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Unified quantum field theory of light absorption by defect centers
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Trapped electrons in crystals are responsible for many important effects on crystals: lattice relaxation,
electron-ion correlation, lattice-frequency shift, and so on. These electron-phonon interaction effects cause
peak shifts and give rise to various multiphonon structures in the absorption and emission spectra of trapped
electrons. The present treatment for interactions of trapped electrons with a crystal does not include the
standard second-quantized field theory, which neglects the quantum many-body effects of crystals. Therefore,
up to now no universal light-absorption theory includes various effects of trapped electrons on crystals. For this
reason, a unified, second-quantized field theory of optical absorption, which contains both linear and quadratic
electron-phonon interactions is established. In this field theory we derive a universal, analytical spectral
function of the absorption coefficient, which describes the whole absorption spectrum of an arbitrary color
center.@S0163-1829~99!02547-3#
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I. INTRODUCTION

Pure alkali halide crystals are transparent throughout
visible region of the spectrum. The crystals may be colo
in a number of ways, for example, by the introduction of
excess of the metal atom. A color center is a lattice de
that absorbs visible light. A prototype of color center is theF
center, which was suggested as an electron bound at a n
tive ion vacancy by de Boer in 1937.1 The main absorption
band ofF centers is a strong, wide, bell-shaped band that
in the visible region of the spectrum. In the same year, Po2

recognized that the considerable widths of the character
absorption curves ofF centers are caused by the coupling
the electronic motion in theF center to the ionic lattice.

Recently there has been a growing interest in develop
color-center lasers.3 The motive is prompted by the realiza
tion of soliton propagation of picosecond pulses from
mode-locked color-center laser in an optical fiber.4 In the
present optical communication systems, the transmitters
use coherent pulses of laser light and the transmission m
are single-mode silica-glass fibers. There are two m
physical effects that limit the transmission of pulses in op
cal fibers: loss and dispersion. Since the zero-disper
wavelength is 1.32mm, this has become the wavelength
choice for optical fiber communication. However, typic
commercial silica fibers have a minimum loss of 0.2 dB/k
at the wavelength 1.55mm. Hasegawa pointed out that no
linearity of the index of refraction could be used to compe
sate the pulse broadening effect of dispersion in low-l
optical fibers, i.e., soliton effects.5 To observe soliton effects
in low-loss optical fibers, we have to work in the loss min
mum at 1.55mm. Mode-locked color-center lasers are t
only candidates capable of tuning over the wavelength
gion near 1.55mm. After color centers are optically excite
by a pump source, their emission band is Stokes-shifted
wards the infrared region from the absorption band in
visible region.

Although the basic mechanism underlying the absorpt
of color centers is clear, no quantitative theory of the abso
tion curves had been given. In 1950, Huang and Rhys
PRB 600163-1829/99/60~23!/15747~19!/$15.00
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quired in quantum-mechanical theory the first line-sha
function of the main optical absorption band ofF centers,6

but they only considered the linear interaction of the elect
with longitudinal-optical phonons of a single frequenc
leading to a discrete spectrum due to multiphonon tran
tions. In 1952, Lax first adopted the generating functi
method to generalize the Huang-Rhys work to all phon
modes, and introduced the moments of the absorption b
which can determine the values of theoretical parame
from experimental absorption band shapes.7 In 1953,
O’Rourke made an artificial assumption that the photo
induced electronic transition accompanies a small chang
the lattice vibration frequencies, and thereby he followed
approach of Lax to show variation of the frequency of t
light-absorption maximum with temperature.8 In 1954, Kubo
and Toyozawa developed a universal form of the theory
multiphonon transitions with the generating function metho
the universal form that does not depend on a concrete ph
cal model of color-center structures.9 With this theoretical
form they discussed the shape of the absorption band and
probability for nonradiative transition of a trapped electro

If the defect site is a center of inversion, the line
electron-phonon interaction will vanish by symmetry for t
vibration modes of odd parity. In 1965, Keil presented t
quantum treatment of optical-absorption line shapes du
the quadratic interaction of the electron of such a defect c
ter with odd-parity modes.10 In 1978 and 1979, Barrie and
Chow11 and Barrie12 calculated the optical-absorption lin
shapes of defect centers in the case of both linear and
dratic electron-phonon interactions. However, the lattice p
of their Hamiltonian was not second-quantized according
the standard quantum-field theory, because each vibrati
mode was represented by a pair of raising and lowering
erators for phonons.13 When calculating with this Hamil-
tonian, they met many difficulties: neglect of the virtual pa
of the Hamiltonian having two raising or lowering operato
which obviously loses much information, no ability to obta
an analytical expression for the line-shape function from
generating function, and so on.

As we have seen, the above-noted authors all under s
15 747 ©1999 The American Physical Society
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15 748 PRB 60ZE CHENG
approximation discussed a partial effect of multiphonon tr
sitions due to electron-phonon interactions. The present th
ries of light absorption by defect centers bear the follow
four shortcomings.~1! Most of the theories do not deal wit
quadratic electron-phonon interactions.~2! The theories can-
not treat the linear and quadratic electron-phonon inte
tions simultaneously.~3! One just obtains the line-shap
function of the fundamental absorption band of anF center.
~4! One still cannot describe the whole absorption spectr
of an arbitrary color center. In view of these circumstanc
we want to develop a unified, second-quantized field the
of optical absorption, which contains both linear and qu
dratic electron-phonon interactions. In this field theory o
can derive a universal spectral function of light absorption
defect centers, which can reproduce the above-mentio
various approximate results. The present paper is compl
just under the guidance of this idea.

The universal spectral function of the absorption coe
cient is finally reduced into an analytical expression in
configurational coordinate model. This spectral function p
sesses the following three advantages:~1! it includes a
weakly nonlinear electron-phonon interaction that prevails
all color-center crystals;~2! it can describe many absorptio
bands of an arbitrary color center;~3! it includes all phonon
modes via an effective frequency. One will see that this sp
tral function cannot be derived in classical quantum mech
ics.

The remainder of this paper is organized as follows. S
tion II describes our physical model and derives the seco
quantized Hamiltonian of the model system. The express
of the absorption coefficient in terms of a temperatu
dependent double-time Green’s function is obtained in S
III. In Sec. IV, by calculating the Green’s function, we fin
the spectral function of the absorption coefficient. In Sec.
a general solution of the overlap integrals is acquired and
simplified forms under several approximations are discus
In Sec. VI, we find the expression of the spectral function
the weak nonlinear case and, as an example, use this ex
sion to describe the light-absorption band shape ofFA cen-
ters. The summary and discussion are given in Sec. VII.

II. HAMILTONIAN OF THE MODEL SYSTEM

We first establish a model system for discussion. A g
eral concentration of defect centers in crystals is ab
531016 centers/cm3, and so the mean separation betwe
defect centers is about 270 Å. Since 270 Å is much lar
than the extension of the wave function of a trapped elec
in polar crystals, the interaction between defect centers
polar crystals must be very small. Thereby, we ignore t
interaction and consider a single defect center in polar c
tals. Because a single-electron transition is the simplest
for the study of photon absorption, our model system c
sists of an electron bound at a defect center in a polar cry

Let the perfect crystal lattice haveN primitive cells and
each cell haver basis atoms, so that the number of degree
freedom of the lattice is 3Nr. Introduction of a single defec
center into the lattice decreases its number of degree
freedom by a quantitys, and so the imperfect crystal lattic
has the number of degrees of freedomf 53Nr2s. In the
dynamical theory of crystal lattices, this crystal lattice co
-
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tains f vibration modes and under the harmonic approxim
tion the f vibration modes correspond tof quasiparticles or
harmonic oscillators. Our model system is therefore redu
to a coupled system consisting of a trapped electron anf
harmonic oscillators. In the discussion of this section,
always adopt the Schro¨dinger picture and neglect the ele
tronic spin coordinate. At present, we take the orthonorm
vector urW,$qm%& as the basis vector of the coordinate rep
sentation for the electron andf harmonic oscillators. Unde
these prescriptions, the Hamiltonian operator of the syste

Ĥ5Ĥe~rW,pŴ !1Ĥp~q,pŴ !1ĤI~rW;q!. ~2.1!

Here Ĥe(rW,pŴ ) is the Hamiltonian operator of the trappe
electron, which includes the electronic kinetic energy and
potential energies of the electron in the perfect-crystal a
defect fields, andrW and pŴ are the position coordinate an
momentum operator of the electron.Ĥp(q,p̂) represents the
Hamiltonian operator of crystal vibrations, whereq and p̂
stand for the sets of canonical coordinates and canonic
conjugate momentums of vibration modes, namely,q

5$qm% and p̂5$ p̂m%, m51,2,3, . . . ,f . Under the harmonic
approximation for interatomic potential energy, one finds

Ĥp~q,p̂!5 (
m51

f S 1

2
p̂m

2 1
1

2
vm

2 qm
2 D , ~2.2!

where vm is the frequency of themth vibration mode.
ĤI(rW;q) is the interaction energy of the electron with th
vibrating crystal. Expanding it to the quadratic term inq
leads to

ĤI~rW;q!52 (
m51

f

âm~rW !qm1
1

2 (
m,m851

f

v̂mm8~rW !qmqm8 ,

where the zeroth-order termĤI
(0)(rW) has been already incor

porated inĤe(rW,pŴ ) in advance.
In order to proceed with the practical discussion, we ma

an assumption thatv̂mm8(r
W)50 whenmÞm8. This assump-

tion is a rather crude approximation, as it neglects the eig
vector effect of ions, the effect that the eigenvectors of io
change from those of the perfect lattice, particularly for io
in the vicinity of the defect. Under the assumption, we ha

ĤI~rW;q!52 (
m51

f

âm~rW !qm1
1

2 (
m51

f

v̂mm~rW !qm
2 . ~2.3!

Insertion of Eqs.~2.2! and ~2.3! into Eq. ~2.1! produces the
total Hamiltonian operator as

Ĥ5Ĥe~rW,pŴ !1 (
m51

f S 1

2
p̂m

2 1
1

2
vm

2 qm
2 D2 (

m51

f

âm~rW !qm

1
1

2 (
m51

f

v̂mm~rW !qm
2 . ~2.4!

Hamiltonian ~2.4! describes the coupled motion of th
trapped electron and the lattice ions. There exists an a
batic approximation to separate the electronic and ionic m
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tion. In second-quantized field theory,14 the adiabatic ap-
proximation indicates that the electronic and ionic moti
can be described by two coordinate-dependent field op
tors. If we express the electronic operators in Hamilton
~2.4! in the second-quantized form, the total Hamiltoni
operator is given by

Ĥ5E Ĉ†~rW,t !F Ĥe~rW,pŴ !2 (
m51

f

âm~rW !qm

1
1

2 (
m51

f

v̂mm~rW !qm
2 GĈ~rW,t !drW1 (

m51

f S 1

2
p̂m

2 1
1

2
vm

2 qm
2 D ,

~2.5!

where Ĉ(rW,t) is the electronic field operator, namely, th
second-quantized wave function of the electron. The e
tronic field operator meets the equal-time anticommutat
relations:

@Ĉ~rW,t !,Ĉ†~rW8,t !#15d~rW 2rW8!,

@Ĉ~rW,t !,Ĉ~rW8,t !#15@Ĉ†~rW,t !,Ĉ†~rW8,t !#150.

