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Trapped electrons in crystals are responsible for many important effects on crystals: lattice relaxation,
electron-ion correlation, lattice-frequency shift, and so on. These electron-phonon interaction effects cause
peak shifts and give rise to various multiphonon structures in the absorption and emission spectra of trapped
electrons. The present treatment for interactions of trapped electrons with a crystal does not include the
standard second-quantized field theory, which neglects the quantum many-body effects of crystals. Therefore,
up to now no universal light-absorption theory includes various effects of trapped electrons on crystals. For this
reason, a unified, second-quantized field theory of optical absorption, which contains both linear and quadratic
electron-phonon interactions is established. In this field theory we derive a universal, analytical spectral
function of the absorption coefficient, which describes the whole absorption spectrum of an arbitrary color
center[S0163-182609)02547-3

[. INTRODUCTION quired in quantum-mechanical theory the first line-shape
function of the main optical absorption band Bfcenter$
Pure alkali halide crystals are transparent throughout theut they only considered the linear interaction of the electron
visible region of the spectrum. The crystals may be coloredvith longitudinal-optical phonons of a single frequency,
in a number of ways, for example, by the introduction of anleading to a discrete spectrum due to multiphonon transi-
excess of the metal atom. A color center is a lattice defections. In 1952, Lax first adopted the generating function
that absorbs visible light. A prototype of color center ishe method to generalize the Huang-Rhys work to all phonon
center, which was suggested as an electron bound at a negaodes, and introduced the moments of the absorption band,
tive ion vacancy by de Boer in 1937The main absorption which can determine the values of theoretical parameters
band ofF centers is a strong, wide, bell-shaped band that liefrom experimental absorption band shapetn 1953,
in the visible region of the spectrum. In the same year, PohlO’Rourke made an artificial assumption that the photon-
recognized that the considerable widths of the characteristi;iduced electronic transition accompanies a small change in
absorption curves df centers are caused by the coupling of the lattice vibration frequencies, and thereby he followed the
the electronic motion in th& center to the ionic lattice. approach of Lax to show variation of the frequency of the
Recently there has been a growing interest in developingight-absorption maximum with temperattftén 1954, Kubo
color-center laser$The motive is prompted by the realiza- and Toyozawa developed a universal form of the theory of
tion of soliton propagation of picosecond pulses from amultiphonon transitions with the generating function method,
mode-locked color-center laser in an optical fibdn the  the universal form that does not depend on a concrete physi-
present optical communication systems, the transmitters aflal model of color-center structur&3with this theoretical
use coherent pulses of laser light and the transmission medfarm they discussed the shape of the absorption band and the
are single-mode silica-glass fibers. There are two maiprobability for nonradiative transition of a trapped electron.
physical effects that limit the transmission of pulses in opti- If the defect site is a center of inversion, the linear
cal fibers: loss and dispersion. Since the zero-dispersioslectron-phonon interaction will vanish by symmetry for the
wavelength is 1.32wm, this has become the wavelength of vibration modes of odd parity. In 1965, Keil presented the
choice for optical fiber communication. However, typical quantum treatment of optical-absorption line shapes due to
commercial silica fibers have a minimum loss of 0.2 dB/kmthe quadratic interaction of the electron of such a defect cen-
at the wavelength 1.55m. Hasegawa pointed out that non- ter with odd-parity mode¥’ In 1978 and 1979, Barrie and
linearity of the index of refraction could be used to compen-Chow!! and Barrié? calculated the optical-absorption line
sate the pulse broadening effect of dispersion in low-losshapes of defect centers in the case of both linear and qua-
optical fibers, i.e., soliton effectsTo observe soliton effects dratic electron-phonon interactions. However, the lattice part
in low-loss optical fibers, we have to work in the loss mini- of their Hamiltonian was not second-quantized according to
mum at 1.55um. Mode-locked color-center lasers are thethe standard quantum-field theory, because each vibrational
only candidates capable of tuning over the wavelength remode was represented by a pair of raising and lowering op-
gion near 1.55.m. After color centers are optically excited erators for phononS When calculating with this Hamil-
by a pump source, their emission band is Stokes-shifted taeonian, they met many difficulties: neglect of the virtual parts
wards the infrared region from the absorption band in theof the Hamiltonian having two raising or lowering operators,
visible region. which obviously loses much information, no ability to obtain
Although the basic mechanism underlying the absorptioran analytical expression for the line-shape function from the
of color centers is clear, no quantitative theory of the absorpgenerating function, and so on.
tion curves had been given. In 1950, Huang and Rhys ac- As we have seen, the above-noted authors all under some
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approximation discussed a partial effect of multiphonon trantainsf vibration modes and under the harmonic approxima-
sitions due to electron-phonon interactions. The present thedion the f vibration modes correspond foquasiparticles or
ries of light absorption by defect centers bear the followingharmonic oscillators. Our model system is therefore reduced
four shortcomings(1l) Most of the theories do not deal with to a coupled system consisting of a trapped electronfand
quadratic electron-phonon interactiofi) The theories can- harmonic oscillators. In the discussion of this section, we
not treat the linear and quadratic electron-phonon interacalways adopt the Schdinger picture and neglect the elec-
tions simultaneously(3) One just obtains the line-shape tronic spin coordinate. At present, we take the orthonormal
function of the fundamental absorption band ofFakenter. Vector||7’{q'u}> as the basis vector of the coordinate repre-
(4) One still cannot describe the whole absorption spectrumentation for the electron arfcharmonic oscillators. Under

of an arbitrary color center. In view of these circumstancesthese prescriptions, the Hamiltonian operator of the system is
we want to develop a unified, second-quantized field theory

of optical absorption, which contains both linear and qua- =0 r“* +H = TH(F 21
dratic electron-phonon interactions. In this field theory one o(1P)+Hp(@.P)+H (1), @1
can derive a universal spectral function of light absorption by4re |:|e(; 6) is the Hamiltonian operator of the trapped

defect centers, which can reproduce the above-mention€gatron, which includes the electronic kinetic energy and the
various approximate results. The present paper is Complet%jotential energies of the electron in the perfect-crystal and

just under_the guidance of th|s_|dea. . . defect fields, and and p are the position coordinate and
The universal spectral function of the absorption coeffi-

cient is finally reduced into an analytical expression in theTomentum operator of the electrdr,(q,p) represents the

configurational coordinate model. This spectral function posHamiltonian operator of crystal vibrations, whegeand p

sesses the following three advantagé®) it includes a stand for the sets of canonical coordinates and canonically

weakly nonlinear electron-phonon interaction that prevails inconjugate momentums of vibration modes, namety,

all color-center crystals;2) it can describe many absorption :{qﬂ} and ,5:{,?)#}, uw=1,23...,f. Under the harmonic

bands of an arbitrary color centd8) it includes all phonon  approximation for interatomic potential energy, one finds

modes via an effective frequency. One will see that this spec-

tral function cannot be derived in classical quantum mechan- N . 11

ics. Hp(a,p)= Z (zpfﬁ EwiQi>, (2.2
The remainder of this paper is organized as follows. Sec- pot

tion Il describes our physical model and derives the secondwhere w,, is the frequency of theuth vibration mode.

quantized Hamiltonian of the model system. The expressiofy (r:q) is the interaction energy of the electron with the

of the absorption coefficient in terms of a temperaturevprating crystal. Expanding it to the quadratic term dn
dependent double-time Green'’s function is obtained in Seqeads to

[ll. In Sec. IV, by calculating the Green'’s function, we find

the spectral function of the absorption coefficient. In Sec. V, = _ o o .

a general solution of the overlap integrals is acquired and its H,(r;q)=— Z a,(raq,+ 5 2 @ (10,0,
simplified forms under several approximations are discussed. n=t pop' =1

In Sec. VI, We_fmd the expression of the spectral fun_ctlon iNyvhere the zeroth-order terﬁifo)(F) has been already incor-
the weak nonlinear case and, as an example, use this expres- Ca A

sion to describe the light-absorption band shapé& pfcen- ~ Porated inH(r,p) in advance. o _

ters. The summary and discussion are given in Sec. VII. In order to proceed with the practical discussion, we make

an assumption tha})MM,(F)ZO whenu# u'. This assump-

tion is a rather crude approximation, as it neglects the eigen-
Il. HAMILTONIAN OF THE MODEL SYSTEM vector effect of ions, the effect that the eigenvectors of ions
change from those of the perfect lattice, particularly for ions

We first establish a model system for discussion. A gen- S X
4 J {n the vicinity of the defect. Under the assumption, we have

eral concentration of defect centers in crystals is abou

5x 10 centers/cr, and so the mean separation between f 1t

defect centers is about 270 A. Since 270 A is much larger N ) — oo SN2
Hi(r;q)=— a,(rg,+= r . (2.3

than the extension of the wave function of a trapped electron (ria) ,Z’l w1 2,;1 Oy (23

in polar crystals, the interaction between defect centers in

polar crystals must be very small. Thereby, we ignore thi§nsertion of Egs(2.2) and(2.3) into Eq. (2.1) produces the

interaction and consider a single defect center in polar cryst-Otal Hamiltonian operator as

tals. Because a single-electron transition is the simplest case f

for the study of photon absorption, our model system con- |:|=|:|e(F, B)+ 2

sists of an electron bound at a defect center in a polar crystal. w=1
Let the perfect crystal lattice havwe primitive cells and ;

each cell have basis atoms, so that the number of degrees of n 1 S o (NP 2.4

freedom of the lattice is[Sr. Introduction of a single defect 2= M Qo '

center into the lattice decreases its number of degrees of

freedom by a quantity, and so the imperfect crystal lattice ~ Hamiltonian (2.4) describes the coupled motion of the

has the number of degrees of freeddm3Nr—s. In the trapped electron and the lattice ions. There exists an adia-

dynamical theory of crystal lattices, this crystal lattice con-batic approximation to separate the electronic and ionic mo-

f

1 1 -
oy 2.2 -
Ep#+ Ewuqu> _Mzzl a,(r)a,
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tion. In second-quantized field theo’r‘il,the adiabatic ap- A R .

proximation indicates that the electronic and ionic motion wnm:J ui (N, (rup(rdr.

can be described by two coordinate-dependent field opera-

tors. If we express the electronic operators in Hamiltonianin the mixed representation, the complete orthonormal basis
(2.4) in the second-quantized form, the total Hamiltonianyector of the Hilbert subspace of the electronijs=a/|0),
operator is given by where|0) stands for the vacuum state, while this vector of
the Hilbert subspace of thieharmonic oscillators i${q,,}).

