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Coulomb gap in a doped semiconductor near the metal-insulator transition:
Tunneling experiment and scaling ansatz
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~Received 30 December 1998!

Electron tunneling experiments are used to probe Coulomb correlation effects in the single-particle density
of states~DOS! of boron-doped silicon crystals near the critical densitync of the metal-insulator transition
~MIT !. At low energies («<0.5 meV!, a DOS measurement distinguishes between insulating and metallic
samples with densities 10 to 15 % on either side ofnc . However, at higher energies (;1 meV<«<50 meV!
the DOS of both insulators and metals show a common behavior, increasing with energy asem wherem is
roughly 0.5. The observed characteristics of the DOS can be understood using a classical treatment of Coulomb
interactions combined with a phenomenological scaling ansatz to describe the length-scale dependence of the
dielectric constant as the MIT is approached from the insulating side.@S0163-1829~99!12427-5#
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I. INTRODUCTION

Since 1979 the best available description of the disord
driven metal-insulator transition~MIT ! has been based o
the noninteracting scaling theory of Abrahamset al.1 Al-
though it treats thoroughly the localizing effects of electr
scattering off static disorder, this theory is incomplete b
cause it neglects electron-electron interactions. In particu
below the critical densitync of the MIT the vanishing carrier
mobility means that Coulomb correlations are strong eno
to warrant treatment on equal footing with the disorder. T
importance of interactions is illustrated by several we
known, apparently anomalous phenomena,2 such as the re-
cent discovery by Kravchenkoet al.3,4 of a ‘‘forbidden’’ me-
tallic state in a two-dimensional~2D! electron system. In a
disordered metal, electron-electron interactions lead to a
gular negative correction to the single-particle density
states~DOS! near the Fermi level.5 Deep into the insulating
side, it is well established that Coulomb correlations caus
Coulomb gap in the DOS near the Fermi level, whi
changes the temperature dependence of the dc electrical
ductivity at very low temperatures.6,7 How these two renor-
malizations of the DOS evolve in the critical region of th
MIT and match each other atnc is one of the most challeng
ing and long-standing questions of solid-state physics.

Combining both disorder and Coulomb interactions int
unified scaling description of disordered metals near the M
was attempted by McMillan8 and by Gefen and Imry.9 These
models were criticized10 for the use of the single-particle
rather than thermodynamic, DOS in describing the cha
screening, as discussed in detail in Sec. III, and have
been widely accepted despite garnering some experime
support.11 Later renormalization group theories b
Finkelstein,12 Castellaniet al.,13 and Kirkpatrick and Belitz14

used a Fermi-liquid-based approach to describe the diffu
of interacting quasiparticles in a disordered metal. Th
works employed a smooth thermodynamic DOS~or com-
pressibility! and started from perturbative treatments of we
PRB 600163-1829/99/60~3!/1582~10!/$15.00
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disorder. All agree with the basic findings of Altshuler an
Aronov5 ~AA ! that there should be a square-root~in 3D! or
logarithmic ~in 2D! depletion in the single-particle DOS a
the Fermi level of a disordered metal. However, they fai
to generate a well-defined, continuous charge-localiza
transition at nonzero disorder and finite interaction streng
and cannot describe the emergence of a Coulomb glass
and the Coulomb gap as a system crosses over into the
lating state.

Tunneling experiments have observed AA-like depletio
in the DOS of a variety of disordered metals, includin
amorphous metal- semiconductor alloys,15,16,11 doped
semiconductors,17 and granular metals.18 By contrast, with
the exception of the singular sodium tungsten bron
system,19 the existence of the Coulomb gap in localized i
sulators has until recently been only indirectly inferred fro
activation fits to dc conductivity20 or relaxation
measurements.21 Only in the last few years have quantitativ
tunneling spectroscopic observations of the Coulomb
been made in 3D~Refs. 22 and 23! and in 2D ~Ref. 24!
nonmetallic semiconductors.

Most previous work on interaction effects has emphasi
the metallic side; much less corresponding effort, experim
tal or theoretical, exists to describe the insulating side n
the critical region of the MIT. The important role long-rang
Coulomb interactions play in affecting the empirical scali
characteristics of the complex ac conductivity as the MIT
approached from below was emphasized by Paalanenet al.25

in stress-tuning experiments on phosphorous-doped silic
In this paper, we concentrate on studying directly the C
lomb gap in the DOS that occurs in 3D disordered insulat
close to the MIT. Results of tunneling measurements of
DOS in boron-doped silicon are presented over a m
larger range of energies than in Refs. 22 and 23. The tun
ing DOS spectra show that metals and insulators can be
tinguished by the low-energy characteristics of the DOS~i.e.,
square-root cusp vs parabolic Coulomb gap!, but that metals
and insulators share a common, roughly square-root h
1582 ©1999 The American Physical Society
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PRB 60 1583COULOMB GAP IN A DOPED SEMICONDUCTOR NEAR . . .
energy DOS behavior that is approximately independen
dopant densities close tonc . Of course, a truly complete
microscopic theory of the MIT with interactions shou
cover the continuous crossover from insulating to meta
state. We present a much more modest and simple sca
approach to the MIT, which emphasizes the insulating s
and is based on an extension of the Efros-Shklovskii6 argu-
ments. Using the idea of a dielectric constant with spa
dispersion,8,9 we argue that at the point of the MIT a powe
law depletion of the DOS near the Fermi level is still t
Efros-Shklovskii~ES! Coulomb gap, only modified by this
dispersion. The scaling ansatz describes well the main
tures of the experimental data.