To discuss the following problems we employ a mix
representation in which the occupation number represe
tion is used for the electron, and the coordinate represe
tion is used for the harmonic oscillators. A complete orth
normal set of solutions to the classical time-independ
Schrödinger equation of the electron is given by$ui(rW)%,
whereui(rW) satisfies the equation

Ĥe~rW,pŴ !ui~rW !5« iui~rW !

and« i is thei th energy level of the electron. We now expa
the electronic field operator in terms ofui(rW) according to

Ĉ~rW,t !5(
i

âi~ t !ui~rW !. ~2.6!

Hereâi(t) andâi
†(t) are the annihilation and creation oper

tors for thei th electron state and obey the equal-time an
commutation relations:

@ âi~ t !,âi 8
†

~ t !#15d i i 8 ,@ âi~ t !,âi 8~ t !#15@ âi
†~ t !,âi 8

†
~ t !#150.

Putting Eq.~2.6! into Eq. ~2.5!, we obtain the Hamiltonian
operator in the mixed representation as follows:

Ĥ5(
i

« i âi
†âi2 (

m51

f

(
i ,i 8

aii 8mâi
†âi 8qm

1
1

2 (
m51

f

(
i ,i 8

v i i 8mâi
†âi 8qm

2 1 (
m51

f S 1

2
p̂m

2 1
1

2
vm

2 qm
2 D ,

~2.7!

where we have used the notation

aii 8m5E ui* ~rW !âm~rW !ui 8~rW !drW,
a-
n

c-
n

a-
ta-
-
t

-

v i i 8m5E ui* ~rW !v̂mm~rW !ui 8~rW !drW.

In the mixed representation, the complete orthonormal b
vector of the Hilbert subspace of the electron isu i &5âi

†u0&,
where u0& stands for the vacuum state, while this vector
the Hilbert subspace of thef harmonic oscillators isu$qm%&.
Therefore, the complete orthonormal basis vector of
mixed representation is given byâi

†u0&u$qm%&.
Equation~2.7! is not diagonal in the Hilbert subspace

the electron, and the nondiagonal matrix elements are as
lows:

^ i uĤu i 8&5 (
m51

f S 2aii 8mqm1
1

2
v i i 8mqm

2 D , iÞ i 8.

In static coupling theory,15 these are just the perturbatio
operators of nonradiative transitions of the trapped electr
In a nonradiative transition, the electronic energy chang
compensated entirely by multiphonon emission or abso
tion. As we take only account of radiative electronic tran
tions, we have reason to omit the nondiagonal matrix e
ments. This approximation is equivalent to the Cond
approximation adopted in a theory for radiative electro
transitions in solids. In this theory, the electronic wave fun
tions are functions of oscillator coordinates, and thereby
electric dipole matrix elements between the electronic sta
depend on oscillator coordinates. The Condon approxima
states that the dependence of the electric dipole matrix
ments on oscillator coordinates is neglected. As a resul
our approximation, the total Hamiltonian operator diagon
in the Hilbert subspace of the electron is obtained as

Ĥ5(
i

« i âi
†âi2 (

m51

f

(
i

aii mâi
†âiqm

1
1

2 (
m51

f

(
i

v i i mâi
†âiqm

2 1 (
m51

f S 1

2
p̂m

2 1
1

2
vm

2 qm
2 D .

~2.8!

The particle number operator for thei th electron state is
defined asN̂i5âi

†âi , whose eigenvalues areni50,1. Since
we are concerned with the single-electron problems, the t
particle-number operator is yielded as

N̂5(
i

âi
†âi51. ~2.9!

Substitution of Eq.~2.9! into Eq. ~2.8! results in

Ĥ5(
i

« i âi
†âi1(

i
âi

†âi

3 (
m51

f F1

2
p̂m

2 1
1

2
~vm

2 1v i i m!qm
2 2aii mqmG . ~2.10!

Setting

v im
2 5vm

2 1v i i m , ~2.11!
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D im5
aii m

v im
2

, ~2.12!

Eq. ~2.10! reduces to

Ĥ5(
i

S « i2 (
m51

f
1

2
v im

2 D im
2 D âi

†âi1(
i

(
m51

f

âi
†âi

3F1

2
p̂m

2 1
1

2
v im

2 ~qm2D im!2G . ~2.13!

Again letting

Ei5« i2 (
m51

f
1

2
v im

2 D im
2 , ~2.14!

qim5qm2D im , ~2.15!

Eq. ~2.13! is of the form

Ĥ5(
i

Ei âi
†âi1(

i
(
m51

f

âi
†âi S 1

2
p̂m

2 1
1

2
v im

2 qim
2 D .

~2.16!

Equation~2.16! shows that the Hamiltonian operator of th
system is resolved into two parts. The first part represents
renormalized Hamiltonian operator of the trapped electr
and the second one is the Hamiltonian operator of thef har-
monic oscillators coupled with the electronic states.

As we can see from the above discussion, the interac
between the trapped electron and the lattice vibrations
three effects.~1! The lattice relaxation effect: the electro
induces a force on the lattice ions, causing a nonunifo
displacement of the ionic equilibrium positions. The equil
rium displacement of themth vibration mode is given byD im
in Eq. ~2.12!, which is different for each electronic state. Th
lattice relaxation effect is due to the linear electron-phon
interaction.~2! The electron-ion correlation effect: owing t
lattice relaxation, the electron readjusts its probable distri
tions so that the electronic self-energy is at a minimum. T
renormalized electronic self-energy is given byEi in Eq.

~2.14!. (m51
f 1

2 v im
2 D im

2 is the elastic energy required by la
tice relaxation and characterizes the coupling strength of
electron with the lattice vibrations. The electron-ion corre
tion effect is also due to the linear electron-phonon inter
tion. ~3! The lattice-frequency shift effect: the electron mod
fies the forces between the ions, leading to a shift in
vibration frequencies of the lattice. The lattice-frequen
shift depends on the electron states and the renorma
lattice frequenciesv im are given by Eq.~2.11!. As shown by
Eq. ~2.16!, the energy of the electron-phonon system is
sum of the electronic and vibrational energies. Since the
tem’s energy is constant in thermal equilibrium, the cons
vation of energy requires that the phonon energy incre
when the electron energy decreases from« i to Ei , so that
v im.vm . If the energyEj of the electron statej is higher
than the energyEi of the electron statei, the conservation of
energy still requires that the phonon energyv j m pertinent to
the statej be lower than the phonon energyv im pertinent to
the statei, i.e., v j m,v im . This energy relation will be used
he
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in the future discussion. The lattice-frequency shift effect
due to the quadratic electron-phonon interaction.

In the above-mentioned mixed representation, if we
press the operators of thef harmonic oscillators in the Hamil
tonian~2.16! in the second-quantized form, the Hamiltonia
operator reads

Ĥ5(
i

Ei âi
†âi1(

i
(
m51

f

âi
†âiE ŵm

† ~qm ,t !

3S 1

2
p̂m

2 1
1

2
v im

2 qim
2 D ŵm~qm ,t !dqm , ~2.17!

where ŵm(qm ,t) is the field operator of themth harmonic
oscillator uncoupled with thei th electronic state. The field
operators satisfy the equal-time commutation relations:

@ŵm~qm ,t !,ŵm
† ~qm8 ,t !#25d~qm2qm8 !,

@ŵm~qm ,t !,ŵm~qm8 ,t !#25@ŵm
† ~qm ,t !,ŵm

† ~qm8 ,t !#250.

In the following, we also employ the occupation numb
representation for thef harmonic oscillators in addition to th
electron. A complete orthonormal set of solutions to the cl
sical time-independent Schro¨dinger equation of themth har-
monic oscillator coupled with thei th electron state is of the
form

Ximn~qim!5S a im

p1/22nn!
D 1/2

Hn~a imqim!e2a im
2 qim

2 /2,

~2.18!

wherea im5(v im /\)1/2, Hn(x) is the Hermite polynomial of
ordern, andXimn(qim) satisfies the equation

S 1

2
p̂m

2 1
1

2
v im

2 qim
2 DXimn~qim!5~n1 1

2 !\v imXimn~qim!.

We can say in images that thenth energy eigenstate of th
mth harmonic oscillator coupled with thei th electron state is
occupied byn quasiparticles, i.e., phonons, whose energy
\v im while 1

2 \v im is the corresponding zero-point energ
Therefore, the electron-lattice interaction is called frequen
the electron-phonon interaction. We now expand the fi
operatorŵm(qm ,t) in terms of$Ximn(qim)% as

ŵm~qm ,t !5 (
n50

`

b̂imn~ t !Ximn~qim!. ~2.19!

Here b̂imn and b̂imn
† are the annihilation and creation oper

tors for thenth eigenstate of themth harmonic oscillator
coupled with thei th electronic state. They obey the equa
time commutation relations:

@ b̂imn ,b̂im8n8
†

#25dmm8dnn8 ,

@ b̂imn ,b̂im8n8#25@ b̂imn
† ,b̂im8n8

†
#250.

The phonon-number operator for thenth harmonic-
oscillator eigenstate is given byN̂imn5b̂imn

† b̂imn . Since we
are considering the second quantization of a sin
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harmonic-oscillator wave field, the total phonon-number o
erator for themth harmonic oscillator is the identity operato

N̂im5 (
n50

`

b̂imn
† b̂imn51.

Substituting Eq.~2.19! into Eq. ~2.17!, one acquires the
Hamiltonian operator in the whole occupation-number rep
sentation as

Ĥ5(
i

Ei âi
†âi1(

i
âi

†âi (
m51

f

(
n50

`

\v im~n1 1
2 !b̂imn

† b̂imn .

~2.20!

In the whole occupation-number representation, the H
bert subspace of the electron is spanned by the comp
orthonormal basis vectorsu i &5âi

†u0&, while the Hilbert sub-
space of thef harmonic oscillators is spanned by the co
plete orthonormal basis vectorsu$nm%&5)m51

f b̂imnm

† u0&.
Therefore, the whole occupation-number representation
the complete orthonormal basis vectors

u i ,$nm%&5âi
† )

m51

f

b̂imnm

† u0&. ~2.21!

The set$N̂i% of electron-number operators, the set$N̂imnm
% of

phonon-number operators, and the Hamiltonian operatoĤ
constitute a complete set of commuting dynamical variab
determining the system, and the common eigenvectors of
complete set areu i ,$nm%&. In the eigenstatesu i ,$nm%&, the
energy eigenvalues of the Hamiltonian operatorĤ given by
Eq. ~2.20! yield

E~ i ,$nm%!5Ei1 (
m51

f

~nm1 1
2 !\v im . ~2.22!

The eigenvalues and eigenstates of the electron-phonon
tem in the adiabatic approximation are often call
vibrational-electronic, or vibronic levels and states.

III. EXPRESSION OF THE ABSORPTION COEFFICIENT

Let a beam of monochromatic light of frequencyv enter
an isotropic dielectric crystal. The electric field of the lig
can be written in the complex number form

EW ~ t !5EW e2 ivt. ~3.1!