H:f \TIT(Ft) I:|e(F 5)_é 3 (F)q Therefore, the complete orthqnormal basis vector of the
' = mixed representation is given &/[0)|{q,.}).
¢ ¢ Equation(2.7) is not diagonal in the Hilbert subspace of
E S o NG| FEHdi+ S }Az 1 2 2 the electron, and the nondiagonal matrix elements are as fol-
+ > 2, ww(r)q#}\lf(r,t)errM=l (zpﬁ Zw#q#), lows:

(2.9

where ¥ (rt) is the electronic field operator, namely, the
second-quantized wave function of the electron. The elec-

tronic field operator meets the equal-time anticommutatiorn Static coupling theory; these are just the perturbation
relations: operators of nonradiative transitions of the trapped electron.

In a nonradiative transition, the electronic energy change is

[@(F,t),@*(?’,t)Lz5(F—F’), c_ompensated entirely by multiphonqn_emission or absor_p-
tion. As we take only account of radiative electronic transi-
tions, we have reason to omit the nondiagonal matrix ele-
ments. This approximation is equivalent to the Condon
dapproximation adopted in a theory for radiative electronic
i[ansitions in solids. In this theory, the electronic wave func-

f
A 1 -
<||H|I >:21 _aii’ﬂq#+§wii’#qi yo 1FE
n=

[P0, ] =[P, ¥, )], =0.

To discuss the following problems we employ a mixe
representation in which the occupation number represent
tion is used for the electron, and the coordinate represent
tion is used for the harmonic oscillators. A complete ortho-
normal set of solutions to the classical time-independen

ions are functions of oscillator coordinates, and thereby the
electric dipole matrix elements between the electronic states
gepend on oscillator coordinates. The Condon approximation
. . L ~ states that the dependence of the electric dipole matrix ele-
Schralinger equation of the electron is given BWi(r)},  ments on oscillator coordinates is neglected. As a result of
whereu;(r) satisfies the equation our approximation, the total Hamiltonian operator diagonal
in the Hilbert subspace of the electron is obtained as

He(r,p)ui(1) = sui(r) f
ande; is theith energy level of the eIectr(zn. We now expand H= E giai’fai_ E_ 2 aiméféiqﬂ
the electronic field operator in terms of(r) according to : w=lo

14 "1, 1

a R N - o Ata 42 A2, T 242

D= aun). (2.6 t3 2 2 endladt 2, (2"#*2“’#%)'
I
- R (2.9
Herea;(t) anda;‘(t) are the annihilation and creation opera-
tors for theith electron state and obey the equal-time anti- The particle number operator for thth electron state is
commutation relations: defined asN;=aa;, whose eigenvalues arg=0,1. Since

R - R R R " we are concerned with the single-electron problems, the total

[ai(t).a), ()], =& .[a(t),a.(1)], =[a](1),a,()],=0.  particle-number operator is yielded as

Putting Eq.(2.6) into Eq. (2.5, we obtain the Hamiltonian

operator in the mixed representation as follows: N=> ala=1. (2.9
I
f
H—E eala — E a., afa q Substitution of Eq(2.9) into Eq.(2.8) results in
= &g g i’ u@i Airdy
' =1
1 g 2 f 1"2 1 242 FI:Z Siéi}réi_l—Ei érél
+§#2=1 % wii,#aiai,qﬂ—l—#:l Ep#—l—iwﬂqﬂ ) f
(2.7) xS |20 2 (2t oy 02y (2.10
. = Zp'u‘ 2 W, T Wi ), e .
where we have used the notation )
Setting

awff uf (Na,(r)ui(nadr, 03, =0’ + o, (211
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in the future discussion. The lattice-frequency shift effect is
A =— (2.12  due to the quadratic electron-phonon interaction.

i In the above-mentioned mixed representation, if we ex-
press the operators of tid@armonic oscillators in the Hamil-
tonian(2.16 in the second-quantized form, the Hamiltonian
operator reads

Eg. (2.10 reduces to

f f
“ 1 ~pn ~on
A=> (si—z Ew?MA?M)afaﬁ > ala

f
i =1 i =1 ~ Agn PN ~
’ : A= Eala+X X afa | ¢L(a,.0)
1., 1 =
X[ 5Pnt 5 0n (A= A7), (2.13 1,1, )
Again letting
f where c}:#(qwt) is the field operator of the«th harmonic
E g — z E 2 52 21 oscillator uncoupled with théth electronic state. The field
i—&j wI,LL i ( . 4) . . . . .
=12 operators satisfy the equal-time commutation relations:
Gi,=0u— AL, (2.15 [@u(a,.0).0h(a, D]-=da,—q,),
(2131 - R —rot oS _
Eq (2 13) 1S Of the form [(P,u(q,u 1t)1(p/,L(qp, lt)]*_[(Plu(q,u. vt)v(P,u,(q,u, 1t)]*_0
f : .
. nin en (1a, 1 In the following, we also employ the occupation number
— T T 2 2 2
H_Ei Eia; ai+2 ,;1 ajai| 5Pt E“’wau> representation for theharmonic oscillators in addition to the

(2.16 electron. A complete orthonormal set of solutions to the clas-
sical time-independent Schiimger equation of theith har-

Equation(2.16) shows that the Hamiltonian operator of the monic oscillator coupled with thigh electron state is of the

system is resolved into two parts. The first part represents thigrm

renormalized Hamiltonian operator of the trapped electron,

and the second one is the Hamiltonian operator off thar- "

monic oscillators coupled with the electronic states. Xiun(di) = ey
As we can see from the above discussion, the interaction . n (2.18

between the trapped electron and the lattice vibrations has '

three effects(1) The lattice relaxation effect: the electron Wheream=(ww/h)l’2, H,(x) is the Hermite polynomial of

induces a force on the lattice ions, causing a nonunifornordern, andX;,,(q;,) satisfies the equation

displacement of the ionic equilibrium positions. The equilib-

rium displacement of thath vibration mode is given by;,

in Eq. (2.12, which is different for each electronic state. The

lattice relaxation effect is due to the linear electron-phono

interaction.(2) The electron-ion correlation effect: owing to . ) s .

lattice relaxation, the electron readjusts its probable distributh harmonic oscillator coupled with thén electron state is

tions so that the electronic self-energy is at a minimum. Th&cCuPied byn quasiparticles, i.e., phonons, whose energy is

. l . . . _ .
renormalized electronic self-energy is given By in Eq. fiwi, While 3h;, is the cprre_spondlr_lg zero point energy.
Therefore, the electron-lattice interaction is called frequently

f 1 2 A2 : H
(2.14. 2, 7 wj,Aj, is the elastic energy required by lat- yhe electron-phonon interaction. We now expand the field
tice relaxation and characterizes the coupling strength of the

electron with the lattice vibrations. The electron-ion correla—Operator‘p#(q# 1) in terms of{an(qiM)} as

1/2

2 2
H n(ai,u,qip,)e_ ai'“qi/"/zu

~2 1 2 42 1
Ep,u,+ Ewi,uqi,u, Xi,un(qiu):(n-‘r f)hwi,uxi,un(qi,u)-

qu can say in images that tmth energy eigenstate of the

tion effect is also due to the linear electron-phonon interac- o
tion. (3) The lattice-frequency shift effect: the electron modi- ;,M(q# H=> an(t)xmn(qm)- (2.19
fies the forces between the ions, leading to a shift in the n=0

vibration frequencies of the lattice. The lattice-frequency - oy R :
shift depends on the electron states and the renormalize"d'ere bi,n andbj,, are the annihilation and creation opera-

lattice frequencies; , are given by Eq(2.11). As shown by tors for thfa nth gigenstate Qf theuth harmonic oscillator
Eq. (2.16), the energy of the electron-phonon system is thec.oupled with the|th ele_ctronlc state. They obey the equal-
sum of the electronic and vibrational energies. Since the sydime commutation relations:

tem’s energy is constant in thermal equilibrium, the conser- N

vation of energy requires that the phonon energy increase [biﬂn’b:n’n’]*zéw"snn”

when the electron energy decreases frgnio E;, so that . . <t ot

w;,>w,. If the energyE; of the electron statg is higher [biynbigrn 1-=[bj,n.b; ., 1-=0.

than the energ¥; of the electron statg the conservation of )
energy still requires that the phonon enetgy, pertinent to The phonon-number operator for theth harmonic-
the statg be lower than the phonon energy,, pertinent to  oscillator eigenstate is given bywn=brunbmn. Since we

the statd, i.e., wj,<wj, . This energy relation will be used are considering the second quantization of a single
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harmonic-oscillator wave field, the total phonon-number op- o ot

erator for theuth harmonic oscillator is the identity operator x(w)= JO f(t)e'“'dt.
- The corresponding complex dielectric function is given by
Z bin=1. e(0)=1+ x().

We further assume that the monochromatic light is a
Substituting Eq.(2.19 into Eg. (2.17, one acquires the plane wave propagating in ttedirection,
Hamiltonian operator in the whole occupation-number repre-

sentation as E(t)=|§0 exdi(kz—wt)], (3.3
wherek is the complex wave number and obeys the relation
H= Z Eala, +2 a'a; E 2 fiwi,(n+)B],0Biun . k?=(w/c)?e. If we introduce the complex refractive indék
p=1n=0 by N?=¢, thenk=(w/c)N. Separating the real and imagi-
(220  nary parts of the dielectric function and the refractive index,
In the whole occupation-number representation, the Hil- e(w)=€1(w)+iey(w), (3.9
bert subspace of the electron is spanned by the complete
orthonormal basis vectots) =a/|0), while the Hilbert sub- N(w)=n(w)+iK(w), (3.9

space of the harmonic oscillators is spanned by the COM-\yheren is the real refractive index and is the extinction

f
plete orthonormal basis vector§n,})=II, 1b|,un 10).  coefficient, the two relations below follow:
Therefore, the whole occupation-number representation has

the complete orthonormal basis vectors e1=n’—K?, €,=2nK.
The complex wave number acquires the following expres-
i, nhy= aTH bl,un |0). (2.21) sion from Eq.(3.5):
no oK
The set{N;} of electron-number operators, the 5&;%} of k=—o+i—- (3.6

phonon-number operators, and the Hamiltonian open?itor Substituting Eq(3.6) into Eq. (3.3) leads to
constitute a complete set of commuting dynamical variables

determining the system, and the common eigenvectors of this _ R oK nw
complete set ar¢i,{n,}). In the eigenstate§i,{n,}), the E(t)=Eq ex;{ ——z)exp{'(—z wt” (3.7

energy eigenvalues of the Hamiltonian operdtogiven by

Eq. (2.20 yield As seen from the last equation, the light wave is damped,
describes the absorption of the wave in the medium reitel
dispersion.