This paper is organized as follows: Sec. II presents
perimental details and data, Sec. III develops the scaling
scription, and Sec. IV analyzes of the data with respect to
scaling model.

II. TUNNELING MEASUREMENTS OF THE COULOMB
GAP

When a conductor is separated from a conventional m
by a rectangular potential barrier high enough to prev
classical current flow but thin enough to permit quantu
tunneling, the tunneling conductance at temperatureT,
G(V,T)5dI/dV whereI is the tunneling current andV is the
voltage bias across the junction, is given by26

G~V!

G0
5E N~«!

N0

] f ~«2eV,T!

]eV
d«, ~2.1!

where G0 is the conductance in the noninteracting ca
N(«,T)/N0 is the interacting single-particle DOS relative
the noninteracting valueN0, andf is the Fermi function. We
take the zero of energy at«F50. The highest bias used i
this experiment is 50 meV, which is much smaller than
several eV height of the SiO2 barrier, so that the barrie
transmission coefficient is taken to be independent of bias
nearly all tunneling measurements, the normalizing cond
tanceG0 is taken at a relatively high-voltage bias, whe
G(V) is either constant or only slowly varying on the ener
scale of the spectral features of interest. The normalized c
ductance then gives the ratioN(eV,T)/N0, thermally broad-
ened by convolution with2] f /](eV). At sufficiently low
temperature, whenkBT is much smaller than the energy sca
of characteristic variations inN(«), ordinary thermal broad-
ening can be neglected so thatG(V,T)/G0 is directly pro-
portional toN(eV,T)/N0. Note that, unlike the noninterac
ing case, N(eV,T) can have a nontrivial intrinsic
temperature dependence separate from ordinary the
broadening.

The Si:B crystals used were characterized by measu
their room-temperature resistivitiesr and resistivity ratios
~RR’s! r(4.2K)/r(300 K!. Dopant densitiesn were obtained
using the calibration of Thurberet al.27 and the data of Da
et al.28 to translate between measured RR’s and dopant d
sities. Samples used had RR’s of 2.3 to 18, correspondin
n/nc of 110% to 81%, respectively, where we take28

nc54.031018 cm23. Details of the dc variable-range hop
ping ~VRH! conductivity in many of these samples ha
been published previously.22,29The static dielectric constant
f
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of several insulating crystals were measured using a cap
tance method similar to that described by Castner.30 These
results are shown in Fig. 1. To compare values with
literature, on an 86% sample we obtainedk/k058.561,
wherek0511.7 is the dielectric constant of the host Si la
tice. This value is in reasonable agreement with publish
values25,31 on Si:As and Si:P at similar values ofn/nc . The
curve in Fig. 1 is a fit of the data tok(n);(12n/nc)

2z,
which yieldsz.0.71.

Tunnel junctions were formed by creating a very thin~es-
timated 15 to 30 Å! layer of SiO2 as a tunnel barrier on the
Si:B crystals, and using an Al film as the counter-electro
Details of the fabrication of these metal-oxid
semiconductor structures were described previously.
major modification from the prior description was the use
an ultraviolet ozone method in place of a chemical ox
growth to clean the silicon surfaces and produce more re
ducible ultrathin SiO2 tunnel barriers. SiO2 thicknesses were
estimated from published calibrations of UV exposure tim
temperature, and O2 flow rate.32 Good junctions were those
that showed a signature of the Al superconducting ene
gap below 1 K. These devices had junction resistances
tween 65 to 850 kV near 1 K.

Tunneling current-voltage (I 2V) and conductance
voltage @G(V)# traces were taken using standard ana
methods. Where required, a small~1 kG! magnetic field was
used to suppress the superconductivity in the Al electro
We shall refer to such data as ‘‘zero Teslas.’’ Data down
1.2 K were obtained by suspending the samples stress
from their leads and immersing in a pumped liquid4He bath.
To reach lower temperatures, the samples were immerse
the 3He/4He mixture of a dilution refrigerator. Cooling
power at 0.1 K was measured to be 120mW, while no more
than 0.1mW of power was used to take the data. Tempe
ture stability of better than 1 mK at 1.2 K and 0.1 mK at 0
K could be obtained, which was important to prevent therm
fluctuations from coupling to the highly temperatur
dependent resistance in the more insulating samples.
samples withn/nc.90%, reliable data could be taken belo
0.1 K. For insulating samples withn/nc,90%, the resis-
tance of the Si:B crystal itself rose to exceed 10% of
resistance across the tunnel junction below 0.1 K. Beca

FIG. 1. Static dielectric constants~in units of the Si dielectric
constantk0511.7) as a function of the normalized dopant dens
for a set of insulating Si:B crystals. These data were measured
temperatureT50.1 K. The solid curve is a fit to the functional form
k(n/nc);(12n/nc)

2z, which givesz'0.71.
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FIG. 2. Low-bias tunneling conductance-voltage spectra for Si:B samples at several different values ofn/nc . All data sets are normalized
to the conductance at12 mV. Data for samples withn/nc>90% were taken atT50.1 K. Data for the 86 and 81 % samples were taken
0.5 and 1.2 K, respectively.
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the crystal acted as a voltage drop in series with the junct
quantitative tunneling conductance data below;0.1 K is not
reliable in these most insulating samples. Therefore,
present onlyT>0.5 K data for these samples, where t
voltage drop across the Si:B crystal is no more than a
correction to the tunnel junction conductance.