The electric polarizationPW (t) in the crystal and the exciting
electric fieldEW (t) satisfy the causal relation

PW ~ t !5e0E
2`

t

f ~ t2t8!EW ~ t8!dt8, ~3.2!

wheree0 is the permittivity of vacuum andf (t) represents
the complex linear response function of the crystal to
electric field. Putting Eq.~3.1! into Eq. ~3.2! gives PW (t)
5e0x(v)EW (t), where we define a complex, frequenc
dependent, electric susceptibility
-

-

l-
te

-

as

s
is

ys-

e

x~v!5E
0

`

f ~ t !eivtdt.

The corresponding complex dielectric function is given
e(v)511x(v).

We further assume that the monochromatic light is
plane wave propagating in thez direction,

EW ~ t !5EW 0 exp@ i ~kz2vt !#, ~3.3!

wherek is the complex wave number and obeys the relat
k25(v/c)2e. If we introduce the complex refractive indexN
by N25e, thenk5(v/c)N. Separating the real and imag
nary parts of the dielectric function and the refractive inde

e~v!5e1~v!1 i e2~v!, ~3.4!

N~v!5n~v!1 iK ~v!, ~3.5!

wheren is the real refractive index andK is the extinction
coefficient, the two relations below follow:

e15n22K2, e252nK.

The complex wave number acquires the following expr
sion from Eq.~3.5!:

k5
nv

c
1 i

vK

c
. ~3.6!

Substituting Eq.~3.6! into Eq. ~3.3! leads to

EW ~ t !5EW 0 expS 2
vK

c
zDexpF i S nv

c
z2vt D G . ~3.7!

As seen from the last equation, the light wave is dampedK
describes the absorption of the wave in the medium, andn its
dispersion.

At this point, the cycle-averaged intensity of the electr
magnetic wave is obtained from the electric field as

I 5
c

2n
e0e1E0

2 exp~2hz!, ~3.8!

whereh is the absorption coefficient of light defined byh
52vK/c. By use of the relationse252nK and e511x,
the absorption coefficient is reexpressed as

h~v!5
v Im x~v!

nc
, ~3.9!

where Im denotes the imaginary part. As known from t
above discussion, the absorption spectrum of the electrom
netic wave energy in the dielectric crystal is determin
completely by the absorption coefficient, and again the
sorption coefficient is decided by the imaginary part of t
electric susceptibility. In what follows, we formulate th
electric susceptibility adopting Kubo’s linear respon
theory.16

Now we conceive a statistical ensemble, of which eve
system is just the model system that we have discusse
Sec. II. The natural motion of the system is determined
the Hamiltonian operatorĤ in Eq. ~2.20!, the statistical en-
semble in an equilibrium state is described by the den



o
a

e

p

tr

d
e

r-

a

rd
te

n

al

is

by

tity
s
-

d,

m

r-
the
ry,
e di-

f

ble-
rst

the

15 752 PRB 60ZE CHENG
operatorr̂, and both operators satisfy the relation@Ĥ,r̂ #2

50. If the model system is acted upon by the electric field
the light polarized along thex direction, the system gets
perturbation energy

Ĥ8~ t !52 p̂xEx~ t !, ~3.10!

where p̂x52ex is the x component of the electric dipol
moment of the trapped electron and the position vectorrW of
the electron with respect to the defect center has a com
nentx. For simplicity, in Eq.~3.10! the local electric field at
the defect center is replaced by the macroscopic elec
field.

In the presence of the external perturbation expresse
Eq. ~3.10!, the motion of the statistical ensemble is describ
by the density operatorr̂8(t), which obeys the Liouville
equation

]

]t
r̂8~ t !5

1

i\
@Ĥ1Ĥ8~ t !,r̂8~ t !#. ~3.11!

Assuming the adiabatic conditionEx(t52`)50, then the
system att52` is in a thermal equilibrium state. The co
responding density operator of the ensemble is given by

r̂8~ t52`!5 r̂5
exp~2bĤ !

Tr exp~2bĤ !
, ~3.12!

whereb51/kBT andT is the temperature. It is supposed th
the light field is sufficiently weak that we can expandr̂8(t)
as

r̂8~ t !5 r̂1Dr̂~ t !.

Since we consider only the linear response, the second-o
small amount inDr̂(t) can be neglected when we substitu
the above expansion into Eq.~3.11!. After doing that, one
can obtain the differential equation with an initial conditio

]

]t
Dr̂~ t !5

1

i\
@Ĥ,Dr̂~ t !#2

1

i\
Ex~ t !@ p̂x ,r̂ #,

Dr̂~ t52`!50, ~3.13!

where Eq.~3.10! has been used.
Equation ~3.13! is an inhomogeneous linear differenti

equation of first order aboutDr̂(t), whose solution is easily
found to be

Dr̂~ t !52
1

i\E2`

t

exp@2 i ~ t2t8!Ĥ/\#@ p̂x ,r̂ #

3exp@ i ~ t2t8!Ĥ/\#Ex~ t8!dt8.

Therefore, the changeDpx(t) of the x componentp̂x of the
electric dipole moment due to the electric field of the light
statistically given by
f

o-

ic

by
d

t

er

Dpx~ t !5Tr@Dr̂~ t ! p̂x#52
1

i\
TrH E

2`

t

exp@2 i ~ t2t8!Ĥ/\#

3@ p̂x ,r̂ #exp@ i ~ t2t8!Ĥ/\# p̂xEx~ t8!dt8J
5

i

\E2`

t

^@ p̂x~ t2t8!,p̂x#&Ex~ t8!dt8. ~3.14!

Here, we have utilized the average notation^Â&5Tr( r̂Â)
andp̂x(t) is the operator in the Heisenberg picture defined

p̂x~ t !5eiĤ t/\p̂xe
2 iĤ t/\.

Dpx(t) is called the linear response of the physical quan
p̂x to the external fieldEx(t). Let C be the number of defect
per unit volume; then thex component of the electric polar
ization in the crystal is given byPx(t)5CDpx(t).

After we insert the electric field of the linearly polarize
monochromatic, incident light,Ex(t)5Ex exp(2ivt), into
Eq. ~3.14!, thex componentPx(t)5CDpx(t) of the induced
electric polarization can be conveniently written in the for

Px~ t !5e0x~v!Ex~ t !, ~3.15!

where the electric susceptibility is expressed as

x~v!5
iC

\e0
lim

«→01

E
0

`

^@ p̂x~ t !,p̂x#&e
ivt2«tdt,

and the infinitesimal positive« is used to assure the conve
gence of the integral. Considering that the orientation of
electric dipole moment of the trapped electron is arbitra
the expression above has to be averaged over the thre
rectionsx,y,z, so that we have

x~v!5
iC

3\e0
lim

«→01

E
0

`

^@pŴ ~ t !,pŴ #&eivt2«tdt, ~3.16!

wherepŴ 52erW is just the electric-dipole-moment vector o
the electron.

Now, the electric susceptibilityx(v) as given by Eq.
~3.16! is closely related to a temperature-dependent dou
time Green’s function. These Green’s functions were fi
introduced by Bogoliubovet al.17 The retarded Green’s
function ^^ÂuB̂&&v for operatorsÂ and B̂ is defined in a
complexv plane by

^^ÂuB̂&&v5
1

2p i E0

`

dteivt^@Â~ t !,B̂#&, Im v.0

~3.17!

whereÂ(t) is the Heisenberg operator with

Â~ t !5eiĤ t/\Âe2 iĤ t/\.

One can show that the Green’s function^^ÂuB̂&&v as defined
by Eq. ~3.17! is one branch analytic function ofv in the
upper half plane outside the real axis and that it obeys
equation of motion
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v^^ÂuB̂&&v5
1

2p
^@Â,B̂#&1

1

\
^^@Â,Ĥ#uB̂&&v . ~3.18!

By comparison of Eq.~3.16! with Eq. ~3.17!, we can imme-
diately see the relation

x~v!52
2pC

3\e0
lim

«→01
(
a

^^ p̂au p̂a&&v1 i« , ~3.19!

wherea5x,y,z andv takes real values.
Next, we put Eq.~3.19! into Eq. ~3.9! and introduce the

spectral functionF(v) of the absorption coefficient by

F~v!52
4mev

3\e2 lim
«→01

Im(
a

^^ p̂au p̂a&&v1 i« , ~3.20!

where me is the electron mass. Therefore, the absorpt
coefficienth(v) has a simple expression

h~v!5
pCe2

2ncmee0
F~v!.

This reveals that the absorption coefficient is completely
termined by its spectral function. The dipole-moment ope
tor p̂a in Eq. ~3.20! is expressed in the electronic coordina
representation. We need the expression ofp̂a in the elec-
tronic occupation-number representation. Using the seco
quantized formalism in Sec. II, we can write the dipo
moment operator in the form

p̂a5(
i , j

pa i j âi
†â j , ~3.21!

wherepa i j is the matrix element of the dipole-moment o
erator of the electron between the two electronic statesi and
j,

pa i j 5E ui* ~rW !~2erW !auj~rW !drW.

Substituting Eq.~3.21! into Eq. ~3.20! immediately leads to

F~v!52
4mev

3\e2 lim
«→01

Im(
a,i , j

(
i 8, j 8

pa i j pa j 8 i 8

3^^âi
†â j uâ j 8

† âi 8&&v1 i« , ~3.22!

so that the Green’s functions^^âi
†â j uâ j 8

† âi 8&&v1 i« determine
the absorption spectrum. In the following section, we sh
give an explicit evaluation of these Green’s functions by u
lizing the Hamiltonian operatorĤ in Eq. ~2.20!, the density
operatorr̂ in Eq. ~3.12!, and the equation of motion in Eq
~3.18!.

IV. EVALUATION OF GREEN’S FUNCTIONS

If we use the equation of motion~3.18! for Green’s func-
tions directly to calculatê ^âi

†â j uâ j 8
† âi 8&&v where v takes

complex values, this equation will lead in the familiar way
a coupled hierarchy of equations for Green’s functions
higher and higher order. The reason for this difficulty lies
the fact that in the commutator@ âi

†â j ,Ĥ# of this equation,
n

-
-

d-

ll
-

f

the Hamiltonian operatorĤ given by Eq.~2.20! has the sym-
metry with respect to the electron and phonon opera
while âi

†â j does not.
In order to avoid this difficulty, we introduce the creatio

and annihilation operatorsb̂mpm

† ,b̂mpm
of free harmonic oscil-

lators, where the word ‘‘free’’ means the vibrational eige
states independent of electronic states. These operators
the identity relation in the state space of interest,

(
p1

•••(
pf

b̂1p1

†
•••b̂f pf

† b̂f pf
•••b̂1p1

51.

Thereby, one can make a transformation18

^^âi
†â j uâ j 8

† âi 8&&v

5 (
$pm%

^^âi
†â j b̂1p1

†
•••b̂f pf

† b̂f pf
•••b̂1p1

uâ j 8
† âi 8&&v . ~4.1!

A complete orthonormal set of eigenfunctionsXmp(qm) of
the mth free harmonic oscillator has the same function
structure as Eq.~2.18!. The field operatorŵm(qm ,t) of the
mth harmonic oscillator can be also expanded in terms
$Xmp(qm)% as

ŵm~qm ,t !5 (
p50

`

b̂mp~ t !Xmp~qm!. ~4.2!

From Eqs.~2.19! and ~4.2! it follows that b̂imn and b̂mp are
linearly related by

b̂mp5 (
n50

`

Cpn
im~D im!b̂imn , ~4.3!

with

Cpn
im~D im!5E

2`

`

Xmp* ~qm!Ximn~qm2D im!dqm .