E(i{n.})=Ei+ 21 (N, +3)haw,. (2.22 At this point, the cycle-averaged intensity of the electro-
=

magnetic wave is obtained from the electric field as
The eigenvalues and eigenstates of the electron-phonon sys-
tem in the adiabatic approximation are often called

c
=T : APPTO: | = — ege,E2 exp( — 12), 3.8
vibrational-electronic, or vibronic levels and states. 2n €0€150 A= 72) (3.8

where 7 is the absorption coefficient of light defined hy
Ill. EXPRESSION OF THE ABSORPTION COEFFICIENT =2wK/c. By use of the relationg,=2nK and e=1+ y

Let a beam of monochromatic light of frequeneyenter ~ the absorption coefficient is reexpressed as
an isotropic dielectric crystal. The electric field of the light

can be written in the complex number form 7 w)= wlm—X(w) (3.9
nc
E(t)= et (3.D)  where Im denotes the imaginary part. As known from the

above discussion, the absorption spectrum of the electromag-

The electric polarizatioP(t) in the crystal and the exciting netic wave energy in the dielectric crystal is determined

electric fieldE(t) satisfy the causal relation completely by the absorption coefficient, and again the ab-
t sorption coefficient is decided by the imaginary part of the
S0+) — INE(+) 4+ lectric susceptibility. In what follows, we formulate the
P(t)= f(t—t")E g Sect - ; e
® EOJ’ (t-tHEE)at, 32 electric susceptibility adopting Kubo’s linear response
_ o theory®
where € is the permittivity of vacuum and(t) represents Now we conceive a statistical ensemble, of which every

the complex linear response function of the crystal o thesystem is just the model system that we have discussed in
electric field. Putting Eq(3.1) into Eg. (3.2) gives P(t) Sec. Il. The natural motion of the system is determined by

=eox(w)E(t), where we define a complex, frequency-the Hamiltonian operatafl in Eq. (2.20), the statistical en-
dependent, electric susceptibility semble in an equilibrium state is described by the density
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operatorp, and both operators satisfy the relatipi,p]_ B foa 1 t A
—0. If the model system is acted upon by the electric field of 2Px(D)=TTAp(DP == 711 | exg—i(t—t")H/A]
the light polarized along th& direction, the system gets a

perturbation energy A . P, e
X[px.plexdi(t—t" ) H/A]pEx(t’)dt

H' ()= — pyEx(1), (3.10

it -
“ == t—t"), E, (t")dt’. 3.1
where p,= —ex is the x component of the electric dipole ﬁﬁm([Px( ) PDEAY) (319

moment of the trapped electron and the position vectof - Sa s
the electron with respect to the defect center has a compd_—'ere’ we have utilized the average notatigh)=Tr(pA)

nentx. For simplicity, in Eq.(3.10 the local electric field at andpx(t) is the operator in the Heisenberg picture defined by
the defect center is replaced by the macroscopic electric ~ .
fleld px(t):elH’[/thelet/ﬁ'

In the presence of the external perturbation expressed b . . . .
Eq.(3.10, the motion of the statistical ensemble is described? Px(t) is called the linear response of the physical quantity

by the density Operatoﬁf(t) which obeys the Liouville py to the external field,(t). Let C be the number of defects
equation ' per unit volume; then th& component of the electric polar-

ization in the crystal is given bp,(t) = CAp,(t).
3 1 After we insert the electric field of the linearly polarized,
—p'()==H+HA"(1),p"(D)]. (3.1)  Mmonochromatic, incident lightE,(t)=E,exp(-iwt), into
ot i Eq. (3.14), thex component,(t) = CAp,(t) of the induced

] ) } - electric polarization can be conveniently written in the form
Assuming the adiabatic conditiog,(t= —«)=0, then the

system at= —o is in a thermal equilibrium state. The cor- P, (1) = eox(w)Ey(t), (3.19
responding density operator of the ensemble is given by
where the electric susceptibility is expressed as
- . exp—pBH) .
! t=— =p=—F, 3'1 |C . N ~ iot—s
prt=—=)=p Trexp(— BH) (312 X((U)Zﬁ—‘EO lim fo ([px(t), pxl)e™*dt,
e—0"

where=1/kgT andT is the temperature. It is supposed that 4, the infinitesimal positive is used to assure the conver-
the light field is sufficiently weak that we can expapt(t)  gence of the integral. Considering that the orientation of the

as electric dipole moment of the trapped electron is arbitrary,
the expression above has to be averaged over the three di-
f;’(t)zfﬁAﬁ(t). rectionsx,y,z, so that we have
Since we consider only the linear response, the second-order ic

X(o)= g m [ “(B.pye T @16

small amount iM p(t) can be neglected when we substitute .0

the above expansion into E€3.11). After doing that, one
can obtain the differential equation with an initial condition wheresz —eris just the electric-dipole-moment vector of
the electron.
Jd - 1 . - 1 A A Now, the electric susceptibilityy(w) as given by Eq.
EAp(t)_ E[H’Ap(t)]_ EEX(t)[pX’p]’ (3.16 is closely related to a temperature-dependent double-
time Green’s function. These Green’s functions were first
introduced by Bogoliubovet all’ The retarded Green’s

function ((A|B)),, for operatorsA and B is defined in a

where Eq.(3.10 has been used. complexw plane by
Equation(3.13 is an inhomogeneous linear differential

equation of first order aboutp(t), whose solution is easily (A B))w:ifxdteiw%[,&(t),é]), Imw>0
found to be 2mi Jo (312

Ap(t=—)=0, (3.13

- 1 [t , - S Aoy : ,
Ap(t)=— ﬁﬁ exd —i(t—t") AR Pe.p] whereA(t) is the Heisenberg operator with

A A(t):eiﬁthe—iﬁt/ﬁ.
Xexgi(t—t" )H/R]E(t")dt’.
i One can show that the Green’s functig|B)),, as defined
Therefore, the changap,(t) of the x componentp, of the by Eg. (3.17) is one branch analytic function ab in the
electric dipole moment due to the electric field of the light isupper half plane outside the real axis and that it obeys the
statistically given by equation of motion
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oA 1 .. 1 . the Hamiltonian operatdt given by Eq.(2.20 has the sym-
“’<<A|B>>w:§<[A'B]>+ﬁ«[A'HMB»w' (3.18 metry with respect to the electron and phonon operators
while afa; does not.

In order to avoid this difficulty, we introduce the creation

and annihilation operatofs],, ,b,, of free harmonic oscil-
w w

lators, where the word “free” means the vibrational eigen-
states independent of electronic states. These operators meet
the identity relation in the state space of interest,

By comparison of Eq(3.16) with Eq. (3.17), we can imme-
diately see the relation

B 2wC A a
X(w)__% lim E <<pa|pa>>w+isv (319)

o
e—0"

wherea=Xx,y,z and w takes real values.
Next, we put Eq(3.19 into Eq. (3.9 and introduce the z

: . o EBI -o-bl by by =1.
spectral functior(w) of the absorption coefficient by o th Ps TPy Py

P1

AMew . Thereby, one can make a transformatfon
Flo)== 27> Im I (PalPa))oic. (3.20

~ ~ A-I- ~
0 ((ajajlaj,ai)).,
where m, is the electron mass. Therefore, the absorption
g : . SO PO o apa
coefficient n(w) has a simple expression :{;} <<ai‘fajb‘lrpl. . -b;rpfbfpf- . 'blp1|aj'ai’>>w' 4.1
e
n(w)= mF(m). A complete orthonormal set of eigenfunctioXs(q,) of

the uth free harmonic oscillator has the same functional
This reveals that the absorption coefficient is completely destructure as Eq(2.18. The field operatok,,(q, ,t) of the
termined by its spectral function. The dipole-moment operaxth harmonic oscillator can be also expanded in terms of
tor E)a in Eq. (3.20 is expressed in the electronic coordinate{X,,(q,)} as

representation. We need the expressiorpgfin the elec- o

tronic occupation-number representation. Using the second- > _ P

quantized f%rmalism in Sec? I, we can writegthe dipole- @M(q#,t)—go uup(1)Xp( ) “2

moment operator in the form . N N
From Egs.(2.19 and(4.2) it follows thatb;,, andb,,, are

linearly related by

ba:iEj paijé;réj: (3.21
wherep,;; is the matrix element of the dipole-moment op- E),up:nzo Cilt(Ai)bin, (4.3
erator of the electron between the two electronic statexl
J with
pai,:J uF (r)(—er),ui(r)dr. c‘pf;(Am)=ﬁ X* (0,0 X un(,— Ai,)dG,
Substituting Eq(3.21) into Eqg. (3.20 immediately leads to Putting Eq.(4.3) into Eq. (4.1), we arrive at
dMme.w | ntn o nton
F(@0)=— oo M MY, > PaiiPuirir ((afajlaj i),
3he . JFa)
e0t LA
Ny At oA — Clir (A
X<<aiTaj|aJT’ai’>>w+iav (322 {mEﬂ} {nEM} 1;[ mMnM( jl,u)
so that the Green’s functior($a/a;|a,a;/)),-, determine X ((@la;Bim, Bl By, By, 2181 ) )

the absorption spectrum. In the following section, we shall
give an explicit evaluation of these Green'’s functions by uti-

lizing the Hamiltonian operatdd in Eq. (2.20), the density
operatorp in Eq. (3.12, and the equation of motion in Eq.

