PHYSICAL REVIEW B VOLUME 60, NUMBER 3 15 JULY 1999-I

Coulomb gap in a doped semiconductor near the metal-insulator transition:
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Electron tunneling experiments are used to probe Coulomb correlation effects in the single-particle density
of states(DOS) of boron-doped silicon crystals near the critical densityof the metal-insulator transition
(MIT). At low energies £<0.5 me\j, a DOS measurement distinguishes between insulating and metallic
samples with densities 10 to 15 % on either sideof However, at higher energies- meV<e<50 me\)
the DOS of both insulators and metals show a common behavior, increasing with enefgywvagre m is
roughly 0.5. The observed characteristics of the DOS can be understood using a classical treatment of Coulomb
interactions combined with a phenomenological scaling ansatz to describe the length-scale dependence of the
dielectric constant as the MIT is approached from the insulating ER(#.63-18289)12427-3

[. INTRODUCTION disorder. All agree with the basic findings of Altshuler and
Aronov® (AA) that there should be a square-rdiot 3D) or
Since 1979 the best available description of the disordertogarithmic (in 2D) depletion in the single-particle DOS at
driven metal-insulator transitiofMIT) has been based on the Fermi level of a disordered metal. However, they failed
the noninteracting scaling theory of Abrahamsal® Al- to generate a well-defined, continuous charge-localization
though it treats thoroughly the localizing effects of electrontransition at nonzero disorder and finite interaction strength,
scattering off static disorder, this theory is incomplete be-and cannot describe the emergence of a Coulomb glass state
cause it neglects electron-electron interactions. In particulaignd the Coulomb gap as a system crosses over into the insu-
below the critical density. of the MIT the vanishing carrier lating state.
mobility means that Coulomb correlations are strong enough Tunneling experiments have observed AA-like depletions
to warrant treatment on equal footing with the disorder. Then the DOS of a variety of disordered metals, including
importance of interactions is illustrated by several well-amorphous metal- semiconductor alldys%'! doped
known, apparently anomalous phenom@rsaich as the re- semiconductors’ and granular metaf€ By contrast, with
cent discovery by Kravchenket al®* of a “forbidden” me-  the exception of the singular sodium tungsten bronze
tallic state in a two-dimensiondRD) electron system. In a systent.’ the existence of the Coulomb gap in localized in-
disordered metal, electron-electron interactions lead to a sirsulators has until recently been only indirectly inferred from
gular negative correction to the single-particle density ofactivation fits to dc conductivity or relaxation
states(DOS) near the Fermi level.Deep into the insulating measurements.Only in the last few years have quantitative
side, it is well established that Coulomb correlations cause tunneling spectroscopic observations of the Coulomb gap
Coulomb gap in the DOS near the Fermi level, whichbeen made in 30Refs. 22 and 2B8and in 2D (Ref. 29
changes the temperature dependence of the dc electrical camenmetallic semiconductors.
ductivity at very low temperaturés. How these two renor- Most previous work on interaction effects has emphasized
malizations of the DOS evolve in the critical region of the the metallic side; much less corresponding effort, experimen-
MIT and match each other at, is one of the most challeng- tal or theoretical, exists to describe the insulating side near
ing and long-standing questions of solid-state physics. the critical region of the MIT. The important role long-range
Combining both disorder and Coulomb interactions into aCoulomb interactions play in affecting the empirical scaling
unified scaling description of disordered metals near the MITcharacteristics of the complex ac conductivity as the MIT is
was attempted by McMilldhand by Gefen and ImryThese  approached from below was emphasized by Paalanhai?®
models were criticized for the use of the single-particle, in stress-tuning experiments on phosphorous-doped silicon.
rather than thermodynamic, DOS in describing the chargén this paper, we concentrate on studying directly the Cou-
screening, as discussed in detail in Sec. lll, and have ndomb gap in the DOS that occurs in 3D disordered insulators
been widely accepted despite garnering some experimentalose to the MIT. Results of tunneling measurements of the
supportt? Later renormalization group theories by DOS in boron-doped silicon are presented over a much
Finkelstein'? Castellaniet al,'® and Kirkpatrick and Belit#  larger range of energies than in Refs. 22 and 23. The tunnel-
used a Fermi-liquid-based approach to describe the diffusioing DOS spectra show that metals and insulators can be dis-
of interacting quasiparticles in a disordered metal. Thesénguished by the low-energy characteristics of the DOsS,
works employed a smooth thermodynamic DQ#8 com-  square-root cusp vs parabolic Coulomb gdut that metals
pressibility) and started from perturbative treatments of weakand insulators share a common, roughly square-root high-
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energy DOS behavior that is approximately independent of 20 T T T

dopant densities close to.. Of course, a truly complete 18k [ Si:B ]
microscopic theory of the MIT with interactions should T )

cover the continuous crossover from insulating to metallic 16 - T=01K .
state. We present a much more modest and simple scaling  ° 4| |
approach to the MIT, which emphasizes the insulating side ¥ %3 I (1 -n/n )°7
and is based on an extension of the Efros-Shklo%skiju- 12 - ¢ .
ments. Using the idea of a dielectric constant with spatial 10k ? £ |
dispersiorf:® we argue that at the point of the MIT a power- [I]t}k

law depletion of the DOS near the Fermi level is still the 8 T 1T
Efros-Shklovskii(ES) Coulomb gap, only modified by this 6 ! ! L T
dispersion. The scaling ansatz describes well the main fea- 0 0.1 0.2
tures of the experimental data. 1-(/m)