Figure 2 shows low-energy tunneling conductance spe
on six samples with densitiesn/nc581, 86, 90, 95, 105, and
110 %, all in zero Teslas. All data are normalized to t
conductance value of each sample at12 mV. The spectrum
for the 81% sample was taken at 1.2 K, the spectrum for
86% sample was taken at 0.5 K, and the data for the o
four samples were taken at 0.1 K. Ordinary thermal bro
ening at the measurement temperatures is minor compar
the energy scale of the conductance features, and so ha
been deconvoluted from the data. However, the interac
DOS of each sample has an intrinsic finite-temperature
pendence that may be more obvious in the data for the
and 86% samples because of the higher temperature. In
conductance spectra, there is a clear difference between
insulating and metallic samples at low biases,uVu,1 mV. In
all the insulating samples, a conductance dip across
voltage ~the Fermi level in tunneling measurements! is the
signature of the Coulomb gap. For the 81 and 86% samp
n,
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G(V50) is small but greater than zero because the meas
ment temperature for these two samples is sufficiently h
that there is some intrinsic filling in of theT50 gap. In all
insulating samples, the low-energy conductance spectra
power-law formN(«)}u«up with p52.4, 2.2, 2.2, and 2.0
for the 81, 86, 90, and 95 % samples, respectively, at
~different! measurement temperatures. Asn˜nc from be-
low, the gap sides steepen and the width of the Coulomb
around zero bias narrows. Although the gap ‘‘shoulders’’ a
soft and therefore not precisely definable, the approxim
full width d of the parabolic-like (p'2) gap is about 2.2,
1.5, 1.1, and 0.6 mV and for the 81, 86, 90, and 95
samples, respectively. By contrast, both the metallic sam
show a significantly large nonzero conductance atV50,
with a sharp dip33 around zero bias that is well fit to
square-root formN(«)5N(0)@11(u«u/d)1/2# at low bias.
Fits to this form gived'0.25 and 0.4 meV for the 110 an
105% samples, respectively. Normalizing the metallic data
G(150 mV!, the ratio of zero-bias conductances
G110(0)/G105(0)51.7, so that the more metallic sample h
a larger DOS at the Fermi level, as expected.

Figure 3 compares tunneling conductance spectra ove
extended bias range~0.03 to 50 mV! for two metallic and
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PRB 60 1585COULOMB GAP IN A DOPED SEMICONDUCTOR NEAR . . .
two insulating samples 5 and 10 % above and belownc , all
at 0.1 K. This log-log-plot clearly reveals a characteris
energy scale of approximately 0.5 to 1 mV. Below;0.5
mV, an obvious distinction can be made between meta
and insulating samples. The low-bias data for the meta
samples approachV50 with a thermally rounded square
root shape and have a nonzeroG(V50). By contrast, the
insulating samples show a quasiparabolic Coulomb
depletion of the low-energy DOS. The most important fe
ture of Fig. 3 is that from;1 to 50 mV, the conductanc
spectra for both metals and insulators are essentially in
tinguishable. The high-bias tunneling conductance comm
for both insulating and metallic samples follows a function
form G(V)}Vm wherem is between 0.43 to 0.47, with n
correlation ofm with dopant concentration in the range
samples studied. Thus, above a characteristic energy a
measurement cannot differentiate between metallic and i
lating states. A similar dependence was reported by He
et al.11 in tunneling studies of metallic NbSi alloys near th
MIT. They found that the tunneling conductance showe
square-root cusp at low energies that turned over to a slo
than square-root dependence at higher energies. In Nbm
was measured to be closer to1

3 .
While all the junctions used SiO2 barriers of roughly

equal thicknesses, the common high-bias conductance
havior for metals and insulators is very unlikely to be a b
rier transmission artifact for two reasons. First, as we alre
mentioned above, the maximum bias energy is far below
SiO2 barrier height, so that finite voltage barrier distortio
are negligible. Second, this behavior is robust; it has b
observed in over 25 junctions on Si:B of varying dopa
densities, with junction resistances (dV/dI at 11 mV at 1.2
K! ranging from 60 to 850 kV over the same junction area
This order-of-magnitude variation in junction resistance i
consequence of uncontrolled variations in barrier thickn
and purity. The fact that a common high-bias conductanc
observed despite such differences in barrier properties i
cates that the conductance form in Fig. 3 results from
DOS, not the barrier.

Figure 4 show details of the temperature dependenc
the tunneling conductance for the 86 % sample from 10
0.5 K. Ordinary thermal broadening~i.e., broadening due

FIG. 3. Extended bias range tunneling conductance spectra
four Si:B samples, two metallic~110 and 105 %! and two insulating
~95 and 90 %!, all taken at temperatureT50.1 K. The data are
plotted on a log-log scale and are normalized to the conductan
150 mV.
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solely to convolution with the] f /](eV) term in Eq.~2.1! has
not been deconvoluted from these data. At 10 K the tunn
ing conductance is essentially constant within61 mV of V
50. As temperature decreases, the opening of a roughly
dratic Coulomb gap is evident. The gap has its own tempe
ture dependence~apart from the ordinary thermal broade
ing!, becoming both wider and deeper asT decreases. The
zero-bias DOSN(V50,T) goes approximately asT2 at low
temperature, turning over and closing@i.e., G(0)/
G(12mV);1] near 7 K.