(4.9
whereA;; ,=A;,—A;, denotes the relative equilibrium dis-
placement of theuth vibration mode between the two elec-
tronic states andj, and CH{;(AM) are called the overlap

(3.18. integrals between the vibrational eigenfunctions appropriate
to the electronic statdsandj,
IV. EVALUATION OF GREEN’S FUNCTIONS
_ If we_ use the equation OfA'ErTlOt'Pﬁ'lsb for Green'’s func- C%ﬁ(AJiH): 2 Cipﬂn:(AiM)ij%(AjM)
tions directly to calculat€(a, aj|aj,ai,>>w where w takes p=0

complex values, this equation will lead in the familiar way to w0

a coupled hierarchy of equations for Green’s functions of =j X m(d,) X un(d,— Aji ) da, -
higher and higher order. The reason for this difficulty lies in -

the fact that in the commutatéa;'a; ,H] of this equation, (4.5
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Now, we can apply the equation of motidB8.18 for R c
Green’s functions directly to evaluate the Green’s function ¢,(9,)= > Bj unXjun(du—Aj,)
on the right of Eq.(4.4). The equation of motion for this n=0
Green’s function reads

= Z Bi#pxiup(qM_AiM)'

(818D 1m, - Blim,Bytn -+ Byany 8], 21 ). "

1 o A o From these two expansions it follows tkﬁ;;m andan are
:Eqa‘ ajbiTlml' ) 'binmfbjfnf' ) .bjlnl,aj’f,ai,p linearly related by

~ ~ ~ At oA I],u*
h(([a 3;b{1m, Bl Bitn, - Bjan, AllA]a1)). Bjun= 2 Con™ (Aji)Biyp

(4.6 whereCll#(Aj;,) are the overlap integrals defined by Eq.
~ (4.5). With use of this relation, the statistical average consid-
The commutator withH on the right of Eq(4.6) givesrise to  ered is finally found as
no higher-order Green’s functions, because the first term in
this commutator possesses the largest symmetry with respect

. al'a; b}, - bl bign - - b
to the electron and phonon operators. In fact, this commuta- (873 bim, ifmg=ifng jiny)

tor yields a term proportional to the first term in this com-
mutator. => E p(i {1, H C'“‘* Aji,)
Because it is for a single electron and harmonic oscillator Uut P
whose wave fields were second quantized, there is only one (I }|b b b .18,
“particle” in the electronic and each mode’s subspaces of ps1=i1my * 'fmf ifpe” " HiLpg | U wd /i
the state vectors in the trace. As a result of this fact, one can
easily find the two relatiort =p(i{m,}) &/ H c'Jﬂ* (Aji,)- (4.9
aTéjéh S ké-iTé-lv Equations(4.7) and (4.8) are repeatedly used in the follow-

4.7 ing derivation.
B BB =s.b B With the help of Eqs(4.7) and(4.8), the first term on the
Fam il i Cmiuniup - right of Eq. (4.6) is easily calculated as

biT,u.n
Furthermore, we need to carry out the statistical average of
operator products concerned. In the absence of externaJ_<[a [ ijn ...len ,éjT,éi,])
fields, the electron-phonon system is in a statistical equilib-27 1 e !
rium state described by the density opergi¢H) in Eq. 1
~ H I
(3.12. The action ofp on the vibronic state$2.21) in the =5 -Lp(idm.D) = p(j,{n.H 18 5/ H CJ”* (Aji)-
trace can be written as
4.9

p(F)]i{n.})=p(EG.{n})li.{n.}), The next task is to compute the commutator withon the

right of Eq. (4.6). The Hamiltonian operatoH of the
electron-phonon system is given by EJ.20. Utilization of
the relationg4.7) straightforwardly produces the result,

where the energy eigenvalu&i,{n,}) are given by Eq.
(222 and we will use the abbreviatiop(E(i,{n,}))
=p(i,{n,}). In what follows, we undertake calculation of

the statistical average of the typical operator product, N - .
[a a]bllm blfmfbjfn : bjlnlaH]

(812Dl Biin+Byiny) .

w;+§ [(@j,~ wi)(N,+3)

_ ~royata
—%} CRNGIEEY

ata it AR 0
+wm(nﬂ—m#)]] q; ajbilml' : 'bifmfbjfnf' : 'bjlnlv

><bllml : E)inmejfnf' : '6j1n1|k1{|u}>: p(ly{lu})

{14} where wj*i=(Ej—Ei)/ﬁ represents the renormalized transi-
- A | tion frequency of the electron from the stdteo j in the
X<{|M}|b'1m1 'fmfblf”f ' bilan uh) i - absence of multiphonon transitions. This result shows that

the operator product in normal-ordering form, i.e., the num-
To continue, we consider the expansion of the field operatober of lattice quasiparticles and electrons, is conserved by the
of the wth harmonic oscillator in the eigenfunction sets ap-interaction. Inserting this result into the second term on the
propriate to the electronic statesindj, right of Eq. (4.6) immediately yields
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f o . ot interaction strength. Combining Eq&t.9) and (4.10 into
_<<[a ajb|1m ) bifmfbjfnf' : 'bjlnlvH]|aj'ai’>>w Eq. (4.6), we get

= wﬁ-’-% [(wJ-M—ww)(nﬂnL%)+wiu(nﬂ—mﬂ)]} (w_wﬁ_g [0~ @i) (Nt 2)* 01, (= my)]

e L atn
e < g x((alajbl, - bl bifn.- - -bj1n|al &
><<<a anllm : bi-rfmfbjfnf' : 'bj1n1|ajrai’>>w. << ! Ilm Ifmf 1 1m I >>w

(4.10 :_[P(l {m,u}) p(i, {n#})]én’a” H C”'u* ]m)

This reveals that the equation of motion for Green'’s func- (4.11
tions contains only Green’s functions of the one kind, i.e., isAs shown by Zubare¥’ the solution of Eq(4.11) compat-
self-contained, and can be solved to any desired order in thile with the definition of Green’s functions is given by

~ at A 1 )
<<a a]bllm b|fm bjfnf' : 'bjln1|aJT/ai’>>w:E[P(|a{m,u} —p(j, {n,u})]‘su 5“ H CIJ#* JI,u.)

-1

X w—wﬁ—% [(ij—wiﬂ)(nMwL%)+ww(nﬂ—mﬂ)]} . (412

According to Eq.(4.4), the original Green’s function is expressed as a sum over the set of Green’s functions of the type

(4.12,

{EM 2 [p(i{m,}H)—p(, {nﬂ}nH |Gty (A2

fpn oAt a
(& a]|aj’ai’>>w 277

-1
X w—wj*i—% [(a)j’u—wiu)(n,u-i-%)-i—wiu(nu—mu)]} . (4.13

Substituting Eq(4.13 into Eq. (3.22, we obtain the spectral function of the absorption coefficient as
2Mew

Flo)=— 572 2, E} {Zﬂ 10 12 oG {m, D) —p(j.{n, D]

1
><H |c'”‘ (AM)|2Im lim ,

. .
e=0" 0 — wh —% [(0,— oi,)(N,+ 3)+ o, (n,—m,)]+ie

wherew takes real values. By using the asymptotic formula Because of the relatiop= —ef, it is now more conve-
1 nient to introduce the matrix element of the electronic posi-
= P( —) Fimd(x), tion vectorr between the electronic stateandj,

lim —
g~>O+X_|8
o F,-izf ur (r)ru(rydr. (4.15
where P denotes the Cauchy principal value, the above ex-
pression is reduced to It is still necessary to introduce the bare transition frequency
wji=(g;—¢;)/h of the electron from the stateto j in the

2mew absence of multiphonon transitions. Thereby, we can set
Flo)=grez 2 2 2 By p(iAmd) = p(i.{nD) P y
3he |Y] } { # 2m
fji 37 w]||r]|| (4.16

XH |CIJM JI,U. |
fji is a real dimensionless number, characteristic ofi thg
transition, and called the oscillator strength of this transition.

X 6| w— wj*i - ; [(0j,—wi,)(n,+ 3) Oscillator strengths satisfy the following sum rule:

+wiM(nM—mM)]]. (414) 2 fjizl.
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Through oscillator strengths, the spectral functidri4) can f 1
be rewritten in a neat form expg — B> fiwi,| m,+ >
u=1
pl({m,u.}): f ’ (419)
(1) . -
Flo)=2 > X —f[p(i,{im})—p(.{n,}] > exr{—BZ fioi| 1t 5
L {m) {n) @ji Ut u=1

. where the vibrational probability depends on the electronic

<1 |C'r$15nM(AjiM)|2 statei. Under the decoupling approximation, the probability

# of the total system is decoupled into the product form of the
electronic and vibrational probabilities,

p(iAm ) =p(i)pi({m,}).

The decoupling approximation is based on the following ar-
+wiﬂ(nﬂ_m"“)]]' (4.1 gument: An electronic stateis separated from other elec-
tronic states by energy much larger than the phonon ener-
Since there is no light amplification in the physical configu-gies. The vibrational states can change only slowly near an
ration under investigation, the absorption coefficietw) or  €lectronic state, while the electronic states respond adiabati-
F(w) must be positive. This poses an inequafii,{m,}) cally to all the vibrational states. The probability distribution
>p(j,{n,}) to Eq. (4.17. The inequality means that the p(i) in the electronic states shows that in thermal equilib-
vibronic statesi({m,,}) are of lower energy and the vibronic fium, the initial state of transition chooses the ground state
states [,{n,}) are of higher energy. Therefore, the spectralof the trapped electron with a maximum probability. In view
function F(w) given by Eq.(4.17 includes two contribu- Of this fact, ifi=0 signifies the ground state, in E@.18
tions. The first parF2(w) is due to stimulated absorption, We can sei =0 for all the quantities excepi(i) and then
the second pai®(w) is due to stimulated emission, and the obtain the sum rul&;p(i)=1. Thereby, Eq(4.18 becomes
spectral function is the difference between bof|w) ®
=F* w)—F%w). In any thermal equilibrium cas€f(w) is - —f
negligible compared witlF3(w), so that the spectral func- Fle) 2 {%} {nzﬂ} wjof,opo({mﬂ})
tion is mainly determined by stimulated absorption,

X 6[(»-(»1’} —; (@), i,)(n,+3)

<11 IC%;LHM(AjoM)lza{w—wro—; [(@),— o)
y2
Flo)=3 3 3 —fp(i,{m,})

i w
L Am ) @it x(nﬂ+%)+woﬂ(nﬂ—m#)]]. (4.20

1w )2 —w¥ - C— W
8 1;[ [Con, (i) 5{ @ % Lwju =) In Sec. IIl, for convenience we assumed the incident light
to be a monochromatic light with a fixed frequenay In this
X(n,+ %)+wm(nﬂ—mﬂ)]]. (4.18  case, Eq(4.20 gives the composite strength of a single ab-
sorption line at frequencyw due to transitions from the
ground staté=0 to all the excited statgsIn fact, one often
As seen from Eq(4.18), the spectral functiof (w) assumes yses a quasimonochromatic light of a central frequency in
the form that it takes the thermal average over all the initialsond-state spectroscopy. If the incident central frequency
states (,{m,}) of transition and sums up all the final states matches the peak transition frequen@y, of the electron
(i.{n,}) of transition but thes function guarantees conser- from the ground state to a particular excited sfatizen the
vation of energy during transition processes. probabilities of all other transitions almost go to zero. In this
p(i,{m,}) is the probability of finding the electron- case, since the factan/w|o slowly varies near unity, Eq.