Putting Eq.~4.3! into Eq. ~4.1!, we arrive at

^^âi
†â j uâ j 8

† âi 8&&v

5 (
$mm%

(
$nm%

)
m

Cmmnm

i j m ~D j i m!

3^^âi
†â j b̂i1m1

†
•••b̂i f mf

† b̂ j f n f
•••b̂ j 1n1

uâ j 8
† âi 8&&v ,

~4.4!
whereD j i m5D j m2D im denotes the relative equilibrium dis
placement of themth vibration mode between the two ele
tronic statesi and j, and Cmn

i j m(D j i m) are called the overlap
integrals between the vibrational eigenfunctions appropr
to the electronic statesi and j,

Cmn
i j m~D j i m!5 (

p50

`

Cpm
im* ~D im!Cpn

j m~D j m!

5E
2`

`

Ximm* ~qm!Xj mn~qm2D j i m!dqm .

~4.5!
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Now, we can apply the equation of motion~3.18! for
Green’s functions directly to evaluate the Green’s funct
on the right of Eq.~4.4!. The equation of motion for this
Green’s function reads

v^^âi
†â j b̂i1m1

†
•••b̂i f mf

† b̂ j f n f
•••b̂ j 1n1

uâ j 8
† âi 8&&v

5
1

2p
^@ âi

†â j b̂i1m1

†
•••b̂i f mf

† b̂ j f n f
•••b̂ j 1n1

,â j 8
† âi 8#&

1
1

\
^^@ âi

†â j b̂i1m1

†
•••b̂i f mf

† b̂ j f n f
•••b̂ j 1n1

,Ĥ#uâ j 8
† âi 8&&v .

~4.6!

The commutator withĤ on the right of Eq.~4.6! gives rise to
no higher-order Green’s functions, because the first term
this commutator possesses the largest symmetry with res
to the electron and phonon operators. In fact, this comm
tor yields a term proportional to the first term in this com
mutator.

Because it is for a single electron and harmonic oscilla
whose wave fields were second quantized, there is only
‘‘particle’’ in the electronic and each mode’s subspaces
the state vectors in the trace. As a result of this fact, one
easily find the two relations19

âi
†â j âk

†âl5d jkâi
†âl ,

~4.7!

b̂imn
† b̂immb̂im l

† b̂imp5dmlb̂imn
† b̂imp .

Furthermore, we need to carry out the statistical averag
operator products concerned. In the absence of exte
fields, the electron-phonon system is in a statistical equi
rium state described by the density operatorr̂(Ĥ) in Eq.
~3.12!. The action ofr̂ on the vibronic states~2.21! in the
trace can be written as

r̂~Ĥ !u i ,$nm%&5r„E~ i ,$nm%!…u i ,$nm%&,

where the energy eigenvaluesE( i ,$nm%) are given by Eq.
~2.22! and we will use the abbreviationr„E( i ,$nm%)…
5r( i ,$nm%). In what follows, we undertake calculation o
the statistical average of the typical operator product,

^âi
†âi 8b̂i1m1

†
•••b̂i f mf

† b̂ j f n f
•••b̂ j 1n1

&

5 (
k,$ l m%

^k,$ l m%ur̂~Ĥ !âi
†âi 8

3b̂i1m1

†
•••b̂i f mf

† b̂ j f n f
•••b̂ j 1n1

uk,$ l m%&5(
$ l m%

r~ i ,$ l m%!

3^$ l m%ub̂i1m1

†
•••b̂i f mf

† b̂ j f n f
•••b̂ j 1n1

u$ l m%&d i i 8 .

To continue, we consider the expansion of the field opera
of the mth harmonic oscillator in the eigenfunction sets a
propriate to the electronic statesi and j,
n

in
ect
a-

r
ne
f
n

of
al
-

or
-

ŵm~qm!5 (
n50

`

b̂ j mnXj mn~qm2D j m!

5 (
p50

`

b̂impXimp~qm2D im!.

From these two expansions it follows thatb̂ j mn and b̂imn are
linearly related by

b̂ j mn5(
p

Cpn
i j m* ~D j i m!b̂imp ,

where Cpn
i j m(D j i m) are the overlap integrals defined by E

~4.5!. With use of this relation, the statistical average cons
ered is finally found as

^âi
†âi 8b̂i1m1

†
•••b̂i f mf

† b̂ j f n f
•••b̂ j 1n1

&

5(
$ l m%

(
$pm%

r~ i ,$ l m%!F)
m

Cpmnm

i j m* ~D j i m!G
3^$ l m%ub̂i1m1

†
•••b̂i f mf

† b̂i f p f
•••b̂i1p1

u$ l m%&d i i 8

5r~ i ,$mm%!d i i 8)
m

Cmmnm

i j m* ~D j i m!. ~4.8!

Equations~4.7! and ~4.8! are repeatedly used in the follow
ing derivation.

With the help of Eqs.~4.7! and~4.8!, the first term on the
right of Eq. ~4.6! is easily calculated as

1

2p
^@ âi

†â j b̂i1m1

†
•••b̂i f mf

† b̂ j f n f
•••b̂ j 1n1

,â j 8
† âi 8#&

5
1

2p
@r~ i ,$mm%!2r~ j ,$nm%!#d i i 8d j j 8)

m
Cmmnm

i j m* ~D j i m!.

~4.9!

The next task is to compute the commutator withĤ on the
right of Eq. ~4.6!. The Hamiltonian operatorĤ of the
electron-phonon system is given by Eq.~2.20!. Utilization of
the relations~4.7! straightforwardly produces the result,

@ âi
†â j b̂i1m1

†
•••b̂i f mf

† b̂ j f n f
•••b̂ j 1n1

,Ĥ#

5\H v j i* 1(
m

@~v j m2v im!~nm1 1
2 !

1v im~nm2mm!#J âi
†â j b̂i1m1

†
•••b̂i f mf

† b̂ j f n f
•••b̂ j 1n1

,

where v j i* 5(Ej2Ei)/\ represents the renormalized trans
tion frequency of the electron from the statei to j in the
absence of multiphonon transitions. This result shows t
the operator product in normal-ordering form, i.e., the nu
ber of lattice quasiparticles and electrons, is conserved by
interaction. Inserting this result into the second term on
right of Eq. ~4.6! immediately yields
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1

\
^^@ âi

†â j b̂i1m1

†
•••b̂i f mf

† b̂ j f n f
•••b̂ j 1n1

,Ĥ#uâ j 8
† âi 8&&v

5H v j i* 1(
m

@~v j m2v im!~nm1 1
2 !1v im~nm2mm!#J

3^^âi
†â j b̂i1m1

†
•••b̂i f mf

† b̂ j f n f
•••b̂ j 1n1

uâ j 8
† âi 8&&v .

~4.10!

This reveals that the equation of motion for Green’s fun
tions contains only Green’s functions of the one kind, i.e.
self-contained, and can be solved to any desired order in
la

e

-
s
he

interaction strength. Combining Eqs.~4.9! and ~4.10! into
Eq. ~4.6!, we get

H v2v j i* 2(
m

@~v j m2v im!~nm1 1
2 !1v im~nm2mm!#J

3^^âi
†â j b̂i1m1

†
•••b̂i f mf

† b̂ j f n f
•••b̂ j 1n1

uâ j 8
† âi 8&&v

5
1

2p
@r~ i ,$mm%!2r~ j ,$nm%!#d i i 8d j j 8)

m
Cmmnm

i j m* ~D j i m!.

~4.11!

As shown by Zubarev,17 the solution of Eq.~4.11! compat-
ible with the definition of Green’s functions is given by
e type
^^âi
†â j b̂i1m1

†
•••b̂i f mf

† b̂ j f n f
•••b̂ j 1n1

uâ j 8
† âi 8&&v5

1

2p
@r~ i ,$mm%!2r~ j ,$nm%!#d i i 8d j j 8)

m
Cmmnm

i j m* ~D j i m!

3H v2v j i* 2(
m

@~v j m2v im!~nm1 1
2 !1v im~nm2mm!#J 21

. ~4.12!

According to Eq.~4.4!, the original Green’s function is expressed as a sum over the set of Green’s functions of th
~4.12!,

^^âi
†â j uâ j 8

† âi 8&&v5
d i i 8d j j 8

2p (
$mm%

(
$nm%

@r~ i ,$mm%!2r~ j ,$nm%!#)
m

uCmmnm

i j m ~D j i m!u2

3H v2v j i* 2(
m

@~v j m2v im!~nm1 1
2 !1v im~nm2mm!#J 21

. ~4.13!

Substituting Eq.~4.13! into Eq. ~3.22!, we obtain the spectral function of the absorption coefficient as

F~v!52
2mev

3\e2p (
i , j

(
$mm%

(
$nm%

upW i j u2@r~ i ,$mm%!2r~ j ,$nm%!#

3)
m

uCmmnm

i j m ~D j i m!u2 ImH lim
«→01

1

v2v j i* 2(
m

@~v j m2v im!~nm1 1
2 !1v im~nm2mm!#1 i«J ,
si-

ncy

on.
wherev takes real values. By using the asymptotic formu

lim
«→01

1

x6 i«
5PS 1

xD7 ipd~x!,

where P denotes the Cauchy principal value, the above
pression is reduced to

F~v!5
2mev

3\e2 (
i , j

(
$mm%

(
$nm%

upW i j u2@r~ i ,$mm%!2r~ j ,$nm%!#

3)
m

uCmmnm

i j m ~D j i m!u2

3dH v2v j i* 2(
m

@~v j m2v im!~nm1 1
2 !

1v im~nm2mm!#J . ~4.14!
x-

Because of the relationpŴ 52erW, it is now more conve-
nient to introduce the matrix element of the electronic po
tion vectorrW between the electronic statesi and j,

rW j i 5E uj* ~rW !rWui~rW !drW. ~4.15!

It is still necessary to introduce the bare transition freque
v j i 5(« j2« i)/\ of the electron from the statei to j in the
absence of multiphonon transitions. Thereby, we can set

f j i 5
2me

3\
v j i urW j i u2. ~4.16!

f j i is a real dimensionless number, characteristic of thei↔ j
transition, and called the oscillator strength of this transiti
Oscillator strengths satisfy the following sum rule:

(
j

f j i 51.



u

e
c
ra

,
e

-

tia
es
r-

-

nic
ity
the

ar-
-
ner-

an
ti-
n
ib-
te
w

ht

b-

in
cy

is
.
e

la

15 756 PRB 60ZE CHENG
Through oscillator strengths, the spectral function~4.14! can
be rewritten in a neat form

F~v!5(
i , j

(
$mm%

(
$nm%

v

v j i
f j i @r~ i ,$mm%!2r~ j ,$nm%!#

3)
m

uCmmnm

i j m ~D j i m!u2

3dH v2v j i* 2(
m

@~v j m2v im!~nm1 1
2 !

1v im~nm2mm!#J . ~4.17!