This paper is organized as follows: Sec. Il presents ex- o . o o .
perimental details and data, Sec. Ill develops the scaling de- FIG. 1. Static dielectric constant& units of the Si dielectric

scription, and Sec. IV analyzes of the data with respect to theonstantk,=11.7) as a function of the normalized dopant density
scaling model. for a set of insulating Si:B crystals. These data were measured at a

temperaturd =0.1 K. The solid curve is a fit to the functional form
k(n/ng)~(1—n/ng) ~¢, which gives{~0.71.
IIl. TUNNELING MEASUREMENTS OF THE COULOMB ) .
GAP of several insulating crystals were measured using a capaci-
_ _ tance method similar to that described by Castfiéthese
When a conductor is separated from a conventional metabgyits are shown in Fig. 1. To compare values with the
by a_rectangular potential b_arrler high enough'to prevenfiterature, on an 86% sample we obtaingfik,=8.5+1,
classical current flow but thin enough to permit quantumyhere «,=11.7 is the dielectric constant of the host Si lat-

tunneling, the tunneling conductance at temperatlité tjce This value is in reasonable agreement with published
G(V,T)=dl/dV wherel is the tunneling current andis the 512531 on Sj:As and Si:P at similar values ofn,. The

voltage bias across the junction, is givertbhy curve in Fig. 1 is a fit of the data te(n)~(1—n/n.) %,
which yields{=0.71.
G(V) _J N(e) of(e—eV,T) q 2.1) Tunnel junctions were formed by creating a very ttes-
Gy No JeV & ' timated 15 to 30 Alayer of SiQ as a tunnel barrier on the

Si:B crystals, and using an Al film as the counter-electrode.
where G, is the conductance in the noninteracting casepDetails of the fabrication of these metal-oxide-
N(e,T)/Ny is the interacting single-particle DOS relative to semiconductor structures were described previously. The
the noninteracting valubly, andf is the Fermi function. We  major modification from the prior description was the use of
take the zero of energy at-=0. The highest bias used in an ultraviolet ozone method in place of a chemical oxide
this experiment is 50 meV, which is much smaller than thegrowth to clean the silicon surfaces and produce more repro-
several eV height of the SiObarrier, so that the barrier ducible ultrathin SiQ tunnel barriers. Si@thicknesses were
transmission coefficient is taken to be independent of bias. lestimated from published calibrations of UV exposure time,
nearly all tunneling measurements, the normalizing conductemperature, and Oflow rate? Good junctions were those
tance G, is taken at a relatively high-voltage bias, wherethat showed a signature of the Al superconducting energy
G(V) is either constant or only slowly varying on the energygap below 1 K. These devices had junction resistances be-
scale of the spectral features of interest. The normalized conween 65 to 850 K near 1 K.
ductance then gives the ratit(eV,T)/Ng, thermally broad- Tunneling current-voltage V) and conductance-
ened by convolution with—gf/d(eV). At sufficiently low  voltage [G(V)] traces were taken using standard analog
temperature, whekg T is much smaller than the energy scale methods. Where required, a sméllkG) magnetic field was
of characteristic variations iN(e), ordinary thermal broad- used to suppress the superconductivity in the Al electrode.
ening can be neglected so thafV,T)/Gy is directly pro-  We shall refer to such data as “zero Teslas.” Data down to
portional toN(eV,T)/Ng. Note that, unlike the noninteract- 1.2 K were obtained by suspending the samples stress free
ing case, N(eV,T) can have a nontrivial intrinsic from their leads and immersing in a pumped liqdide bath.
temperature dependence separate from ordinary therma@b reach lower temperatures, the samples were immersed in
broadening. the He/*He mixture of a dilution refrigerator. Cooling

The Si:B crystals used were characterized by measuringower at 0.1 K was measured to be 12%/, while no more
their room-temperature resistivitigs and resistivity ratios than 0.1uW of power was used to take the data. Tempera-
(RR’s) p(4.2K)/p(300 K). Dopant densitiea were obtained ture stability of better than 1 mK at 1.2 K and 0.1 mK at 0.1
using the calibration of Thurbest al?” and the data of Dai K could be obtained, which was important to prevent thermal
et al”® to translate between measured RR’s and dopant derluctuations from coupling to the highly temperature-
sities. Samples used had RR’s of 2.3 to 18, corresponding tdependent resistance in the more insulating samples. For
n/n. of 110% to 81%, respectively, where we t&ke samples witth/n.>90%, reliable data could be taken below
n.=4.0x10'"® cm 3. Details of the dc variable-range hop- 0.1 K. For insulating samples with/n,<90%, the resis-
ping (VRH) conductivity in many of these samples havetance of the Si:B crystal itself rose to exceed 10% of the
been published previousfy:*? The static dielectric constants resistance across the tunnel junction below 0.1 K. Because
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FIG. 2. Low-bias tunneling conductance-voltage spectra for Si:B samples at several different vallres @l data sets are normalized
to the conductance at2 mV. Data for samples with/n.=90% were taken af =0.1 K. Data for the 86 and 81 % samples were taken at
0.5 and 1.2 K, respectively.

