1,p
f g ~V,e1 ,e8!, ~24!

where

P5k11k25k31k45k181k28 , k5~k12k2!/2,

p5~k32k4!/2, p15~k182k28!/2,

V5e11e25e31e45e181e28 , e5~e12e2!/2,

e85~e32e4!/2, e15~e182e28!/2, ~25!

and the indices are given in accordance with Fig. 9.
The bare vertex functionG f g includes all diagrams which

cannot be reduced to the second term of Eq.~24!, i.e., those
which cannot be cut by a vertical line between the ends
and 3,4 into two parts joined only by two hole lines. The
of all such diagrams is called a ‘‘compact’’ vertex.

FIG. 8. Quasiparticle residue for the lowest pole vst/J. The
dashed curve is the result of the SCBA. The solid curve is the re
of the present approach. Dots are the numerical data for
(p/2,p/2) point.
d

h

in-
-

n
of
o

,2
t

At the pole, whenV5E (E is the energy of the bound
state!, the left-hand side and the second term on the rig
hand side of Eq.~24! are singular. ThereforeĜ f g@G f g, and
the first term on the right-hand side can be neglected. He
the integral equation~24! becomes homogeneous inĜ f g. The
variablesp ande8 become parameters and are not defined
the equation itself. Omitting them and the indicesf and g
yields

ĜP,k~E,e!5 (
p1,e1

GP,k,p1
~E,e,e1!GP/21p1

~E/21e1!

3GP/22p1
~E/22e1!ĜP,p1

~E,e1!. ~26!

Further simplifications of this general formula~26! are pos-
sible based on the specifics of the problem being conside
Rather general and frequently used simplifications can
performed, for example, when the bare interactionG is a
potential-like term, i.e., independent of the frequency. In t
caseĜ becomese independent and plays only an auxilia
role. Furthermore, it is more convenient to use the bou
state wave functioncP,k(E)5(eGGĜ. By changing the
variables and integrating both sides of Eq.~26! over e, we
obtain the Schro¨dinger equation for the bound state in th
momentum representation:

cP,k~E!5S (
e

GP/21k~E/21e!GP/22k~E/22e! D
3(

p1

GP,k,p1
cP,p1

~E!. ~27!

If the Green’s functions are the bare ones, the sum ovee
simply gives 1/@E2e(P/21k)2e(P/22k)#, wheree(k) is
the single-particle energy. In thet-Jz model the following
characteristics allow one to simplify Eq.~26! considerably,
and obtain most of the results for the bound-state problem
a transparent analytical form:

~i! The single-hole Green’s function is mostlyk indepen-
dent, meaning that in a wide range oft/J ratio the
k-dependent contribution to the self-energy is insignificant
small.

~ii ! The lowest-order contributions to the compact vert
GP,k,p1

(E,e,e1) have a simple kinematic structure and, t
gether with ~i!, allow one to separate the momentum a
frequency dependence of the exact vertexĜ. Its k-dependent
part can be classified in terms ofs-, p-, andd-wave harmon-
ics and can be integrated out easily.

~iii ! All one-loop and lowest-order crossing correctio
are exactly zero because of spin conservation in the h
magnon interaction. Nonzero corrections are of higher or

lt
e

FIG. 9. The Bethe-Salpeter equation for the two-hole proble
Lines represent renormalized Green’s functions, dashed circles
resent the bare ‘‘compact’’ vertex functionG f g, and black circles

represent the exact vertexĜ f g.
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FIG. 10. The lowest-order diagrams contributing to the ‘‘compact’’ vertex functionG: ~a! is due to nearest-neighbor hole-hole attractio
~b! are the one-magnon-exchange diagrams, and~c! are the two-magnon exchange diagrams.~a!, ~b!, and~c! are of first, second, and third
orders inHint , respectively. Since the emission of magnon changes the spin of the hole, the positions of the ends of the lines in the
in ~b! are interchanged.P/26k5(P/26k,E/26e) andP/26p5(P/26p,E/26e1).
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and are expected to be small. Therefore, the lowest-o
diagrams inG can be left unrenormalized.