III. SCALING ANSATZ FOR THE COULOMB GAP

Coulomb interactions in a disordered insulator are kno
to cause a correlation gap inN(«). The original ES
derivation6 for the Coulomb gap shape was given for a cla
sical disordered system of pointlike localized electrons rep
ling each other via the Coulomb interactionU(r )5e2/kr .
This derivation was based on a stability criterion for t
ground state with respect to transfer of an electron from
occupied statei (« i,0) at position r i to an empty state
j (« j.0) at positionr j , with

« j2« i2U~r i j !.0, ~3.1!

where « i and « j are one-electron energies relative to t
Fermi level. If statesi andj are within energy« of the Fermi
level, i.e.,« j , u« i u,«, then their typical separation in spac
r («)5e2/k« is large if « is small. The DOS N(«)
;d@r («)23#/d« then has a soft gap around«50. In three
dimension the result is

N~«!5
3

p

k3«2

e6
. ~3.2!

In the deep insulator, this quadratic gap extends until
noninteracting valueN0 is reached~Fig. 5!. The Coulomb
gap of Eq. ~3.2! leads directly to the ES form for the
variable-range hopping~VRH! conductivity

s5s0e2(T0 /T)1/2
, ~3.3!

where

or

at

FIG. 4. Low-bias tunneling conductance-voltage spectra for
86% Si:B sample at several different temperatures. The spectru
each temperature is normalized to the conductance at12 mV. Or-
dinary thermal broadening has not been deconvoluted.
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T05C
1

kB

e2

kj
, ~3.4!

andC.2.8 andj is the localization length.
The original ES theory applies to a disordered system

into the insulating side of the MIT, However, the vast m
jority of experimental observations of ES hopping u
samples doped within 10 to 50 % ofnc . Therefore, a de-
scription is required of how the Coulomb gap changes asnc
is approached from below. One can formulate a phenome
logical scaling ansatz, which relates the DOS in the insu
ing state to other critical quantities using the ES argume
The two quantities needed to describe both disorder
Coulomb interactions near the MIT arej andk. In a doped
semiconductor, whenn˜nc from below, j and k diverge
with the decreasing parameter (12n/nc) as

j~12n/nc!5a~12n/nc!
2n ~3.5!

k~12n/nc!5k0~j/a!h215k0~12n/nc!
2z, ~3.6!

wherea5nc
21/3 is the average distance between dopants

n5nc , z5n(h21), andn andh are scaling exponents, th
same as used by McMillan.8 ~McMillan’s scaling analysis for
metals does not calculate explicitly the values of these ex
nents but does yield the restriction 1,h,3. Experiments34

have shown thatz;1.! Sincek diverges near the MIT, the
Coulomb interaction becomes weaker and the Coulomb
becomes steeper and narrower. Therefore, the VRH con
tivity increases due to both the increase of the hopping rat
a given distance following Eq.~3.5!, and the increase in th
DOS. This is reflected in Eq.~3.4!, whereT0 tends to zero as
the MIT is approached from below

kBT0~n/nc!;D~12n/nc!
hn, ~3.7!

where D5e2/k0a. If h'2 and n'1, one getshn'2,
which agrees reasonably with dc transport measuremen
many materials.35,36 This gives important indirect evidenc
that the DOS is given by Eq.~3.2! with k provided by Eq.
~3.6!. However, dc transport is determined entirely by a re
tively small range of energies«<kBT0, so that the widest
possible band of energies that contribute to VRH conduc

FIG. 5. Schematic plot of the DOS as a function of energy
different n: ~1.! n<nc/2, ~2.! n,nc and nc2n!nc , ~3.! n5nc ,
~4.! n.nc andn2nc!nc , and~5.! n>nc/2.
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ity is kBT0. SincekBT0 goes to zero nearnc , conductivity
data contain no information about the DOS over a la
range of energies covering

kBT0<«<D. ~3.8!

In other words, in transport experiments we need only c
sider energies smaller thankBT0 or, equivalently, distances
larger thanj. Only at such distances can the hopping pro
ability be considered exponentially small andk be consid-
ered independent of length scale.

Tunneling spectroscopy can give direct information ab
the DOS in the whole range«<D, which forces us to ac-
count for interactions at distances smaller thanj. This is
accomplished by introducing spatial dispersion intok at dis-
tancesr !j or, in terms of wave vectorq, at qj@1

k;k0~r /a!(h21);k0~qa!(12h) ~r !j!. ~3.9!

At r 5j Eq. ~3.9! matches Eq.~3.6!, which is valid for r
@j. Equation~3.9! means that atr !j

U~r !5D~a/r !h, ~r !j!. ~3.10!

~One sees from this expression that the indexh is identical to
the standard dynamic scaling exponentz.!

Our goal now is to obtain the DOS throughout the ene
rangekBT0<«<D by repeating the ES argument used
derive Eq.~3.2!. For r !j, we can use the potential in th
form of Eq.~3.10! only if we create wave packets of the siz
r or smaller from states of the sizej. Such a packet cost
\D(r )/r 2 of additional ‘‘localization’’ energy, whereD(r )
is the diffusion coefficient at length scaler. We argue below
that this energy is smaller than the energy gain per part
given by Eq.~3.10! and thus allows us to proceed with th
ES argument. Using Eq.~3.1! and Eq.~3.10! we calculate an
average distancer («)5a(D/«)1/h between electron and hol
states in the band of energies of width« around«F . Then
using Eq.~3.2! we obtain a ‘‘critical’’ DOS:

Nc~«!.a23D21~«/D!(3/h)21. ~3.11!