the crystal acted as a voltage drop in series with the junctionG(V=0) is small but greater than zero because the measure-
quantitative tunneling conductance data belo®.1 Kis not  ment temperature for these two samples is sufficiently high
reliable in these most insulating samples. Therefore, wehat there is some intrinsic filling in of thE=0 gap. In all
present onlyT=0.5 K data for these samples, where theinsulating samples, the low-energy conductance spectra fit a
voltage drop across the Si:B crystal is no more than a 1%ower-law form N(e)e|e|P with p=2.4, 2.2, 2.2, and 2.0
correction to the tunnel junction conductance. for the 81, 86, 90, and 95% samples, respectively, at the
Figure 2 shows low-energy tunneling conductance spectrgyiffereny measurement temperatures. As>n, from be-
on six samples with densitieBn =81, 86, 90, 95, 105, and |y the gap sides steepen and the width of the Coulomb gap
110%, all in zero Teslas. All data are normalized to theg o ng zero bias narrows. Although the gap “shoulders” are

conductar;ce value of each sampletdt mV. The spectium 4 ang therefore not precisely definable, the approximate
for the 81% sample was taken at 1.2 K, the spectrum for th(?u” width & of the parabolic-like p~2) gap is about 2.2,

86% sample was taken at 0.5 K, and the data for the othe{ 5 11 and 0.6 mV and for the 81 86. 90 and 95 %

four samples were taken at 0.1 K. Ordinary thermal broad- moles. respectivelv. By contrast. both the metallic samples
ening at the measurement temperatures is minor compared? PIes, Tespe y- By ’ P
ow a significantly large nonzero conductanceVatO,

the energy scale of the conductance features, and so has o 23 ; ' ¢
been deconvoluted from the data. However, the interactin/Ith @ sharp dif’ around zero bias thf}t is well fit to a
DOS of each sample has an intrinsic finite-temperature desquare-root formN(e)=N(0)[1+(|z|/4) ?] at low bias.
pendence that may be more obvious in the data for the 8ltits to this form gives~0.25 and 0.4 meV for the 110 and
and 86% samples because of the higher temperature. In t495% samples, respectively. Normalizing the metallic data to
conductance spectra, there is a clear difference between tg(+50 mV), the ratio of zero-bias conductances is
insulating and metallic samples at low biagd4,<1 mV.In  G1100)/G1040)=1.7, so that the more metallic sample has
all the insulating samples, a conductance dip across zerm larger DOS at the Fermi level, as expected.

voltage (the Fermi level in tunneling measuremenits the Figure 3 compares tunneling conductance spectra over an
signature of the Coulomb gap. For the 81 and 86% samplegxtended bias rang@®.03 to 50 mV for two metallic and
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FIG. 4. Low-bias tunneling conductance-voltage spectra for the

FIG' 3. Extended bias range tunneling conductan_ce spe_ctra f‘ﬁe% Si:B sample at several different temperatures. The spectrum at
four Si:B samples, two metali110 and 105 %and two insulating each temperature is normalized to the conductance2amV. Or-

0, = . .
(95 and 909% all taken at temperaturé . 0.1 K. The data are dinary thermal broadening has not been deconvoluted.
plotted on a log-log scale and are normalized to the conductance at

S0 mv. solely to convolution with th&f/d(eV) term in Eq.(2.1) has

two insulating samples 5 and 10 % above and befgwall ~ hot been deconvoluted from these data. At 10 K the tunnel-

at 0.1 K. This log-log-plot clearly reveals a characteristicing conductance is essentially constant withid mV of V
energy scale of approximately 0.5 to 1 mV. Below0.5 =0.As temperature decreases, the opening of a roughly qua-
mV, an obvious distinction can be made between metalli¢ratic Coulomb gap is evident. The gap has its own tempera-
and insulating samples. The low-bias data for the metallidure dependencéapart from the ordinary thermal broaden-
samples approack=0 with a thermally rounded square- ing), becoming both wider and deeper figlecreases. The
root shape and have a nonze®§V=0). By contrast, the Zero-bias DOSN(V=0,T) goes approximately a&* at low
insulating samples show a quasiparabolic Coulomb gageémperature, turning over and closingi.e., G(0)/
depletion of the low-energy DOS. The most important fea-G(+2mV)~1] near 7 K.

ture of Fig. 3 is that from~1 to 50 mV, the conductance

spectra for both metals and insulators are essentially indis- |[|]. SCALING ANSATZ FOR THE COULOMB GAP
tinguishable. The high-bias tunneling conductance common ) ] ) ) )

for both insulating and metallic samples follows a functional Coulomb interactions in a disordered insulator are known
form G(V)=V™ wherem is between 0.43 to 0.47, with no {0 cause a correlation gap iN(¢). The original ES
correlation ofm with dopant concentration in the range of d_erlva'glor? for the Coulomb gap shape was given for a clas-
samples studied. Thus, above a characteristic energy a Dcfg:al disordered system of pomthkg Iocahzgd electrons repel-
measurement cannot differentiate between metallic and insting €ach other via the Coulomb interactief(r) =e/«r.
lating states. A similar dependence was reported by Hertel his denvatlon_ was based on a stability criterion for the
et al!'in tunneling studies of metallic NbSi alloys near the ground state with respect to transfer of an electron from an
MIT. They found that the tunneling conductance showed gccupied state(s;<0) at positionr; to an empty state
square-root cusp at low energies that turned over to a slowdf€;>0) at positionr;, with