~iv! As we have shown in Sec. III the single-hole spect
function consists of a set of well separated quasipart
peaks. Therefore, the Green’s function of the hole can
ways be written in the form

G~e!5(
n

an

e2en1 i0
, ~28!

wherean anden are the residue and the energy of the polen,
respectively. Then, if the characteristic binding energy
much smaller than the separation between the quasipar
peaks (D5E22e0!de), i.e., one-half of the bound-stat
energy is close to the lowest peak (E/2'e0), one can safely
neglect the contribution of the higher poles and use
lowest-pole approximation for the hole Green’s function:

G~e!'
a0

e2e01 i0
. ~29!

As a matter of fact, in the limiting caset@J the separation of
the levels isde;J(t/J)1/3, whereas the binding energy, a
we will show, isD;2J(J/t). ThusD/de;(J/t)4/3!1, and
the lowest-pole approximation should work well. In the o
posite limit t!J the binding energy isD;2J/2 while the
separation of the quasiparticle poles isde;2J. Besides a
factor of the order ofD/de;1/4, the contribution of the
higher poles is strongly reduced because their quasipar
residues are negligible (;t2/J2), thus justifying the lowest-
pole approximation in this case. One can then argue tha
same is true for allt/J.

With these ideas in mind let us look at the compact ver
G. The lowest order contributions to the hole-hole comp
vertex G are given in Fig. 10.Ga, Gb, and Gc are of first,
second, and third orders inHint5H11H2 @Eq. ~4!#, respec-
tively. They can also be classified in terms of powers oJ
and t: Ga;J, Gb;t2/J, andGc;t2/J.

If we considerGb only, the full vertexĜ in Fig. 9 is given
by the sum of the ladder diagrams only. To some extent,
approximation is analogous to the SCBA in the single-h
problem, and possesses an important property of the la
all crossing diagrams and one-loop corrections are exa
zero. More importantly, such corrections toall the lowest-
order diagrams (Ga, Gb, andGc) are also zero because of th
er

l
le
l-
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le
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le

he

x
t
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same spin-conservation rule. For the same reason, hig
order corrections to Fig. 10 are strongly suppressed, so
the first dressing ofGa, Gb, andGc by magnons appears i
the fifth, sixth, and seventh orders, respectively. The co
sponding set of diagrams is given in Fig. 11. Note that
cause all these corrections are of similar origin to the Tr
man’s processes for the self-energy, one can expect that
play only a minor role in the effective interaction.

However, there are other sources of correction toG com-
ing from the hole–two-magnon, hole–three-magnon, a
magnon-magnon interactions. Most of them result in
renormalization of the hole-magnon vertices similar to tho
in Fig. 6. While a formal account of such corrections
rather difficult, one can anticipate the result of such a ren
malization using the real-space consideration of the inte
tions. As in the single-hole case, the dressing of the ve
accounts for two facts. First, the energy of a magnon in
neighborhood of a hole is2J/2 per hole-magnon link lower
than the energy of a free excitation. Second, the coordina
number for hole hopping in a state with a string of magno
is z21 instead ofz. The first effect renormalizes the energ
of the magnon lines inGb and Gc, while the second effec
renormalizes the inner hole line inGc. In what follows we
will consider the compact vertexG as given byGa1Gb

1Gc in Fig. 10, and will include the renormalization later
We first consider thet50 limit when the solution of the

BS equation ~26! is trivial. In this limit only Ga5
22Jgk12k3

survives and the hole Green’s function is simp

1/v. Thus Eq.~26! becomes

ĜP,k~E,e!522J(
p1

gk2p1

3(
e1

ĜP,p1
~E,e1!

~E/21e11 i0!~E/22e11 i0!
. ~30!

FIG. 11. Lowest-order corrections to the ‘‘compact’’ verte
functionG ~Fig. 10!. Circles representG5Ga1Gb1Gc, wavy lines
are magnons.
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Evidently, the dependence ofĜ on P is arbitrary andĜ(e) is
a constant. Integrating overe1 one finds

Ĝk~E!52
2J

E (
p1

gk2p1
Ĝp1

~E!, ~31!

whereĜ now plays the role of the wave function. Since thek
structure of theGa vertex is very simple, one can classify a
solutions of Eq.~31! in terms of the nearest-neighbors, p,
and d waves: wk

s5cos(kx)1cos(ky), wk
p5A2sin(kx),

A2sin(ky), and wk
d5cos(kx)2cos(ky). Using the property

(pgk2pwp
s(p,d)5 1

4 wk
s(p,d) , one can see that these solutio

are degenerate with energyDs,p,d5Es,p,d52J/2. This is ex-
pected if one remembers that while an individual hole bre
four AF bonds, two nearest-neighbor holes save one bon

A finite hopping constantt has three effects:~i! the hole
Green’s function becomes renormalized,~ii ! Gb andGc start
to contribute to the interaction, and~iii ! the hole self-energy
also acquires a smallk-dependent contribution. In order t
see their roles, let us incorporate these changes into the
equation~26! one by one.