At finite j, Nc(«) matches the quadratic part of Eq.~3.2! at
«5kBT0(n). Thus, the width of the parabolic gap is

d.kBT0~n!;D~12n/nc!
hn. ~3.12!

Right at the transition~where@12n/nc#51/j50) Eq.~3.11!
describes the DOS at all energies«<D ~which is why we
call it critical!. Thus, at the very transition this scaling mod
has only one unknown indexh. If h'2, Eq. ~3.11! gives
N(«)}«1/2. Critical and near-critical behavior of the DOS
n5nc is shown in Fig. 5 by a thick line. This curve plays th
role of a ‘‘backbone’’ from whichN(«) deviates down on
the insulating side of the transition (n,nc) and up on the
metallic side (n.nc) near«50 ~i.e., at distances@j).

Here we can connect our paper with the standard the
of quantum-phase transitions.37 This theory introduces char
acteristic scales of lengthj and of timetj5h/«j , where«j

is the characteristic energy. At the transition both charac
istic scales diverge, so thattj}jz, wherez is the dynamic
scaling exponent. In our case«j5d5kBT0(n) and, accord-
ing to Eq.~3.12!, tj}jh. Thus, our exponenth is the same
as the standard dynamic scaling exponentz.

r
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PRB 60 1587COULOMB GAP IN A DOPED SEMICONDUCTOR NEAR . . .
Until now we have proceeded from the insulating sid
The behavior of the Hartree Coulomb gap on the meta
side can also be estimated in the language of the diele
constant, wave packets, and the ES argument. Atqj@1
~large energies! t here is no difference between insulatin
and metallic phases so that Eq.~3.9! is also valid for n
.nc . A qualitative difference between metallic and insula
ing phases appears only whenqj!1, where instead of the
scale independentk of Eq. ~3.6! one gets metallic scaling8,38

k~q!;k0~a/j!(12h)~qj!22 ~qj!1! ~3.13!

This divergence ofk(q) at small q leads to exponentia
screening of the interaction at distancesr>j

U~r !5~e2/k0r !~a/j!h21 exp~2r /j!, ~r !j!.
~3.14!

The role of such screening was studied in Ref. 7. In the fi
approximation it leads to smearing ofN(«) at the scale of
d5U(j)5kBT0. Thus, in the metallic stateN(«) becomes
finite at «50

N~0!5Aa23D21un/nc21un(32h), ~n.nc!. ~3.15!

The above expressions are all obtained in the Hartree
proximation~with excluded self-interactions!. In this broader
sense, all these depletions of the DOS can be called Coul
gaps. However, at very low energies in the metallic state,
Hartree approach fails and exchange interactions bec
dominant, leading to a square-root AA dip in the DOS ne
the Fermi energy.5 We can find the limits of the Hartre
approximation if we compare the energy loss due to crea
of small wave packets with the energy gain due to creation
a Coulomb gap. The first quantity is\D(r )/r 2 and the sec-
ond is just«. Their ratio

Q5\D~r !/r 2«5\s~r !/r 2«g~«!e25Gc /r 3«g~«!,
~3.16!

wheres(r )5Gce
2/\ is the conductivity in a scaler andGc

is the critical dimensionless conductance. At the very tran
tion r («)5a(D/e)1/h, so that Eq.~3.16! with the help of Eq.
~3.2! shows thatQ<1, meaning the Hartree approximatio
is still reasonable. This justifies the backbone DOS
~3.11! at energies«.d on both sides of the transition.

On the other hand, at«c,d in the metallic state the Har
tree approximation fails, wave packets overlap, and an A
like theory based on exchange interactions becomes v
As a result, a negative square root of comparable amplit
should be added to Eq.~3.15!.

Now we would like to compare our results with tho
obtained by McMillan.8 In his work the Hartree interaction
was neglected and the metallic side of the transition w
strongly emphasized. He did not present an explicit form
low-energy behavior of DOS on the insulating side and
not mention that it is described by notion of the Coulom
gap. Nevertheless, his estimate of the ‘‘correlation ga
width D is in agreement with our widthd5kBT0 of the
parabolic Coulomb gap. In the metallic phase and in
critical regime our results are identical to those
McMillan.8 ~Note that we use sameh and n as McMillan,
but hisD is equivalent to ourkBT0 or d.!
.
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References 8 and 9 were criticized10 for using the single-
particle DOSN(«) in the dielectric constant

k5k0F11
4pN~«!e2

q2 G . ~3.17!

The standard expression fork of a homogeneous system us
the thermodynamic DOSdn/dm in place of N(«) in Eq.
~3.17!, wherem is the chemical potential. In an electron sy
tem with direct Coulomb interactions,dn/dm is believed to
have no gap near the Fermi level, in contrast toN(«). So
which of the two DOS enters Eq.~3.17! is the crucial ques-
tion. This question is directly relevant here, since all t
results in this paper appear to agree with the use of
~3.17!. Indeed, Eqs. ~3.6!, ~3.9!, and ~3.13! are self-
consistently related by Eq.~3.17! to Eqs.~3.2!, ~3.11!, and
~3.15!, respectively.