than square-root dependence at higher energies. In MbSi

was measured to be closer o0 ej—&i—U(r)>0, 3.7

While all the junctions used SiObarriers of roughly . .
. ; . where g; and &; are one-electron energies relative to the

equal thicknesses, the common high-bias conductance bE'ermi level. If sjtatesi; andi o .
havior for metals and insulators is very unlikely to be a bar- . ' lare \.N'thm. energy of -the .Ferm|
: e . y unixely level, i.e.,e;, |g;|<e, then their typical separation in space
rier transmission artifact for two reasons. First, as we alread MUY C =Irtyp P P
mentioned above, the maximum bias energy is far below th&(2) =€ /,K38 is large if & is small. The DOSN(s)
SiO, barrier height, so that finite voltage barrier distortionsw.d[r(g.) J/de then .has a soft gap arourd=0. In three
are negligible. Second, this behavior is robust; it has beeﬁilmensmn the result is
observed in over 25 junctions on Si:B of varying dopant -
densities, with junction resistanced\(/d| at +1 mV at 1.2 N(e)= E Kk"e
K) ranging from 60 to 850 K over the same junction area. T b
This order-of-magnitude variation in junction resistance is a
consequence of uncontrolled variations in barrier thicknes$n the deep insulator, this quadratic gap extends until the
and purity. The fact that a common high-bias conductance igoninteracting valué\, is reached(Fig. 5. The Coulomb
observed despite such differences in barrier properties indgap of Eq.(3.2) leads directly to the ES form for the
cates that the conductance form in Fig. 3 results from thevariable-range hoppin/RH) conductivity
DOS, not the barrier.

Figure 4 show details of the temperature dependence of o=age (ToM*, (3.3
the tunneling conductance for the 86 % sample from 10 to
0.5 K. Ordinary thermal broadening.e., broadening due where

(3.2
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ity is kgTqy. SincekgTy goes to zero neam., conductivity

data contain no information about the DOS over a large
5 range of energies covering

kBTO$8$A. (38)

In other words, in transport experiments we need only con-
sider energies smaller thdgT, or, equivalently, distances
larger thané. Only at such distances can the hopping prob-
2 ability be considered exponentially small ardbe consid-
1 ered independent of length scale.

Tunneling spectroscopy can give direct information about
0 the DOS in the whole range<A, which forces us to ac-

0 A count for interactions at distances smaller thanThis is

€ accomplished by introducing spatial dispersion irtat dis-
FIG. 5. Schematic plot of the DOS as a function of energy fortancesr <& or, in terms of wave vectog, atqé>1

different n: (1.) n=<n./2, (2.) n<n, andn.—n<n¢, (3.) n=n¢,

g(e)
o

(4) n>n, andn—n.<n;, and(5.) n=n./2. k~ro(r/a)" V~ko(qa)" 7 (r<g). (39
) At r=¢ Eq. (3.9 matches Eq(3.6), which is valid forr
1le > €. i . <
ToICk— K_g (3.4) &. Equation(3.9) means that at<¢
B U(ry=A(alr)?, (r<é). (3.10

andC=2.8 and¢ is the localization length.

The original ES theory applies to a disordered system faE
into the insulating side of the MIT, However, the vast ma-
jority of experimental observations of ES hopping use

ithi 0, -
samples doped within 10 to 50% of . Therefore, a de derive EQ.(3.2). Forr<¢, we can use the potential in the

scription is required of how the Coulomb gap changesas . .
is approached from below. One can formulate a phenomenégrm of Eq.(3.10 only if we creatg wave packets of the size
r or smaller from states of the size Such a packet costs

logical scaling ansatz, which relates the DOS in the insulat- 5 " - T
ing state to other critical quantities using the ES argumentf.‘D(r)/r. Of. addmon_a! localization” energy, wher®(r)
The two quantities needed to describe both disorder an the Q|ffu3|on cgefﬁment at length scaleWe argue belOW.
Coulomb interactions near the MIT ageand «. In a doped that this energy is smaller than the energy gain ber particle
semiconductor, whem—n, from below, ¢ and « diverge given by Eq.(3.1(_)) and thus allows us to proceed with the
with the decreasing parameter{h/n,) as ES argument. Using E@3.1) all"nld Eq.(3.10 we calculate an
average distancg ) =a(A/e)~"7 between electron and hole
&1—n/ny)=a(l—n/n,) " (3.5 states in the band of energies of widtharounder. Then
using Eq.(3.2) we obtain a “critical” DOS:

One sees from this expression that the inggg identical to
he standard dynamic scaling exponent

Our goal now is to obtain the DOS throughout the energy
rangekgTo<e<A by repeating the ES argument used to

k(1—ning)=Ko(éla)” 1= ko(1l—n/ny) ¢, (3.6 Ne(e)=a 3A " Y(e/A)BM 1, (3.1
wherea=n; ' is the average distance between dopants aht finite ¢, N,(¢) matches the quadratic part of E8.2) at

n=nc, {=v(n—1), andv and 7 are scaling exponents, the s =k,T,(n). Thus, the width of the parabolic gap is
same as used by McMilldh(McMillan’s scaling analysis for

metals does not calculate explicitly the values of these expo- 5=kgTo(N)~A(1—n/ny) 7. (3.12
nents but does yield the restriction<ly<3. Experiment¥’ . .