Consider the case when the hole Green’s function
renormalized as described in Sec. III and isk independent,
but the interaction still comes from theGa term only. Since
Ga is P ande independent, the BS equation is similar to E
~31!

Ĝk~E!522J(
p1

gk2p1
Ĝp1

~E!(
e1

G~E/21e1!G~E/22e1!.

~32!

Since thek structure of the core is unchanged, all three h
monics remain degenerate. Hence

152
J

2 (
e1

G~E/21e1!G~E/22e1!. ~33!

In the lowest-pole approximationG is given by Eq.~29!, so
the binding energy relative to the bottom of the hole band

D5E22e052Ja0
2/2. ~34!

In the limit t!J, D'2J(1216t2/9J2)/2. In the limit t
@J, a0;J/t so D;2J(J/t)2. The binding energy~in units
of J) vs t/J is shown in Fig. 12. This energy is alway
negative because we assume that the hole forms a compl
localized excitation. In this case a bound state is alw
formed as long as the effective interaction remains attract

Now we consider the magnon exchange interactionGb,
which is given by

Gk,p,P
b ~e,e1!5216t2F gP/22pgP/22k

e1e122J1 i0
1

gP/21pgP/21k

2e2e122J1 i0G .
~35!

SinceGb depends on the total momentum of the pairP, the
solutions of the BS equation also depends onP. The energy
of the bound state at differentP provides a dispersion law fo
the pair. In general, the lowest-energy bound state is alw
at zero or some finite momenta corresponding to hi
symmetry points in thek space. In this work we do no
s
.

BS

is

.

-

s

ely
s
e.

ys
-

consider finite-P bound states because their physics is un
portant for the purposes of this paper.

The BS equation~26! at P50 with interactionGa1Gb

reads

Ĝ0,k~E,e!522J(
e1

G~E/21e1!G~E/22e1!

3(
p

H gk2p1
8t2

J
gpgkF 1

e1e122J1 i0

1
1

2e2e122J1 i0G J Ĝ0,p~E,e1!. ~36!

Evidently, thek and e dependencies ofĜ can be separated
and one can see that thep- and d-wave solutions are no
affected by the magnon-exchange interaction beca
(pgpwp

p(d)[0. This observation can be expressed in a d
ferent form: in the zero total momentump- or d-wave state
the amplitudes of the spin-flip exchange from different lob
of the wave function cancel each other.

For thes-wave state, substitutingĜk(e)5wk
sĜ(e) and in-

tegrating overk give

ĜE~e!52
J

2 (
e1

G~E/21e1!G~E/22e1!

3H 11
8t2

J F 1

e1e122J1 i0

1
1

2e2e122J1 i0G J ĜE~e1!. ~37!

In the so-called static approximation, when the retardat
due to the magnon propagator is neglected,Gb is e indepen-
dent, and Eq.~37! becomes

FIG. 12. Binding energies~in units ofJ) of thes, p, andd bound
states. When only the contact interactionGa is taken into account,
all three bound states are degenerate@Eq. ~34!#, and are shown by
the lower curve. When the contact and magnon-exchange inte
tions Ga1Gb are considered, thep and d energies are unchange
~lower curve!, while the energy of thes state is pushed up@Eq. ~40!#
~upper curve!.
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152
J

2 H 12
8t2

J J (
e1

G~E/21e1!G~E/22e1!

.2
J

2

a0
2

Ds H 12
8t2

J2 J . ~38!