Since there is no light amplification in the physical config
ration under investigation, the absorption coefficienth(v) or
F(v) must be positive. This poses an inequalityr( i ,$mm%)
.r( j ,$nm%) to Eq. ~4.17!. The inequality means that th
vibronic states (i ,$mm%) are of lower energy and the vibroni
states (j ,$nm%) are of higher energy. Therefore, the spect
function F(v) given by Eq.~4.17! includes two contribu-
tions. The first partFa(v) is due to stimulated absorption
the second partFe(v) is due to stimulated emission, and th
spectral function is the difference between both,F(v)
5Fa(v)2Fe(v). In any thermal equilibrium case,Fe(v) is
negligible compared withFa(v), so that the spectral func
tion is mainly determined by stimulated absorption,

F~v!5(
i , j

(
$mm%

(
$nm%

v

v j i
f j i r~ i ,$mm%!

3)
m

uCmmnm

i j m ~D j i m!u2dH v2v j i* 2(
m

@~v j m2v im!

3~nm1 1
2 !1v im~nm2mm!#J . ~4.18!

As seen from Eq.~4.18!, the spectral functionF(v) assumes
the form that it takes the thermal average over all the ini
states (i ,$mm%) of transition and sums up all the final stat
( j ,$nm%) of transition but thed function guarantees conse
vation of energy during transition processes.

r( i ,$mm%) is the probability of finding the electron
phonon system in a vibronic state (i ,$mm%). The probability
distribution in the initial states of transition is given by

r~ i ,$mm%!5

expH 2bFEi1 (
m51

f

\v im~mm1 1
2 !G J

Tr exp~2bĤ !
.

Now we introduce the probability distributionr( i ) in the
electronic states and the probability distributionr i($mm%) in
the vibrational states by

r~ i !5
exp~2bEi !

(
k

exp~2bEk!

,

-

l

l

r i~$mm%!5

expF2b (
m51

f

\v imS mm1
1

2D G
(
$ l m%

expF2b (
m51

f

\v imS l m1
1

2D G , ~4.19!

where the vibrational probability depends on the electro
statei. Under the decoupling approximation, the probabil
of the total system is decoupled into the product form of
electronic and vibrational probabilities,

r~ i ,$mm%!5r~ i !r i~$mm%!.

The decoupling approximation is based on the following
gument: An electronic statei is separated from other elec
tronic states by energy much larger than the phonon e
gies. The vibrational states can change only slowly near
electronic statei, while the electronic states respond adiaba
cally to all the vibrational states. The probability distributio
r( i ) in the electronic states shows that in thermal equil
rium, the initial statei of transition chooses the ground sta
of the trapped electron with a maximum probability. In vie
of this fact, if i 50 signifies the ground state, in Eq.~4.18!
we can seti 50 for all the quantities exceptr( i ) and then
obtain the sum rule( ir( i )51. Thereby, Eq.~4.18! becomes

F~v!5(
j

(
$mm%

(
$nm%

v

v j 0
f j 0r0~$mm%!

3)
m

uCmmnm

0 j m ~D j 0m!u2dH v2v j 0* 2(
m

@~v j m2v0m!

3~nm1 1
2 !1v0m~nm2mm!#J . ~4.20!

In Sec. III, for convenience we assumed the incident lig
to be a monochromatic light with a fixed frequencyv. In this
case, Eq.~4.20! gives the composite strength of a single a
sorption line at frequencyv due to transitions from the
ground statei 50 to all the excited statesj. In fact, one often
uses a quasimonochromatic light of a central frequency
solid-state spectroscopy. If the incident central frequen
matches the peak transition frequencyV j 0* of the electron
from the ground state to a particular excited statej, then the
probabilities of all other transitions almost go to zero. In th
case, since the factorv/v j 0 slowly varies near unity, Eq
~4.20! is turned into the following normalized line-shap
function:

f j~v!5 (
$mm%

(
$nm%

r0~$mm%!)
m

uCmmnm

0 j m ~D j 0m!u2

3dH v2v j 0* 2(
m

@~v j m2v0m!~nm1 1
2 !

1v0m~nm2mm!#J . ~4.21!

When the variablev in Eq. ~4.21! varies in the frequency
range of quasimonochromatic light, Eq.~4.21! describes a
single absorption peak centered atV j 0* . Equation~4.21! is
reminiscent of the well-known Bethe-Sommerfeld formu
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for one absorption band. The present paper will empha
the case when the incident light is a polychromatic lig
whose frequency range covers all the peak transition
quencies$V j 0* %. As the variablev in Eq. ~4.20! varies in the
frequency range of the polychromatic light, Eq.~4.20! de-
picts a series of absorption peaks corresponding to diffe
frequenciesV j 0* . The composite absorption curveF(v)
manifests itself as a linear superposition of the compon
absorption curvesf j (v) with weight factorf j 0,

F~v!5(
j

v

v j 0
f j 0f j~v!, ~4.22!

where f j (v) is given by Eq.~4.21!. Equation~4.22! is the
line-shape formula for many absorption bands and rev
that F(v) is normalized to unity overv, i.e.,

E F~v!dv51.

This result represents the important law of constant area
As we know from Eq.~4.21!, the transition from the vi-

bronic stateu i 50,$mm%& to the vibronic stateu j ,$nm%& pro-
duces an absorption line at frequency

v5v j 0* 1 (
m51

f

@~v j m2v0m!~nm1 1
2 !1v0m~nm2mm!#.

~4.23!

When a photon of frequencyv is absorbed, the electro
obtains the energyv j 0* to assist the transition from the ele
tronic statei 50 to j. In the meanwhile, the crystal lattic
undergoes a transition from the vibrational state$mm% to
$nm%. The initial vibrational state possesses the phonon
ergy (mv0m(mm1 1

2 ), the final vibrational state has the ph
non energy(mv j m(nm1 1

2 ), and the net emitted or absorbe
phonon energy is given by the second term on the righ
Eq. ~4.23!. At zero temperature, the initial vibrational sta
must be the ground state$mm50% and the quantum numbe
nm of the final vibrational state gives the phonon numb
emitted in themth mode. The zero-phonon line$nm50% de-
termines a cutoff on the low-energy side of one absorpt
band. The absorption band of the 0→ j electronic transition
consists of the zero-phonon line and a series of emitted m
tiphonon lines. At finite temperature, we first consider t
linear electron-phonon interaction whenv j m5v0m . Accord-
ing to Eq.~4.23!, the absorption frequency depends only
the net phonon numberspm5nm2mm . Because of the sum
mation over$mm% and $nm% in Eq. ~4.21!, we always have
the set$pm50% which corresponds to the zero-phonon lin
we also have the set$0,pa561,0% wherea refers to a cer-
tain mode and the plus or minus sign corresponds to
emitted or absorbed one-phonon line, and so on. The abs
tion spectrum of the 0→ j electronic transition consists of th
zero-phonon line and a series of emitted or absorbed m
tiphonon lines. For the nonlinear electron-phonon interact
whenv j mÞv0m , however, the absorption frequency still d
pends on the phonon excitation numbers$nm% besides$pm%.
ze
,
-

nt

nt

ls

n-

f

r

n

l-

,

e
rp-

l-
n

Therefore, there is a lot of additional phonon excitati
lines between the previous two adjacent multiphonon lin
Since in Sec. II we have inferred the relationv j m,v0m , the
zero-phonon line is shifted to a lower energyv j 0* 2 1

2 (v0m

2v j m), the high-energy tail becomes narrower, and the lo
energy side gets wider. To sum up, the quadratic electr
phonon interaction produces the two effects:~1! the absorp-
tion lines become denser and~2! the absorption spectrum i
extended asymmetrically towards lower energy. The stren
of the absorption line at frequency~4.23! is proportional to
the coefficient in front of thed function in Eq.~4.21!, while
this coefficient is determined by the overlap integra
Cmn

0 j m(D j 0m). In the next section, we will make a concre
calculation ofCmn

0 j m(D j 0m).

V. CALCULATION OF OVERLAP INTEGRALS AND
SEVERAL APPROXIMATE CASES

For simplicity, we temporarily writeCmn
0 j m(D j 0m) as

Cmn
0 j (D j 0). On substituting the vibrational wave function

~2.18! into Eq. ~4.5!, the overlap integrals become

Cmn
0 j ~D j 0!5S a0a j

p2m1nm!n!
D 1/2E

2`

`

expF2
1

2
~a0q!2

2
1

2
a j

2~q2D j 0!2GHm~a0q!Hn„a j~q2D j 0!…dq.

~5.1!

We multiply both sides of Eq.~5.1! by t0
mt j

n(m!n!) 21/2,
sum overm and n, use the generating function for Hermit
polynomials

e2xt2t25 (
n50

`

Hn~x!
tn

n!
,

and hence obtain

(
m50

`

(
n50

`

Cmn
0 j ~D j 0!

t0
m

~m! !1/2

t j
n

~n! !1/2

5S a0a j

p D 1/2E
2`

`

expF2
1

2
~a0q!22

1

2
a j

2~q2D j 0!2G
3expF2~a0q!S t0

A2
D 2S t0

A2
D 2G

3expH 2@a j~q2D j 0!#S t j

A2
D 2S t j

A2
D 2J dq.

Then, one performs the integrals overq, expands the resul
into a power series int0 and t j , and therefore gains



15 758 PRB 60ZE CHENG
(
m50

`

(
n50

`

Cmn
0 j ~D j 0!

t0
m

~m! !1/2

t j
n

~n! !1/2
5S 2a0a j

a0
21a j

2D 1/2

expF2
a0

2a j
2D j 0

2

2~a0
21a j

2!
G

3 (
k150

`

(
l 150

`

(
k50

`

(
l 50

`

(
p50

`

~21! l 1 l 1F a0
22a j

2

2~a0
21a j

2!G
k1 l

3S A2a0a j
2D j 0

a0
21a j

2 D k1S A2a0
2a jD j 0

a0
21a j

2 D l 1S 2a0a j

a0
21a j

2D p t0
2k1k11pt j

2l 1 l 11p

k1! l 1!k! l ! p!
.

If we let m52k1k11p andn52l 1 l 11p in the above equation, then it follows that

(
m50

`

(
n50

`

Cmn
0 j ~D j 0!

t0
m

~m! !1/2

t j
n

~n! !1/2
5S 2a0a j

a0
21a j

2D 1/2

expF2
a0

2a j
2D j 0

2

2~a0
21a j

2!
G

3 (
m50

`

(
n50

`

(
p50

min(m,n)

(
k50

[(m2p)/2]

(
l 50

[(n2p)/2] F a0
22a j

2

2~a0
21a j

2!G
k1 l

3S A2a0a j
2D j 0

a0
21a j

2 D m22k2pS A2a0
2a jD j 0

a0
21a j

2 D n22l 2p

3S 2a0a j

a0
21a j

2D p ~21!n2 l 2pt0
mt j

n

~m22k2p!! ~n22l 2p!!k! l ! p!
. ~5.2!

Here min(m,n) means the lesser ofm andn, and@(m2p)/2#, @(n2p)/2# signify (m2p)/2, (n2p)/2 whenm2p, n2p are
even numbers and (m2p21)/2, (n2p21)/2 whenm2p, n2p are odd numbers. Now we equate equal powers oft0 andt j
on both sides of Eq.~5.2! and acquire for the overlap integrals

Cmn
0 j ~D j 0!5S 2a0a j

a0
21a j

2D 1/2

expF2
a0

2a j
2D j 0

2

2~a0
21a j

2!
G (

p50

min(m,n)

(
k50

[(m2p)/2]

(
l 50

[(n2p)/2]
~21!n2 l 2p~m!n! !1/2

~m22k2p!! ~n22l 2p!!k! l ! p!