have shown thaf~1.) Sincex diverges near the MIT, the nght_at the tranS|t|0|(1Where[1—n_/nC]= 1/§_=0)_Eq.(3.1l)
Coulomb interaction becomes weaker and the Coulomb gafiéscribes the DOS at all energiessA (which is why we
becomes steeper and narrower. Therefore, the VRH condu all it critical). Thus, at th.e very transition this scallng_ model
tivity increases due to both the increase of the hopping rate at2S onl3l//20ne_t_mknown indey. If »~2, Eq.(3.11) gives

a given distance following Eq3.5), and the increase in the N(g)*e" Critical and near-critical behavior of the DOS at
DOS. This is reflected in Eq3.4), whereT, tends to zeroas "~ "c!S shown in Fig. 5 by a thick line. This curve plays the

the MIT is approached from below role.of a “_backt_)one” from whighN(s) deviates down on
the insulating side of the transitiom{n;) and up on the
kgTo(n/ny)~A(1—n/ng) ", (3.77  metallic side 6>n;) neare=0 (i.e., at distances-¢£).

Here we can connect our paper with the standard theory
where A=e?/kpa. If »~2 and v~1, one getsyr~2, of quantum-phase transitioRsThis theory introduces char-
which agrees reasonably with dc transport measurements acteristic scales of length and of timer,=h/e,, wheree,
many material$>® This gives important indirect evidence is the characteristic energy. At the transition both character-
that the DOS is given by Ed3.2) with « provided by Eq. istic scales diverge, so tha>¢?, wherez is the dynamic
(3.6). However, dc transport is determined entirely by a rela-scaling exponent. In our casg=6=kgTo(n) and, accord-
tively small range of energies<kgT,, so that the widest ing to Eq.(3.12, 7,7, Thus, our exponeny is the same
possible band of energies that contribute to VRH conductivas the standard dynamic scaling exporent
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Until now we have proceeded from the insulating side. References 8 and 9 were criticiZ&dor using the single-
The behavior of the Hartree Coulomb gap on the metalliqparticle DOSN(¢) in the dielectric constant
side can also be estimated in the language of the dielectric
constant, wave packets, and the ES argumentq&t-1
(large energiest here is no difference between insulating K=Ko
and metallic phases so that E.9 is also valid forn
>n.. A qualitative difference between metallic and insulat- The standard expression ferof a homogeneous system uses
ing phases appears only whgg<1, where instead of the the thermodynamic DO®In/du in place of N(g) in Eq.
scale independent of Eq. (3.6) one gets metallic scaliig®  (3.17), whereu is the chemical potential. In an electron sys-
tem with direct Coulomb interactiongin/du is believed to
k(q)~ko(al§)"7(qé)"? (aé<1)  (3.13  have no gap near the Fermi level, in contrasiNgs). So
which of the two DOS enters E§3.17) is the crucial ques-
tion. This question is directly relevant here, since all the
results in this paper appear to agree with the use of Eq.
— (a2 n—1 _ < (3.17. Indeed, Egs.(3.6, (3.9, and (3.13 are self-
U(r)=(eYwor)(a/&)" " exp(—r/¢), (r<§).(3.14) consistently related by Ed3.17) to Egs.(3.2), (3.11), and
(3.15), respectively.
The role of such screening was studied in Ref. 7. In the first We can repeat the problem in terms of the screening ra-
approximation it leads to smearing bf(e) at the scale of diusrg by rewriting Eq.(3.17 as k= o+ 1/(r2q%). If rg
0=U(£€)=KkgTo. Thus, in the metallic statbl(e) becomes =k, /47N(s)e? then at smalk, N(&) is small, the radius,
finite ate=0 is large, the screening is weak so the interaction is strong,
and finallyN(e) has a Coulomb gap. For example, deep on
N(0)=Aa *A~Yn/n.—1["C7,  (n>n.). (319  the insulating side, using E(B.2) we get that at energy the
radiusrs= €%/ koe, exactly equal to the average distance be-
Riveen states withir: of the Fermi level. This implies that

proximation(with excluded self-interactionsIn this broader creening selfconsistently does not destroy the Coulomb gap.
sense, all these depletions of the DOS can be called Coulomg, o iher option argued for in Ref. 10 starts from the DOS

gaps. However, at very low energies in the metallic state, thﬁn/d,u. If dn/du is large,r 2= ko/(4me?dnidy) is small

I;artree aplpr?je_lch fails and exchange dl_ntgratlf]tlons,c)geco d we get a short-range interaction that does not lead to the
ominant, leading to a square-root AA dip in the D N€Acoulomb gap. This result is inconsistent with the ES argu-

the Fermi energy.We can find the limits of the Hartree oo computer simulations, and numerous observations of