As in the previous case,Ds5Es22e0. The problem with
retardation can be solved using a method introduced in R
28. One can assume thatĜE(e) has no singularities,29 and
therefore the integral overe1 in Eq. ~37! is defined by the
poles ofG and the magnon propagator only. In the lowe
pole approximation, by using the obvious parityĜ(2e)
5Ĝ(e) and by choosing the proper contour of integratio
one obtains

ĜE~e!52
J

2

a0
2

Ds H 11
8t2

J F 1

e1Ds/222J1 i0

1
1

2e2Ds/222J1 i0
G J ĜE~Ds/2!. ~39!

Multiplying both sides byG(E/21e)G(E/22e) and inte-
grating overe finally yields

152
J

2

a0
2

Ds H 11
16t2

J~Ds22J!
J . ~40!

This expression coincides with that given by the Wign
Brillouin perturbation theory. The resulting binding energi
~from Ga1Gb) vs t/J are shown in Fig. 12.

Thus the s-wave binding energy vanishes at (t/J)uc
51/(2A2).0.35. Since the spin polarons are assumed to
localized, the disappearance of the bound state is not du
the competition between the delocalizing kinetic energy a
an attraction, but rather due to the competition between
ferent types of interaction. One can see that the magnon
change actually leads to an effective repulsion between
holes. In a naive point of view the holes can be mutua
attracted by following each other in a caterpillarlike proce
because in this way the disturbance on the AF backgroun
only virtual. However, this scenario does not take into
count the fact that after an elementary hopping of a hole p
the order of the holes is different from the initial one, i.
they are exchanged.30 This in turn makes the correspondin
energy correction positive, i.e., it leads to repulsion.

It is interesting to note that while the hole-magnon int
action plays a major role in the hole dressing, it has no dir
effect on thep andd bound states and is destructive for t
s-wave state. The conclusion that the caterpillarlike p
cesses disfavors waves and leavep andd waves degenerat
was reached in Ref. 25 using a different approach.

Let us now add the third part of the hole-hole interacti
Gc, and see if the combination of the hole-magnon inter
tion with the two-magnon vertex causes an additional attr
tion. The diagrams in Fig. 10~c! are equivalent to
f.

-

,

-

e
to
d
f-
x-

he
y
,
is
-
ir,
,

-
ct

-

-
c-

Gk,p
c ~E,e,e1!522J~4t !2gk2p(

q
gk2q

2

3(
v

1

v22J1 i0 F G~e1E/22v!

v2e1e122J1 i0

1
G~2e1E/22v!

v1e2e122J1 i0G . ~41!

Integration over the inner momentumq and frequencyv
yields

Gk,p
c ~E,e,e1!528Jt2gk2p

1

e12e
@G~e1E/222J!

2G~2e1E/222J!2~e˜e1!#. ~42!

One can see that the kinematic structure of this vertex
identical toGa, i.e., this term is effectively a contact neares
neighbor interaction. This is evident from the real-space p
ture of the process, which is shown in Fig. 13. Initially th
holes are at nearest-neighbor sites. One of them jumps
neighboring site creating a spin-flip at its site of origin. Th
the second hole virtually absorbs and reemits this magn
Finally the first hole jumps back and the original state
restored. Naturally, such an interaction depends only
gk2p , and does not depend onP. One can also guess th
character of the resulting interaction. Being in the neighb
hood of another hole, the spin excitation generated by
hopping of the first hole lowers its energy. Therefore, t
interaction between the holes via such a process must als
attractive.

In the lowest-pole approximationGc, Eq. ~42! is given by

Gk,p
c ~E,e,e1!528Jt2a0gk2p

3F 1

~e1D/222J1 i0!~e11D/222J1 i0!

1~e,e1˜2e,2e1!G . ~43!

One can consider the static limit of the problem by elimin
ing the frequency dependence of the propagators in Eq.~43!.
This gives

Gk,p
c .24

t2

J
a0gk2p . ~44!

In the t@J limit this expression yieldsGk,p
c .24tgk2p

5(2t/J)Gk,p
a @Gk,p

a . Thus in this limit the effective interac
tion constant of the contact interaction is renormalized fr
J to t. For thep andd waves this gives a bound-state ener
Dp(d);2ta0

2;2J(J/t), which is a factor of (t/J)@1 larger
than the result obtained withGa only. This result, while be-
ing quite simple, is somewhat unexpected. In a real-sp

FIG. 13. Real-space image of the process in Fig. 10~c!.
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variational study of thet-J model, a similar effect has bee
observed in the context of the caterpillarlike movement
holes.25

A rigorous account for the retardation yields modifi
equations for the bound-state energies, leaving the qua
tive picture drawn in the static limit essentially unchange

152
J

2

a0
2

Dp(d) H 11
8t2a0

~Dp(d)22J!2J , p and d waves,

152
J

2

a0
2

Ds H 11
8t2a0

~Ds22J!2
1

16t2

J~Ds22J!
J , s wave.