3F a0
22a j

2

2~a0
21a j

2!G
k1 lS A2a0a j

2D j 0

a0
21a j

2 D m22k2pS A2a0
2a jD j 0

a0
21a j

2 D n22l 2pS 2a0a j

a0
21a j

2D p

. ~5.3!
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The so general expression of the overlap integrals is dedu
for the first time, whereas the previous researchers all ma
variety of assumptions to calculate the overlap integrals
what follows, we will discuss several approximate cases
this expression.

A. Neglecting the lattice relaxation effect

Since the equilibrium displacementD im of a vibrational
mode characterizes the lattice relaxation effect, we letD0m
5D j m50, so that the relative equilibrium displaceme
D j 0m5D j m2D0m50. This is the case of so-called quadra
modes. If the defect site is a center of inversion, the lin
electron-phonon interaction will vanish by symmetry for t
vibrational modes with odd parity. In this case, a quadra
electron-phonon interaction will dominate.

In the series~5.3!, the nonzero term is the zeroth power
D j 0 and therefore one hasm22k2p50 and n22l 2p
50. The two relations dictate thatm,n,p be either all even
or all odd. Form andn, when one index is odd and the oth
ed
a

n
f

t

r

c

even, Eq.~5.3! producesCmn
0 j (0)50. When m and n are

either both even or both odd, and asa i5(v i /\)1/2, Eq. ~5.3!
is reduced to

Cmn
0 j ~0!5F 4v0v j

~v01v j !
2G1/4

(
p50,1

min(m,n)

~21!(n2p)/2

3
~m!n! !1/2

S m2p

2 D ! S n2p

2 D ! p!
F v02v j

2~v01v j !
G (m1n)/22p

3F 4v0v j

~v01v j !
2G p/2

, ~5.4!

wherep is even whenm,n are both even andp is odd when
m,n are both odd. Equation~5.4! embodies conservation o
the parity of the vibrational states during transition proces
of the electron-phonon system.

Settingx5(v02v j )/(v01v j ), then Eq.~5.4! becomes
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Cmn
0 j ~x!5F ~12x2!1/2

m!n!

2m1nG 1/2

~21!n/2x(m1n)/2

3 (
p50,1

min(m,n)
2p

S m2p

2 D ! S n2p

2 D ! p!
F2

~12x2!

x2 G p/2

.

~5.5!

The overlap integrals in Eq.~5.5! can be expressed as seve
mathematical functions. In the theory of mathemati
functions,20 we will develop the most compact expression
the overlap integrals. In doing so, we further letz5 i (1
2x2)1/2x21. Whenm andn are both even, i.e.,m52a and
n52b, Eq. ~5.5! can be written in the form,

C2a,2b
0 j ~x!5F ~12x2!1/2

~2a!! ~2b!!

22a12b G 1/2

3~21!bxa1b~a!b! !21F~2a,2b; 1
2 ;z2!,

~5.6!

where F(a,b;c;z) is the Gauss hypergeometric series a
the Gauss series reduces to a polynomials of degreen in z
whena or b is equal to2n (n50,1,2, . . . ). With thehelp
of a property of the hypergeometric function, Eq.~5.6! can
be rewritten in the most compact form,

C2a,2b
0 j ~z!5~p/2!1/2~21!a/22b/2

3@~2a!! ~2b!! #21/2z1/2Pa2b21/2
a1b11/2~z!,

~5.7!

wherePn
m(z) is the associated Legendre function of the fi

kind of degreen and orderm. The associated Legendre fun
tion possesses the following properties: Whenm and n are
half integers,Pn

m is a polynomial inz. When m and n are
integers and ifm.n, Pn

m is identically zero.
Now we turn to the case whenm andn are both odd, i.e.,

m52a11 and n52b11. In this case, Eq.~5.5! may be
written in terms of the hypergeometric function

C2a11,2b11
0 j ~x!5F ~12x2!3/2

~2a11!! ~2b11!!

22a12b G 1/2

3~21!b11xa1b~a!b! !21

3F~2a,2b; 3
2;z

2!,

and in terms of the associated Legendre function

C2a11,2b11
0 j ~z!5~p/2!1/2~21!a/22b/2

3@~2a11!! ~2b11!! #21/2

3z1/2Pa2b21/2
a1b13/2~z!. ~5.8!

We further considerm andn where one index is odd and th
other even. In this case,m/21n/21 1

2 andm/22n/22 1
2 are

integers andm/21n/21 1
2 .m/22n/22 1

2 , so that

Pm/22n/221/2
m/21n/211/2~z!50. ~5.9!
l
l
f

d

t

At this point, Eqs.~5.7!, ~5.8!, and ~5.9! may be combined
into a single expression,

Cmn
0 j ~z!5~p/2!1/2~21!m/42n/4~m!n! !21/2

3z1/2Pm/22n/221/2
m/21n/211/2~z!, ~5.10!

wherem andn are arbitrary positive integers.
If one puts theCmmnm

0 j m (zm) given by Eq.~5.10! into Eq.

~4.21!, in principle one can calculate the line-shape functi
of quadratic modes. Since the expression~4.21! is so com-
plicated and the parameters are so numerous, however, w
out further simplification it is practically impossible to un
dertake the calculation. For the further treatment
simplification, please see Ref. 10.

B. Neglecting the lattice-frequency shift effect

As known in Sec. II, the quadratic electron-phonon int
action causes a shift in the vibration frequencies of the
tice, and the renormalized lattice frequenciesv im depend on
the electronic states. Now, letv0m5v j m5vm and corre-
spondingly a0m5a j m5am . This means that we conside
only the linear electron-phonon interaction.

In this situation, we havek5 l 50 in Eq.~5.3!, so that Eq.
~5.3! is reduced to

Cmn
0 j ~D j 0!5expS 2

a2D j 0
2

4 D (
p50

min(m,n)

~21!n2p

3
~m!n! !1/2

~m2p!! ~n2p!! p! S aD j 0

A2
D m1n22p

.

Next, one letsr 5min(m,n)51
2(m1n2um2nu), makes the

summation-index transformationk5r 2p, and obtains for
the overlap integrals

Cmn
0 j ~D j 0!5~21!(1/2)(n2m1um2nu)

3F r !

~r 1um2nu!! G
1/2S aD j 0

A2
D um2nu

3expS 2
a2D j 0

2

4 DLr
um2nuS a2D j 0

2

2 D , ~5.11!

where

Lr
um2nu~x!5 (

k50

r

~21!k
~r 1um2nu!!

~ um2nu1k!! ~r 2k!!

xk

k!

is the generalized Laguerre polynomial of degreer.
If one substitutes theCmmnm

0 j m (D j 0m) given by Eq.~5.11!

into Eq.~4.21!, one will easily find the line-shape function o
linear modes. First one needs to perform the thermal ave
usingr0($mm%) in Eq. ~4.19!. Then, we change the indexnm
of summation intopm5nm2mm wherepm50,61,62, . . . ,
alter the index mm of summation into r m5 1

2 (nm1mm
2upmu), and acquire for the line-shape function,
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f j~v!5 (
$pm%

)
m

H (
r m50

`
r m!

~r m1upmu!!

3~e2b\vm!r mFLr m

upmuS am
2 D j 0m

2

2 D G2J
3~eb\vm!(pm2upmu)/2~12e2b\vm!S am

2 D j 0m
2

2 D upmu

3expS 2
am

2 D j 0m
2

2 D dS v2v j 0* 2(
m

vmpmD .

~5.12!

For the series of Laguerre polynomials in the braces in
~5.12!, we utilize a theorem in the theory of mathematic
functions,21

(
m50

`
m!

~m1n!!
tm@Lm

n ~x!#2

5
~x2t !2n/2

12t
expS 2

2xt

12t D I nS 2xt1/2

12t D ,

whereI n(z) is the modified Bessel function of the first kin
of order n and I 2n(z)5I n(z) for n a natural number. As a
result of the theorem, Eq.~5.12! is simplified as

f j~v!5 (
$pm%

expF2(
m

~2n̄m11!
am

2 D j 0m
2

2 G)
m

S n̄m11

n̄m
D pm/2

3I pmH 2S am
2 D j 0m

2

2 D @ n̄m~ n̄m11!#1/2J
3dS v2v j 0* 2(

m
vmpmD , ~5.13!

where

n̄m5
1

eb\vm21

is the mean phonon number excited thermally per mo
Note that Eq.~5.13! applies to either sign of the variouspm .

In principle, Eq.~5.13! can be used to calculate the lin
shape due to the linear electron-phonon interaction. Since
number f of vibrational modes of the lattice is so larg
(1023 per cm3), however, such numerical calculations a
impossible. Fortunately, the present laser-active color cen
all belong in the molecule-type color center, in which t
defect electron has very weak coupling with the body vib
tional modes of the lattice, but interacts strongly with a ve
small number of local modes that surround the defect cen
The local modes have frequencies in the gap between
acoustical and optical branches and above the op
branches. In this situation, we may conveniently take o
several local modes to undertake the calculation of li
shape functions. The extreme situation is the configuratio
coordinate model, which assumes that there is only one ‘
fective’’ frequency associated with the local modes. T
q.
l

e.

he

rs

-
y
r.

he
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y
-
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f-
s

model is superior in many respects to the Huang-Rhys c
to be discussed in the following.

Huang-Rhys case

In this case, all the modes have a single frequencyvm
5v l , where v l is the frequency of longitudinal optica
phonons. Correspondingly we haveam5a5(v l /\)1/2 and
n̄m5n̄5(eb\v l21)21. Therefore, Eq.~5.13! is reduced to

f j~v!5 (
$pm%

expF2~2n̄11!(
m

a2D j 0m
2

2 G S n̄11

n̄
D ((mpm)/2

3)
m

I pmH 2S a2D j 0m
2

2 D @ n̄~ n̄11!#1/2J
3dS v2v j 0* 2v l(

m
pmD . ~5.14!

Now we introduce the Huang-Rhys factorSj

5(m
1
2 a2D j 0m

2 . The factor can be cast into the form

Sj5

(
m

1

2
v l

2D j 0m
2

\v l
.

The numerator is just the elastic energy of lattice relaxat
released during the transition process from the electro
ground state to itsj th excited state, and the denominator
the phonon energy, so thatSj can be understood as the lattic
relaxation energy expressed in terms of phonon numb
The factorSj is used to characterize the coupling streng
between the defect electron and the linear modes. The
phonon number emitted by all the lattice modes isP
5(mpm . Applying the relation

pf5P2 (
m51

f 21

pm ,

we change the indexpf of summation intoP, so that the new
index set of summation is$p1 ,p2 , . . . ,pf 21 ,P%. In this way
Eq. ~5.14! becomes

f j~v!5 (
P52`

`

e2(2n̄11)SjS n̄11

n̄
D P/2

3S (
p152`

`

••• (
pf 2152`

`

I P2(
m8 pm

3H 2S a2D j 0 f
2

2 D @ n̄~ n̄11!#1/2J
3 )

m51

f 21

I pmH 2S a2D j 0m
2

2 D @ n̄~ n̄11!#1/2J D
3d~v2v j 0* 2v l P!, ~5.15!

where the prime on the summation symbol means exclud
m5 f . Using the integral representation of the modifi
Bessel function of the first kind of ordern, where n is a
natural number,
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I n~z!5
1

2pE2p

p

ez cost1 intdt,

one can easily verify that

(
p152`

`

••• (
pf 2152`

`

I P2(
m8 pmH 2S a2D j 0 f

2

2 D @ n̄~ n̄11!#1/2J
3 )

m51

f 21

I pmH 2S a2D j 0m
2

2 D @ n̄~ n̄11!#1/2J
5I P$2Sj@ n̄~ n̄11!#1/2%.

Substituting the last result into Eq.~5.15!, finally we obtain

f j~v!5 (
P52`

`

e2Sj (2n̄11)S n̄11

n̄
D P/2

3I P$2Sj@ n̄~ n̄11!#1/2%d~v2v j 0* 2v l P!.