approximation if we compare the energy _Ioss due to crt_eationgwe ES law for VRH conductivity. Why, then, does the con-
of small wave packets ywth the energy galnzdue to creation of, o hiional definition of the screening radius fail?
a Coulomb gap. The first quantity #A(r)/r® and the sec- A answer to this question for the deeply insulating phase
ond is juste. Their ratio was suggested in Ref. 39. While the correct expressior for
_ 2 2 2 3 containsdn/du, in a strongly inhomogeneous system with
Q=aD(N)/r"s=ha(r)/reg(e)e"=Ge/r 89(8)('3 16 localized states one needdomal x anddn/du to describe
' the interaction of two particular states at the distancéhe
whereo(r)=G.e?/# is the conductivity in a scaleandG, local (dn/dw) ! fluctuates strongly in absolute value and
is the critical dimensionless conductance. At the very transihas random sign. The inverse amplitude of these fluctuations
tionr(e)=a(A/e)'”, so that Eq(3.16 with the help of Eq. equalsN(e). Thus, the local screening is determined by a
(3.2 shows thatQ<1, meaning the Hartree approximation small random sign DOS, which in absolute value is of order
is still reasonable. This justifies the backbone DOS EqN(e). The random sign of the interaction does not change
(3.11) at energies:> & on both sides of the transition. any estimates based on the ES argument, and this is why the
On the other hand, at.< é in the metallic state the Har- ES argument works. On the other handn{du) ! aver-
tree approximation fails, wave packets overlap, and an AAaged over realizations of a random potential is very small, so
like theory based on exchange interactions becomes validhat the thermodynamic DO8n/du is large and energy
As a result, a negative square root of comparable amplitudendependent. The absence of self averaging in strongly dis-
should be added to E@3.15. ordered systems is the main reason thataherage dindu
Now we would like to compare our results with those does not determine the strength of local interactions. Refer-
obtained by McMillarf In his work the Hartree interaction ence 39 discussed a classical case of a deep insulator. We
was neglected and the metallic side of the transition wasssume that in the critical range of the MIT quantum effects
strongly emphasized. He did not present an explicit form ofcan be taken into account by renormalizatiorégfnd x and
low-energy behavior of DOS on the insulating side and didby introduction of wave packets. After that we have a prob-
not mention that it is described by notion of the Coulomblem similar to the classical one, but with renormalized inter-
gap. Nevertheless, his estimate of the “correlation gap”actions. This interaction for a given realization of impurities
width A is in agreement with our widthS=kgT, of the is not screened. To find(&), one needs the local interaction
parabolic Coulomb gap. In the metallic phase and in theand the averagdn/du is irrelevant.
critical regime our results are identical to those of Let us remind the computer simulations lead to these
McMillan.® (Note that we use samg and v as McMillan,  conclusions? In that work the authors considered randomly
but hisA is equivalent to oukgT, or 4.) distributed pointlike donors and acceptors, all acceptors be-

47N(e)e?
T

. (3.17

This divergence ofk(g) at small q leads to exponential
screening of the interaction at distanaesé
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0.2 . . . term in the last expression is significant only at smalhd is
introduced as a large energy cutdfir alternatively as a
small wavelength cut-off at distances~R/2 at n.). The
algorithm of the simulation is described in Ref. 7. The en-
ergy reference is adjusted for each realization of impurity
coordinates so that the chemical potential is zero, and the
DOS is averaged over 10000 realizations. In Fig. 6, the in-
sulating and metallic DOS are computed for states equidis-
tant from the transition, using=2R. We see that results of
0.0 calculation are in a reasonable agreement with the schematic

-0.4 -0.2 0.0 0.2 0.4 scaling plot of Fig. 5 and the experimental data of the previ-
ous section.

FIG. 6. DOS as a function of energy as obtained by numerical
simulation for the Coulomb potentidtashed ling and for three
model potentials corresponding to the critical range of the Klill
lines from bottom to top: n<n¢(§/R=2), n=n., and n There are clearly remarkable similarities between the ex-
>ng(¢/R=2). perimental data of Fig. 3 and the scaling ansatz results in Fig.

5. In fact, most major features of the tunneling measurements
ing negatively charged and some donors being occupied bgan be accounted for by the simple scaling analysis of the
electrons(and hence neutraind others emptyand so posi- preceding section. It is obvious from Fig. 3 that the high-bias
tive). The ground state of such system is a classical realizasonductance common to both localized insulator and disor-
tion of a Coulomb gaf:” Screening a probe positive charge dered metal plays the role of the high-energy backbone DOS
at T=0 was studied numerically. It was shown that for aobtained from the scaling ansatz by combining the dielectric
given realization of impurities, the screened potential of theconstant of Eq(3.9) with the Coulomb gap of Eq3.2). The
probe charge is almost random in sign and its absolute valudistinction between metal and insulator becomes clear only
decays as 1/ To understand the origin of the random-sign when the DOS departs from the backbone at low energies.
potential for a single realization of potential, recall that in theFrom the data, this departure occurs near an energy scale of
ground-state electrons are correlated in space or, in oth@bout 0.5 meV.
words, positive donors alternate with neutral ones. The probe While the scaling ansatz cannot calculate the value of the
positive charge can attract a new electron to the nearestxponent describing the power-law backbone DOS, the ex-
empty donor. The positive donor left behind attracts a newperimental data does yield this number and the value of the
electron to another of its neighbors, and so on. As a result associated scaling exponent. According to E810, the
chain of new alternating positive and negative charges cahigh-energy backbone DOS near the critical density for both
appear. Such a chain has random direction and length and moetals and insulators depends on a single expomeand
symmetry. It is clear that the sign of the potential, for ex-should go adN ()=~ From the data of Fig. 3, in the
ample at the end of the chain, is random. Huge cancellationgias range 1m¥% V<50 mV we obtainG(V)«V™ with val-
appear when we average over many different realizations afes for the exponenh=0.45+0.2 covering all the samples
impurities or over different configurations of chains. As ameasured. This giveg=3/(1+m)=2.1, which is certainly
result spherical symmetry is restored and an exponentiallyithin the theoretically required boundsdy<3 and in fact
small positive potential survives. This picture has been genis essentially the same as the valge 2 reported by Hertel
eralized for a description of the Rudderman-Kittel exchangeet al!* in barely metallic NbSi alloys. Since this value fgr
interaction in a disordered met&. was obtained from the high-energy DOS, where metals and