~45!

Thus the energies of thep- and d-wave states are alway
negative. In thes-wave bound state,Gc cannot overcome the
magnon-exchange repulsionGb. It also has little effect on
(t/J)uc

s because in the smallt region whereDs goes to zero,
Gc is roughly four times smaller thanGb.

We now consider the effect of the renormalization. As
noted above we have enough reasons to rule out the p
bility that the Trugman-like diagrams~Fig. 11! can change
the interaction constants significantly. The anticipated sm
ness of these diagrams in thet.J region is due to the geo
metrical factor, which is of the order of 1/z351/64. Most of
these corrections are relatively easy to evaluate using
same approximations as above. The results of these cal
tions show that those terms with the same kinematic st
ture as inGa, Gb, andGc are indeed suppressed by this sm
factor. They also show that among the corrections there
terms with a more complicated kinematic structure than
original G. Since these terms are not suppressed by the s
factor, they might enhance the effective interaction. Some
these terms correspond to the contact interaction betwee
holes in states where both of them have ‘‘tails’’ of string
Evidently, this leads to an interaction of polarons at si
farther than nearest neighbors. For the bound-state w
function this would mean that harmonics higher than
nearest-neighbor one should be considered. Nevertheles
do not expect these terms to make any qualitative cha
and in the following we will omit all corrections from Fig
11 to avoid complications.

At the same time, diagrams of the non-SCBA type~Fig.
6! are straightforward to include using the real-space l
guage. We have to take into account the lower energy of
magnons in the intermediate state in the diagrams Figs. 1~b!
and 10~c!. This simply changesv052J in the denominators
of Eqs.~45! to ṽ05J. Renormalization of the hole energy i
the intermediate state inGc produces much weaker effec
This renormalization finally yields

Dp(d)

J
52

a0
2

2 H 11
8t2a0

~Dp(d)2J!2J ,

~46!Ds

J
52

a0
2

2 H 11
8t2a0

~Ds2J!2
1

16t2

J~Ds2J!
J .

Solutions of these equations are plotted in Fig. 14. One
see that the energies of thep andd bound states are change
f
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significantly from those in Fig. 12. Thus the hierarchy
terms in the effective hole-hole interaction emerged from
study is as follows.

~i! The contact ‘‘sharing common link’’ attraction yield
bound states withs, p, and d symmetries with energy
;2J/2 at smallt/J.

~ii ! The magnon-exchange interaction has no effect on
P50 p- and d-wave states because of symmetry reaso
and is strongly repulsive for thes-wave state.

~iii ! The hole-magnon attraction, which leads to an attr
tion between a hole and a string of another hole, is the str
gest interaction in the present problem in the physical lim
(t.J). It leads to deeperp andd bound states with energ
;2J(J/t).

Now, after all essential interactions are taken into acco
and carefully analyzed, the last effect which has to be inc
porated into the BS equation before we can make a comp
son with numerical results is thek-dependent contributions
to the hole Green’s function. As noted in Sec. III such co
tributions are small, but lead to a coherent hole band. Th
fore the ED data show some dispersion in the hole ene
For instance, att/J55 the energy difference between thek
5(0,0) andk5(p/2,p/2) points~almost exactly half of the
bandwidth! is W/2.0.078t50.39J. Although this difference
is small compared to the absolute value of the lowest-p
energy,e0.22.8t, or the separation between the energy le
els, de;t, it is as large as the hole-hole binding ener
calculated above,D;20.3J. Therefore, one would expec
this dispersion to have strong influence on the pairing
holes. One can also foresee that such an influence is like
be destructive, because now the pairing is not only an in
play between repulsions and attractions, but also the ques
of how much kinetic energy is lost if the holes are in a bou
state.