We can repeat the problem in terms of the screening
dius r s by rewriting Eq.~3.17! as k5k011/(r s

2q2). If r s
2

5k0/4pN(«)e2 then at small«, N(«) is small, the radiusr s
is large, the screening is weak so the interaction is stro
and finallyN(«) has a Coulomb gap. For example, deep
the insulating side, using Eq.~3.2! we get that at energy« the
radiusr s5e2/k0«, exactly equal to the average distance b
tween states within« of the Fermi level. This implies tha
screening selfconsistently does not destroy the Coulomb
The other option argued for in Ref. 10 starts from the DO
dn/dm. If dn/dm is large,r s

25k0 /(4pe2dn/dm) is small
and we get a short-range interaction that does not lead to
Coulomb gap. This result is inconsistent with the ES arg
ment, computer simulations, and numerous observation
the ES law for VRH conductivity. Why, then, does the co
ventional definition of the screening radius fail?

An answer to this question for the deeply insulating pha
was suggested in Ref. 39. While the correct expression fok
containsdn/dm, in a strongly inhomogeneous system wi
localized states one needs alocal k anddn/dm to describe
the interaction of two particular states at the distancer. The
local (dn/dm)21 fluctuates strongly in absolute value an
has random sign. The inverse amplitude of these fluctuat
equalsN(«). Thus, the local screening is determined by
small random sign DOS, which in absolute value is of ord
N(«). The random sign of the interaction does not chan
any estimates based on the ES argument, and this is why
ES argument works. On the other hand, (dn/dm)21 aver-
aged over realizations of a random potential is very small
that the thermodynamic DOSdn/dm is large and energy
independent. The absence of self averaging in strongly
ordered systems is the main reason that theaverage dn/dm
does not determine the strength of local interactions. Re
ence 39 discussed a classical case of a deep insulator
assume that in the critical range of the MIT quantum effe
can be taken into account by renormalization ofj andk and
by introduction of wave packets. After that we have a pro
lem similar to the classical one, but with renormalized int
actions. This interaction for a given realization of impuriti
is not screened. To findN(«), one needs the local interactio
and the averagedn/dm is irrelevant.

Let us remind the computer simulations lead to the
conclusions.39 In that work the authors considered random
distributed pointlike donors and acceptors, all acceptors
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ing negatively charged and some donors being occupied
electrons~and hence neutral! and others empty~and so posi-
tive!. The ground state of such system is a classical real
tion of a Coulomb gap.6,7 Screening a probe positive charg
at T50 was studied numerically. It was shown that for
given realization of impurities, the screened potential of
probe charge is almost random in sign and its absolute v
decays as 1/r . To understand the origin of the random-sig
potential for a single realization of potential, recall that in t
ground-state electrons are correlated in space or, in o
words, positive donors alternate with neutral ones. The pr
positive charge can attract a new electron to the nea
empty donor. The positive donor left behind attracts a n
electron to another of its neighbors, and so on. As a resu
chain of new alternating positive and negative charges
appear. Such a chain has random direction and length an
symmetry. It is clear that the sign of the potential, for e
ample at the end of the chain, is random. Huge cancellat
appear when we average over many different realization
impurities or over different configurations of chains. As
result spherical symmetry is restored and an exponent
small positive potential survives. This picture has been g
eralized for a description of the Rudderman-Kittel exchan
interaction in a disordered metal.40

An alternative explanation was recently suggested by
and Varma,41 who argued that, contrary to previous ass
tions, direct Coulomb interactions do lead to a gap in
averagedn/dm when the density is low enough in a 2
system. They suggest that the incorporation of this result
the charge diffusion models of Refs. 12–14 could genera
realistic description of the transition from diffusive metal
Coulomb glass insulator.

Finally, Fig. 6 presents numerical calculations of DO
spectra of the impurity band model obtained by compu
minimizations of the total energy of the system in the fram
work of our scaling ansatz model. To describe the MIT
n,nc , n5nc , and n.nc , we use Coulomb potential
modified by Eqs.~3.6!, ~3.9!, and ~3.13! respectively. For
concreteness, we assumeh52 and U(r )5(R/r)2 for n
5nc ; U(r )5(r21j2)1/2R/r2 for n,nc ; U(r )
5R2/@rj(expr/j21)# for n.nc . Here,R5nc

21/3 is the av-
erage distance between donors at the transition,U is mea-
sured in units ofe2/k0R, and r25r 21(R/2)2. The (R/2)2

FIG. 6. DOS as a function of energy as obtained by numer
simulation for the Coulomb potential~dashed line! and for three
model potentials corresponding to the critical range of the MIT~full
lines! from bottom to top: n,nc(j/R52), n5nc , and n
.nc(j/R52).
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term in the last expression is significant only at smallr and is
introduced as a large energy cutoff~or alternatively as a
small wavelength cut-off at distancesa;R/2 at nc). The
algorithm of the simulation is described in Ref. 7. The e
ergy reference is adjusted for each realization of impu
coordinates so that the chemical potential is zero, and
DOS is averaged over 10 000 realizations. In Fig. 6, the
sulating and metallic DOS are computed for states equi
tant from the transition, usingj52R. We see that results o
calculation are in a reasonable agreement with the schem
scaling plot of Fig. 5 and the experimental data of the pre
ous section.