An alternative explanation was recently suggested by Sinsulators share a common DOS character, and from many
and Varmd! who argued that, contrary to previous asser-different samples both below and abavg, we believe it is
tions, direct Coulomb interactions do lead to a gap in thea reliable value. We do wish to emphasize that, in our inter-
averagedn/du when the density is low enough in a 2D pretation, the approximately square-root behavior of the
system. They suggest that the incorporation of this result int@OS at these high energies is unrelated to the AA exchange
the charge diffusion models of Refs. 12—14 could generate eorrection, which is important only at energies< §~0.4
realistic description of the transition from diffusive metal to meV in the metallic state.

Coulomb glass insulator. The exponeni can also be examined, though less defini-

Finally, Fig. 6 presents numerical calculations of DOStively than . On the metallic side of the MIT this can be
spectra of the impurity band model obtained by computeone using Eq(3.15. The measured ratio of zero-bias con-
minimizations of the total energy of the system in the frame-ductances for the two metallic sampl&;;§0)/G150)
work of our scaling ansatz model. To describe the MIT at=1.7. Relating this conductance ratio to the ratio of the DOS
n<ng, n=ng, and n>n., we use Coulomb potentials and using Eq(3.15, we obtainy(3— 7)~0.77. Taking»n
modified by Egs.(3.6), (3.9), and (3.13 respectively. For ~2 from the preceding analysis, this gives-0.77. Alter-
concreteness, we assumg=2 and U(r)=(R/p)? for n  natively, » can be estimated independently using data from
=ne; UM)=(p?+&)YRIp? for n<n,; U(r) the insulating samples. Figure 7 shows the measured Cou-
=R?/[ p&(expplé—1)] for n>ng. Here,Rznc_l’3 is the av-  lomb gap widths for four insulating samples plotted against
erage distance between donors at the transilibis mea- normalized dopant density. The data fit a linear function very
sured in units ofe?/ kyR, and p?=r2+ (R/2)%. The R/2)>  well with nearly zero intercept, i.es(n)=(1—n/n.)” where

0.1

g(e)

IV. ANALYSIS OF THE TUNNELING DATA
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25 T T T tively. These values are in reasonable agreement with Eq.
Si:B % (3.5 usingv~0.7 and lengtra=7.5 nm, which is close to
2.0 R the average distance between impuritiesat 6.3 nm.
i~ —£5-8 e ¢ It is necessary to discuss whether the scaling ansatz of
E 15F | @ kT I . Sec. lll should be really applicable to the experimental situ-
= z}” ation of Sec. Il. First, there is a problem with the weak com-
5 1.0F /,/ + . pensation of the Si:B samples used. Indeed the theoretical
M %,' + discussion starts from the picture of a classical Coulomb gap.
05 . In the impurity band of a lightly doped semiconductor, the
Coulomb gap is most pronounced for degrees of compensa-
0.0 L L L tion (ratio of minority to majority impurity concentration
0.00 0.05 0.10 0.15 0.20