For our purposes we will need the hole Green’s funct
in the lowest-pole approximation, which now reads

G~e!'
a0

e2 ẽ02Wek/21 i0
, ~47!

FIG. 14. Binding energies of thes, p, andd bound states when
all three interactions shown in Fig. 10 are taken into account
the energy of the magnons in the intermediate state is renormal
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whereẽ05e02W/2, ek5@12cos(kx)cos(ky)#.0, W.0, and
we have neglected thek dependence ofa0. The role of the
Trugman’s loops larger than an elementary square is ne
gible, so we consider the dispersion given by the ne
nearest-neighbor hopping only. The resulting band is iso
pic and has a minimum at the center of the Brillouin zo
~BZ!. Now in the BS equation~26! it is easier to integrate
over e1 first. Neglecting the effect of the dispersion on t
retardation, and after some algebra one obtains

wk522Ja0
2(

p

wp

D2Wep
H gk2pF11

8t2a0

~D2J!2G
1gkgp

16t2

J~D2J!J . ~48!

wherewk is a nearest-neighbors, p, or d wave. As before the
magnon-exchange interaction~the second term in the curl
bracket! is orthogonal to thep- andd-wave states. Equation
~48! is an almost evident generalization of Eqs.~46! to the
case of finite hole dispersion. The only new parameter in
duced is the hole bandwidthW. Our numerical ED data for
W/2t as a function oft/J calculated on a 32-site lattice ar
given in Fig. 15. We do not calculate this quantity analy
cally. Instead we treat it as a parameter and use the nume
values in Fig. 15.

Two statements can be made about the solutions of
~48!. Now all three symmetries have thresholds (t/J)uc

s,p,d

above which negative energy solution of the correspond
symmetry cease to exist. Also, thep and d waves are split
with the p wave state having lower energy.

The first statement is evident if one considers the thre
old condition (D50) for thep- or d-wave state in Eq.~48!,
assumingt@J so thata0.J/t:

1.2
J

2

J2

t2 (
p

wp
p,d

2Wep
H 11

8t2

J2

J

t J
.

4J

W

J

t (
p

wp
p,d

@12cos~kx!cos~ky!#
. ~49!

FIG. 15. Half of the hole bandwidth in units oft as the function
of t/J.
li-
t-
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-
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g
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The sum overp gives a number of the order of unity. Thu
there is a value ofW @(W/t)c.4J2/t2!1# at which the
equality condition is satisfied. IfW grows witht, as it in fact
does, then above this point Eq.~48! has no solution. Using
the dependence ofW on t/J ~Fig. 15!, the critical values of
t/Juc

p,d can be extracted from the same condition Eq.~49!.
The second statement is a consequence of the isotr

form of the dispersion law. The sum overp in Eq. ~49! can
be rewritten as:

Ap,d5(
p

wp
p,d

ep
5(

p
wp

p,d$11cos~kx!cos~ky!

1@cos~kx!cos~ky!#21•••%511C11C21•••.

~50!

In the case ofd wave the series is alternating withC152 1
2

andC25 3
8. In the case ofp waveCn[0 for oddn, andCn

.0 for evenn. Numerical integration givesAp51.27 and
Ad50.73, and therefore thed-wave solution disappears at
lower value oft/J.

Numerical solutions of Eq.~48! for all three symmetries
together with results of our 32-site ED calculations a
shown in Fig. 16. For the purpose of comparison we a
show the results obtained by a modified Lanczos method
a 50-site cluster in Ref. 24. One can see a very goodquan-
titative agreement between our analytical and numerical
sults for thes-wave state. For thed andp states, they have
the same qualitative behaviors. It is clear that our Eq.~48!,
while involving different kinds of approximations, capture
all essential effects of the pairing problem in thet-Jz model
in a very good quantitative level. It also describes the pr
lem in a very easy and transparent way. That is, all esse
tendencies in the hole binding are described by this form
~i! thes wave is pushed up to the continuum by the magn
exchange process,~ii ! the p and d waves are much more

FIG. 16. Binding energies of thes-, p-, andd-wave bound states
Bold lines are the solutions of Eq.~48!. Triangles, diamonds, and
solid circles are the 32-site ED results for thes, d, and p waves,
respectively. Lines connecting these points are guides for the
Empty circles are the results of modified Lanczos study on a 50-
cluster from Ref. 24.
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stable, and~iii ! the Trugman’s dispersion splits these tw
levels and pushes them to the continuum at some larger c
cal values oft/J.