phonon system in a vibronic statg{(m,}). The probability (4,20 is turned into the following normalized line-shape
distribution in the initial states of transition is given by function:

ex;{—ﬁ

Now we introduce the probability distributiop(i) in the
electronic states and the probability distributigt{m,,}) in
the vibrational states by

f

1
Ei+;=:1 hwi,(m,+3) {m} (i

} fitw)=3 3 polimIT 10, (40,17

p(i,{m,})= N
u Trexp(—BH) Xé[w—wl*o—z [(wj,— ®o,)(N,+3)
)73

+woﬂ(nﬂ—mﬂ)]}. (4.2

exp( — BE;) When the variablew in Eq. (4.21) varies in the frequency
p(i)= ——— range of quasimonochromatic light, EGl.21) describes a
D exp(— BE,) single absorption peak centered@]’o. Equation(4.2]) is
reminiscent of the well-known Bethe-Sommerfeld formula
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for one absorption band. The present paper will emphasize Therefore, there is a lot of additional phonon excitation
the case when the incident light is a polychromatic light,lines between the previous two adjacent multiphonon lines.
whose frequency range covers all the peak transition freSince in Sec. Il we have inferred the relatiof, < w,, , the
quencieg(},}. As the variablew in Eq. (4.20 varies in the  zero-phonon line is shifted to a lower energy,—;(wo,,
frequency range of the polychromatic light, E4.20 de-  —w;,), the high-energy tail becomes narrower, and the low-
picts a series of absorption peaks corresponding to differerdnergy side gets wider. To sum up, the quadratic electron-
frequenmesQ The composite absorption curve(w) phonon interaction produces the two effedts: the absorp-
manifests |tself as a linear superposition of the componertion lines become denser a@) the absorption spectrum is
absorption curves$;(w) with weight factorf;, extended asymmetrically towards lower energy. The strength
of the absorption line at frequendy.23 is proportional to
the coefficient in front of theS function in Eq.(4.21), while
w . .. . . .
F(w):z —fjofj(w), (4.22  this coefficient is determined by the overlap integrals
I ®jo C%’#(AIOM) In the next section, we will make a concrete
calculation ofCY#(Ajo,).-
where f;(w) is given by Eq.(4.21). Equation(4.22 is the
line-shape formula for many absorption bands and reveals
thatF(w) is normalized to unity ovew, i.e., V. CALCULATION OF OVERLAP INTEGRALS AND
SEVERAL APPROXIMATE CASES

J Flw)dw=1. For simplicity, we temporarily writeCO“‘(AION) as
mn(AJO) On substituting the vibrational wave functions

_ _ (2.18 into Eq. (4.5), the overlap integrals become
This result represents the important law of constant area.

As we know from Eq.(4.21), the transition from the vi-

bronic state|li=0{m,}) to the vibronic statgj,{n,}) pro- ' @t vz . 1
duces an absorption line at frequency C?njn(Ajo)= — f exp — =(aqQq)?
2™ 'min! o 2
f 1 5
w=wly+ 21 [(0,— 00,)(N,+3)+ wp,(n,—m,)]. —5a (q_AJO)Z}Hm(aoq)Hn(aj(q_AjO))dQ-
=
(4.23 (5.2

When a photon of frequency) is absorbed, the electron

obtains the energy?, to assist the transition from the elec- ~ We multiply both sides of Eq(5.1) by tgt(m!n!) =2,
tronic statei=0 tOj In the meanwhile, the crystal lattice sum overm andn, use the generating func’uon for Hermite
undergoes a transition from the vibrational stéte,} to  polynomials

{n,}. The initial vibrational state possesses the phonon en-

ergy >, g, (m,+ 1), the final vibrational state has the pho-

non energyEMwm(n + 1), and the net emitted or absorbed Xt

phonon energy is given by the second term on the right of E Hn(x)

Eq. (4.23. At zero temperature, the initial vibrational state

must be the ground stafen, =0} and the quantum number

n, of the final vibrational state gives the phonon numberand hence obtain

emitted in theuth mode. The zero-phonon life, =0} de-

termines a cutoff on the low-energy side of one absorption

band. The absorption band of the-J electronic transition =~ t n

consists of the zero-phonon line and a series of emitted mulz E C jo)—ll2 J 7

tiphonon lines. At finite temperature, we first consider the™=° "=° (mH)== (n!)

linear electron-phonon interaction when,, = w,,, . Accord- apar;| Y2 [ 1 1

ing to Eq.(4.23, the absorption frequency depends only on :< ') f exr{ —5(@ed) — 5 a5 (q—Ajo) }
the net phonon numbegs,=n,—m, . Because of the sum- -

mation over{m,} and{n,} in Eq. (4.21), we always have )2
the set{p, =0} which corresponds to the zero-phonon line, Xexp{ Z(aoq)( ) (_0)
we also have the s¢0,p,=*=1,0} wherea refers to a cer- V2 V2
tain mode and the plus or minus sign corresponds to the 2
emitted or absorbed one-phonon line, and so on. The absorp- sexpl 2[ e (q—A:o)] LA Uy

tion spectrum of the 8] electronic transition consists of the @i{d™2jo 2 2 9
zero-phonon line and a series of emitted or absorbed mul-

tiphonon lines. For the nonlinear electron-phonon interaction

whenw;,# w, , however, the absorption frequency still de- Then, one performs the integrals owgrexpands the result
pends on the phonon excitation numbgmg} besidesp,,}. into a power series ity andt;, and therefore gains
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m n

200: i o (A ) to t] 2apa; 12 a(z)ajzAjzo
- = exg —————
o & omnt2jo (m!1)Y2 (n1)L2 a§+a12 2(a§+a]-2)
R 2_ 2 Tk+l
X -1 I+1q )
k1§=:OI1=O g’o Zo p§=:0( ) 2( §+aj2)
2 k 2 | 2k+kq+p,20+1,+p
» \/anajAjo ! \/anajAjo ! 2apa; \ Pty 1 t 1
agtal ag+a’ agtar] k!l !k!llp!
If we let m=2k+k;+p andn=2I+1,;+p in the above equation, then it follows that
i i ol (Ar) tg1 tJn 2aga; 2 agajzAjzo
- = exg ———5———
o &5 mn\=j0 (m!)1/2 (n!)l/Z ag—l- ajz 2(&%"’(1]2)
» @ min(mn) [((m-p)/2] [(n—p)2) 2 2 7kt
0 i
X -
mE:o nZO pgo kZO =0 2(a3+ ajz)

X

( \/anajzAjo) mZKp( \/EagajAjo) n-2-p

a(z)-l—ajz ag-l—ajz
2a0a; \P (=)' Pegt! 5
agtaj| (m—2k—p)!(n—2I—p)!k!lip!’ (5.2

Here minfn,n) means the lesser of andn, and[ (m—p)/2], [(n—p)/2] signify (m—p)/2, (n—p)/2 whenm—p, n—p are
even numbers andr(—p—1)/2, (n—p—1)/2 whenm—p, n—p are odd numbers. Now we equate equal powets ahdt;
on both sides of Eq5.2) and acquire for the overlap integrals

min(m,n) [(m—p)/2] [(n—p)/2]

€O (A= 2a00; 1’2€X  agajAfy s (—=1)"'"P(min1)¥2

e 2aj+al)| 50 &6 = (m—2k—p)l(n—2—p)lkilip!
ag—ajz k| \/zaoajzAjO m=2k=p \/ECYSC(J'AJ'O n-a-e ZaOaJ- P (53)
2(“(2)"’“]2) ag-i-a]—z ag-i—a]—z a§+aj2 .

The so general expression of the overlap integrals is deducesien, Eq.(5.3 producesCﬁ{n(O)=O. Whenm and n are
for the first time, whereas the previous researchers all made & ar hoth even or both odd, and @s= (w; /%), Eq.(5.3
variety of assumptions to calculate the overlap integrals. Ig raquced to '

what follows, we will discuss several approximate cases o
this expression.

dwyw; 1/4min(m, n)
0j _ J —1 (n—p)/2
Coln(0) [—z(woerj) p;ovl (1)
A. Neglecting the lattice relaxation effect
. o . . . 1n1)1/2 —_ . 1(m+n)2—p
Since the equilibrium displacement,, of a vibrational % (mint) “o— @j
mode characterizes the lattice relaxation effect, weAlgt m-—p | n—p Ll 2(wot wj)
=A;,=0, so that the relative equilibrium displacement 2 ) o
Ajo,=Aj,—Aq,=0. This is the case of so-called quadratic ol2
modes. If the defect site is a center of inversion, the linear Awow (5.4)
electron-phonon interaction will vanish by symmetry for the (wo+ wj)2 ' '

vibrational modes with odd parity. In this case, a quadratic
electron-phonon interaction will dominate. wherep is even whermm,n are both even ang is odd when

In the serieg5.3), the nonzero term is the zeroth power of m,n are both odd. Equatiofb.4) embodies conservation of
Ajo and therefore one hasmi—2k—p=0 andn—2I—p the parity of the vibrational states during transition processes
=0. The two relations dictate that,n,p be either all even of the electron-phonon system.
or all odd. Formandn, when one index is odd and the other  Settingx=(wo— wj)/(wo+ w;), then Eq.(5.4) becomes
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At this point, Egs.(5.7), (5.8), and (5.9 may be combined

cY (x)= into a single expression,

mint |2
(1_X2)l/2 - (_ 1)n/2X(m+n)/2
pm+n

min(m,n) op (1—x2)]P2 CY (z)=(m/2)Y(—1)™4 "4 (mint) 12
X —
b (m__p) ! ( n_p) Ip! { x X 2P AN (2), (5.10
> '\ T2 |'P
5.5 wherem andn are arbitrary positive integers.