IV. ANALYSIS OF THE TUNNELING DATA

There are clearly remarkable similarities between the
perimental data of Fig. 3 and the scaling ansatz results in
5. In fact, most major features of the tunneling measureme
can be accounted for by the simple scaling analysis of
preceding section. It is obvious from Fig. 3 that the high-b
conductance common to both localized insulator and dis
dered metal plays the role of the high-energy backbone D
obtained from the scaling ansatz by combining the dielec
constant of Eq.~3.9! with the Coulomb gap of Eq.~3.2!. The
distinction between metal and insulator becomes clear o
when the DOS departs from the backbone at low energ
From the data, this departure occurs near an energy sca
about 0.5 meV.

While the scaling ansatz cannot calculate the value of
exponent describing the power-law backbone DOS, the
perimental data does yield this number and the value of
associated scaling exponent. According to Eq.~3.10!, the
high-energy backbone DOS near the critical density for b
metals and insulators depends on a single exponenth and
should go asNc(«)}« (3/h)21. From the data of Fig. 3, in the
bias range 1mV<V<50 mV we obtainG(V)}Vm with val-
ues for the exponentm50.4560.2 covering all the sample
measured. This givesh53/(11m)52.1, which is certainly
within the theoretically required bounds 1,h,3 and in fact
is essentially the same as the valueh52 reported by Hertel
et al.11 in barely metallic NbSi alloys. Since this value forh
was obtained from the high-energy DOS, where metals
insulators share a common DOS character, and from m
different samples both below and abovenc , we believe it is
a reliable value. We do wish to emphasize that, in our int
pretation, the approximately square-root behavior of
DOS at these high energies is unrelated to the AA excha
correction, which is important only at energies«,d'0.4
meV in the metallic state.

The exponentn can also be examined, though less defi
tively than h. On the metallic side of the MIT this can b
done using Eq.~3.15!. The measured ratio of zero-bias co
ductances for the two metallic samplesG110(0)/G105(0)
51.7. Relating this conductance ratio to the ratio of the D
and using Eq.~3.15!, we obtainn(32h)'0.77. Takingh
'2 from the preceding analysis, this givesn'0.77. Alter-
natively, n can be estimated independently using data fr
the insulating samples. Figure 7 shows the measured C
lomb gap widths for four insulating samples plotted agai
normalized dopant density. The data fit a linear function v
well with nearly zero intercept, i.e.,d(n)}(12n/nc)

g where

l
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PRB 60 1589COULOMB GAP IN A DOPED SEMICONDUCTOR NEAR . . .
g'1.0. From Eq.~3.12!, we haveg5hn, so that ifh52,
then the gap width data imply thatn50.5. Figure 7 also
shows that, in agreement with Eq.~3.12!, the values ofT0
measured from dc conductivity in the more insulati
samples, where the ES hopping law is followed most rig
ously, are of the same order as the corresponding valuesd.

These values forn obtained from the tunneling data ca
be compared to the independent data fork(n) shown in Fig.
1. A simple power-law fit to the data in that figure givesz
5n(h21)'0.71. Thus, ifh is taken to be 2 in accordanc
with the DOS data, thenn'0.71. This value is comparabl
to the values obtained from the DOS data analysis. Th
fore, we conclude that the DOS data support values for
scaling exponents ofh'2 and n somewhere between 0.
and 0.8, at least within the range ofn/nc covered by the
samples used. By way of comparison, in an insulating S
crystal stress tuned to within 1% ofnc , Ref. 25 found defi-
nite critical scaling of the dielectric constant in theT˜0
limit with z'1.0.

The exponentn is commonly measured by examining th
very low-temperature dc conductivitys(T˜0) as a function
of doping and fitting the data to the forms(0);(n2nc)

n

for n slightly abovenc . For nominally uncompensated dope
silicon ~Si:B,28 Si:P,42 and Si:As43!, many such transport ex
periments have reported values forn between 0.5 and 1
generally closer to 0.5 than to then'1 observed in mos
other disordered conductors and expected theoretically
Si:B, for example, the exhaustive very low-temperature
conductivity measurements reported in Ref. 28 indicate
n50.65. Thus our analysis of the tunneling data yield
value forn at least consistent with that obtained from tran
port measurements. However, the interpretation of the tra
port data leading ton'0.5 in Refs. 28, 42, and 43 has r
cently been questioned.44,45 There is some evidence that
only samples within;1% of nc are used, then transpo
measurements yieldn'1 instead. In fact, stress tuning of
Si:B sample46 across the MIT has been reported to given as
high as 1.6, although earlier stress experiments47 on Si:P
reportedn50.5.

An estimate for the value ofj can also be extracted from
the data. Using Eq.~3.4! combined with the measured value
of k andT0 in Figs. 1 and 7 respectively, we obtainj'25,
30, and 40 nm for the 81, 86, and 90 % samples, resp

FIG. 7. Full width d of the parabolic Coulomb gap in fou
insulating samples plotted against (12n/nc). The dashed line is a
linear fit.
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tively. These values are in reasonable agreement with
~3.5! usingn;0.7 and lengtha57.5 nm, which is close to
the average distance between impurities atnc , 6.3 nm.