~5.16!

Equation~5.16! is exactly the well-known Huang-Rhys line
shape function.

Originally, Huang and Rhys expanded the oscillator wa
functions Xnm

(qm2D j 0m) in the overlap integrals with re

spect toD j 0m , retained the first-order terms in the two serie
and then employed statistical mechanics to derive Eq.~5.16!.
Afterwards, Lax utilized the generating function method a
also obtained this result. Here the present author strictly
culates the overlap integrals so as to acquire the line-sh
function too.

With the aid of the generating function of the modifie
Bessel function

expF1

2
zS t1

1

t D G5 (
n52`

`

tnI n~z!,

it is easily shown that

(
P52`

`

e2Sj (2n̄11)S n̄11

n̄
D P/2

I P$2Sj@ n̄~ n̄11!#1/2%51.

Thereby, the line-shape functionf j (v) is normalized to unity
over v,

E f j~v!dv51.

C. Weak nonlinear effect

The two extreme cases discussed in Secs. V A and
are rarely encountered in realistic color-center crystals. M
of color-center crystals are of a weak nonlinearity. By t
weak nonlinearity, we mean that the linear electron-phon
interaction is predominant and the quadratic electron-pho
interaction is weak. In this case, when calculating the n
malized line-shape function as given by Eq.~4.21!, for the
overlap integrals we neglect the dependence of the la
frequenciesv im on the electronic statesi, but for the argu-
ments of thed functions we retain this dependence. Con
quently, the treatment of the overlap integrals in Eq.~5.3! is
e

,

d
l-
pe

B
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n
n

r-

ce

-

the same as Sec. V B, whereas we keep the factorv j m

2v0m in the arguments of thed functions in Eq.~4.21!.
Owing to the quadratic electron-phonon interaction, t

renormalized phonon energy after the transition of electro
states becomes smaller than that before the transition,
v j m,v0m , which is discussed in Sec. II. Thereby, we c
let v0m2v j m5r j mv0m , wherer j m is a phenomenologica
parameter and satisfies the relation 0,r j m,1. Then, for the
two factorsr j mv0m andv0m(nm2mm) in the d functions in
Eq. ~4.21! we assumev0m to be independent of the elec
tronic ground statei 50, i.e.,v0m5vm . Concomitantly, the
normalized line-shape function in Eq.~4.21! is evaluated as

f j~v!5 (
$pm%

expF2(
m

~2n̄m11!
am

2 D j 0m
2

2 G
3)

m
S n̄m11

n̄m
D pm/2

3I pmH 2S am
2 D j 0m

2

2 D @ n̄m~ n̄m11!#1/2J
3dH v2v j 0* 2(

m
@2r j mvm~ n̄m1 1

2 !1vmpm#J ,

~5.17!

which is the modified form of Eq.~5.13!. In the arguments of
the d functions in the last equation, we have replaced
quantum numbernm with the mean phonon numbern̄m . The
reason for this is that the summation overr m in Eq. ~5.12!
means to take the thermal average, and through the rela
nm5r m1 1

2 upmu1 1
2 pm this causes us to take the thermal a

erage overnm .
As seen from Eq.~5.17!, the shape and strength of ligh

absorption are all unchanged in comparison with the lin
case, and only the absorption frequencies are redshifted.
absorption frequency of aP-phonon line, which is defined by
P5(mpm , is now given by

vP5v j 0* 1(
m

@2r j mvm~ n̄m1 1
2 !1vmpm#. ~5.18!

Since n̄m increases with temperature, the frequencyV j 0* of
the absorption peak shifts to lower frequency as the temp
ture increases, which is in agreement with the experime
result.

At the moment, one needs to adopt the configuratio
coordinate model, which assumes that the electron inter
only with one effective local mode. That is to say, we mu
set vm5ve f for all m, whereve f is the frequency of the
effective local mode. To include acoustical phonons, the
quencyve f of the effective local mode must be smaller th
the frequencyv l of longitudinal optical phonons. If we fur-
ther introduce a macroscopic phenomenological param
Bj5(mr j m , then the line-shape equation~5.17! becomes
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f j~v!5 (
P52`

`

e2Sj (2n̄11)S n̄11

n̄
D P/2

3I P$2Sj@ n̄~ n̄11!#1/2%

3d@v2v j 0* 1Bjve f~ n̄1 1
2 !2ve fP#. ~5.19!

Here, the Huang-Rhys factorSj and the mean phonon num
ber n̄ are redefined as

Sj5

(
m

1

2
ve f

2 D j 0m
2

\ve f
, n̄5

1

eb\ve f21
.

Correspondingly, the absorption frequency of aP-phonon
line is simplified from Eq.~5.18! as

vP5v j 0* 2Bjve f~ n̄1 1
2 !1ve fP. ~5.20!

It is worthy to note that in the case discussed in Sec. V
light-absorption frequencies are independent of temperat
This is exactly the result due to the linear electron-phon
interaction. Therefore, the redshift of light-absorption fr
quency with temperature is characteristic of the quadr
electron-phonon interaction.

VI. WEAK NONLINEAR SPECTRAL FUNCTION AND ITS
APPLICATION IN F A CENTERS

As shown in Sec. V, in the presence of both linear a
quadratic electron-phonon interactions, a general analytic
pression of line-shape functionsf j (v) is hard to derive,
while this expression off j (v) can be found under the wea
nonlinear approximation. Indeed, so far some researc
have employed a variety of modified Huang-Rhys line-sh
functions to describe the main absorption band ofF color
centers. However, such a description fails for a more co
plex color center and for a polychromatic incident ligh
which will induce a series of absorption bands. In this ca
we must make use of the spectral functionF(v) to describe
many absorption bands of various color centers. If one s
stitutes the line-shape equation~5.19! for the j th absorption
band into Eq.~4.22!, the weak nonlinear spectral functio
F(v) is acquired as

F~v!5(
j

v

v j 0
f j 0 (

P52`

`

e2Sj (2n̄11)S n̄11

n̄
D P/2

3I P$2Sj@ n̄~ n̄11!#1/2%

3d@v2v j 0* 1Bjve f~ n̄1 1
2 !2ve fP#. ~6.1!

In form, Eq. ~6.1! signifies the summation over infinit
excited statesj of the trapped electron and thusF(v) is hard
to evaluate. Since the frequency width of the polychroma
incident light is finite and can be controlled at will, we ca
always select the frequency width such that it just cov
several particular peak-transition frequenciesV j 0* . In reality,
Eq. ~6.1! represents a finite sum and theF(v) in this case is
easy to calculate. On the other hand, the oscillator stren
f j 0 gives a transition probability of the electron from th
B
re.
n
-
ic

d
x-

rs
e

-

,

b-

c

s

th

ground statei 50 to thej th excited state. The probabilityf j 0
falls off rapidly with increasing of the excited statej. Take
the F center in KCl as an example: the oscillator strengthf
.0.81 for theF band,f .0.1 for theK band, andf .0.01 for
theL band. Therefore, in Eq.~6.1! we just consider the sum
mation over the first several excited statesj.

Since the strengths of many absorption peaks induced
a polychromatic incident light are modulated by oscillat
strengthsf j 0, we need to know the details off j 0. According
to Eq.~4.16!, f j 0 is determined by the dipole matrix eleme
rW j 0 defined by Eq.~4.15!. Further, the concrete evaluation o
rW j 0 depends on our knowledge of the electronic structure
the color center being investigated. The simplest electro
defect is theF center. Although not laser-active itself,
serves as an important building block for the formation of
laser-activeF aggregate centers. As the potential energy
the HamiltonianĤe(rW,pŴ ) of the F-center electron is spheri
cally symmetric, Ĥe(rW,pŴ ) has the eigenfunctionsuj (rW)
5Rnl(r )Ylm(u,f), where the state indexj 5(nlm), Rnl(r )
is the radial function, andYlm(u,f) is the spherical har-
monic. The corresponding energy eigenvalues« j5«nl are in
the forbidden energy gap. The level«nl is independent of the
magnetic quantum numberm and (2l 11)-fold degenerate.
The ground state ofF centers is ani 51s state and the elec
tric dipole transition selection rules only allow optically e
cited states to be thej 5np, n>2 states, which are threefol
degenerate. A 1s→2p transition gives rise to theF band,
which is called the fundamental absorption transition. T
superposition of 1s→np, n>3 transitions leads to theK
band. TheL band arises from transitions of the electron fro
the ground state to states that are degenerate with condu
states. When anF center is perturbed strongly, its threefo
degenerate 2p level is splitted into two components, so th
the mainF band now consists of two bands in absorptio
There exist two internal perturbation methods. When one
the nearest-neighbor cations of anF center is replaced by a
cationic impurity, theFA center forms. TheF2

1 center con-
sists of two anion vacancies binding one electron.

The color center systems, which so far have been succ
fully operated as broadly tunable continuous-wave infra
lasers, can be divided into two characteristic groups:FA and
FA-like centers, andF2

1 andF2
1-like centers. As an example

we now apply our theory of light absorption toFA centers,
because in comparison withF2

1 centers, they possess simpl
structures and were found earlier.

When an alkali halide crystal contains a predominant c
tent of extrinsic alkali ions of smaller size than the host alk
ion, FA centers are formed. According to theFA model put
forward by Lüty,22 the FA center consists of anF center
attached to a small alkali ion on â100& nearest-neighbor
site, as shown in Fig. 1. There are two distinct types ofFA
centers. A representative of type-IFA centers is theFA cen-
ter in a Na1-doped KCl crystal, and a representative
type-II FA centers is theFA center in a Li1-doped KCl crys-
tal. The 1s→2p transitions ofFA~I! andFA~II ! centers pro-
duce similar double-peak absorption spectra, which
called FA bands. TheFA~I! centers exhibit a depolarize
emission with the linewidth and Stokes shift similar to theF
center case. However, theFA~II ! centers show a polarize
emission with a very narrow linewidth and a very larg
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Stokes shift. Consequently, theFA~II ! centers are laser-activ
but theFA~I! centers are not. In the following theFA centers
refer to theFA~II ! centers.