If one puts theCﬂf”n (z,) given by Eq.(5.10 into Eq.
. . o
The overlap integrals in E45.5) can be expressed as several (4.21), in principle one can calculate the line-shape function

mathematical functions. In the theory of mathematicalof quadratic modes. Since the express{dml) is so com-
functions?° we will develop the most compact expression of plicated and the parameters are so numerous, however, with-

the overlap integrals. In doing so, we further Ieti(1
—x?)¥2x=1, Whenm andn are both even, i.em=2« and
n=28, Eq. (5.5 can be written in the form,

_ 2a)1(28)1 |2
Bhast=| (10T

X(= 1P Pal BT (—a, = Bi3120),
(5.6

where F(a,b:c:2) is the Gauss hypergeometric series andSPondingly ao,=a;j,=a,

the Gauss series reduces to a polynomials of degrieez
whena or b is equal to—n (n=0,1,2...). With thehelp
of a property of the hypergeometric function, E§.6) can
be rewritten in the most compact form,

C(Z)];LZ‘B(Z) — (77_/2) 1/2( _ 1)11/2— B2
X[(2a)!(2B8)1]" V22 2p2t 15 2),
(5.7

whereP’!(z) is the associated Legendre function of the first
kind of degreev and orderw. The associated Legendre func-

tion possesses the following properties: Wherand v are
half integers,P’; is a polynomial inz. When x and v are
integers and ifu>v, P is identically zero.

Now we turn to the case whan andn are both odd, i.e.,
m=2a+1 andn=28+1. In this case, Eq(5.5 may be
written in terms of the hypergeometric function

(2a+1)1(28+1)1]"?
22a+2,8

nga+l,2,6+l(x): (1-x?)%?
X(—1)BTIxatB(al gy~ 1
XF(—a,—B;32°),
and in terms of the associated Legendre function
o 1.2+1(2) = (/A — 1)« A2
X[(2a+1)!(2B+1)1]" 12
X ZY2pet Bt Y4 7). (5.8

We further considem andn where one index is odd and the
other even. In this casey/2+n/2+ 3 andm/2—n/2— 3 are
integers andn/2+n/2+ 3 >m/2—n/2— 3, so that

Pt e 13(2)=0. (5.9

out further simplification it is practically impossible to un-
dertake the calculation. For the further treatment of
simplification, please see Ref. 10.

B. Neglecting the lattice-frequency shift effect

As known in Sec. Il, the quadratic electron-phonon inter-
action causes a shift in the vibration frequencies of the lat-
tice, and the renormalized lattice frequencigg depend on
the electronic states. Now, leb,,=w;,=w, and corre-

. This means that we consider
only the linear electron-phonon interaction.

In this situation, we havk=1=0 in Eq.(5.3), so that Eq.

(5.3 is reduced to

aZAZ min(m,n)
i jo _
C%(Ajo):exp(— 41) > (=P
p=0
y (min!)L2 @l g ’“*”’2".
(m=p)l(n—p)!p'\ 2

Next, one letsr=min(mn)=3(m+n—|m—n|), makes the
summation-index transformatiok=r —p, and obtains for
the overlap integrals

r!

x (r+|m—n|)!

C%jn(AjO) =(— 1)(1/2)(n7m+|m7n\)
aAjo) [m—n|

I

a?A? a?A?
_—JO ‘m7n| —JO
Xexr{ 2 )Lr ( 5 ) (5.11

where

(r+|m—n)t  xk

(Jm=n[+k)1(r—k)! k!

LMl = (- 1)
k=0

is the generalized Laguerre polynomial of degree

If one substitutes the€n* (Ajo,) given by Eq.(5.11)
into Eq.(4.21), one will easify?ind the line-shape function of
linear modes. First one needs to perform the thermal average
usingpo({m,}) in Eq.(4.19. Then, we change the index,
of summation intop,,=n,—m, wherep,=0,£1,+2, ...,
alter the indexm, of summation intor,= %(n/ﬁ m,
—|p,l), and acquire for the line-shape function,
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model is superior in many respects to the Huang-Rhys case

to be discussed in the following.

r !
(r +|pﬂ|

2]

2>

r70

fi(w)= EH[

Huang-Rhys case

x(e‘ﬁﬁ‘”#)rﬂ[Llriﬂl In this case, all the modes have a single frequeagy

=w,, Where w, is the frequency of longitudinal optical

s oo o a’AZ) P4l phonons. Correspondingly we have,= a=(w,/#)"* and
X (€71 m) PuIPUlIN(1— e Phew)| ——— n,=n=(ef"*—1)"1 Therefore, Eq(5.13 is reduced to
272 P2
at Aj 0 n+1) e
xexr{——“zj()“)ﬁ(w—wj*o—% wﬂp#). f,-(w)={§,} F{ 2n+1)2 21 = )
y
(5.12 2A2
. o . <111, {2( J “)[n(n+1>]1’2]
For the series of Laguerre polynomials in the braces in Eq. w oK 2
(5.12, we utilize a theorem in the theory of mathematical
H 21
functions; X 6 w—wlo—w|z p,u). (5.19
y7
> (m+.n)| t"L(x)]? Now we introduce the Huang-Rhys factorS
m=0 —EﬂzazAJOM The factor can be cast into the form
(x?t) "2 2xt) ([ 2xt'?
T A ey L o2a2
% E(!)| AJOM
wherel ,(z) is the modified Bessel function of the first kind Sj= i,

of ordern andl _(z)=1,(2) for n a natural number. As a

result of the theorem, Ed5.12) is simplified as

The numerator is just the elastic energy of lattice relaxation
released during the transition process from the electronic

- a® A2 PR AL ground state to itgth excited state, and the denominator is
fi(w)= >, exy{ - (2n,+1) “210“ IT | = ) the phonon energy, so thf can be understood as the lattice
Put ® w Ny relaxation energy expressed in terms of phonon numbers.
W2 A2 The factorS; is used to characterize the coupling strength
x| {2( © JO/‘)[H (ﬁ +1)]1/2] between the defect electron and the linear modes. The net
Py 2 AN . .
phonon number emitted by all the lattice modes Rs
=2 ,p, - Applying the relation
X & w—wj"o—% wﬂpﬂ), (5.13 -
p=P— 2 P,
where n=1
we change the indep; of summation intd®, so that the new
P 1 index set of summation ig4,p,, - . . ,Ps_1,P}. In this way
B eBto, Eq. (5.14 becomes
o0 - P/2
is the mean phonon number.excite_d thermally per mode. Flo)= S o (2ni s, n+1
Note that Eq(5.13 applies to either sign of the variogs, . ] pZ ., n

In principle, Eq.(5.13 can be used to calculate the line
shape due to the linear electron-phonon interaction. Since the
number f of vibrational modes of the lattice is so large
(10?% per cn?), however, such numerical calculations are
impossible. Fortunately, the present laser-active color centers
all belong in the molecule-type color center, in which the
defect electron has very weak coupling with the body vibra-
tional modes of the lattice, but interacts strongly with a very
small number of local modes that surround the defect center.
The local modes have frequencies in the gap between the
acoustical and optical branches and above the optical
branches. In this situation, we may conveniently take only

0 o0

by

Pf_1=—>

lo_ </
P-3'p,

)[n(n+1)]1’2

R

X 5(w—wj*o—w|P),

(5.19

several local modes to undertake the calculation of linewhere the prime on the summation symbol means excluding

shape functions. The extreme situation is the configurationgk = f.

Using the integral representation of the modified

coordinate model, which assumes that there is only one “efBessel function of the first kind of order, wheren is a
fective” frequency associated with the local modes. Thisnatural number,
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1 (=  costint the same as Sec. VB, whereas we keep the faetgr
Ih(2)= > We dt, — wg,, in the arguments of thé functions in Eq.(4.21).
Owing to the quadratic electron-phonon interaction, the
one can easily verify that renormalized phonon energy after the transition of electronic
" " b2 states becomes smaller than that before the transition, i.e.,
a“Ajor| —— 2 wi,<wgq,, Which is discussed in Sec. Il. Thereby, we can
Y o 2 lpewrp 2 [n(n+1)] =B 7 : :
pi= pri= o= 2 let @0u~ @)= Pju®0p Wherepw is a phenomenological
i1 A2 parameter and satisfies the relation @, ,<1. Then, for the
% H 1,12 jou [n(n+1)]1’2 two factorsp; ,wq,, and woﬂ(nﬂ—m#) in the 6 functions in
u=1 Pu 2 Eqg. (4.21) we assumew,, to be independent of the elec-

_ tronic ground staté=0, i.e.,wg,= w, . Concomitantly, the
=1p{25[n(n+1)]"3. normalized line-shape function in EG#.21) is evaluated as

Substituting the last result into E(5.15), finally we obtain

z 2

fi(w)= 2 esemen| 1L filw)=2 e p[ 2 (2n, +1)=Ei '°"

n {put
pM/Z
X1p{2S[n(n+1)1¥24 8(w— wjy— w;P). <11 (”u_*l)
(5.16 AL
Equation(5.16) is exactly the well-known Huang-Rhys line- | 1o iAJZ ou 12
shape function. *lp, 2 [nM(n +1)]
Originally, Huang and Rhys expanded the oscillator wave

funcUonanu(qM Ajo,) in the overlap integrals with re- ) w_w?o_z [—PjMwM(F,LﬂL%)JFwMP,L]]'
specttod o, , retained the first-order terms in the two series, u
and then employed statistical mechanics to derive(k4.6). (5.17

Afterwards, Lax utilized the generating function method and
also obtained this result. Here the present author strictly cal-
culates the overlap integrals so as to acquire the line-shapghich is the modified form of Eq5.13. In the arguments of

function too. . . ~the & functions in the last equation, we have replaced the
With the gld of the generating function of the modified quantum numben , with the mean phonon numbar, . The
Bessel function reason for this is that the summation overin Eq. (5.12)
means to take the thermal average, and through the relation
exr{z 2 1 n,=r,+3|p,/+2p, this causes us to take the thermal av-
2 nE— o erage oven,

As seen from Eq(5.17), the shape and strength of light
absorption are all unchanged in comparison with the linear
o — P/2 case, and only the absorption frequencies are redshifted. The
_E e—S(2n+1) nil |p{25j[F(F+ 1)Ya=1, ab_sorption frequengy of B-phonon line, which is defined by
P n P=2 is now given by

it is easily shown that

uPpus

Thereby, the line-shape functidf(w) is normalized to unity
over w,

wp=a)j*0+2 [—pmwﬂ(FM+%)+wupM]. (5.18
"
J fi(o)do=1.