The analytical results underestimate the pairing stren
especially in the regiont/J;1. We believe that this is due t
the contribution from the higher poles which are neglected
our study. In this region a significant portion of the spect
weight is transferred to these poles, while the separation
tween them is still of the order of 2J. Since our lowest-pole
approximation uses the ratioD/de(.1/4 in this region! as
the small parameter, one would expect the energy correc
from the higher poles to be of the same order. In the reg
where the binding energy is close to zero we expect
approximation to be more accurate. However, for thep andd
waves this is also the region oft/J.2 where the omitted
higher-order diagrams with more complicated kinema
structure contribute to the interaction. We refer the sma
splitting of thep- andd-wave states found in our analytica
results compared to those in our ED data to the effec
these corrections. The same higher-order interactions cau
tiny splitting of the states att/J,1, which is shown in Fig.
16. We remark that at/J dependence of the binding energi
very similar to our ED results has been found recently
series-expansion calculations.31 Thus we believe that the
agreement between the results can be improved by an a
rate consideration of the contribution of higher poles a
higher-order diagrams of various types. However, this is
yond of the scope of our paper.

It is natural and instructive to consider the case wh
small transverse spin fluctuationsJ'5aJ ~with a!1) are
included in the Hamiltonian. This helps one to see the effe
of these fluctuations on the pairing problem, and to infer
tendencies in the isotropict-J model. As noted in Ref. 18
only two changes are necessary to account for these fluc
tions up to first order ina. First, the holes acquire a dispe
sion law given by

dek5aAgk
2 , ~51!

whereA is of the order oft2/J in the t!J limit and of the
order ofJ in the t@J limit.18 Such a band is strongly aniso
tropic, i.e., degenerate minima form a line along the m
netic BZ boundary. In the fullt-J model (a51) this disper-
sion dominates over the Trugman’s terms at allt/J. Second,
the hole-magnon interaction becomes

Gk,q
(1)54t@gk2q2 1

2 agkgq1O~a2!#. ~52!

Corrections to the magnon energy are of higher order ina:
v052J1O(a2). As we shall see, both changes lead to
splitting of thep- and d-wave levels, and both favor thed
wave as the ground state of the system.

Consider Eq.~48! with the dispersion from Eq.~51! and
the hole-magnon exchange term coming from Eq.~52!. For
the purpose of illustration it is sufficient to consider the
teractions in the static limit:

wk522Ja0
2(

p

wp

D22aAgp
2 H gk2pF11

8t2a0

J2 G
2

16t2

J2 Fgkgp2
a

2
gk1p~gk

21gp
2!G J . ~53!
ti-
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Corrections to the bound-state energies of thep andd waves
up to first order ina are

Dd5D0
d12aS A2

2t2

J
a0

2D(
p

~wp
d!2gp

2

5D0
d1

a

8 S A2
2t2

J
a0

2D ,

~54!

Dp5D0
p12aS A1

2t2

J
a0

2D(
p

~wp
p!2gp

2

5D0
p1

3a

8 S A1
2t2

J
a0

2D ,

where the first term in the bracket comes from the dispers
and the second is from the magnon-exchange interact
The kinetic energy pushes up the energy of both states,
for the p wave this shift is three times larger. An importa
observation is that the magnon-exchange interaction is n
attractive for thed-wave state and repulsive for thep-wave
state.

To show how subtle the selection between thep- and
d-wave ground states is, let us consider a more ‘‘realist
dispersion law:

dek5
a

4
A@cos~kx!

21cos~ky!2#. ~55!

This is more realistic in the sense that it has minima
6(6p/2,p/2) points which are isotropic and it agrees wi
the experimentally measured profile in the cuprates be
than the one in Eq.~51!. It is now known that this difference
between thet-J model dispersion law@Eq. ~51!# and the one
observed in reality@Eq. ~55!# is due to additional intrasublat
tice hoppings (t8,t9, etc.! in the real systems.5 With the dis-
persion law in Eq.~55!, corrections to the binding energie
are given by

Dd5D0
d1

a

8 S 5A2
2t2

J
a0

2D , Dp5D0
p1

a

8 S 3A1
2t2

J
a0

2D .