comparable tc. (In this case, a large number of impurities
are charged, but the peak of the DOS is still not too broad.
Then with increasingn the Coulomb gap evolves according
to the predictions of Sec. Ill. In uncompensated lightly doped
semiconductors, all majority impurities are occupied in the
ground state and therefore are neutral. There is a large Mott-
. Hubbard gap that separates occupied states from empty states
y~1.0. From Eq.(3.12, we havey=7v, so that if»=2, 4 5 second electron on an impurity. Disorder is very weak
then the gap width data imply that=0.5. Figure 7 also  pecause there are no random charges. So the Mott-Hubbard
shows that, in agreement with E.12, the values offo  gap at the Fermi level of a lightly doped uncompensated
measured from dc conductivity in the more insulating semiconductor is a real hard gap as opposed to the soft Cou-
samples, where the ES hopping law is followed most rigoriomp gap. Why then can we then talk about a Coulomb gap
ously, are of the same order as the corresponding valués of near the MIT? Bhatt and Rié® pointed out that at large
These values forzlobtalned from the tunneling qlatq can impurity concentrationsi~n, a new phenomenon that they
be compared to the independent data#6n) shown in Fig.  called selfcompensation can take place. Because of large
1. A simple power-law fit to the data in that figure givés overlap and strong positional disorder of their wave func-
=v(n—1)=0.71. Thus, ify is taken to be 2 in accordance tjons, some clusters of impurities can have large affinity to
with the DOS data, them~0.71. This value is comparable electrons and can ionize other clusters. As a result charges
to the values obtained from the DOS data analySiS. TherQ]\”” appear and a random potentiaj will close the Mott-
fore, we conclude that the DOS data support values for thgjybbard gap which is already narrowed at these concentra-
scaling exponents ofy~2 and v somewhere between 0.5 tions. Then our theory, developed for a compensated semi-
and 0.8, at least within the range ofn. covered by the conductor can work even for a nominally uncompensated
samples used. By way of comparison, in an insulating Si:Ryne. Similar tunneling experiments on compensated samples
crystal stress tuned to within 1% of , Ref. 25 found defi-  would be very important to find out whether they provide a
nite critical scaling of the dielectric constant in tie-0 similar DOS and whether it agrees with our theory.
limit with £~ 1.0. A second problem is related to the role of the Al electrode
The exponeni is commonly measured by examining the in the screening of the long-range Coulomb interactions. One
very low-temperature dc conductivity(T—0) as a function  can think that tunneling electrons typically penetrate a dis-
of doping and fitting the data to the form(0)~(n—n¢)”  tanceé into a semiconductor. The characteristic length)
for n slightly aboven. . For nominally uncompensated doped of interactions, which determines the DOSeat 5 (square-
silicon (Si:B,?® Si:P;** and Si:A$%, many such transport ex- root region is smaller thané. This means that the large
periments have reported values ferbetween 0.5 and 1, square-root region is robust with respect to screening by a
generally closer to 0.5 than to the=1 observed in most metal gate. However, the parabolic gap results from the Har-
other disordered conductors and expected theoretically. liree interaction between charges separated by distances
Si:B, for example, the exhaustive very low-temperature dc> ¢, Therefore, the Al electrode could produce substantial
conductivity measurements reported in Ref. 28 indicate thaimage charge screening of this interaction. Such screening
v=0.65. Thus our analysis of the tunneling data yield awas studied numericalfy for the case of a classical Cou-
value forv at least consistent with that obtained from trans-lomb glass and a metal electrode placed directly on its sur-
port measurements. However, the interpretation of the trangace. These computations show the bulk parabolic Coulomb
port data leading ta~0.5 in Refs. 28, 42, and 43 has re- gap near the surface can be closer to a linear one, rather than
cently been questionéd:* There is some evidence that if quadratic one. In our experiment, electrode screening may be
only samples within~1% of n. are used, then transport reduced by two factors. First, the Al electrode is backed off
measurements yield~1 instead. In fact, stress tuning of a the semiconductor surface by roughly 1.5 to 3 nm of S&3
Si:B samplé® across the MIT has been reported to givas  described in Sec. Il. Second, the Schottky barrier between
high as 1.6, although earlier stress experinfént® Si:P  the Al and Si can be as wide as 20 nm. The cumulative effect
reportedv=0.5. of these two barriers is to increase the distance between the
An estimate for the value of can also be extracted from charges and image charges to distaneg€s However, even
the data. Using Ed3.4) combined with the measured values if the gate is backed off, the parabolic gap should still be
of k and T, in Figs. 1 and 7 respectively, we obta§r=25, expected to fail at small enough energies. Surprisingly, the
30, and 40 nm for the 81, 86, and 90 % samples, respegarabolic gap is more robust than expected. There is strong

1- (n/nc)

FIG. 7. Full width 6 of the parabolic Coulomb gap in four
insulating samples plotted against{h/n;). The dashed line is a
linear fit.
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agreement between the power law for the Coulomb gap a%10% of the critical density of the MIT. At low energies
measured by tunneling and by bulk dc transport, which is nofe<0.5 me\) nonmetallic samples show an approximately
affected by electrode screening because the sample is maguadratic soft Coulomb gap across the Fermi level, while
roscopically thick -250 to 300xm) so that most of current metallic samples show a square-root cusp. At higher ener-
flows far from the Al contacts. If the Coulomb gap is de- gies, (up to 50 meV, both insulating and metallic samples
scribed byN(e)~¢P, then the ES model gives a hopping show a common DOS behavidi(s)~&™. with m slightly
exponent s=(p+1)/(p+4) for the conductivity o less than}. These features of the data can be understood
=g exp—(Ty/T)%}. For the 86% sample at 0.5 K, a power- within the framework of a scaling ansatz of the approach to
law fit to the tunneling data givgs= 2.2, so the predicted ES the MIT from the insulating side. By extending the semiclas-
value for s=0.52. Transport measurements on the sameical Efros-Shklovskii derivation of the Hartree Coulomb
sample in the same temperature range give a vsdti@.51  gap to include a spatial dispersion of the dielectric constant
*+0.02. The close consistency of the tunneling and transpoat small length scales, it was shown that at short length
results indicates that, to a reasonable accuracy, the tunnelirsgales (<¢), or high energies, spatial dispersionofjives
DOS reflects the bulk characteristics. rise to a common DOS that increases as a power law in both
Finally, we should mention that the definition of DOS metals and insulators. This is distinct from the Altshuler-
discussed in Sec. Il does not strictly coincide with the defi-Aronov low-energy square-root cusp in the DOS arising
nition of the tunneling DOS measured experimentally. Secfrom exchange correlations in weakly disordered metals.
tion Il dealt with the bulk DOS of charged excitatiofedec-  Only at long length scales, or, equivalently, low energies,
tronic polarong For a deep insulator these excitations weredoes a quadratic Coulomb gap become apparent in insula-
introduced in Ref. 7. Electronic polarons are responsible fotors, while metals take on a nonzero DOS across the Fermi
ES VRH. On the other hand tunneling experiments measurtevel. Finally, the tunneling results and the scaling ansatz
the one-electron DOS. For a deep insulator, a substantiguggest that a semi-classical approach may be used to treat
difference between these two DOS in the limit of small en-Coulomb interaction effects on the approach to the MIT from
ergies was predicted in Ref. 7, but was not reliably observethe insulating state.
in numerical simulations. We cannot resolve here this com-
plicated problem. It may happen that this difference can ex-
plain the apparent absence of the effect of the gate on the ACKNOWLEDGMENTS
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