Sincen,, increases with temperature, the frequetﬂ:}‘(J of
the absorption peak shifts to lower frequency as the tempera-
The two extreme cases discussed in Secs. VA and V Bure increases, which is in agreement with the experimental
are rarely encountered in realistic color-center crystals. Mostesult.
of color-center crystals are of a weak nonlinearity. By the At the moment, one needs to adopt the configurational
weak nonlinearity, we mean that the linear electron-phonormoordinate model, which assumes that the electron interacts
interaction is predominant and the quadratic electron-phonoanly with one effective local mode. That is to say, we must
interaction is weak. In this case, when calculating the norset w,= we; for all u, where e is the frequency of the
malized line-shape function as given by E4.21), for the effective local mode. To include acoustical phonons, the fre-
overlap integrals we neglect the dependence of the latticquencyw,¢ of the effective local mode must be smaller than
frequenciesw;,, on the electronic statds but for the argu-  the frequencyw, of longitudinal optical phonons. If we fur-
ments of thes functions we retain this dependence. Conse-ther introduce a macroscopic phenomenological parameter
quently, the treatment of the overlap integrals in Eg3) is  B;j=Z,p;,, then the line-shape equati¢d.17) becomes

C. Weak nonlinear effect
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n+ 1 ground state=0 to thejth excited state. The probabilify,
fi(w)= 2 e=Si@n+1) falls off rapidly with increasing of the excited stateTake
n the F center in KCI as an example: the oscillator strenfjth

=0.81 for theF band,f=0.1 for theK band, and=0.01 for
theL band. Therefore, in Eq6.1) we just consider the sum-

_ % _ — 1\ mation over the first several excited stajes
X Olo—0jptBjwe(nt3)~weP]. (519 Since the strengths of many absorption peaks induced by
Here, the Huang-Rhys fact& and the mean phonon num- a polychromatic incident light are modulated by oscillator

x1p{2§[n(n+1)]3

bern are redefined as strengthsfjo, we need to know the details 6f,. According
to Eq.(4.16, fj, is determined by the dipole matrix element
= 1 S W2 A2 FJ-O defined by Eq(4.19. Further, the concrete evaluation of
R 1 Fjo depends on our knowledge of the electronic structure of
Si:Tef’ n= m- the color center being investigated. The simplest electronic

defect is theF center. Although not laser-active itself, it
Correspondingly, the absorption frequency ofPghonon  serves as an important building block for the formation of all
line is simplified from Eq.5.18 as laser-activeF aggregate centers. As the potential energy in
the HamiltonianA4(r,p) of the F-center electron is spheri-
cally symmetric, He(r,p) has the eigenfunctionsi;(r)

Rni(r)Yim(6,¢), where the state indejx=(nlm), R, (r)
It is worthy to note that in the case discussed in Sec. V BS the radial function, andl,.(6,¢) is the spherical har-

light-absorption frequencies are independent of temperaturé Th di |
This is exactly the result due to the linear electron- phonor{EOTC b'dde correspon mg_ﬁ?ezgy elgen\aa HPSS“' aref '?]
interaction. Therefore, the redshift of light-absorption fre- the forbidden energy gap. The levg}, is independent of the

quency with temperature is characteristic of the quadrati€h@gnetic guantum numben and (2+1)-fold degenerate.
electron-phonon interaction. The ground state df centers is am=1s state and the elec-

tric dipole transition selection rules only allow optically ex-
cited states to be the=np, n=2 states, which are threefold
degenerate. A 4—2p transition gives rise to th& band,
which is called the fundamental absorption transition. The
As shown in Sec. V, in the presence of both linear andsuperposition of &—np, n=3 transitions leads to th&
quadratic electron-phonon interactions, a general analytic edand. Thel band arises from transitions of the electron from
pression of line-shape function(w) is hard to derive, the ground state to states that are degenerate with conduction
while this expression of;() can be found under the weak states. When af center is perturbed strongly, its threefold
nonlinear approxmaﬂon Indeed, so far some researcheegenerate 2 level is splitted into two components, so that
have employed a variety of modified Huang-Rhys line-shap&he mainF band now consists of two bands in absorption.
functions to describe the main absorption bandrofolor ~ There exist two internal perturbation methods. When one of
centers. However, such a description fails for a more comthe nearest-neighbor cations of Brcenter is replaced by a
plex color center and for a polychromatic incident light, cationic impurity, theF , center forms. Thé=, center con-
which will induce a series of absorption bands. In this casesists of two anion vacancies binding one electron.
we must make use of the spectral functiofw) to describe The color center systems, which so far have been success-
many absorption bands of various color centers. If one subfully operated as broadly tunable continuous-wave infrared
stitutes the line-shape equati¢® 19 for the jth absorption lasers, can be divided into two characteristic grodfsand
band into Eq.(4.22, the weak nonlinear spectral function F-like centers, andF, andF, -like centers. As an example,
F(w) is acquired as we now apply our theory of light absorption B, centers,
because in comparison wih, centers, they possess simpler
structures and were found earlier.
When an alkali halide crystal contains a predominant con-
tent of extrinsic alkali ions of smaller size than the host alkali
< p{ZSj[F(FvL 1)]¥3 ion, F A centers are formed. According to the, model put
o forward by Lity,?? the F, center consists of aff center
X 8l w—wjH+ Bjwer(N+3)—weP].  (6.1)  attached to a small alkali ion on @00 nearest-neighbor
site, as shown in Fig. 1. There are two distinct typed$-gf
In form, Eq. (6.1 signifies the summation over infinite centers. A representative of typd=h centers is thd , cen-
excited stateg of the trapped electron and thE¢w) is hard  ter in a Na -doped KCI crystal, and a representative of
to evaluate. Since the frequency width of the polychromatiaype-II F , centers is thé , center in a Li -doped KCI crys-
incident light is finite and can be controlled at will, we can tal. The 1s— 2p transitions ofF (1) andF 5(Il) centers pro-
always select the frequency width such that it just covergjuce similar double-peak absorption spectra, which are
several particular peak-transition frequencﬂlﬁ%. Inreality, called F5 bands. TheFA(l) centers exhibit a depolarized
Eq. (6.1) represents a finite sum and tR€w) in this case is emission with the linewidth and Stokes shift similar to fhe
easy to calculate. On the other hand, the oscillator strengtbenter case. However, tHe,(Il) centers show a polarized
fio gives a transition probability of the electron from the emission with a very narrow linewidth and a very large

wp=wjy—B; (l)ef(n+ 3)+ weiP. (5.20

VI. WEAK NONLINEAR SPECTRAL FUNCTION AND ITS
APPLICATION IN F, CENTERS

n+1
Flo)=2 —fJo 2 e S(@m+ D

n
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(2.12 and (2.13. When the electrons reach ti#g and E
@ @ excited states, the lattice ions having the ground-state con-
figurationA ¢ , are in the vibration excited state. The lattice
@@@@@ has to reach the vibration ground state by relaxing into a
saddlepoint configuration, in which the two vacancies form a
double-well potential for the center electron, separated by a
-€ @ high central barrier formed by the anion. Consequently, the
1s ground state and\;, E excited states of the single-well
@ @ potential are transformed into the lowest symmetric state
and lowest asymmetric statle, of the double-well potential,
respectively. The transition from the relaxed excited siate
to the lowest symmetric statég leads to a single polarized
emission. Thd=, center in theyg state will relax into either
FIG. 1. lonic structure of the ground state configuratiorFgf  itS original lattice place or into a reorientég, center. Let
centers. The—e represents one excess electron bound at the vad, , represent the equilibrium configuration of the lattice in

cancy. the relaxed excited stat¢,. The relative displacement of
the equilibrium configurations of the, and 1s states is

Stokes shift. Consequently, tie(Il) centers are laser-active given by Bopisiu=R2p,~ Bisu- Therefore, theF,, and
but theF 5(I) centers are not. In the following the, centers Faz trlanzsm(gns have the 'sgme Huang-Rhys facty,
refer to theF 4(I1) centers. = (2,2 0eiA%p 15, u) i wes. Similarly, we may assume that
The splitting of a singlé= band into twoF 5 bands may be the A; andE excited states have the same macroscopic phe-
easily understood in group-theoretical terms. FhandF,  nomenological parametd;, .
centers have the same $|ng|et ground state. Thie center In Sec. IV, we have introduced the three transition fre-
in alkali halide crystals has the symmetry of a full octahedragduencies of the electron from the ground state to jtthe
group Oy,. The 2p triplet excited states of centers trans- €xcited statew;o, wjy, andQf;. wjo represents the bare
form according to the irreducible representatiby, of the  transition frequency without multiphonon transitiomﬁ‘0 de-
group O,,. The resultingF, center from anF center pos- notes the transition frequency renormalized by the electron-
sesses the symmetry of a tetragonal grdlyy, with the ion correlation effect, in the absence of multiphonon transi-
symmetry axis being in thé100) direction. SinceC,, is a  tions.wj andw, have a negligible difference and cannot be
subgroup of0,,, the three-dimensional representatibp, of  measured directly in optical absorption experiments, because
Oy, reduces to the sum of two irreducible representatiops — electronic transitions always accompany multiphonon transi-
andE of C,, with dimensions one and two, respectively. Thetions. ()}, stands for the transition frequency at an absorption
2py and 2p, states ofF5 centers are twofold degenerdte  peak in the presence of multiphonon transitions, only which
states and the %, state is a singlef; state. TheE level lies  can be determined directly in optical absorption experiments.
close to theT,, level of F centers whereas th&; level is  Let wzl,ls and og 1 denote the renormalized frequencies of
shifted to a lower energy below it. In this way, the triply the £, andF,, transitions, respectively. At this point, the

degeneratd, level of F centers splits into a& doublet and  gpectral function of the maifi 4 bands is obtained from Eq.
anA; level of F5 centers. Assume the electric field vector of (6.1) as

a polarized light incident in th& , center crystal is not par-

allel to a (100 direction, the irradiation will lead to the o 1\ P2
appearance of two main absorption band§ gfcenters. The Flw)= 2 f2pylsestp(2n+ 1)( T)
low-energy absorption band, labeled By, corresponds to p=—x

the 1s— A, transition of anF, electron, where the electric-

n

Yy u
dipole transition vector is along the symmetry axis of the X1p{2S[n(n+1)] %
center which passes through the impurity cation. The high-
energy absorption band, labeled By,, corresponds to the % w— wf\l,ler Bop@er(N+3)— weiP]
1s—E transition of arF 4 electron, where the electric-dipole Wa, s
transition vector is normal to the symmetry axis of the cen-
ter. [0} _
Integration of absorption spectra Bf centers shows that +2—— o~ wg 15+ Bapwe(N+3)— wefp]] -
the F 5, transition has the same oscillator strength as each of “E1s
the twofoldF 4, transitions. Lef ,, 15 stand for this oscillator (6.2)

strength. Next, we need to find the Huang-Rhys factors for

the F,; and F,, transitions, which are determined by the In the last equation, for the factas/w;, we have replaced
relative displacements of the equilibrium configurations ofthe bare frequency;, with the renormalized frequenayfo,
the lattice in the electronic ground and excited states. Acand the prefactor 2 ob/wg 5 is the degeneracy of thE
cording to the Franck-Condon principle, during the-1A; level.