The splitting of a singleF band into twoFA bands may be
easily understood in group-theoretical terms. TheF andFA
centers have the same 1s singlet ground state. TheF center
in alkali halide crystals has the symmetry of a full octahed
group Oh . The 2p triplet excited states ofF centers trans-
form according to the irreducible representationT1u of the
group Oh . The resultingFA center from anF center pos-
sesses the symmetry of a tetragonal groupC4v , with the
symmetry axis being in thê100& direction. SinceC4v is a
subgroup ofOh , the three-dimensional representationT1u of
Oh reduces to the sum of two irreducible representationsA1
andE of C4v with dimensions one and two, respectively. T
2px and 2py states ofFA centers are twofold degenerateE
states and the 2pz state is a singletA1 state. TheE level lies
close to theT1u level of F centers whereas theA1 level is
shifted to a lower energy below it. In this way, the trip
degenerateT1u level of F centers splits into anE doublet and
anA1 level of FA centers. Assume the electric field vector
a polarized light incident in theFA center crystal is not par
allel to a ^100& direction, the irradiation will lead to the
appearance of two main absorption bands ofFA centers. The
low-energy absorption band, labeled byFA1, corresponds to
the 1s→A1 transition of anFA electron, where the electric
dipole transition vector is along the symmetry axis of t
center which passes through the impurity cation. The hi
energy absorption band, labeled byFA2, corresponds to the
1s→E transition of anFA electron, where the electric-dipol
transition vector is normal to the symmetry axis of the ce
ter.

Integration of absorption spectra ofFA centers shows tha
theFA1 transition has the same oscillator strength as eac
the twofoldFA2 transitions. Letf 2p,1s stand for this oscillator
strength. Next, we need to find the Huang-Rhys factors
the FA1 and FA2 transitions, which are determined by th
relative displacements of the equilibrium configurations
the lattice in the electronic ground and excited states.
cording to the Franck-Condon principle, during the 1s→A1
and E transitions ofFA electrons, the lattice ions keep th
equilibrium configurationD1s,m (m51,2, . . . ,f ) in the elec-
tronic 1s ground state, whereD im are introduced in Eqs

FIG. 1. Ionic structure of the ground state configuration ofFA

centers. The2e represents one excess electron bound at the
cancy.
l

-

-

of

r

f
-

~2.12! and ~2.13!. When the electrons reach theA1 and E
excited states, the lattice ions having the ground-state c
figurationD1s,m are in the vibration excited state. The lattic
has to reach the vibration ground state by relaxing into
saddlepoint configuration, in which the two vacancies form
double-well potential for the center electron, separated b
high central barrier formed by the anion. Consequently,
1s ground state andA1 , E excited states of the single-we
potential are transformed into the lowest symmetric statecS
and lowest asymmetric statecA of the double-well potential,
respectively. The transition from the relaxed excited statecA
to the lowest symmetric statecS leads to a single polarized
emission. TheFA center in thecS state will relax into either
its original lattice place or into a reorientedFA center. Let
D2p,m represent the equilibrium configuration of the lattice
the relaxed excited statecA . The relative displacement o
the equilibrium configurations of thecA and 1s states is
given by D2p,1s;m5D2p,m2D1s,m . Therefore, theFA1 and
FA2 transitions have the same Huang-Rhys factorS2p

5((m
1
2 ve f

2 D2p,1s;m
2 )/\ve f . Similarly, we may assume tha

the A1 andE excited states have the same macroscopic p
nomenological parameterB2p .

In Sec. IV, we have introduced the three transition f
quencies of the electron from the ground state to thej th
excited state:v j 0 , v j 0* , and V j 0* . v j 0 represents the bar
transition frequency without multiphonon transitions.v j 0* de-
notes the transition frequency renormalized by the electr
ion correlation effect, in the absence of multiphonon tran
tions.v j 0 andv j 0* have a negligible difference and cannot
measured directly in optical absorption experiments, beca
electronic transitions always accompany multiphonon tran
tions.V j 0* stands for the transition frequency at an absorpt
peak in the presence of multiphonon transitions, only wh
can be determined directly in optical absorption experime
Let vA1,1s* andvE,1s* denote the renormalized frequencies

the FA1 and FA2 transitions, respectively. At this point, th
spectral function of the mainFA bands is obtained from Eq
~6.1! as

F~v!5 (
P52`

`

f 2p,1se
2S2p(2n̄11)S n̄11

n̄
D P/2

3I P$2S2p@ n̄~ n̄11!#1/2%

3H v

vA1,1s*
d@v2vA1,1s* 1B2pve f~ n̄1 1

2 !2ve fP#

12
v

vE,1s*
d@v2vE,1s* 1B2pve f~ n̄1 1

2 !2ve fP#J .

~6.2!

In the last equation, for the factorv/v j 0 we have replaced
the bare frequencyv j 0 with the renormalized frequencyv j 0* ,
and the prefactor 2 ofv/vE,1s* is the degeneracy of theE
level.

Based on Eq.~6.2!, we now want to calculateF(v) as a
function of frequencyv and temperatureT. According to Eq.
~5.20!, v only takes on the discrete values whenP goes

a-
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through all possible integers, and so the frequency spacin
absorbed photons is the effective phonon frequencyve f .
The d functions in Eq.~6.2! obviously have the values

d@v2v j 0* 1Bjve f~ n̄1 1
2 !2ve fP#

5H 1

ve f
v5v j 0* 2Bjve fS n̄1

1

2D1ve fP,

0 otherwise.

~6.3!

The data concerned in a Li1-doped KCl crystal are given a
follows.22 The effective phonon frequencyve f5
1.8631013 s21 while the frequency of longitudinal optica
phononsv l54.0231013 s21. One can derivef 2p,1s50.27
from the oscillator strength of theF band. The peak transi
tion frequencies atT54.5 K are VA1,1s* 51.99 eV and

VE,1s* 52.26 eV. AlthoughvA1,1s* and vE,1s* cannot be mea-

sured experimentally, they are independent of tempera
and satisfy the relationvE,1s* 2vA1,1s* 5VE,1s* 2VA1,1s* . If we

choose suitablyS2p522.4, vA1,1s* 51.77 eV, and vE,1s*

52.04 eV, the theoretical and experimental values of
peak transition frequencies atT54.5 K are the same.B2p
58.2 is used in order to fit the dependence of the peak t
sition frequencies on temperature.

We can plot the theoretical absorption curves ofFA cen-
ters for different temperatures in Fig. 2. Figure 2 shows f
features:~1! at low temperature there are two partly overla
ping absorption bands;~2! the FA2 peak is about twice as
high as theFA1 peak; ~3! both peaks broaden and shift
lower energies with rising temperature;~4! at high tempera-
ture both absorption bands merge into a single whole.
second and third features are in good agreement with
observed dichroic absorption spectra. The first and last
tures can be revealed if the incident light is not linearly p
larized or the electric field of the polarized light is not pa
allel to a ^100& direction of the crystal.

VII. SUMMARY AND DISCUSSION

In this section we first summarize the innovations made
the present paper. In Sec. II, we systematically develo
quantum field theoretical method to second-quantize the
tem’s Hamiltonian with both linear and quadratic electro
phonon interactions. This method possesses the follow

FIG. 2. Theoretical absorption curves ofFA centers in a
Li1-doped KCl crystal for different temperatures.
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four characteristics.~1! We use the adiabatic approximatio
to second-quantize the electronic wave field, while the latt
ions are in the coordinate representation.~2! The Condon
approximation equivalently omits the nondiagonal matrix
ements of the system’s Hamiltonian in the electronic Hilb
subspace.~3! We directly introduce the creation and annih
lation operators of harmonic oscillators to fulfill the seco
quantization of lattice vibrations.~4! The linear and qua-
dratic electron-phonon interactions give rise to the three
fects: lattice relaxation, electron-ion correlation, and lattic
frequency shift. In the Hamiltonian for a linearly interactin
electron-phonon system, the lattice vibrations are usu
quantized by introducing the raising and lowering operat
of harmonic oscillators. Such a Hamiltonian both disagre
with the second-quantized field theory and cannot desc
any multiphonon transition effects correctly. As shown
Ref. 18, by the transition from the raising and lowering o
erators to the creation and annihilation operators of harmo
oscillators, the Hamiltonian obtained still cannot descr
any multiphonon transition effects correctly. Our meth
gains by comparison.

In Sec. III, we use the linear response theory to derive
expression of the absorption coefficient, which is found to
determined by a temperature-dependent double-time Gre
function. In Sec. IV, we apply the system’s Hamiltonian o
tained in Sec. II to the calculation of the temperatu
dependent double-time Green’s function. During the calcu
tive process, we insert an identity operator in the Gree
function so as to avoid the truncation approximation to
chain of equations for Green’s functions. Owing to a qu
dratic electron-phonon interaction, we have to make the
coupling approximation to the probability distribution in th
initial vibronic states of transition, the approximation that
unnecessary for a linear electron-phonon system. Co
quently, we acquire the spectral function expression
many absorption bands, which resembles the generaliza
of the Bethe-Sommerfeld formula for a single absorpti
band.

In Sec. V, we deduce the first general expression of
overlap integrals and discuss its two approximate cases:
dratic and linear modes. After the overlap integrals of line
modes are obtained, we utilize a new technique to reco
the Huang-Rhys line-shape function for one absorption ba
The line-shape function of linear modes cannot explain
experimental fact that the one-band absorption peak bro
ens and shifts to lower energies with rising temperature
order to remedy this defect, we propose the concept of w
nonlinear modes and acquire their line-shape function. T
one-band line-shape function cannot describe the whole
sorption spectrum of color centers, which has to be depic
by the spectral function of the absorption coefficient. In S
VI, we find the expression of the spectral function of we
nonlinear modes and apply this spectral function to theFA
center in a Li1-doped KCl crystal. The spectral function o
the FA bands is simplified by the Franck-Condon princip
Our numerical calculation gives successfully the first the
retical explanation of the absorption spectral features of
FA center.

One of the greatest advantages of our treatment metho
that the starting point is the Hamiltonian with linear an
quadratic electron-phonon interactions and thereby a uni
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framework is established. However, most of the previous
searchers started from the Bethe-Sommerfeld formula
one absorption band and then made the adiabatic and
don approximations. This method lacks a clear physical p
ture and strong systematicness.

In the discussion of the present paper, we do not to
upon the degeneracy of the vibronic states. If so, we sho
consider the nonradiative transition between two vibro
states which differ in electronic energy but have the sa
total energy. This transition is a resonant effect. The previ
discussion also does not relate to the degeneracy of the
tronic states, which is described by the Jahn-Teller theo
such that the configuration of atoms surrounding the de
will tend to distort to remove any electronic orbital dege
eracy. The Jahn-Teller effect leads to partial broadening
an absorption band.23 We have assumed no interaction b
tween defect centers. In reality, the interacting defect cen
of a sufficient concentration will cause splitting of vibron
levels and thereby produce inhomogeneous broadenin
absorption bands. Furthermore, the author neglects broa
ing of absorption bands due to the lifetime of an excited s
,
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and the self-bandwidth of a measuring instrument. In de
ing the expression of the absorption coefficient, we have
sumed an optically isotropic crystal. For a noncubic crys
this expression of the absorption coefficient deviates so
what from the experimental results.

It is worthwhile to point out that the coefficientv i i 8m of
the quadratic electron-phonon interaction in Eq.~2.7! is
rather formal. Hitherto we have no concrete models to de
mine it and hence our theory waits for a further developme
If one will know the microscopic mechanism of a quadra
electron-phonon interaction, one can calculatev i i 8m , the
phenomenological parameterBj for the weak nonlinear ef-
fect, and the Huang-Rhys factorSj . Finally, we want to
formulate the moments of various order of optical absorpt
bands by temperature-dependent double-time Green’s f
tions and thereby to calculate these moments.
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