It is necessary to discuss whether the scaling ansat
Sec. III should be really applicable to the experimental si
ation of Sec. II. First, there is a problem with the weak co
pensation of the Si:B samples used. Indeed the theore
discussion starts from the picture of a classical Coulomb g
In the impurity band of a lightly doped semiconductor, t
Coulomb gap is most pronounced for degrees of compe
tion ~ratio of minority to majority impurity concentration!
comparable to1

2 . ~In this case, a large number of impuritie
are charged, but the peak of the DOS is still not too broa7!
Then with increasingn the Coulomb gap evolves accordin
to the predictions of Sec. III. In uncompensated lightly dop
semiconductors, all majority impurities are occupied in t
ground state and therefore are neutral. There is a large M
Hubbard gap that separates occupied states from empty s
of a second electron on an impurity. Disorder is very we
because there are no random charges. So the Mott-Hub
gap at the Fermi level of a lightly doped uncompensa
semiconductor is a real hard gap as opposed to the soft C
lomb gap. Why then can we then talk about a Coulomb g
near the MIT? Bhatt and Rice48 pointed out that at large
impurity concentrationsn;nc a new phenomenon that the
called selfcompensation can take place. Because of la
overlap and strong positional disorder of their wave fun
tions, some clusters of impurities can have large affinity
electrons and can ionize other clusters. As a result cha
will appear and a random potential will close the Mo
Hubbard gap which is already narrowed at these concen
tions. Then our theory, developed for a compensated se
conductor can work even for a nominally uncompensa
one. Similar tunneling experiments on compensated sam
would be very important to find out whether they provide
similar DOS and whether it agrees with our theory.

A second problem is related to the role of the Al electro
in the screening of the long-range Coulomb interactions. O
can think that tunneling electrons typically penetrate a d
tancej into a semiconductor. The characteristic lengthr («)
of interactions, which determines the DOS at«@d ~square-
root region! is smaller thanj. This means that the larg
square-root region is robust with respect to screening b
metal gate. However, the parabolic gap results from the H
tree interaction between charges separated by distancr
.j. Therefore, the Al electrode could produce substan
image charge screening of this interaction. Such screen
was studied numerically49 for the case of a classical Cou
lomb glass and a metal electrode placed directly on its s
face. These computations show the bulk parabolic Coulo
gap near the surface can be closer to a linear one, rather
quadratic one. In our experiment, electrode screening ma
reduced by two factors. First, the Al electrode is backed
the semiconductor surface by roughly 1.5 to 3 nm of SiO2, as
described in Sec. II. Second, the Schottky barrier betw
the Al and Si can be as wide as 20 nm. The cumulative ef
of these two barriers is to increase the distance between
charges and image charges to distances;j. However, even
if the gate is backed off, the parabolic gap should still
expected to fail at small enough energies. Surprisingly,
parabolic gap is more robust than expected. There is str
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1590 PRB 60LEE, MASSEY, NGUYEN, AND SHKLOVSKII
agreement between the power law for the Coulomb gap
measured by tunneling and by bulk dc transport, which is
affected by electrode screening because the sample is
roscopically thick (;250 to 300mm) so that most of curren
flows far from the Al contacts. If the Coulomb gap is d
scribed byN(«);«p, then the ES model gives a hoppin
exponent s5(p11)/(p14) for the conductivity s
5s0 exp$2(T0 /T)s%. For the 86% sample at 0.5 K, a powe
law fit to the tunneling data givesp52.2, so the predicted ES
value for s50.52. Transport measurements on the sa
sample in the same temperature range give a values50.51
60.02. The close consistency of the tunneling and trans
results indicates that, to a reasonable accuracy, the tunn
DOS reflects the bulk characteristics.

Finally, we should mention that the definition of DO
discussed in Sec. II does not strictly coincide with the de
nition of the tunneling DOS measured experimentally. S
tion II dealt with the bulk DOS of charged excitations~elec-
tronic polarons!. For a deep insulator these excitations we
introduced in Ref. 7. Electronic polarons are responsible
ES VRH. On the other hand tunneling experiments meas
the one-electron DOS. For a deep insulator, a substa
difference between these two DOS in the limit of small e
ergies was predicted in Ref. 7, but was not reliably obser
in numerical simulations. We cannot resolve here this co
plicated problem. It may happen that this difference can
plain the apparent absence of the effect of the gate on
parabolic gap. We would like only to emphasize here t
this uncertainty has to do only with small energies«!d
inside the parabolic Coulomb gap.

V. SUMMARY

Electron tunneling measurements of the single-part
DOS have been made on Si:B crystals ranging from 81
o
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110 % of the critical density of the MIT. At low energie
(«<0.5 meV! nonmetallic samples show an approximate
quadratic soft Coulomb gap across the Fermi level, wh
metallic samples show a square-root cusp. At higher en
gies, ~up to 50 meV!, both insulating and metallic sample
show a common DOS behavior,N(«);«m. with m slightly
less than1

2 . These features of the data can be understo
within the framework of a scaling ansatz of the approach
the MIT from the insulating side. By extending the semicla
sical Efros-Shklovskii derivation of the Hartree Coulom
gap to include a spatial dispersion of the dielectric const
at small length scales, it was shown that at short len
scales (r !j), or high energies, spatial dispersion ofk gives
rise to a common DOS that increases as a power law in b
metals and insulators. This is distinct from the Altshule
Aronov low-energy square-root cusp in the DOS arisin
from exchange correlations in weakly disordered meta
Only at long length scales, or, equivalently, low energie
does a quadratic Coulomb gap become apparent in ins
tors, while metals take on a nonzero DOS across the Fe
level. Finally, the tunneling results and the scaling ans
suggest that a semi-classical approach may be used to
Coulomb interaction effects on the approach to the MIT fro
the insulating state.
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