~56!

Now the kinetic energy pushes up thed-wave energy 5/3
times more than that of thep-wave energy, andDp2Dd

5(a/4)@2t2a0
2/J2A# is not necessarily positive. Therefor

the p wave can again become a ground state.
Summarizing our observations in the small-a limit, we

conclude that the transverse fluctuations create an additi
attractive interaction in thed-symmetry state and that an an
isotropic kinetic-energy profile also favors thed wave. Thus
we suggest that thed wave is most likely to be the groun
state of the system in thet-J model (a51). This conclusion
is in agreement with many analytical and numerical stud
Nevertheless, a recent 32-site ED study showed that att/J
.3.3 the ground state of the two-holet-J model is ap-wave
state with total momentumP5(p,p).32 @In our case mo-
mentaP5(0,0) andP5(p,p) are equivalent because of th
existence of long-range order.# Furthermore, such a behavio
is also suggested by recent series-expansion calculatio31

Due to the apparently strong finite-size effects on the
results, it is difficult to conclude whether this behavior w
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survive in the thermodynamic limit. Nevertheless, these d
show that even in the puret-J model, the final word on the
problem of the symmetry of the bound state is still to com

Besides effects arising from thet-J model, there are also
concerns about the robustness of the bound states in the
system. The characteristic bound-state energy found in
t-J model is of the order of20.1J in the physical region of
t/J. This energy is far below the accuracy of the model its
This means that in order to describe the real materials,
low-energy model must include at least additional hopp
terms (t8,t9, etc.!. It is worth noting again that because
these terms the realistic dispersion is isotropic, which, as
have just shown, can favor thep wave. More important con-
jecture can be made using the results of Ref. 28 and
data.33 Since the isotropic dispersion involves a higher
netic energy, the overall pairing tendency is weakened
these additional hopping terms. It can push all the bou
states up to the continuum, thus destroying the foundatio
the preformed pair and phase separation scenarios wel
fore the physical region of parameters is reached.

VI. CONCLUSIONS

In this paper we attempt to address the issue of how
neric d-wave pairing int-J-like models is, and to clarify the
problem of how this symmetry is selected among others.
have thoroughly examined thet-Jz model by means of ana
lytical diagrammatic study supplemented by our 32-site
results. This formalism is tested in the one-hole problem,
perfect agreement with ED results is found. The ground s
of two holes in the physical regiont/J.1 is found to be a
p-wave bound state. From a careful analysis of the inter
tions involved in the pairing problem we established that
pairing in thes-wave channel is highly unfavorable becau
of the repulsive character of the magnon-exchange inte
tion in this state. While this reason is rather generic,
problem of selecting between thep and d waves is much
more subtle. In our analytical study these states remain
generate until the hole dispersion is included. In thet-Jz
model such a dispersion comes from higher-order hopp
o

in

e

o
,

.

ta

.

eal
he

.
e

g

e

D

y
d
of
e-

e-

e

d
te

c-
e

c-
e

e-

g

processes, and is, in fact, very small. However, it has impo
tant consequences. It is responsible not only for the sign
cant splitting between thep- andd-wave states, but also for
the destruction of hole pairing at some critical (t/J)uc

p,d . The
isotropic form of the dispersion favors thep wave as the
ground state of the system.

We have also considered the role of transverse fluctu
tions in the perturbative limita!1. These lead to an aniso-
tropic hole dispersion and an additional hole-hole intera
tion. We have shown that both features favor thed wave as
the lowest energy state. However, in this case the select
betweenp and d waves strongly relies on the anisotropic
form of the hole dispersion, and such a dispersion does
agree with the experimentally measured dispersion in re
systems. Moreover, since the characteristic energy of
bound states found in thet-J models is small, we are skep-
tical that these states can survive when additional kinet
energy terms are included in the model. Our skepticism
supported by earlier studies28 and recent numerical data.34,33

Such conclusions for the pairing problem int-J-like mod-
els drawn from our study create a framework in which
might be necessary to look ford-wave superconductivity un-
related to the Bose condensation of preformedd-wave pairs.
Furthermore, to make the phase-separation scenario poss
one might need to invoke arguments other than ana priori
existing collapsing tendency in the spin-hole system.
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