and E transitions ofF 5 electrons, the lattice ions keep the  Based on Eq(6.2), we now want to calculaté(w) as a
equilibrium configuratiom 5, (v=1,2,...f) inthe elec- function of frequencyw and temperatur&. According to Eq.
tronic 1s ground state, wherd;, are introduced in Egs. (5.20, w only takes on the discrete values whBngoes
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45 . . T . . four characteristics(1l) We use the adiabatic approximation
4r 7 to second-quantize the electronic wave field, while the lattice
351 1 ions are in the coordinate representati¢®). The Condon
3t 8 approximation equivalently omits the nondiagonal matrix el-
F(w) 25} . ements of the system’s Hamiltonian in the electronic Hilbert
v ™) ot - subspace(3) We directly introduce the creation and annihi-
L5} . lation operators of harmonic oscillators to fulfill the second
1t . quantization of lattice vibrations4) The linear and qua-
0.5k K A 4 dratic electron-phonon interactions give rise to the three ef-
0 b fects: lattice relaxation, electron-ion correlation, and lattice-
1.4 1.6 18 (%V) 22 24 2.6 frequency shift. In the Hamiltonian for a linearly interacting

electron-phonon system, the lattice vibrations are usually
FIG. 2. Theoretical absorption curves &, centers in a quantized by introducing the raising and lowering operators
Li "-doped KCI crystal for different temperatures. of harmonic oscillators. Such a Hamiltonian both disagrees
with the second-quantized field theory and cannot describe
through all possible integers, and so the frequency spacing @iny multiphonon transition effects correctly. As shown in
absorbed photons is the effective phonon frequengy. Ref. 18, by the transition from the raising and lowering op-

The 6 functions in Eq.(6.2) obviously have the values erators to the creation and annihilation operators of harmonic
o oscillators, the Hamiltonian obtained still cannot describe
Slo— o+ Bjwer(N+3) — weiP] any multiphonon transition effects correctly. Our method

gains by comparison.
In Sec. lll, we use the linear response theory to derive the
6.3 expression of the absorption coefficient, which is found to be
' determined by a temperature-dependent double-time Green’s
0 otherwise. function. In Sec. IV, we apply the system’s Hamiltonian ob-
tained in Sec. Il to the calculation of the temperature-
The data concerned in a Lidoped KClI crystal are given as dependent double-time Green’s function. During the calcula-
follows? The effective phonon frequencywe;=  tive process, we insert an identity operator in the Green's
1.86<10" s~ while the frequency of longitudinal optical function so as to avoid the truncation approximation to the
phononsw =4.02x< 10" s™*. One can derivef,,15=0.27  chain of equations for Green’s functions. Owing to a qua-
from the oscillator strength of the band. The peak transi- dratic electron-phonon interaction, we have to make the de-
tion frequencies afT=4.5 K are O3 1;=1.99 eV and coupling approximation to the probability distribution in the
Of 1;=2.26 eV. Althoughwi‘\l,ls and »f ,; cannot be mea- initial vibronic states pf transition, the approximation that is
sured experimentally, they are independent of temperaturlénnecessary for a linear electron-phonon system. Conse-

. ok ok _O% _(O* quently, we acquire the spectral function expression for
and satisfy the relationg i~ wa, 15= g 15~ 0, 6. T e many absorption bands, which resembles the generalization

choose suitablySy,=22.4, wj 1s=1.77 €V, andwfi;  of the Bethe-Sommerfeld formula for a single absorption
=2.04 eV, the theoretical and experimental values of theband.

1
*
— w=w,y,—Biw
0 ef
Wef J J

— 1
n+-

2 +(J)efp,

peak transition frequencies at=4.5 K are the sameB,, In Sec. V, we deduce the first general expression of the
=8.2 is used in order to fit the dependence of the peak trarpverlap integrals and discuss its two approximate cases: qua-
sition frequencies on temperature. dratic and linear modes. After the overlap integrals of linear

We can plot the theoretical absorption curvesgfcen- modes are obtained, we utilize a new technique to recover
ters for different temperatures in Fig. 2. Figure 2 shows foutthe Huang-Rhys line-shape function for one absorption band.
features(1) at low temperature there are two partly overlap- The line-shape function of linear modes cannot explain the
ping absorption bandg?2) the F,, peak is about twice as experimental fact that the one-band absorption peak broad-
high as theF,; peak;(3) both peaks broaden and shift to €ns and shifts to lower energies with rising temperature. In
lower energies with rising temperatur@) at high tempera- order to remedy this defect, we propose the concept of weak
ture both absorption bands merge into a single whole. Th@onlinear modes and acquire their line-shape function. The
second and third features are in good agreement with thene-band line-shape function cannot describe the whole ab-
observed dichroic absorption spectra. The first and last fessorption spectrum of color centers, which has to be depicted
tures can be revealed if the incident light is not linearly po-by the spectral function of the absorption coefficient. In Sec.
larized or the electric field of the polarized light is not par- VI, we find the expression of the spectral function of weak

allel to a(100) direction of the crystal. nonlinear modes and apply this spectral function to Ehe
center in a L -doped KCI crystal. The spectral function of
VII. SUMMARY AND DISCUSSION the F 5 bands is simplified by the Franck-Condon principle.

Our numerical calculation gives successfully the first theo-
In this section we first summarize the innovations made irretical explanation of the absorption spectral features of the
the present paper. In Sec. Il, we systematically develop &, center.
guantum field theoretical method to second-quantize the sys- One of the greatest advantages of our treatment method is
tem’s Hamiltonian with both linear and quadratic electron-that the starting point is the Hamiltonian with linear and
phonon interactions. This method possesses the followinguadratic electron-phonon interactions and thereby a unified
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framework is established. However, most of the previous reand the self-bandwidth of a measuring instrument. In deriv-
searchers started from the Bethe-Sommerfeld formula foing the expression of the absorption coefficient, we have as-
one absorption band and then made the adiabatic and Cosumed an optically isotropic crystal. For a noncubic crystal,
don approximations. This method lacks a clear physical picthis expression of the absorption coefficient deviates some-
ture and strong systematicness. what from the experimental results.

In the discussion of the present paper, we do not touch It is worthwhile to point out that the coefficiens;;., of
upon the degeneracy of the vibronic states. If so, we shoulthe quadratic electron-phonon interaction in H8.7) is
consider the nonradiative transition between two vibronicrather formal. Hitherto we have no concrete models to deter-
states which differ in electronic energy but have the samenine it and hence our theory waits for a further development.
total energy. This transition is a resonant effect. The previou#f one will know the microscopic mechanism of a quadratic
discussion also does not relate to the degeneracy of the eleetectron-phonon interaction, one can calculatg,, the
tronic states, which is described by the Jahn-Teller theorerphenomenological paramet8; for the weak nonlinear ef-
such that the configuration of atoms surrounding the defediect, and the Huang-Rhys fact@®;. Finally, we want to
will tend to distort to remove any electronic orbital degen-formulate the moments of various order of optical absorption
eracy. The Jahn-Teller effect leads to partial broadening obands by temperature-dependent double-time Green's func-
an absorption bantf We have assumed no interaction be-tions and thereby to calculate these moments.
tween defect centers. In reality, the interacting defect centers
of a sufficient concentration vylll cause splitting of wbrqnlc ACKNOWLEDGMENT
levels and thereby produce inhomogeneous broadening of
absorption bands. Furthermore, the author neglects broaden- This work was supported by the National Natural Science
ing of absorption bands due to the lifetime of an excited staté-oundation of China under Grant No. 19847004.

IFor this history see, H. Seidel and H. C. Wolf Rhysics of Color  *3C. A. Coulter, D. W. Howgate, and R. A. Shatas, Phys. R,
Centers edited by W. B. FowlefAcademic Press, New York, A2000 (1965.

1968, p. 538. 14D, Lurie, Particles and FieldgWiley, New York, 1968.
2R. W. Pohl, Proc. Phys. Soc. Londd® (extra part, 3 (1937). 15K, Huang, Sci. Sin24, 27 (1981).
3W. Gellermann, J. Phys. Chem. Solisg 249(1991), and refer-  ®R. Kubo, J. Phys. Soc. Jpt2, 570 (1957.
ences therein. 17R. Kubo, M. Toda, and N. Hashitsumé&tatistical Physics I,
4L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. Nonequilibrium Statistical Mechanicgnd ed(Springer-Verlag,
45, 1095(1980. Berlin, 1991, Chap. 5.
5A. Hasegawa,Optical Solitons in Fibers 2nd ed. (Springer-  *8C. A. Coulter and D. W. Howgate, Phys. Rev.885957(1973.
Verlag, Berlin, 1990 19M. Lax, Phys. Rev129, 2342(1963.
K. Huang and A. Rhys, Proc. R. Soc. London, Ser2@4, 406  ?°Handbook of Mathematical Functionsdited by M. Abramowitz
(1950. and I. A. Stegun(Dover Publications, New York, 1972We
M. Lax, J. Chem. Phys20, 1752(1952. particularly use Eq(8.1.4 on p. 332.
8R. C. O’'Rourke, Phys. Re@1, 265(1953. . s, Gradshteyn and |. M. RyzhiRable of Integrals, Series, and
9R. Kubo and Y. Toyozawa, Prog. Theor. Phy8, 160 (1955. Products(Academic Press, New York, 198(. 1038.
107 H. Keil, Phys. Rev140 A601 (1965. 22F. Litty, in Physics of Color Centeré&Ref. 1), Chap. 3.
IR, Barrie and H.-C. Chow, Can. J. Phy§, 526 (1978. Z3A. M. StonehamTheory of Defects in Solid&larendon Press,

12R. Barrie, Can. J. Phy&7, 1924(1979. Oxford, 1975, Chap. 8.



